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Abstract

In this paper, we study the problem of estimating the autocovariance sequence re-
sulting from a reversible Markov chain. A motivating application for studying this
problem is the estimation of the asymptotic variance in central limit theorems for
Markov chains. We propose a novel shape-constrained estimator of the autocovariance
sequence, which is based on the key observation that the representability of the au-
tocovariance sequence as a moment sequence imposes certain shape constraints. We
examine the theoretical properties of the proposed estimator and provide strong consis-
tency guarantees for our estimator. In particular, for geometrically ergodic reversible
Markov chains, we show that our estimator is strongly consistent for the true auto-
covariance sequence with respect to an ¢y distance, and that our estimator leads to
strongly consistent estimates of the asymptotic variance. Finally, we perform empirical
studies to illustrate the theoretical properties of the proposed estimator as well as to
demonstrate the effectiveness of our estimator in comparison with other current state-
of-the-art methods for Markov chain Monte Carlo variance estimation, including batch
means, spectral variance estimators, and the initial convex sequence estimator.
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1 Introduction

Markov chain Monte Carlo (MCMC) is a routinely used tool for approximating intractable
integrals of the form y = [ g(z)m(dx), where 7 is an intractable probability measure on
a measurable space (X, %) and g : X — R is a 7m-integrable function. In MCMC, a
Markov chain Xg, X1, X9, ... with transition kernel () and stationary probability measure 7
is simulated for some finite number of iterations M, possibly after an initial burn-in period,
and p can then be estimated by the empirical average

M—1

Yir=M"1Y g(X)).
—
In general, g(X;) from a Markov chain may have nonzero covariance. For a Markov

chain transition kernel () with a unique stationary probability measure 7, define the auto-

covariance sequence v = {y(k)}?2

v(k) = Ex[(9(Xo) — w)(9(Xjk) — )], Kk €Z.

In this work, we study the problem of estimating the autocovariance sequence v € R? from
a reversible Markov chain by exploiting shape constraints satisfied by the autocovariance
sequence . It is a well known result that for a reversible Markov chain, the autocovariance

sequence 7y admits the following representation [e.g., Rudin, 1991]:

v(k) = /mkF(dx) kel (1)

for a unique positive measure F' supported on [—1,1]. For a function on R or Z, admitting
a certain mixture representation has an implication in its global shape [Hausdorff, 1921,
Feller, 1939, Steutel, 1969, Jewell, 1982, Balabdaoui and de Fournas-Labrosse, 2020]. For
instance, if the support of F' in (1) is contained in [0, 1], 7 is completely monotone, meaning
the inequalities (—1)"A"y(j) > 0 are satisfied for all j,n € N where A™y(j) = A" 1y (j +
1) — A" 15(j) is a difference operator with A%y = ~. While v is not, in general, completely
monotone because the support of F' may extend outside of [0, 1], the representation (1)
still imposes an infinite number of shape constraints on « (see Proposition 2). To exploit
such structure in -, in this work, we propose an estimator of the autocovariance sequence

based on the /2 projection of an initial input autocovariance sequence estimate, such as



the ordinary empirical autocovariance sequence, onto the set of sequences admitting a

representation as in (1).

1.1 Main application: asymptotic variance estimation for MCMC esti-

mates

There are several motivations for the estimation of the autocovariance sequence. As a main
application, we consider the problem of estimating the asymptotic variance in a Markov
chain central limit theorem. This problem has practical importance, as the asymptotic
variance quantifies uncertainties in the MCMC estimate Y3,. Under mild conditions [Meyn

and Tweedie, 2009], a central limit theorem can be established for Y, such that

VM(Yys = 1) 5 N(0,0%) 2)
where
ol = " (k). (3)
k=—oc0

The infinite sum in (3) arises from covariance between terms in the sum in the definition
of Yas. From (2), the variance of the empirical mean Y, from an MCMC simulation as
an estimator of u is quantified, in an asymptotic sense, by the asymptotic variance o2. In

2 can be estimated based on an estimate of the autocovariance sequence 7.

turn, from (3), o
Fixed width stopping rules for MCMC, as in Jones et al. [2006], Bednorz and Latuszyriski
[2007], Flegal et al. [2008], Latuszynski [2009], Flegal and Gong [2015], and Vats et al.
[2019], depend on an estimate of o2.

