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Abstract

Graph neural networks (GNNs) have emerged
as a powerful tool for tasks such as node clas-
sification and graph classification. However,
much less work has been done on signal clas-
sification, where the data consists of many
functions (referred to as signals) defined on
the vertices of a single graph. These tasks re-
quire networks designed differently from those
designed for traditional GNN tasks. Indeed,
traditional GNNs rely on localized low-pass
filters, and signals of interest may have in-
tricate multi-frequency behavior and exhibit
long range interactions. This motivates us to
introduce the BLIS-Net (Bi-Lipschitz Scatter-
ing Net), a novel GNN that builds on the
previously introduced geometric scattering
transform. Our network is able to capture
both local and global signal structure and
is able to capture both low-frequency and
high-frequency information. We make several
crucial changes to the original geometric scat-
tering architecture which we prove increase
the ability of our network to capture infor-
mation about the input signal and show that
BLIS-Net achieves superior performance on
both synthetic and real-world data sets based
on traffic flow and fMRI data.
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1 INTRODUCTION

Recent years have seen a tremendous rise of Graph
Neural Networks (GNNs) as a powerful tool for pro-
cessing graph-structured data (Wu et al., 2020). Most
of the research has focused on three families of tasks:
graph-level tasks in which the data consists of many
different graphs (Errica et al., 2019), node-level tasks
(Kipf and Welling, 2016) such as classifying each user
in a large network, and edge-level tasks such as link
prediction (Zhang and Chen, 2018). However, there is
another family of problems, signal-level tasks, which
has received comparatively little attention.

Here we focus on developing a high-performing network
for signal classification, where the goal is to predict the
label yi of a signal (function) xi : V → R defined on the
vertices of a weighted graph G = (V,E,w). Notably,
this is the natural generalization of image classification,
which can be thought of as classifying many signals
defined on a grid graph, to more irregular domains.

Additionally, we note that signal-level tasks have many
practical applications. For example, in traffic data,
the road network is kept fixed but the number of cars
at each intersection varies each day. A natural goal
would be to identify, and then analyze, anomalous
traffic patterns. In the analysis of brain-scan data, a
patient’s neuronal structures (i.e., voxels, neurons) can
be modeled as a fixed graph with different levels of
activity in each region across time, offering a useful
framework for analyzing neural data (Li et al., 2021).

However, GNNs that have been designed with node-
level tasks in mind perform limited processing from a
signal perspective. A foundational principle of most
node-level analysis is homophily (Zhu et al., 2020), the
idea that nodes are similar to their neighbors. There-
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fore, one wants to produce a hidden representation
of each node which varies slowly among neighbors.
However, when focused on signal-level tasks, the local
homophily heuristic is not applicable and we find that
it is important to capture (i) both low-frequency and
high-frequency information in the input signal and (ii)
both local and global behavior.

A natural choice when working with signals is to use
methods from graph signal processing (Shuman et al.,
2013) incorporated into a neural network. To this end,
we rely on the geometric scattering transform (Gao
et al., 2019; Gama et al., 2019b,a; Zou and Lerman,
2019b), a multi-order, multi-scale transform that al-
ternates wavelet transforms and non-linear modulus
activations in the form of a deep (although typically
fixed) network. The wavelets act as band-pass filters
that capture information at different frequencies and
scales. Therefore, geometric scattering provides a solid
starting place for signal-level tasks.

However, geometric scattering alone is insufficient for
two key reasons: First, we establish that geometric
scattering is not injective due to its modulus operation,
and thus loses expressivity since it cannot distinguish
between certain signal classes. Second, scattering pro-
duces an unnecessarily high-dimensional representation
of the signal that is not tuned to classification purposes.
This motivates us to introduce BLIS-Net (Bi-Lipschitz
Scattering Net) which incorporates advances to address
these issues while facilitating integration into larger
neural networks.

BLIS-Net builds on previous work on the geometric
scattering transform and introduces ReLU and reflected
ReLU activations to preserve injectivity. Further, BLIS-
Net incorporates dimension reduction and classification
modules to demonstrate the modular use of bi-Lipschitz
Scattering within a larger ML context. Our contribu-
tions can be summarized as follows:

1. We introduce BLIS-Net, a novel GNN for signal
classification on graphs.

2. We prove two theorems (Theorem 3.1 and Theorem
3.2), which, when considered jointly, show that
the BLIS module is provably more expressive than
the geometric scattering transform. In particular,
Theorem 3.2 shows that BLIS is bi-Lipschitz and
therefore stably invertible.

3. We show that BLIS-Net achieves superior perfor-
mance on both synthetic data and real-world data
sets derived from traffic and fMRI data.

2 BACKGROUND

2.1 Notation and Preliminaries

Let G = (V,E,w) be a weighted, connected graph with
vertices V = {v1, · · · , vn}. Throughout this paper, we
will consider functions x : V → R, which we refer to as
graph signals, and will in a slight abuse of notation not
distinguish between the signal x and the vector x ∈ Rn

defined by xi = x(vi). We will let A be the weighted
adjacency of G, let d = A1 denote the weighted degree
vector, and let D = diag(d) be the degree matrix.

We will let LN = I−D−1/2AD−1/2 denote the symmet-
ric normalized graph Laplacian. It is well-known that
LN is positive semidefinite and admits an orthonormal
basis (ONB) of eigenvectors with LNvi = ωivi with
0 = ω1 < ω2 ≤ . . . ≤ ωn ≤ 2 (where the fact that
ω2 > 0 follows from the assumption that G is con-
nected). This allows us to write LN = V ΩV T , where
V is a matrix whose i-th column is vi and Ω is a diag-
onal matrix with Ωi,i = ωi. Since the {vi}ni=1 form an
ONB, we see that V is unitary and V TV = I.

It is known (e.g., Section 2 of Min et al. (2022)) that

xTLNx =
∑

{vi,vj}∈E

(x̃i − x̃j)
2 (1)

where x̃ := D−1/2x is a normalized version of x. There-
fore LN is viewed as a matrix whose quadratic form
measures the smoothness of (normalized) signals. If we
take x = vi we have vi

TLNvi = ωi. Therefore, we may
interpret each eigenvalue ωi as a frequency and each
eigenvector as a generalized Fourier mode. The high-
frequency eigenvectors oscillate rapidly within local
neighborhoods leading to large values in (1) whereas the
low-frequency eigenvectors are smooth in the sense that
they vary slowly within graph neighborhoods. There-
fore, we view methods based on the eigendecomposition
of the graph Laplacian as the natural extension of tra-
ditional signal processing to the graph setting.

We note that since V is unitary, we have p(LN ) =
V p(Ω)V T for any polynomial p. Thus, for any contin-
uous function f : [0, 2] → R and diagonalizable matrix
M = BΞB−1 with Ξ = diag(ξ1, . . . , ξn), we define

f(M) = Bf(Ξ)B−1, (2)

where f(Ξ) = diag(f(ξ1), . . . , f(ξn)).

2.2 Graph signals and signal-level tasks

Graph signal-level tasks naturally arise in biological,
natural, and social systems. Key examples include:

• Predicting properties of social networks. For in-
stance, while classifying the political affiliation
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of an individual is a node-level task, character-
izing a polarized population (low-frequency) vs
a non-polarized population (high-frequency) is a
signal-level task.

• Networks that occur in nature such as cell-
communication networks have genes or cytokines
as signals on a fixed graph substrate (Moon et al.,
2019). In many of these cases, the number of
signals on the network is close to the number of
nodes.

• In neuroscience, one can represent brain measure-
ments as signals living on a fixed graph. The graph
embodies the connectivity between different brain
regions and the signal would be the brain activ-
ity measurements in each brain region. A typical
task is then to predict external stimuli from brain
signals (Ménoret et al., 2017).

In general, a signal-level task is any machine learning
task, e.g., classification, regression, or clustering, where
the data set consists of many different signals defined
on a single fixed graph.

2.3 Diffusion Matrices

Let g(t) be a decreasing function on [0, 2] with g(0) =
1, g(2) = 0, and let T = g (LN ) (defined as in (2)).
By construction, T is diagonalizable and T = V ΛV T ,
where Λ := g (Ω). As our primary example, which we
will use in all of our numerical experiments, we will let

g(t) = 1− t

2
. (3)

T then becomes the symmetrized diffusion operator

T = I − LN

2
=

1

2

(
I +D−1/2AD−1/2

)
.

Next, we let w ∈ Rn be a weight vector with wi > 0, let
W := diag(w), and K the asymmetric diffusion matrix

K := W−1TW. (4)

We let L2
w be the weighted inner product space with

⟨x,y⟩w = ⟨Wx,Wy⟩2 =
∑n

i=1 xiyiw
2
i , and norm de-

noted by ∥·∥w. One may verify that K is self-adjoint
on L2

w (see Perlmutter et al. (2023), Lemma 1.1).

We note that if we set W = D−1/2, then K becomes the
lazy random walk matrix, P := 1

2

(
I +AD−1

)
, which

was used to construct diffusion wavelets in Gao et al.
(2019), whereas if we set W = I, K is simply equal to
the matrix T which was used in Gama et al. (2019b).
More generally, Perlmutter et al. (2023) considered
W = Dα, −.5 ≤ α ≤ .5 and found empirically that the
optimal choice of α varied from task to task.

2.4 Graph Wavelets and Frame Properties

Let J ≥ 0, and let F = {Fj}J+1
j=0 be a collection of

n × n matrices. We say that F is a frame on L2
w if

there exist constants 0 < c ≤ C < ∞ such that,

c∥x∥2w ≤
J+1∑
j=0

∥Fjx∥2w ≤ C∥x∥2w, ∀x ∈ Rn. (5)

We say that F is a non-expansive frame if C ≤ 1 and
that F is an isometry if c = C = 1.

We now construct two families of wavelet frames. Anal-
ogous to Tong et al. (2022), let {sj}J+1

j=0 be a sequence
of scales with s0 = 0 and s1 = 1, and sj < sj+1. For
0 ≤ j ≤ J , let pj(t) denote the polynomial defined by
pj(t) := tsj − tsj+1 and let pJ+1 := tsJ+1 . By construc-
tion, each pj is nonnegative on [0, 1], and therefore, we
may define qj(t) := pj(t)

1/2 for 0 ≤ t ≤ 1.

We then define two graph wavelet transforms
W(1)

J := {Ψ(1)
j ,Φ

(1)
J }0≤j≤J , where Ψ

(1)
j := qj(K),

Φ
(1)
J := qJ+1(K) (defined as in (2)) and W(2)

J :=

{Ψ(2)
j ,Φ

(2)
J }0≤j≤J , Ψ(2)

j := pj(K), Φ(2)
J := pJ+1(K).

The following result shows that W(1)
J is an isometry

and that W(2)
J is a non-expansive frame on L2

w.1

Proposition 2.1. For any x ∈ Rn, we have,

∥W(1)
J x∥2w := ∥Φ(1)

J x∥2w +
J∑

j=0

∥Ψ(1)
j x∥2w = ∥x∥2w. (6)

Additionally, there exists a constant c > 0, depending
only on the maximal scale sJ+1, such that

c∥x∥2w ≤ ∥W(2)
J x∥2w ≤ ∥x∥2w for all x ∈ Rn, (7)

where ∥W(2)
J x∥2w is defined analogously to ∥W(1)

J x∥2w.

2.5 The Graph Scattering Transform

Given a wavelet frame WJ = {Ψj}Jj=0 ∪ {ΦJ} such
as W(1)

J and W(2)
J , the graph scattering transform is a

multilayer feedforward network consisting of alternating
wavelet transforms and non-linearities (building off
of an analogous construction (Mallat, 2012) modeling
CNNs for Euclidean data such as images). In particular,
given a sequence of scales j1, . . . , jm, we define

U [j1, . . . , jm]x = HΨjm . . . HΨj1x, (8)

where Hx = |x| is the componentwise modulus (abso-
lute value) operator (Hx)i = |xi|. Then, after comput-
ing each of the U [j1, . . . , jm]x, one may extract m-th

1Full proofs of all theoretical results are provided in the
supplementary materials.
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order scattering coefficients via the low-pass filter ΦJ ,

SJ [j1, . . . , jm]x = ΦJU [j1, . . . , jm]x.

If one wishes to apply the graph scattering transform
to tasks such as node classification, they may com-
pute the scattering coefficients up to order M and take
the scattering coefficients evaluated at each vertex,
{SJ [j1, . . . , jm]x(v) : 0 ≤ m ≤ M, 0 ≤ j1, . . . , jm ≤ J}
as a collection of node features which may then be input
into another machine learning algorithm such as a mul-
tilayer perceptron. Alternatively, if one wishes to apply
the graph scattering transform to whole-graph level
tasks such as graph classification, one first performs
a global aggregation such as summation or moment
aggregation (Gao et al., 2019) before applying the final
classifier. Importantly, we note that coefficients of or-
ders m = 0, . . . ,M (where the zeroth-order coefficient
is simply ΦJx) are fed into the classifier, not just the
m-th order scattering coefficients.

3 BLIS-Net

Here, we introduce BLIS-Net, a novel neural network
for graph signals which, as discussed in Section 2.2,
arise frequently in the natural and behavioral sciences.

In order to create a network that can classify or regress
properties of signals, one needs to create a rich rep-
resentation of the signal. A natural choice for such a
representation is a signal processing transform such as
the geometric scattering transform discussed in Section
2.5. Indeed, it was shown that the geometric scattering
transform was an effective tool for identifying anoma-
lies in traffic data in Bodmann and Emilsdottir (2022).
However, the geometric scattering transform has lim-
itations in its ability to characterize its input signal,
which motivates us to introduce the BLIS module.

The primary deficiency of the geometric scattering
transform which we seek to address is lack of injectivity.
Since the scattering transform is constructed using the
modulus in (8), it is trivial that the scattering transform
will produce identical representations of x and −x. The
following theorem shows that there are also non-trivial
examples of distinct signals with identical scattering
coefficients. This may be proved by constructing signals
x1 and x2, where each xj is supported on two disjoint
regions, such that x1 ̸= ±x2, but x1 and x2 have
identical scattering coefficients. We also note that
in Section 4.1, we conduct experiments on synthetic
data modeled after this choice of x1 and x2 to further
illustrate the limitations of the geometric scattering
transform which are addressed by BLIS.
Theorem 3.1. There exist signals x1 and x2 with
identical scattering coefficients such that x1 ̸= ±x2

2.
2See the supplement for a detailed theorem statement.

This result shows that the geometric scattering trans-
form has limits on its expressive power since there are
non-equivalent signals of which it produces identical
representations. Notably, the importance of injectivity
has also been noted in the context of graph classifica-
tion. In particular, Xu et al. (2019) showed that using
an injective aggregation function (in a message-passing
network) was the key to producing a maximally expres-
sive graph neural network. We also note that the result
of Theorem 3.1 is somewhat surprising since Mallat and
Waldspurger (2015) showed there were no non-trivial
signal pairs with identical scattering coefficients for the
original Euclidean scattering transform (Mallat, 2012).

3.1 The BLIS Module

Recall from Section 2.5 that the geometric scattering
transform uses an alternating sequence of wavelet trans-
forms and componentwise modulus operators to pro-
duce coefficients such as SJ [j1, j2]x = ΦJHΨj2HΨj1x.
BLIS makes the following modifications:

1. To induce injectivity, BLIS uses two different acti-
vation functions σ1(x) := ReLU(x) and σ2(x) :=
ReLU(−x). Notably, we have

σ1(x) + σ2(x) = Mx.

Thus, the use of σ1 and σ2 may be viewed as de-
composing the absolute value into two disjointly
supported non-linearities. Additionally, this modi-
fication is crucial to proving Theorem 3.2 which
shows that the BLIS module is injective on Rn.

2. To account for all frequency bands of the sig-
nal, BLIS uses the entire wavelet frame WJ =
{Ψj}Jj=0 ∪ {ΦJ} in each layer. This is in contrast
to the geometric scattering transform which does
not utilize the low-pass filter ΦJ until after the
final non-linearity. This modification is needed
to ensure that BLIS has the bi-Lipshitz property
established in Theorem 3.2 and is also key to the
conservation of energy property established in The-
orem 3.4. This latter property ensures that BLIS
doesn’t lose information which may be critical for
tasks such as classification.

3. Since BLIS uses the entire wavelet frame in each
layer, all of the energy of the input signal is pre-
served in each layer. Therefore, the only out-
put of an m-layer BLIS module is the coefficients
produced in the final layer (i.e., through a se-
quence of m filterings followed by activations).
This is in contrast to the geometric scattering
transform which outputs first-order coefficients
SJ [j1]x, second-order coefficients SJ [j1, j2]x, etc.,
up to m-th order coefficients SJ [j1, . . . , jm]x (in
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addition to a single zeroth-order coefficient which
is simply ΦJx). This makes it straightforward to
incorporate the BLIS module into a neural network
without the need for skip connections.

To explicitly define the BLIS module, we rewrite the
wavelet frame WJ = {Ψj}Jj=0 ∪ {ΦJ} as F = {Fj}J+1

j=0

where Fj = Ψj for 0 ≤ j ≤ J and FJ+1 = ΦJ . We let
m ≥ 1 denote the depth of the network and define

B[j1, k1, · · · , jm, km](x)

:=σkm
(Fjmσkm−1

(Fjm−1
· · ·σk1

(Fj1x)) · · · )
(9)

for 0 ≤ ji ≤ J + 1, and ki ∈ {1, 2}. We then let Bm(x)
denote the set of all the B[j1, k1, . . . , jm, km].

We remark that one could readily modify the BLIS
framework to include other frames F in place of the
wavelets W(1)

J or W(2)
J . For example, one could use the

spectral wavelets considered in Zou and Lerman (2019b)
or frames obtained as the union of different wavelet
families. Importantly, the proofs of Theorems 3.2 and
3.4 do not depend on the specific wavelet construction,
but only on the frame constants 0 < c ≤ C < ∞.
Therefore, both of these results apply to variations of
BLIS constructed via arbitrary F satisfying (5).

3.2 The bi-Lipschitz Property

Theorem 3.1, stated above, shows that the geometric
scattering transform is not injective on Rn (even up to
the equivalence relation x ∼ ±x). Therefore, it may
lack the ability to effectively characterize graph signals.
By contrast, the following theorem shows that BLIS
is a bi-Lipschitz map on weighted inner product space
L2
w introduced in Section 2.3 where we equip the image

space with the mixed norm obtained by taking the
(unweighted) ℓ2 norm of the weighted ℓ2 norms of the
individual B[j1, k1, . . . , jm, km]x, so that

∥Bm(x)∥2w,2 =
2∑

ki=1

J+1∑
ji=0

∥B[j1, k1, · · · , jm, km](x)∥2w .

Theorem 3.2. Bm is bi-Lipshitz on L2
w, i.e.,( c

2

)m

∥x− y∥2w≤∥Bm(x)−Bm(y)∥2w,2≤Cm∥x− y∥2w

for all x,y ∈ Rn, where 0 < c ≤ C < ∞ are the frame
bounds for the wavelets defined as in (5).

The following corollary is immediate from the first
inequality in Theorem 3.2 and the definition of a norm.

Corollary 3.1. Bm is injective on Rn.

We also note that the lower bound established in Theo-
rem 3.2 implies the existence of a Lipschitz continuous

inverse map3 that reconstructs x from Bm(x). This
property is particularly interesting in light of work
(Zou and Lerman, 2019a; Castro et al., 2020; Bhaskar
et al., 2022) which has attempted to invert the geomet-
ric scattering transform as part of an encoder-decoder
graph-generation network.

3.3 Properties inherited from scattering

In addition to the bi-Lipschitz property, we may also
show that BLIS retains desirable theoretical proper-
ties from the geometric scattering transform such as
permutation equivariance and conservation of energy.

Permutation equivariance is the property that if we
reorder the vertices v1, . . . , vn (and therefore reorder
the entries of the input signal since xi = x(vi)), then the
representations of the vertices are reordered in the same
manner. It is crucial to the success of a well-designed
GNN since it ensures that the network captures the
intrinsic graph structure of the data rather than relying
on the ordering of the vertices. The following theorem
shows BLIS is permutation equivariant.
Theorem 3.3. Let Π be a permutation matrix corre-
sponding to a reordering of the nodes. Then,

ΠB[j1, k1, · · · , jm, km]x = B[j1, k1, · · · , jm, km]Πx,

for all j1, k1, . . . , jm, km, where on the right-hand side
B[j1, k1, . . . , jm, km] is defined in terms of the permuted
ordering (with the permuted weight vector Πw).

In our aggregation module (discussed below in Section
3.4), we perform a global summation over the vertices.
In light of Theorem 3.3, we sum the same terms on both
the original and the permuted graph, just in a different
order. Therefore, the output of the aggregation module
is the same for both graphs. Thus, the BLIS module
produces an equivariant representation of the signal
from which the aggregation module extracts invariance.

Previous work has shown that the infinite-depth ge-
ometric scattering transform preserves the norm of
the input. For example, Theorem 3.5 of Perlmutter
et al. (2023) shows that if the scattering transform is
constructed using W(1)

J , then

∞∑
m=0

∑
0≤ji≤J

∥SJ [j1, . . . , jm]x∥2w = ∥x∥2w.