One natural estimate for (k) based on the first M iterates Xo, X1,..., Xp/—1 is the

empirical autocovariance 7y;(k), defined by

1 M1k B B B
(k) = M 2-t=0 (9(Xe) = Yur)(9( X)) — Yar) k| <M -1 "
’ B> (M- 1),

It is well known that some natural estimators of o based on the 7y (k) sequence are in-
consistent. For the empirical autocovariances with mean centering based on the empirical

mean Y, as in (4), an elementary calculation shows that ZQ/[:__l( m—1)Tm(k) = 0, and the



estimator [7%/[ emp = 2/[: __1( M=1) 7ar(k) = 0 is thus inconsistent as an estimator of 2. With

centering based on the true mean p rather than Yj; in (4), the corresponding estimator
converges in distribution to a scaled x? random variable [Anderson, 1971, Flegal and Jones,
2010], and is thus also inconsistent. These difficulties have led to methods for estimating o
with better statistical properties. These methods include spectral variance estimators [An-
derson, 1971, Flegal and Jones, 2010], estimators based on batch means [Priestley, 1981,
Flegal and Jones, 2010, Chakraborty et al., 2022], and a class of methods for reversible
Markov chains called initial sequence estimators [Geyer, 1992, Kosorok, 2000, Dai and
Jones, 2017].

The batch means and spectral variance estimators have known consistency properties.
In particular, they are a.s. consistent for o2, and have M1/3 rate of convergence with an
optimal choice of batch or window size [Damerdji, 1991, Flegal and Jones, 2010]. Practically,
they involve tuning parameters which are known in advance only up to a constant of
proportionality. For instance, the batch means, overlapping batch means, and spectral
variance estimators in Flegal and Jones [2010] require the selection of a batch size by
depending on the Markov chain sample length M. The optimal setting is by = CM/3,
but the constant of proportionality depends on problem-dependent parameters that will
typically be unknown.

Geyer [1992], on the other hand, introduces initial sequence estimators for estimating o2.
The initial sequence estimators exploit positivity, monotonicity, and convexity constraints

satisfied for reversible Markov chains by the sequence I' = {I'(k)} 32, defined by
T(k) == v(2k) +v(2k +1) k=0,1,2,.. (5)

More specifically, to impose such constraints, first the initial positive sequence estimator is
obtained by truncating the empirical Ty (k) = 7a(2k) + 7as(2k + 1) sequence at the first
k such that T'p;(k) < 0, to obtain f’g@og) = {fM(k:)}g;& where T := min{k € N;T'(k) < 0}.
The argument given in Geyer [1992] for truncating the sequence at T is that T is the
estimated time point when the autocovariance curve falls below the noise level. In addition
to the initial positive sequence estimator, Geyer [1992] introduces the initial monotone
sequence and initial convex sequence estimators. The initial monotone sequence and initial
convex sequence estimators can then be calculated by replacing each T' (Pos) (k) with the

minimum of the preceding ones and with the kth element of the greatest convex minorant



of the initial positive sequence, respectively.

Despite their simplicity, initial sequence estimators have very strong empirical perfor-
mance and do not require the choice of a tuning parameter value, making them very useful
in practice. For example, the widely used Stan software [Stan Development Team, 2019]
employs the initial sequence estimators to estimate the effective sample size of Markov
chain simulations. However, the statistical guarantees of the initial sequence estimators
are somewhat lacking compared to the batch means and spectral variance estimators. To
our knowledge, the only consistency results for the initial sequence estimators are that the
initial sequence estimates asymptotically do not underestimate o2, that is,

lim inf 02y init > o a.s., (6)
M —o0

as in Geyer [1992], Kosorok [2000], Brooks et al. [2011], and Dai and Jones [2017], rather