We may derive an analogous result for BLIS. However,
our theorem differs from previous work in that it shows
that the energy of the input signal is preserved in
each layer (whereas previous work showed energy was
conserved when summing over all layers). Indeed, this

3Discussed further in the supplement.
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...

Graph + Signal Diffusion Wavelets Activations

BLIS Module Layer

Graph + Output Signal

Figure 1: The BLIS module: We first apply multiscale diffusion wavelet transform to the input signal and then two
activation functions, σ1 and σ2. The output is a multivariate signal, with 2(J + 2) times the original dimension.

result helps motivate the third modification discussed
at the beginning of Section 3.1, where we implement
BLIS without skip connections, unlike scattering.

Theorem 3.4. For all x ∈ Rn, we have

cm ∥x∥2w ≤ ∥Bm(x)∥2w,2 ≤ Cm ∥x∥2w ,

where 0 < c ≤ C < ∞ are the frame bounds for the
wavelets defined as in (5). In particular, if c = C = 1,

as is the case for W(1)
J , we have ∥Bm(x)∥w,2 = ∥x∥w.

3.4 BLIS-Net Architecture

The bi-Lipschitz Scattering Network (BLIS-Net) inte-
grates the BLIS module with several other modules:

1. BLIS module layer: The first layer of our net-
work utilizes the BLIS module to extract features
from the input graph signal.

2. Moment aggregation module: For each
j1, k1, . . . , jm, km, we aggregate the BLIS features
across the nodes, i.e.,

B′[j1, k1, · · · , jm, km]xi

=
∑
v∈V

B′[j1, k1, · · · , jm, km](xi)(v).

3. Embedding layer: To reduce the risk of over-
fitting and increase computational efficiency, we
next perform a dimensionality reduction via an
embedding layer.

4. Classification layer: Finally we include an MLP
classifier featuring softmax activation.

We note that although the focus of this paper is signal
classification, other common machine learning tasks
such as clustering and regression have natural analogs in
the signal setting. Our method can be flexibly adapted
to these tasks due to its modular design. For example,
one could train a clustering algorithm on top of the
output of the BLIS module.

4 EXPERIMENTAL RESULTS

We demonstrate the utility of BLIS-Net (with both
W(1)

J and W(2)
J ) on synthetic and real-world data sets.

As baselines, we use several widely adopted graph neu-
ral networks based on several variations of the message-
passing framework: the Graph Convolutional Network
(GCN) (Kipf and Welling, 2016), Graph Attention Net-
work (GAT) (Veličković et al., 2018), and the Cheby-
shev spectral graph convolutional operator from Cheb-
Net (Defferrard et al., 2016). We also consider sev-
eral networks with powerful graph distinction abilities,
such as the Graph Isomorphism Network (GIN) (Xu
et al., 2019), GNNML1 and GNNML3 (Balcilar et al.,
2021), and Provably Powerful Graph Networks (PPGN)
(Maron et al., 2019). We also consider the general, pow-
erful, scalable (GPS) graph transformer (Rampášek
et al., 2022) which has achieved state-of-the-art perfor-
mance on a wide range of benchmarks. We note that,
unlike message-passing GNNs, the GPS allows infor-
mation to spread across the graph via full connectivity,
thus allowing the network to capture global properties
of the signal. We additionally compare against the ge-
ometric scattering transform (Gao et al., 2019), which
is simply labeled as Scattering in our tables. In our ta-
bles, we color the top-performing and second-best
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method. Further details on model implementation,
computational complexity, data sets, hyperparameters,
and training procedures are provided in the supple-
ment.

4.1 Synthetic data

We first generate 2N random functions f
(1)
1 , . . . , f

(1)
N

and f
(2)
1 , . . . , f

(2)
N defined on [0, 1]2 from two differ-

ent distributions. We then define graph signals x
(j)
k

with (x
(j)
k )i = f

(j)
k (vi) where the vertices v1, . . . , vn are

chosen-uniformly at random from [0, 1]2 and connected
to their k-nearest neighbors. Our goal is to predict
which distribution the signal was generated from.

In particular, we consider two families of functions

f
(1)
j = gµ1,σ1

+ gµ2,σ2
, f

(2)
j = gµ1,σ1

− gµ2,σ2
,

where gµ,σ(x) := exp
(
−∥x−µj

1∥
2
2

2(σj
1)

2

)
is a Gaussian func-

tion with center µ and bandwidth σ. In our first set of
experiments, we generate values of µj

1 and µj
2 uniformly

at random from [0, 1]2, set σj
1 = σj

2 = σj , where σj

is chosen uniformly from [0, 1]. Our second setup is
similar, but with µj

1 = µj
2, σ2 = σ1/2. Results of all

methods are presented in Table 4.1.

The first setting, µ1 ≠ µ2, results in signals modeled
after those used in the proof of Theorem 3.1 with sup-
port concentrated near two, possibly far away, points.
Therefore, we unsurprisingly observe that BLIS, as well
as GAT, GIN, GCN, and GPS, perform well on this
task whereas scattering is the least accurate method,
likely due to its use of the absolute value.4

In our second setting, µ1 = µ2 = µ and σ2 = σ1/2,
we view the Gaussians as two signals interfering with
each other. Unlike the first setup, the absolute value
does not severely limit the ability of the scattering
transform to distinguish the signal classes. Indeed, the
primary difference between these two signal classes is
an oscillatory pattern in the middle of the signals’ sup-
port. We observe that the two wavelet-based methods
(Scattering and BLIS) are well equipped to capture
this signal oscillation and both outperform GIN, GAT,
and GCN (with BLIS outperforming scattering due to
its increased expressive power). The utility of wavelets
for this task is visualized in Figure 3, where we show
that the two signal classes have markedly different re-
sponses to wavelet filters, but comparatively similar
responses to the low-pass filter used in GCN. Further
details on our experimental setup as well as ablation

4Code needed to reproduce our experiments is available
at https://github.com/KrishnaswamyLab/blis. Experi-
ments were performed on a computing cluster with 8 CPUs
and 4 NVIDIA RTX 5000 GPUs.

Synthetic Different µ Same µ

GCN 99.0± 0.4 91.7± 2.0
GAT 98.6± 0.8 96.4± 0.6
GIN 99.5± 0.2 91.3± 1.4
GPS 95.4± 5.9 97.7± 0.9
ChebNet 98.8± 0.3 97.3± 0.2
GNNML1 99.3± 0.2 98.3± 0.4
GNNML3 99.8± 0.0 98.8± 0.4
PPGN 77.7± 9.9 62.4± 6.0

Scattering (W1) 97.7± 1.0 96.5± 1.2
Scattering (W2) 88.3± 4.3 96.8± 1.0

BLIS-Net (W1) 100.0± 0.0 97.7± 0.5
BLIS-Net (W2) 99.5± 0.3 98.6± 0.4

Table 1: Accuracy on the synthetic data sets. For
BLIS-Net and Scattering, we consider the utilization of
both wavelet families (denoted in parentheses as either
W1 or W2) with dyadic scale sequences.

studies, where we also consider the geometric scattering
transform and the BLIS module paired with shallow
classifiers, e.g., SVM, are presented in the supplement.

Figure 2: Synthetic signals f
(1)
j and f

(2)
j .

4.2 Caltrans Traffic data

Here we consider data consisting of highway traffic
measurements collected by the Caltrans Performance
Measurement System (PeMS) (Chen et al., 2001),
where over 39,000 sensors are deployed across Cali-
fornia highways and data are aggregated every five
minutes. PeMS03 and PeMS07 consist of traffic data

https://github.com/KrishnaswamyLab/blis
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Figure 3: Filter responses on x
(1)
j and x

(2)
j .

from California’s 3rd and 7th congressional districts
and provide two months of consecutive traffic data
collected between 2016 and 2018, depending on the
data set5. We aim to predict the hour of the day
(24 classes), the day of the week (7 classes), and the
week of the month (4 classes) that each traffic obser-
vation corresponds to. On both PEMS03 (Table 2)
and PEMS07 (Table 3), we observe that the message-
passing-based methods (GCN, GAT, and GIN) perform
poorly. Both wavelet-based methods (Scattering and
BLIS-Net) perform well, with BLIS-Net outperforming
Scattering perhaps because of its improved expressive
power. The GPS graph transformer performs better
than the message-passing based methods but less well
than the wavelet-based methods, particularly when at-
tempting to predict the week. ChebNet has the best
performance while predicting the day and week for the
PEMS03 dataset. However, for all other traffic datasets
(including the two additional datasets in the appendix),
BLIS-Net (and methods based off it) attain the top
performance.

4.3 Partly Cloudy fMRI data set

Modeling functional magnetic resonance imaging
(fMRI) data as a graph is a useful computational ap-
proach for analyzing brain signals; the nodes are brain
regions of interest (ROIs) whose connections can be
defined in multiple ways. The fMRI data provides
graph signals in the form of a blood oxygenation level

5Additional experiments on data from the 4th and 8th
district are provided in the supplement along with addi-
tional details on our experimental setup.

PEMS03 HOUR DAY WEEK
GCN 27.8± 2.0 14.1± 0.1 30.8± 0.5
GAT 36.5± 1.1 23.5± 0.8 30.8± 0.5
GIN 14.0± 12.4 14.3± 0.4 30.8± 0.5
GPS 57.4± 0.1 49.6± 0.3 31.9± 0.4
ChebNet 58.8± 1.6 56.8± 1.4 61.9± 3.0
GNNML1 6.8± 3.7 15.2± 0.7 30.3± 1.2
GNNML3 61.5± 3.1 49.2± 3.6 36.3± 5.0
PPGN - - -

Scattering (W1) 58.2± 0.8 45.6± 0.7 46.4± 1.3
Scattering (W2) 60.4± 0.5 49.5± 0.9 51.4± 1.0

BLIS-Net (W1) 63.1± 2.2 53.1± 1.3 54.8± 1.8
BLIS-Net (W2) 68.3± 2.1 56.3± 0.0 61.7± 2.6

Table 2: Accuracy on the PEMS03 traffic data set.
PPGN results are not reported for the traffic dataset
due to its prohibitively high computational and memory
costs.