than lim o2/ init = o2 almost surely.
M—oo

1.2 Review on estimation with shape constraints and connection to au-

tocovariance sequence estimation

The work of Geyer [1992] can be viewed as an example of shape constrained inference, where
the sequence {T'; }ren is estimated in such a way that various shape constraints (positivity,
monotonicity, and convexity) are enforced. Shape constrained inference has a long history
in statistics. One of the standard examples is the isotonic regression, where in the most
basic scenario one observes n independent random variables Y; which are assumed to be
noisy observations of some monotone increasing signal, i.e., E[Y;] < E[Y3] < ... E[Y,]. The
goal is to estimate the underlying n-dimensional signal [Barlow et al., 1972, Robertson,
1988]. However, shape constrained inference is not limited to the estimation of a finite
dimensional vector and to monotonicity constraints. In fact, shape constrained inference
has also been applied to infinite-dimensional problems where the quantity of interest is
an infinite-dimensional vector or a function on R with different shape constraints. Exam-
ples include nonparametric estimation of monotone sequences or functions, the estimation
of a convex or log-convex density, etc. [Grenander, 1956, Jankowski and Wellner, 2009,
Diimbgen and Rufibach, 2011, Balabdaoui and Durot, 2015, Kuchibhotla et al., 2021].
Among such constraints, k-monotonicity, which is a refinement of the monotonicity

property, has been studied by several authors [Balabdaoui and Wellner, 2007, Lefevre and



Loisel, 2013, Durot et al., 2015, Chee and Wang, 2016, Giguelay, 2017]. A sequence m
is called a k-monotone decreasing sequence if its successive differences up to order k are

alternatively nonnegative and nonpositive, i.e.,
(=D)"A"m(j) >0for jeN, n=0,...,k (7)

where A"m(j) = A" tm(j + 1) — A" Im(j) is a difference operator with A%m = m. The
case of k = 0 corresponds to nonnegativity, so that (—1)°A%n(j) = m(j) > 0. The case
k =1 corresponds to monotonicity m(j + 1) — m(j) < 0 in addition to nonnegativity, and
k = 2 corresponds to convexity m(j +2) — m(j + 1) > m(j + 1) — m(j) in addition to
nonnegativity and monotonicity.

When (—1)"A"m(j) > 0 for all j,n € N, the sequence m is called completely mono-
tone. For functions on the real line, analogous versions of complete monotonicity involving
derivatives rather than differences have been considered. Complete monotonicity condi-
tions have been investigated by various authors. One prominent feature of prior results
is an equivalence between satisfying a complete monotonicity constraint and admitting a
mixture representation. For instance, Hausdorff [1921] proved that a sequence m is com-
pletely monotone if and only if the sequence m admits a moment representation, namely,
if there exists a nonnegative measure F' supported on [0, 1] such that m(k) is the kth mo-
ment of F, i.e., m(k) = [ 2¥F(dx). Similarly, completely monotone functions on R* U {0}
can be represented as a scale mixture of exponentials [Feller, 1939, Jewell, 1982], and a
completely monotone probability mass function (pmf) can be represented as a mixture of
geometric pmfs [Steutel, 1969]. The latter fact was used in the recent work by Balabdaoui
and de Fournas-Labrosse [2020] for the estimation of a completely monotone pmf using
nonparametric least squares estimation.

In the context of asymptotic variance estimation, the result of Geyer [1992] on the I
sequence can be refined using the concept of complete monotonicity. Recall that Geyer
[1992] showed that the sequence I" obtained as the rolling sum of v with window size 2, i.e.,
(k) = v(2k) + v(2k + 1), is 2-monotone. In this paper, we show that the T' sequence is
not only 2-monotone but completely monotone (Proposition 1). This suggests that higher
order shape structure could be exploited in the estimation of I'(k) and, consequently, the
asymptotic variance. However, while the I" sequence is completely monotone, the set of

completely monotone sequences is not entirely satisfactory to work with for our purpose of



estimating the entire autocovariance sequence -y, since v may not be a completely monotone

sequence.

Our contribution and organization of the paper To our knowledge, this is the first
work in which the moment representation of the autocovariance sequence (1) is directly
exploited in this manner to carry out shape-constrained inference for the estimation of
the autocovariance sequence and asymptotic variance. Our work is the first to use shape-
constrained inference methods to provide a provably consistent estimator for the asymptotic
variance for a Markov chain. The work of Balabdaoui and de Fournas-Labrosse [2020] on
estimating a completely monotone pmf is the most similar to ours of which we are aware.
However, Balabdaoui and de Fournas-Labrosse [2020] consider a substantially different
setting involving the estimation of a completely monotone probability mass function (pmf)
from iid samples. In our setting, the dependence between observations necessitates the
use of different tools for the statistical analysis. To the best of our knowledge, this is the
first work in which shape-constrained inference is used to alter the convergence property of
input sequences as well.

The remainder of the paper is organized as follows. In Section 2, we introduce back-
ground on Markov chains and prove Proposition 1 on the representation of v and I' as
moment sequences. In Section 3, we introduce our proposed estimator, the moment least
squares estimator, and study some basic properties of the proposed estimator. In Section 4,
we provide statistical convergence results for the moment least squares estimator. In partic-
ular, we prove the almost sure convergence in the o norm of the estimated autocovariance
sequence (Theorem 2), the almost sure vague convergence of the representing measure for
the moment least squares estimator to the representing measure for v (Proposition 10),
and the almost sure convergence of the estimated asymptotic variance (Theorem 3). In
Section 5, we show the results of our empirical study, in which the moment least squares
estimator performs well relative to other state-of-the-art estimators for MCMC asymptotic

variance and autocovariance sequence estimation.

2 Problem set-up

We now describe our setup in detail and fix some notation. We consider a -irreducible,

aperiodic Markov chain X = {X;}{°, evolving over ¢ on a measurable space (X, Z"), where



the state space X is a complete separable metric space and 2 is the associated Borel o-
algebra. We let 7 denote a probability measure defined on (X, 2") with respect to which
we would like to compute expectations. We use g : X — R to denote a function for which
it is of interest to obtain p = [ g(z)m(dz). We define a transition kernel as a function
Q : Xx Z — [0,1] such that Q(-, A) : X — [0,1] is an 2 -measurable function for each
Ae Z and Q(x,-) : £ — [0,1] is a probability measure on (X, Z") for each x € X. For
a probability measure 7 on (X, .2"), a probability kernel @ is said to be w-stationary if
7(A) = [ Q(z, A)w(dx) for all A € 2Z". An initial measure v on X and a transition kernel
@ define a Markov chain probability measure P, for X = (X, X1, X2,...) on the canonical
sequence space (€2, F). We write E, to denote expectation with respect to P,.

For a function f : X — R and a transition kernel (), we define the linear operator Q by
Qf(@) = [ Q. dn)f() ®)

We define Q'f(z) = f(x), Q' f(x) = Qf(x), and Q'f(z) = Q(Q'"1f)(x) for t > 1, and
we define Q'(z, A) = Q'Ia(x), where I4(-) is the indicator function for the set A. We
let L?(7) be the space of functions which are square integrable with respect to m, i.e.,
Lo(m) = {f : X = R; [ f(z)?n(dz) < oo}. For functions f,g € L?*(m), we define an inner

product

<ﬁmﬂ:/fuw@wwm. (9)

We note that L?(7) is a Hilbert space equipped with the inner product (9). For f € L?(r),

we define || fll 2y = /(f, f)5- Also, for an operator Q on L*(w), we define ||Q||p2(r) =
SUD )1 2,y <1 1Qf |l r2(x) and we say @ is bounded if [|Q||p2() < c0.

We say that a transition kernel @) satisfies the reversibility property with respect to 7 if

(f1.Qf2), = (Qf1, [2), (10)

for any functions f1, fo € L%(7), i.e., if Q is a self-adjoint operator. Reversibility with

respect to m is a sufficient condition for m-stationarity of @), since for a reversible transition



kernel @, we have

m(A) = /IA(x)QIX(x)W(dx) = /Ix(m)QIA(x)w(dx).

The spectrum of the operator @ plays a key role in determining the mixing properties
of a Markov chain with transition kernel Q. Recall that for an operator T' on the Hilbert

space L%(7), the spectrum of T is defined as
o(T) = {\ € C; (T — M) does not exist or is unbounded }. (11)

For Markov operators @, we define the spectral gap § of Q as § =1 — sup{|A|; A € 0(Qo)}

where Q¢ is defined as

Qof = Qf — Ex[f(Xo0)]fo (12)

and fo € L?(n) is the constant function such that fo(z) = 1 for all x € X. It is easy to
check that Qg is self-adjoint and bounded. If @ is reversible, () has a positive spectral
gap (6 > 0) if and only if the chain is geometrically ergodic [Roberts and Rosenthal, 1997,
Kontoyiannis and Meyn, 2012]. In addition, (1 — 6)* is the maximal lag k correlation of
any two functions, and therefore for any function f and Yy = M~! Zi\i 61 (X3), the
asymptotic variance O'ch of VM (Y — Ex[f(Xo)]) is bounded above by
7% =7 (0) 423" 35(K) < 75(0) +2 21— *35(0) = 25 241(0)
k>1 k>1

where v¢(k) = Covr(f(Xo), f(Xk)).