PEMS07 HOUR DAY WEEK
GCN 27.4± 2.0 14.6± 0.6 28.5± 0.5
GAT 33.2± 1.3 22.2± 1.2 36.5± 0.9
GIN 14.3± 12.6 15.8± 0.8 28.4± 0.6
GPS 39.9± 2.7 27.7± 1.9 30.4± 0.6
ChebNet 54.0± 4.2 61.4± 1.5 72.9± 3.3
GNNML1 8.0± 1.8 17.5± 1.7 28.3± 1.0
GNNML3 51.8± 5.3 52.3± 7.9 31.5± 4.1
PPGN - - -

Scattering (W1) 54.0± 0.6 53.3± 0.9 56.9± 1.3
Scattering (W2) 54.3± 0.7 55.2± 1.2 61.6± 1.0

BLIS-Net (W1) 63.5± 1.1 72.9± 1.5 76.8± 2.0
BLIS-Net (W2) 63.4± 2.1 71.0± 2.4 77.3± 1.6

Table 3: Accuracy on the PEMS07 traffic data set.

dependent (BOLD) signal across the ROIs.

Here, we utilize a data set collected from participants
who were shown Disney Pixar’s "Partly Cloudy" in
Richardson et al. (2018). 39 ROIs were extracted from
the fMRI data, and the graph connectivity was created
using a k-nearest neighbors graph based on the cen-
troids of the ROIs. We consider the problem of using
the fMRI data to classify the emotional state of the
animated film, delineating the frames into three classes,
positive, negative, and neutral emotions. Similarly to
Busch et al. (2023), we apply temporal smoothing at
each node 6. As seen in Table 4, BLIS-Net outperforms
all other methods. As was generally observed in the
PeMS data sets, scattering is the second best perform-
ing method followed by the GPS graph transformer,
underscoring the value of capturing global information
as well as the full frequency spectrum of the input
signal.

6Results without smoothing are in the supplement.
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Partly Cloudy Emotion classification

GCN 39.3± 5.9
GAT 40.6± 6.1
GIN 42.1± 6.0
GPS 56.4± 4.3
ChebNet 45.7± 5.9
GNNML1 48.8± 5.4
GNNML3 45.2± 5.6
PPGN 42.0± 5.3

Scattering (W1) 60.6± 4.9
Scattering (W2) 62.3± 5.1

BLIS-Net (W1) 67.1± 4.3
BLIS-Net (W2) 68.3± 3.6

Table 4: Accuracy on Partly Cloudy fMRI data.

5 CONCLUSION AND FUTURE
WORK

We have introduced BLIS-Net, a network for processing
graph signals. The key piece of our architecture is the
BLIS module, which modifies the geometric scattering
transform in several ways in order to provably increase
its expressive power for signal classification. We then
show that BLIS-Net achieves superior performance to
both the original geometric scattering transform and
other GNNs on both real and synthetic data.

There are also several natural avenues of future work.
As alluded to in the introduction, Bodmann and Emils-
dottir (2022) used a statistical analysis of the geometric
scattering coefficients to detect anomalous traffic pat-
terns. It is likely that similar tools can be used in
conjunction with BLIS to detect anomalous signals on
graphs such as traffic networks and brain-scan networks.
Additionally, we note that many of our data sets have
an implicit temporal structure in addition to the graph
structure. Therefore, developing a space-time version
of BLIS, perhaps using techniques inspired by Pan et al.
(2021), would be a natural future direction. Lastly, we
note that Wenkel et al. (2022) constructs a hybrid net-
work which combines aspects of geometric scattering
with more standard GCN-style networks and utilizes a
localized attention mechanism to balance the two. We
view hybridizations similar to this, with BLIS in place
of the geometric scattering transform, as a potential
avenue for improved numerical performance in future
work.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Appli-
cable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applica-
ble]
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Appendix

A Proof of Proposition 2.1

The proof of Proposition 2.1 follows by adapting the techniques used to prove Theorem 1 of Tong et al. (2022)
and Proposition 2.2 of Perlmutter et al. (2023) to more general scales (for W(1)) and more general diffusion
matrices (for W(2)).

Proof. We will first prove (6), which estabilished that W(1)
J is an isometry. Note that by (2) and (4) we have

Ψ
(1)
j = qj(K) = W−1V qj(Λ)V

TW

for all 0 ≤ j ≤ J and also that

Φ
(1)
J = qJ+1(K) = W−1V qJ+1(Λ)V

TW.

Additionally, we note that since V is unitary, the definition of ⟨·, ·⟩w implies that we have

∥Ψ(1)
j x∥2w = ⟨Ψ(1)

j x,Ψ
(1)
j x⟩w = xTWTV qj(Λ)

2V TWx,

and similarly ∥Φ(1)
j x∥2w = xTWTV qJ+1(Λ)

2V TWx. Therefore

∥W(1)
J x∥2w =

J∑
j=0

∥Ψ(1)
j x∥2w + ∥Φ(1)

J x∥2w

= xTWTV

J+1∑
j=0

qj(Λ)
2

V TWx

= xTWTV QJ(Λ)V
TWx

= ⟨QJ(Λ)V
TWx, V TWx⟩2,

where QJ (t) :=
∑J+1

j=0 qj(t)
2 (and QJ (Λ) is defined term by term along the diagonal according to (2)). Therefore

the lower frame bound on W(1)
J is given by

c
(1)
J := inf

x ̸=0

∥W(1)
J x∥2w
∥x∥2w

= inf
x ̸=0

⟨QJ(Λ)V
TWx, V TWx⟩2
∥Wx∥22

= inf
x ̸=0

⟨QJ(Λ)V
TWx, V TWx⟩2

∥V TWx∥22
(B.1)

= inf
y ̸=0

⟨QJ(Λ)y,y⟩
∥y∥22

(B.2)

= min
1≤i≤n

QJ(λi). (B.3)

B.1 follows because V is unitary. B.2 follows because W is invertible and B.3 follows because QJ (Λ) is diagonal
with nonzero entries QJ(λi). We can similarly calculate the upper frame bound to be

C
(1)
J := sup

x ̸=0

∥W(1)
J x∥2w
∥x∥2w

= max
1≤i≤n

QJ(λi).
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Using a telescoping sum, we see that

QJ(t) =
J+1∑
j=0

qj(t)
2 =

J+1∑
j=0

pj(t) = tsJ+1 +
J∑

j=0

(tsj − tsj+1) = tsJ+1 − (tsJ+1 − 1) = 1 (10)

uniformly on 0 ≤ t ≤ 1. Thus, c(1)J = C
(1)
J = 1 which concludes the proof of (6).

Turning our attention to (7), we may use the same logic as before to see that the lower and upper frame bounds
for W(2)

J are given by:

c
(2)
J := inf

x ̸=0

∥W(2)
J x∥2w
∥x∥2w

= min
1≤i≤n

PJ(λi), C
(2)
J := sup

x ̸=0

∥W(2)
J x∥2w
∥x∥2w

= max
1≤i≤n

PJ(λi),

where PJ(t) :=
∑J+1

j=0 pj(t)
2. To determine the upper frame bound, it suffices to note that

max
1≤i≤n

PJ(λi) ≤ sup
t∈[0,1]

J+1∑
j=0

pj(t)
2 ≤ sup

t∈[0,1]

J+1∑
j=0

pj(t)

2

= 1

where the second inequality comes from the positivity of each pj(t) and the final equality comes from the same
reasoning as in (10). For the lower bound, we see that

min
1≤i≤n

PJ(λi) ≥ inf
t∈[0,1]

J+1∑
j=0

pj(t)
2 ≥ inf

t∈[0,1]
p0(t)

2 + pJ+1(t)
2 = inf

t∈[0,1]
(1− t)2 + t2sJ+1 .

The final quantity is a positive constant depending only on sJ+1. Thus, this completes the proof.

Remark A.1. In our experiments, we use dyadic scales, (s0 = 0, s1 = 1, sj = 2j−1, j ≥ 2). In this case,
Proposition 1 of Chew et al. (2022) implies that the lower frame bound c for the W(2)

J wavelets may be chosen to
be a universal constant.

B Details and proof for Theorem 3.1

In this section, we provide full details on Theorem 3.1 as well as some discussion.

B.1 Background - Wavelet Phase Retrieval

The original scattering transform (Mallat, 2012) was introduced as a theoretical model for understanding the
success of convolutional neural networks, defining scattering coefficients via an alternating sequence of wavelet
convolutions and pointwise absolute values (moduluses):

SJ [j1, . . . , jm]f = ΦJHΨjm . . . HΨj1f, for f ∈ L2(Rn).

A natural question is to what extent do these coefficients determine a signal f? If two signals, f1 and f2 have the
same coefficents, does this imply f1 and f2 coincide?

To answer this question, Mallat and Waldspurger (2015), studied the descriptive power of the wavelet-modulus,
MΨj which is the key building block of the scattering transform. Since Ψj is linear, it is immediate that
HΨjf1 = HΨjf2 whenever f1 = ±f2 (or more generally when f1 = eiθf2 in the case the functions are complex-
valued). The question then becomes whether this is the only setting in which HΨjf1 = HΨjf2, i.e., are there
any non-trivial ambiguities in the wavelet modulus. Questions such as this, whether or not a function can be
determined (up to a global sign) by magnitude-only measurements, are known as the phase retrieval problems
(Bandeira et al., 2014) and arise in wide variety of scientific domains including optics (Antonello and Verhaegen,
2015), astronomy Fienup and Dainty (1987), x-ray crystallography (Liu et al., 2012), and speech-signal processing
(Balan et al., 2006).
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The primary results of Mallat and Waldspurger (2015) are (i) if the Ψj are chosen to be Cauchy wavelets, then
the wavelet modulus is injective (up to the equivalence relation f(x) ∼ eiθf(x)) and therefore invertible. (ii)
There is no uniform modulus of continuity on the inverse map, i.e., there are signals f1, f2 which are far apart
(in the quotient metric induced by the relevant equivalence relation) such that f1 and f2 have nearly identical
wavelet modulus.

Theorem B.1 stated below, which is a more detailed version of Theorem 3.1 from the main body, is meant to
address the analogous question in the graph setting. Is the wavelet modulus invertible (up to a global sign
change)? We show that under certain circumstances the answer to this question is no. There are signals x1 ̸= ±x2

with identical wavelet moduluses therefore indentical scattering coefficients.

Additionally, we also note that Theorem 3.2 is also partially motivated by the second result of Mallat and
Waldspurger (2015). It shows that unlike the (Euclidean) scattering transform, the map which recovers a signal x
from its BLIS coefficients is Lipschitz continuous. Therefore, the BLIS module can be stably inverted.

B.2 Statement and Proof of Theorem B.1

We first introduce some notation. For vi, vj ∈ V , we let d(vi, vj) denote the unweighted path distance between vi
and vj . That is, d(vi, vj) is the smallest k such that Ak(vi, vj) ̸= 0, when vi ̸= vj , and d(vi, vi) = 0. We then
define the diameter of G by

diam(G) = max
vi,vj∈V

d(vi, vj).

With this notation, we may now state our theorem in detail and provide a proof.

Theorem B.1. Let WJ = {Ψj}Jj=0 ∪ {ΦJ} be the wavelets W(2)
J constructed in Section 2.4. Suppose at least one

of the following two conditions hold.

1. G is a bipartite graph.

2. g(t) is as in (3) and diam(G) > 2sJ+1.

Then there exist signals x1,x2 such that x1 ̸= ±x2, but

HΨjx1 = HΨjx2 for all 0 ≤ j ≤ J,

and therefore, x1 and x2 have identical m-th order scattering coefficients for all m ≥ 1.

Proof. Let us first consider the case where G is bipartite. As in Section 2.1, let v1, . . . ,vn denote the eigenvalues
of LN with LNvi = ωivi, 0 = ω1 < ω2 ≤ . . . ≤ ωn ≤ 2. It is known (see, e.g., Lemma 1.7 of Chung (1997)) that
since G is bipartite, we have ωn = 2.

Since the function g(t) defined in Section 2.3 satisfies g(0) = 1, g(2) = 0, this implies that T = g(LN ) has
eigenvalues of 1 and 0. Moreover, since K is similar to T , this implies that K also has eigenvalues 0 and 1. That
is, there exist vectors u1,u2 ̸= 0 such that Ku1 = u1, Ku2 = 0.

Let x1 = u1 + u2 and x2 = u1 − u2. By definition, neither u1 or u2 are the zero vector and therefore it is clear
that x1 ̸= ±x2. Thus, the proof will be complete once we show that HΨjx1 = HΨjx2 for all 0 ≤ j ≤ J .

We first note that for i = 1, 2 and 1 ≤ j ≤ J, we have si, si+1 > 0 and thus we have

Ψjxi = Ksjxi −Ksj+1xi

= Ksj (u1 ± u2)−Ksj+1(u1 ± u2)

= (Ksju1 −Ksj+1u1)± (Ksj+1u2 −Ksju2)

= u1 − u1 ± (0− 0)

= 0,

which implies that HΨjx1 = HΨjx2 = 0.
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In the case where j = 0, we have Ψ0 = I −K. Therefore,

Ψ0xi = xi −Kxi

= u1 ± u2 −K(u1 ± u2)

= u1 ± u2 − (u1 ± 0)

= ±u2.

Therefore, we also have HΨ0x1 = HΨ0x2, which completes the proof under the assumption the graph is bipartite.

In the case where diam(G) > 2sJ+1 and g(t) is as in (3), the proof is based on adapting the techniques from Iwen
et al. (2019) which analyzed the instability of phase retrieval from locally supported measurements on Cn to
the irregular geometry of a graph. (See also Cahill et al. (2016) and Cheng et al. (2021).) The assumption that
diam(G) > 2sJ+1 implies that there exist disjoint, non-empty subsets S1, S2 ⊆ V such that

min
v1∈S2, v2∈S2

d(v1, v2) ≥ 2sJ+1 + 1. (11)

We now define x1 and x2 by
x1 := δS1

± δS2
and x2 := δS1

± δS2
, (12)

where δS1 is the indicator signal defined by δS1(v) = 1 if v ∈ S1, δS1(v) = 0 otherwise, and δS2 is defined
similarly.

The following lemma will imply that there is no overlap in the support of ΨjδS1 with ΨjδS2 .

Lemma B.1. Let x be a graph signal whose non-zero entries are contained a set S ⊆ V . Then for all integers
t ≥ 0, the support of Ktx is contained in the set St = {v ∈ V : ∃u ∈ S, d(u, v) ≤ t}.

Proof. We first show that all Ki,j are zero except for when either i = j or {i, j} ∈ E. Indeed, this property is
clearly satisfied by the unnormalized Laplacian LU = D − A. Morever, the non-zero entries of a matrix are
unchanged by multiplication (either on the left of the right) by a diagonal matrix. Therefore, this property is also
satisfied by LN = D−1/2LUD

−1/2. Additionally, this property is clearly satisfied by the identity matrix and also
preserved under linear combinations. Therefore, it is also satisfied by T = g(LN ). Lastly, we note that is also
satisfied by K since K = W−1TW and W is diagonal.

We now prove the lemma. The case where t = 0 is trivial. For t = 1, we note that {Kxi} ̸= 0 implies that
there exist j such that Ki,j ̸= 0 and xj ̸= 0. In light of the preceeding paragraph, this implies that vi is within
distance one of some point in S which proves the t = 1 case. The result now follows inductively noting that
Kt+1x = K(Ktx)

In light of Lemma B.1, we see that for all 0 ≤ j ≤ J , the support of δS1
is contained in S1,sJ+1

:= {v ∈ V :
∃u ∈ S1, d(u, v) ≤ sJ+1} and the support of δS2

is contained in S2,sJ+1
:= {v ∈ V : ∃u ∈ S2, d(u, v) ≤ sJ+1}.

Therefore, since
Ψj(xi) = ΨjδS1 ±ΨjδS2 ,

(11) implies that

Ψj(xi)(v) =


Ψj(δS1

)(v) if v ∈ S1

±Ψj(δS2
)(v) if v ∈ S2

0 otherwise
.

This implies that HΨjx1(v) = HΨjx2(v) for all j and all v and therfore completes the proof.

Remark B.1. In addition to HΨjx1 = HΨjx2, we aslo have HΦJx1 = HΦJx2. In the bipartite case, we have
ΦJx1 = ΦJx2 = u1. Moreover, in the case where the graph has a large diameter, the fact that HΦJx1 = HΦJx2

follows directly from Lemma B.1.
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Remark B.2. In the large diameter case with K = P , one may also modify the above construction to ensure
that the zeroth-order coefficients ΦJxi are identical for x1 and x2, after they are fed into the aggregation module.
To do this, we one chooses three sets S1, S2, S3, which are all sufficiently far apart and satisfy |S1| = |S2| = |S3|
and similar to the proof above set x1 = δS1

+ δS2
− δS3

, x2 = δS1
− δS2

+ δS3
. The fact that P is a Markov

matrix implies that if preserves the ℓ1 norm of each of the Dirac δ functions. Therefore, one may verify that the
aggregated zero-th order coefficients will be equal to |S1| for both signals. Additionally, we note that several papers
on the graph scattering transform including Gama et al. (2019b) and Gao et al. (2019) use global summation rather
than low-pass filtering in the definition of the scattering coefficients, i.e., SJ [j1, . . . , jm]x = ∥U [j1, . . . , jm]x∥1.
This case, the zero’s order coefficients of these two signals will also coincide, regardless of the choice of diffusion
matrix.
Remark B.3. Theorem B.1 provides two examples of settings where the wavelet modulus fails to be injective.
We note that the first assumption, that the graph is bipartite, is satisfied by graphs used in recommender systems
where there are links between users and products. The latter assumption, that the graph has a large diameter
will typically be satisfied by graphs constructed from geo-spatial data which do not experience the small world
phenomenon. Our analysis shows that if graphs with large diameter, one needs to choose a large value of J
therefore increasing the computational cost of the wavelet transform. By contrast Theorem 3.2 shows that in the
BLIS module, J may be chosen independent of the graph allowing for efficient implementation on graphs with
large diameters.

C Proof of Theorem 3.2

Theorem 3.2 is proved by iteratively applying the frame bounds (5) as well as the following lemma which shows
that the map σ : Rn → R2n defined by

σ(x) = (σ1(x)
T , σ2(x)

T )T

is bi-Lipschitz.
Lemma C.1. For all x and y in Rn, we have

1

2
∥x− y∥2w ≤ ∥σ1(x)− σ1(y)∥2w + ∥σ2(x)− σ2(y)∥2w ≤ ∥x− y∥2w .

For a proof of Lemma C.1, please see Appendix F.

Proof of Theorem 3.2. We argue by induction on m. To establish the base case m = 1, we note that

∥B1(x)−B1(y)∥2w,2 =
2∑

k=1

J+1∑
j=0

∥B[j, k](x)−B[j, k](y)∥2w =
2∑

k=1

J+1∑
j=0

∥σk(Fjx)− σk(Fjy)∥2w .

Lemma C.1 and (5) imply

c

2
∥x− y∥w ≤1

2

J+1∑
j=0

∥Fjx− Fjy∥2w

≤
J+1∑
j=0

2∑
k=1

∥σk(Fjx)− σk(Fjy)∥2w

≤
J+1∑
j=0

∥Fjx− Fjy∥2w

≤ C∥x− y∥w,

which establishes the base case.

Now, assume the result for m, i.e.,( c

2

)m

∥x− y∥2w ≤ ∥Bm(x)−Bm(y)∥2w,2 ≤ Cm ∥x− y∥2w ,
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and consider ∥Bm+1(x)−Bm+1(y)∥2w,2. We note that by construction we have

B[j1, k1, . . . , jm, km, jm+1, km+1](x) = B[jm+1, km+1]B[j1, k1, . . . , jm, km](x).

Therefore, for any fixed j1, k1, . . . , jm, km, we have

2∑
km+1=1

J∑
jm+1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)−B[j1, k1, . . . , jm, km, jm+1, km+1](y)∥2w

=
2∑

km+1=1

J∑
jm+1=0

∥B[jm+1, km+1]B[j1, k1, . . . , jm, km](x)−B[jm+1, km+1]B[j1, k1, . . . , jm, km](y)∥2w

≤C∥B[j1, k1, . . . , jm, km](x)−B[j1, k1, . . . , jm, km](y)∥2w, (13)

where the final inequality follows by applying the result with m = 1. Similarly we have

2∑
km+1=1

J∑
jm+1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)−B[j1, k1, . . . , jm, km, jm+1, km+1](y)∥2w

≥ c

2
∥B[j1, k1, . . . , jm, km](x)−B[j1, k1, . . . , jm, km](y)∥2w. (14)

Therefore, using the inductive hypothesis and (13), we have

∥Bm+1(x)−Bm+1(y)∥2w,2

=

2∑
km+1=1

J+1∑
jm+1=0

2∑
km=1

J+1∑
jm=0

· · ·
2∑

k1=1

J+1∑
j1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)−B[j1, k1, . . . , jm, km, jm+1, km+1](y)∥2w

≤C

2∑
km=1

J+1∑
jm=0

· · ·
2∑

k1=1

J+1∑
j1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)−B[j1, k1, . . . , jm, km, jm+1, km+1](y)∥2w

≤Cm+1∥x− y∥2w.

which completes the proof for the upper bound. The lower bound follows by the same reasoning, but with (14) in
place of (13).

C.1 Inverting the BLIS Module

The lower bound in Theorem 3.2 implies the existence of a Lipschitz continuous inverse map (defined on the range
of Bm) which recovers x from Bm(x). This is noteworthy in part because because numerous works such as Zou
and Lerman (2019a); Bhaskar et al. (2022); Perlmutter et al. (2021); Bruna and Mallat (2019) have attempted to
invert variations of the scattering transform for the purposes of data synthesis (with varying degrees of theoretical
justification). We also note that in the the case where the wavelets are chosen to be W(2)

J it is straightforward
to invert each layer of the BLIS module since x = σ1(x)− σ2(x) and x =

∑J
j=0 Ψ

(2)
j x+Φ

(2)
J x. Indeed, in this

setting, each layer of the BLIS module can essentially be viewed as a decomposition of the input signal somewhat
analogous to wavelet packets (see e.g., Coifman and Wickerhauser (1992)) .

D Proof of Theorem 3.3

Proof. Let Π be a permutation matrix and let A′, D′, L′
N , W ′, K ′, etc, be the analogs of A,D,LN ,W, and K

after the permutation.

One may verify that A′ = ΠAΠT , and D′ = ΠAΠT (where one Π permutes the rows and the other permutes the
columns). Since ΠTΠ = I = ΠΠT , we see that (D′)1/2 = ΠD1/2ΠT . Therefore,

L′
N = I − (ΠD−1/2ΠT )(ΠAΠT )(ΠD−1/2ΠT ) = ΠLNΠT .
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Thus, we may compute
L′
N (Πvi) = ΠLNΠT (Πvi) = λiΠvi,

which implies that λ′
i = λi, vi

′ = Πvi, and therefore that the eigendecomposition of L′
N is given by

L′
N = (ΠV )Ω(ΠV )T .

Thus, we have
T ′ = g(L′

N ) = (ΠV )g(Ω)(ΠV )T = (ΠV )g(Ω)V TΠT = ΠTΠT .

Additionally, for a suitably nice function h (chosen to be either pj or qj), we have

h(T ′) = ΠV h(g(Ω))V TΠT = Πh(T )ΠT .

In particular, for either family of wavelets (W(1)
J or W(2)

J ), and we have F ′
j = ΠFjΠ

T , where, as in Section 3.1,
Fj is a generic member of the frame. Additionally, both σ1 and σ2 are element wise operators and thus commute
with permutations. Therefore, we have

B′[j1, k1, . . . , jm, km] = σm(ΠFjmΠT (σm−1 . . . σ1(ΠFj1Π
T ·) . . .)

= ΠB[j1, k1, . . . , jm, km]ΠT .

This leads us to
B′[j1, k1, . . . , jm, km]Πx = ΠB[j1, k1, . . . , jm, km]x

as desired.

E Proof of Theorem 3.4

The proof of Theorem 3.4 is nearly identical to that of Theorem 3.2, but relies on the following lemma in place of
Lemma C.1.
Lemma E.1. For all x ∈ Rn, we have

∥σ1(x)∥2w + ∥σ2(x)∥2w = ∥x∥2w .

For a proof of Lemma E.1, please see Appendix G.

Proof of Theorem 3.4. We proceed inductively on m. In the case m = 1, we apply Lemma E.1 to see

∥B1(x)∥2w,2 =
2∑

k=1

J+1∑
j=0

∥B[j, k](x)∥2w =
J+1∑
j=0

2∑
k=1

∥σk(Fjx)∥2w =
J+1∑
j=0

∥Fjx∥2w

Therefore, by (5) we have
c ∥x∥2w ≤ ∥B1(x)∥2w,2 ≤ C ∥x∥2w ,

which establishes the claim in the base case m = 1.

Now, assume the result for m, i.e., cm ∥x∥2w ≤ ∥Bm(x)∥2w,2 ≤ Cm ∥x∥2w, and consider ∥Bm+1(x)∥2w,2. As in the
proof of Theorem 3.2, we have

B[j1, k1, . . . , jm, km, jm+1, km+1](x) = B[jm+1, km+1]B[j1, k1, . . . , jm, km](x).

Therefore, for any fixed j1, k1 . . . , jm, km, we have

2∑
km+1=1

J∑
jm+1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)∥2w =

2∑
km+1=1

J∑
jm+1=0

∥B[jm+1, km+1]B[j1, k1, . . . , jm, km](x)∥2w

≤C∥B[j1, k1, . . . , jm, km](x)∥2w,
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where the final inequality follows by applying the result with m = 1. Similarly,

2∑
km+1=1

J∑
jm+1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)∥2w ≥ c∥B[j1, k1, . . . , jm, km](x)∥2w.

Therefore, using the inductive hypothesis, we have

∥Bm+1(x)∥2w,2 =
2∑

km+1=1

J+1∑
jm+1=0

2∑
km=1

J+1∑
jm=0

· · ·
2∑

k1=1

J+1∑
j1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)∥2w

≤C
2∑

km=1

J+1∑
jm=0

· · ·
2∑

k1=1

J+1∑
j1=0

∥B[j1, k1, . . . , jm, km, jm+1, km+1](x)∥2w

≤Cm+1∥x∥2w,

and the lower bound follows similarly.

F Proof of Lemma C.1

Proof. It suffices to show that for all a, b ∈ R we have

1

2
|a− b|2 ≤ |σ1(a)− σ1(b)|2 + |σ2(a)− σ2(b)|2 ≤ |a− b|2. (15)

For then we will have,

1

2
∥x− y∥2w

=
1

2

n∑
i=1

|xi − yi|2wi

≤
n∑

i=1

|σ1(xi)− σ1(yi)|2wi +
n∑

i=1

|σ2(xi)− σ2(yi)|2wi (16)

≤
n∑

i=1

|xi − yi|2wi

=∥x− y∥w,

which will complete the proof since the term from (16) is exactly ∥σ1(x− y)∥2w + ∥σ1(x− y)∥2w.

To prove (15), we note that in the case where a and b have the same sign, then either σ1(a) = |a|, σ1(b) = |b|,
and σ2(a) = σ2(b) = 0 or σ2(a) = |a|, σ2(b) = |b|, and σ1(a) = σ1(b) = 0. Either way, we have

|σ1(a)− σ1(b)|2 + |σ2(a)− σ2(b)|2 = |a− b|2.

In the case where a and b have different signs, assume without loss of generality that a ≥ 0 ≥ b. Then,
|a− b| = |a|+ |b| and so the result follows from noting

|σ1(a)− σ1(b)|2 + |σ2(a)− σ2(b)|2 = |a|2 + |b|2 ≥ 1

2
(|a|+ |b|)2

as well as the fact that |a|2 + |b|2 ≤ (|a|+ |b|)2.
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G Proof of Lemma E.1

Proof. Let x ∈ Rn. Let I := {i : xi ̸= 0} and note that we may write I as the disjoint union I = I1 ∪ I2 where
I1 := {i : (σ1(x))i ≠ 0}, I2 := {i : (σ1(x))i ≠ 0}. Observe that for j = 1, 2 we have |(σj(x))i|2 = |xi|2 whenever
i ∈ Ij . Therefore,

∥x∥2w =
∑
i∈I1

|xi|2wi +
∑
i∈I2

|xi|2wi =
∑
i∈I1

|(σ1(x))i|2wi +
∑
i∈I2

|(σ2(x))i|2wi = ∥σ1(x)∥2w + ∥σ2(x)∥2w.

H BLIS-Net Implementation and Computational Complexity

Here we will discuss the implementation used in our experiments and also a modified implementation that can be
used to increase the scalability of our network to large graphs with sparse connectivity.

In our experiments, we chose the diffusion operator K = P = 1
2 (I +AD−1) with dyadic scales. When using W(2),

we computed the powers P 2j iteratively using the formula P 2j+1

= P 2jP 2j and then computed the wavelets via
subtraction. For the W(1)

J wavelets, we computed an eigendecomposition of T and then applied the functions qj

along the diagonal. This simple implementation requires O(Jn3) flops to construct the wavelet matrices for W(2)
J

and O(n3 + Jn) for W(1)
J . Then to perform the wavelet transform via matrix-vector multiplication we incur a

cost of O(Jn2) for each signal. Thus if there are N signals in the data set, the total cost of the wavelet transform
is O(Jn3 + Jn2N). The memory cost of storing the wavelet matrices is O(Jn2) for W(2)

J and O(n2 + Jn) for
W(1)

J . Since BLIS module consists of m iterations of the wavelets followed by σ1 and σ2, it follows that the
computational cost of an m-layer BLIS module is O(Jn3 + 2mJmn2N). The memory requirements of storing the
BLIS coefficients for N signals is are O(2mJmnN) (in addition to the memory costs of storing the wavelets). We
also note the BLIS module is hand-crafted with no learnable parameters which means that these computations
may be done offline as a preprocessing step.

Based on this analysis, a simple implementation of BLIS is linear with respect to the number of signals and therefore
is well-suited to scale in the setting where there are many different signals defined on a single moderate-size
network (which is the primary focus of this work and is often the case in the context of signal-level tasks).

It is also possible to modify our implementation to be scalable to large graphs. Tong et al. (2022) considered a
modifies implentation of the wavlet transform which uses a diffusion module to compute Px, P 2x, P 3x . . . , P 2Jx
via sparse matrix-vector multiplications and then compute the wavelets via vector-vector substraction. Notably,
Wenkel et al. (2022) was able to use this method to achieve strong performance on large OGB benchmark data
sets via a scattering-based network. If one implements BLIS in this manner, the computational cost is reduced to
O(2J+mJm(n+ |E|)) and the memory cost is reduced to O(2m+JJmn) allowing for improved scalability.

I Models and Training

I.1 BLIS-Net architecture

A general and more complete description of the BLIS module and BLIS-Net architecture is given in Sections 3.1
and 3.4. For all BLIS-Net experiments, we utilize dyadic scales and choose J = 4 meaning that our W(1)

J and
W(2)

J wavelet filter banks both contain six filters that we apply to our signal. Furthermore, we fix m = 3 meaning
that we only utilize third-order coefficients. Our moment aggregation module utilizes first-order moments across
the nodes. Our embedding layer and classification layer implented as a single, unified MLP, where the choice of
hidden layers was determined from the data using 5-fold cross validation on the testing set. The hidden layer
sizes are chosen from the set: [(50, ), (100, ), (50, 50), (150, 50)]. Dimensionality reduction is achieved with the
linear layer to the first hidden layer, and the classification is performed with a layer that maps from the final
hidden layer dimension to the number of classes. The MLP utilizes ReLU activations in between layers, Adam
optimizer, an L2 regularization term of 0.01, and all other default settings on scikit-learn’s implementation of the
MLP classifier.



BLIS-Net: Classifying and Analyzing Signals on Graphs

I.2 Graph Scattering Transform

For a complete description of the graph scattering transform, please refer to Section 2.5. For experiments involving
the scattering transform, we utilize dyadic scales and choose J = 4 meaning that our W(1)

J and W(2)
J wavelet filter

banks both contain five filters that we apply to our signal (because unlike in BLIS we don’t use the low-pass).
Following the convention of Gao et al. (2019) we utilize zeroth-, first-, and second-order scattering coefficients
unless otherwise specified. To make a fair comparison with the BLIS module, we use all combination of scales
in the second-order coefficients (Gao et al. (2019) only used j2 ≥ j1) and when performing aggregation we only
utilize the first moments. (Notably, one could readily modify the aggregation module in BLIS-Net to include
higher moments as well.) The back-end MLP shares an identical construction to the one described in I.1 for the
BLIS-Net architecture.

I.3 Baseline Graph Neural Networks

Graph Convolutional Network (GCN): The baseline GCN (Kipf and Welling, 2016) consists of two GCNConv
layers, both followed by a ReLU activation function.

• The first GCNConv layer transforms the input features to a hidden dimension of 16.

• The second GCNConv layer maintains this dimension, mapping from 16 to 16.

• Following the convolutions, global mean pooling is applied to the node embeddings to obtain a graph-level
representation.

• Finally, a linear layer is applied which outputs a dimension equal to the number of classes.

ChebNet: The baseline ChebNet model (Defferrard et al., 2016) is constructed using the same architecture as
the above GCN but with the GCNConv layer replaced with a ChebConv layer with a filter size of 5.

Graph Isomorphism Network (GIN): The baseline GIN model (Xu et al., 2019) is structured with two
GINConv layers, each of which is associated with its own MLP.

• The first GINConv layer utilizes an MLP that consists of two linear layers:

1. The initial layer transforms the input features to a hidden dimension of 16.
2. The subsequent layer retains this dimensionality, taking in the 16-dimensional space and outputting

another 16-dimensional space. Between these two layers, a ReLU activation function is applied.

• The second GINConv layer has a similar MLP structure, mapping the 16-dimensional space from the first
layer to another 16-dimensional space, again with a ReLU activation function in between.

• After both GINConv layers process the node features, a global mean pooling aggregates these features to
produce a graph-level representation.

• This graph-level representation is then processed by a linear layer, transforming from 16 dimensions to a
dimensionality equal to the number of classes.

Graph Attention Network (GAT): The GAT (Veličković et al., 2018) baseline is structured with two GATConv
layers, each employing an attention mechanism.

• The first GATConv layer uses a single attention head, transforming the input features to a hidden dimension
of 16.

• The second GATConv layer, operating in the same 16-dimensional space, continues this transformation,
retaining the dimensionality of 16.

• An Exponential Linear Unit (ELU) activation function follows each of the convolutional layers.

• After the GATConv layers have processed the node features, a global mean pooling aggregates these features
to produce a graph-level representation.
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• This graph-level representation then undergoes a linear transformation, mapping from the 16-dimensional
space to a dimensionality equal to the number of classes.

General, Powerful, Scalable (GPS) Graph Transformer : The GPS model (Rampášek et al., 2022) is
designed to process graph-structured data with the incorporation of random walk-based positional encodings and
the GPSConv layer.

Prior to feeding data into the model, random walk positional encodings of length 20 are added to the graph nodes.

• Embeddings: The input features undergo a linear transformation to produce node embeddings. Additionally,
positional encodings are normalized and transformed into a space of dimension 8.

• GPSConv Layers: The architecture employs two GPSConv layers, each featuring:

– A local message passing via GINEConv (Hu et al., 2020). This mechanism utilizes a two-layer MLP
with hidden dimension 16 with ReLU activations.

– Multi-head attention with 4 heads and an attention dropout rate of 0.5.

• Classification: Post the GPSConv processing, graph-level embeddings are obtained through a global addition
pooling. These embeddings are directed into an MLP with 2 hidden layers to yield the final classification
output.

GNNML1, GNNML3, PPGN: For these models, we utilize the default architecture, code, and parameters
from the corresponding papers (Balcilar et al., 2021; Maron et al., 2019).

I.4 Training details

All data sets are subjected to a 70/30 train-test split, and performance metrics are computed by averaging results
over a 5-fold cross-validation. For the baseline models, namely the Graph Convolutional Network (GCN), Graph
Attention Network (GAT), Graph Isomorphism Network (GIN), and the general, powerful, scalable (GPS) graph
Transformer, the Adam optimizer is employed with a learning rate of 0.01. These models are trained for 100
epochs to ensure convergence.

BLIS-Net is trained using the default sci-kit learn training protocol for the MLPClassifier, with full training
details available in the documentation.

J Additional Descriptions of the data sets

Here we provide further descriptions of the data sets considered in our experiments and also provide summary
statistics in Table 5.

J.1 Further details on the traffic data sets

To construct the signals from the PeMS data, we use the pre-processing procedure introduced in Guo et al. (2019).
The graph structure is created by selecting sensors at least 3.5 miles apart and connecting adjacent sensors.
Missing values in the graph signals are imputed using linear interpolation. PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 respectively consist of traffic data from California’s 3rd, 4th, 7th, and 8th congressional districts and
provide two months of consecutive traffic data collected between 2016 and 2018 depending on the data set. The
PeMSD3 and PeMSD7 data sets we used contained a measurement of traffic flow at each sensor location. The
PeMSD4 and PeMSD8 data sets used contain three types of measurements at each sensor location: total flow,
average speed, and average occupancy. For these data sets, we pass each measurement into the BLIS module
independently and then concatenate.

J.2 Further details on the Partly Cloudy data sets

The "Partly Cloudy" data set, sourced from Richardson et al. (2018), comprises MRI data captured from
participants aged 3-12 years and adults as they watched the Disney Pixar animated film "Partly Cloudy". The
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Data set statistics |V | |E| Number of
signals

Number of
classes

Signal
dimension

Number of
sub-data sets

Partly Cloudy 39 113 168 3 1 155

Synthetic same µ 100 358* 400 2 1 5
Synthetic different µ 100 358* 400 2 1 5

PEMSD3 358 546 26208 24,7,4 1 1
PEMSD4 307 340 16992 24,7,4 3 1
PEMSD7 883 866 28224 24,7,4 1 1
PEMSD8 170 274 17856 24,7,4 3 1

Table 5: Summary of the Data sets mentioned in the paper. For the traffic data set, the list under number of
classes is specified in the context of a particular task. 24 corresponds to the HOUR task, 7 corresponds to the
DAY task, and 4 corresponds to the WEEK task. In the case of the Partly Cloudy data set, the number of
sub-data sets corresponds to the number of participants for the experiment, and each participant shares the
same underlying graph. For the synthetic data set, the number of sub-data sets reflects that 5 replicates were
conducted for each task, meaning that 400 unique signals were generated on each of 5 random graphs. This is
done to characterize the variation depending on the random generation on the graph. Due to this, the asterisk
next to 358 for the number of edges is reflective of the mode of the number of edges for the 5 replicates.

data set’s full title is "MRI data of 3-12 year old children and adults during viewing of a short animated film".
The study involved 122 children and 33 adults. While undergoing the MRI scan, participants simply watched the
film without any specific task.

The film is notable for portraying the characters’ bodily sensations, such as pain, and their mental states. Movie
frame annotations—categorizing them as positive, neutral, or negative in emotion—are derived from the labels in
the repository of the paper Rieck et al. (2020).

For data preprocessing and Region of Interest (ROI) extraction, we utilized nilearn. We constructed a spatial
connectivity graph from the ROI centroids, linking each centroid to its five closest neighbors. (We then symmetrize
the graph by then setting Ai,j = 1 if either Ai,j = 1 or Aj,i = 1). We then applied temporal smoothing to the
time series data for each node, using a Gaussian kernel convolution with a σ value of 1.75. Since fMRI data is
extremely noisy, this temporal smoothing was critical for optimal model performance, as is explored in Table 12.

J.3 Further details on the Synthetic data set

We consider the functions and graph generation methods described in 4.1. We generate the nodes of the graph by
sampling 100 points randomly from [0, 1]2 and connect each node to it’s 5-nearest neighbors. As with the Partly
Cloudy data, the graph is symmetrized if necessary. In total, 400 signals are generated per graph, with 200 signals
corresponding to f

(1)
j and 200 signals corresponding to f

(2)
j to result in balanced classes. We generate 5 versions

of this synthetic data set to control for randomness in the sampling of the vertices and the generation of signals.

K Ablation Study and Additional Experiments

BLIS-Net relies on pairing the BLIS module with an aggregation module, a dimension-reduction module
(parametrized by an MLP), and a classification module (also parameterized by an MLP). However, one could also
utilize the BLIS module in many other ways. In Tables 6, 7, 8, 9, 10, and 11, we show that the BLIS module
can also be paired with shallow classifiers such as logistic regression (LR), random forest (RF), support vector
classifier, and extreme gradient boosting (XGB) and also examine the performance of scattering with these same
classifiers. (We also consider Scattering + MLP for direct comparison to BLIS-Net.) Notably, we perform these
experiments on the PEMS04 and PEMS08 data sets in addition to those in the main body.

We see that BLIS-based methods generally perform well and consistently outperform the analogous scattering
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methods. For example, on the Partly Cloudy fMRI data set, BLIS-Net with the W2
J wavelets and a simple logistic

regression classifier is able to achieves 65.9% accuracy whereas the corresponding scattering implementation
achieves only 53.1%. On the traffic data sets, we note that BLIS + XGB has the overall best performance, usually
slightly better than BLIS-Net. On the synthetic data and the fMRI data, BLIS-Net is the top performer, followed
by BLIS + logistic regression.

K.1 Denoising in the fMRI data set

fMRI data is extremely noisy. Therefore, in our experiments on the fMRI data, we performed a Gaussian
smoothing over the time variable. Importantly, we note that we applied the same smoothing procedure for all
methods. Results with and without the smoothing are shown in Table 12. We see that without the smoothing
all methods perform poorly, with GPS being the top performing method at 42.0% followed closely by BLIS-Net
(W2) at 41.5%. After the smoothing, the message passing networks (GCN, GAT, and GIN) continue to perform
poorly (at most 42.1%). GPS improves from 42.0 to 56.4%, scattering improves from 40.3/40.7% to 60.6/62.3%
and BLIS-Net improves from 41.1/41.5% to 67.1/68.3%.
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PEMS03 HOUR DAY WEEK
GCN 27.8 14.1 30.8
GAT 36.4 23.5 30.8
GIN 14.0 14.3 30.8
GPS 57.4 49.6 31.9
ChebNet 58.8 56.8 61.9
GNNML1 6.8 15.2 30.3
GNNML3 61.5 49.2 36.3
PPGN - - -

BLIS-Net (W1) 63.1 53.1 54.8
BLIS-Net (W2) 68.3 56.3 61.7

BLIS + LR (W1) 49.0 37.0 43.4
BLIS + LR (W2) 53.0 42.2 46.7
BLIS + RF (W1) 63.4 52.3 52.9
BLIS + RF (W2) 63.5 53.4 55.7
BLIS + SVC (W1) 49.1 35.1 37.9
BLIS + SVC (W2) 49.5 35.9 41.6
BLIS + XGB (W1) 68.8 54.0 52.6
BLIS + XGB (W2) 69.2 56.3 56.2
Scattering + MLP (W1) 58.2 45.6 46.4
Scattering + MLP (W2) 60.4 49.5 51.4
Scattering + LR (W1) 42.3 33.1 37.8
Scattering + LR (W2) 46.0 33.2 39.1
Scattering + RF (W1) 56.0 44.8 43.9
Scattering + RF (W2) 57.9 46.6 48.4
Scattering + SVC (W1) 43.5 28.3 32.6
Scattering + SVC (W2) 46.5 30.5 36.1
Scattering + XGB (W1) 56.7 42.8 41.6
Scattering + XGB (W2) 59.5 44.6 45.7

Table 6: Accuracy on the PEMS03 traffic data set. Best and second best results are colored.
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PEMS04 HOUR DAY WEEK
GCN 38.1 19.5 28.6
GAT 43.3 23.5 30.8
GIN 39.8 17.7 28.6
GPS 66.5 67.0 31.7
ChebNet 67.7 56.6 64.2
GNNML1 5.4 15.8 27.1
GNNML3 59.8 48.0 43.9
PPGN - - -

BLIS-Net (W1) 82.9 87.8 91.1
BLIS-Net (W2) 84.2 91.9 92.3

BLIS + LR (W1) 74.7 71.4 69.5
BLIS + LR (W2) 71.5 69.4 68.2
BLIS + RF (W1) 82.4 89.8 90.9
BLIS + RF (W2) 80.7 88.5 89.5
BLIS + SVC (W1) 71.9 75.5 77.0
BLIS + SVC (W2) 69.5 73.5 75.6
BLIS + XGB (W1) 86.4 93.9 93.6
BLIS + XGB (W2) 86.1 92.8 92.9

Scattering + MLP (W1) 78.5 83.2 83.8
Scattering + MLP (W2) 81.2 85.9 86.4
Scattering + LR (W1) 58.8 47.7 44.7
Scattering + LR (W2) 63.3 49.8 47.6
Scattering + RF (W1) 76.8 79.0 79.3
Scattering + RF (W2) 78.4 82.9 82.6
Scattering + SVC (W1) 60.0 55.9 55.6
Scattering + SVC (W2) 64.2 62.9 61.0
Scattering + XGB (W1) 81.3 79.1 75.8
Scattering + XGB (W2) 82.6 82.9 79.8

Table 7: Accuracy on the PEMS04 traffic data set.
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PEMS07 HOUR DAY WEEK
GCN 27.4 14.6 28.5
GAT 33.2 22.2 36.5
GIN 14.3 15.8 28.4
GPS 39.9 27.7 30.4
ChebNet 54.0 61.4 72.9
GNNML1 5.4 15.8 27.1
GNNML3 59.8 48.0 43.9
PPGN - - -

BLIS-Net (W1) 63.5 72.9 76.8
BLIS-Net (W2) 63.4 71.0 77.3

BLIS + LR (W1) 47.3 46.2 54.5
BLIS + LR (W2) 43.4 41.0 51.3
BLIS + RF (W1) 60.7 67.7 71.9
BLIS + RF (W2) 57.4 62.7 67.6
BLIS + SVC (W1) 51.1 53.7 56.7
BLIS + SVC (W2) 43.2 41.8 46.9
BLIS + XGB (W1) 68.6 74.7 75.3
BLIS + XGB (W2) 64.8 66.5 69.1
Scattering + MLP (W1) 54.0 53.3 56.9
Scattering + MLP (W2) 54.3 55.2 61.6
Scattering + LR (W1) 36.7 33.3 39.4
Scattering + LR (W2) 36.7 29.9 40.4
Scattering + RF (W1) 53.5 51.9 52.6
Scattering + RF (W2) 52.7 53.4 56.5
Scattering + SVC (W1) 39.7 35.5 38.7
Scattering + SVC (W2) 40.6 34.7 42.0
Scattering + XGB (W1) 53.2 50.2 49.1
Scattering + XGB (W2) 54.1 50.9 52.6

Table 8: Accuracy on the PEMS07 traffic data set.
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PEMS08 HOUR DAY WEEK
GCN 33.3 20.4 32.3
GAT 38.0 28.3 35.3
GIN 24.5 14.5 32.1
GPS 67.7 67.9 62.3
ChebNet 61.9 69.4 75.4
GNNML1 4.5 14.5 28.9
GNNML3 60.2 58.1 49.6
PPGN - - -

BLIS-Net (W1) 83.9 92.9 93.4
BLIS-Net (W2) 85.9 94.9 95.6

BLIS + LR (W1) 69.5 76.5 78.1
BLIS + LR (W2) 71.9 80.2 81.8
BLIS + RF (W1) 83.7 92.7 91.6
BLIS + RF (W2) 83.9 93.5 93.6
BLIS + SVC (W1) 72.4 85.2 84.9
BLIS + SVC (W2) 73.8 87.4 89.5
BLIS + XGB (W1) 87.2 95.1 94.7
BLIS + XGB (W2) 87.7 96.0 96.1

Scattering + MLP (W1) 81.0 89.9 89.3
Scattering + MLP (W2) 82.2 92.0 90.7
Scattering + LR (W1) 56.6 56.1 54.1
Scattering + LR (W2) 58.6 60.1 57.8
Scattering + RF (W1) 79.2 86.0 84.2
Scattering + RF (W2) 80.6 88.1 87.9
Scattering + SVC (W1) 63.4 71.5 66.2
Scattering + SVC (W2) 66.1 76.6 72.0
Scattering + XGB (W1) 81.8 87.2 81.9
Scattering + XGB (W2) 83.6 89.6 86.1

Table 9: Accuracy on the PEMS08 traffic data set.
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Synthetic Different µ Same µ

GCN 99.0± 0.4 91.7± 2.0
GAT 99.2± 0.5 96.4± 0.6
GIN 99.5± 0.2 91.3± 1.4
GPS 95.4± 5.9 97.7± 0.9
ChebNet 99.1± 0.3 97.3± 0.6
GNNML1 99.3± 0.2 98.3± 0.4
GNNML3 99.8± 0.0 98.8± 0.4
PPGN 77.7± 9.9 62.4± 6.0

BLIS-Net (W1) 100.0± 0.0 97.7± 0.5
BLIS-Net (W2) 99.5± 0.3 98.6± 0.4

BLIS + LR (W1) 100.0± 0.0 98.5± 1.0
BLIS + LR (W2) 100.0± 0.0 98.8± 0.4
BLIS + RF (W1) 99.2± 0.4 97.7± 0.6
BLIS + RF (W2) 99.4± 0.1 97.1± 0.7
BLIS + SVC (W1) 99.4± 0.1 95.7± 1.5
BLIS + SVC (W2) 100.0± 0.0 95.5± 1.9
BLIS + XGB (W1) 99.5± 0.3 98.4± 0.1
BLIS + XGB (W2) 99.3± 0.0 97.7± 0.7

Scattering + MLP (W1) 97.7± 1.0 96.5± 1.2
Scattering + MLP (W2) 88.3± 4.3 96.8± 1.0
Scattering + LR (W1) 97.7± 0.7 96.1± 1.0
Scattering + LR (W2) 86.9± 4.9 95.3± 1.5
Scattering + RF (W1) 95.9± 1.6 94.5± 1.6
Scattering + RF (W2) 73.4± 8.0 94.1± 1.6
Scattering + SVC (W1) 98.1± 0.9 95.0± 1.5
Scattering + SVC (W2) 87.5± 4.9 93.5± 1.8
Scattering + XGB (W1) 95.2± 1.9 93.1± 2.5
Scattering + XGB (W2) 81.9± 7.2 94.7± 1.5

Table 10: Accuracy on the synthetic data sets.



Xu et al.

Partly Cloudy Emotion classification

GCN 39.3± 5.9
GAT 40.6± 6.1
GIN 42.1± 6.0
GPS 56.4± 4.3
ChebNet 50.2± 5.3
GNNML1 48.8± 5.4
GNNML3 45.2± 5.6
PPGN 42.0± 5.3

BLIS-Net (W1) 67.1± 4.3
BLIS-Net (W2) 68.3± 3.6

BLIS + LR (W1) 62.4± 5.4
BLIS + LR (W2) 65.9± 5.2
BLIS + RF (W1) 61.5± 5.2
BLIS + RF (W2) 63.0± 4.5
BLIS + SVC (W1) 56.2± 5.3
BLIS + SVC (W2) 59.0± 5.0
BLIS + XGB (W1) 61.1± 5.7
BLIS + XGB (W2) 62.8± 5.1

Scattering + MLP (W1) 60.6± 4.9
Scattering + MLP (W2) 62.3± 5.1
Scattering + LR (W1) 51.2± 5.8
Scattering + LR (W2) 53.1± 5.9
Scattering + RF (W1) 56.1± 6.0
Scattering + RF (W2) 58.8± 5.5
Scattering + SVC (W1) 51.5± 5.9
Scattering + SVC (W2) 54.2± 6.1
Scattering + XGB (W1) 56.2± 6.0
Scattering + XGB (W2) 58.3± 5.8

Table 11: Accuracy on Partly Cloudy fMRI data.
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Partly Cloudy Emotion classification (No smoothing) Emotion classification (with smoothing)

GCN 37.5± 4.9 39.3± 5.9
GAT 37.3± 4.8 40.6± 6.1
GIN 37.1± 4.5 42.1± 6.0
GPS 42.0± 4.3 56.4± 4.3

Scattering (W1) 40.3± 5.3 60.6± 4.9
Scattering (W2) 40.7± 5.8 62.3± 5.1

BLIS-Net (W1) 41.1± 5.0 67.1± 4.3
BLIS-Net (W2) 41.5± 5.5 68.3± 3.6

Table 12: Effect of Gaussian temporal smoothing on the accuracy on Partly Cloudy fMRI data.