In the remainder, we consider a discrete time Markov chain X = {X;}7°, with stationary
distribution 7 and w-reversible transition kernel ) with a positive spectral gap. We let g

be a square integrable function with respect to m, and use (k) defined by

(k) = Cove{g(X0), g(Xp))} = (9, Q)g),. for ke Z

to denote the lag k autocovariance of the stationary time series {g(X;)};2, obtained with
Xo ~ m. We use v = {7(k) }rez to denote the autocovariance sequence on Z. We summarize

our assumptions on the Markov chain X as follows for future reference:



(A.1) (Harris ergodicity) X is t-irreducible, aperiodic, and positive Harris recurrent.

(A.2) (Reversibility) The transition kernel @ is m-reversible for a probability measure 7 on

(X, Z).

(A.3) (Geometric ergodicity) There exists a real number p < 1 and a non-negative function

M on the state space X such that
Q™ (z,-) — w(-)||rv < M(x)p", for all z € X,

where || - ||Tv is the total variation norm.
Throughout the paper, we assume that the function of interest g : X — R is in L?(7), i.e,
(B.1) (Square integrability) [ g(z)*m(dz) < .

For the definitions of y-irreducibility, aperiodicity, and positive Harris recurrence, see
e.g., Meyn and Tweedie [2009]. Reversibility is a key requirement for our estimator because
it allows us to use the shape constraints implied by the spectral decomposition of the Markov
chain kernel (see Proposition 1). Many practical transition kernels satisfy m-reversibility.
Notably, all Metropolis-Hastings transition kernels satisfy reversibility. Additionally, all
Gibbs component update kernels are reversible. As noted by a referee, in practice, it is
common to combine a set of reversible transition kernels {Qk}le, such as those from
Metropolis-Hastings or Gibbs updates, to form a joint transition mechanism . The re-
versibility of the combined mechanism () depends on the way in which the individual kernels
Q. are combined. For example, in deterministic scan sampling, where each update consists
of sequentially applying Qx, k = 1,..., K, the resulting kernel Q(x, A) = Q1Q2 - - Qi (x, A)
is generally non-reversible. On the other hand, there are schemes for combining reversible
kernels i in such a way that the resulting @) is reversible. For example, the random scan
transition kernel Q = K—! Zszl Qp, corresponding to randomly selecting the transition
kernel at each iteration, is reversible. Additionally, random permutation scans, in which at
each iteration the reversible (J; are composed in a randomly permuted order, and palin-
dromic scan updates, in which Q = Q1...Qr_1QxkQK_1 ... Q1, lead to reversible Markov
chains [see, e.g., page 376 of Robert and Casella, 2004]. Finally, we note that in data
augmentation Gibbs sampling, the marginal chains are reversible [see, e.g., Liu et al., 1994,

Robert and Casella, 2004].
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Geometric ergodicity implies exponential convergence of the Markov chain X to its
target distribution 7. When the state space X is finite, all irreducible and aperiodic Markov
chains are geometrically ergodic. While this is no longer true for infinite state space,
geometric ergodicity remains a theoretically and practically important condition for Markov
chains [e.g. Roberts and Rosenthal, 1998, Jones and Qin, 2022]. For example, geometric
ergodicity provides one of the simplest sufficient conditions for the Markov chain central
limit theorem (CLT) to hold. In fact, for a reversible geometrically ergodic Markov chain, a
finite second moment of the function of interest g is sufficient to establish a CLT (e.g., Jones,
2004). The establishment of geometric ergodicity is usually done on a case-by-case analysis,
and many works have studied geometric ergodicity of popular samplers (e.g., Mengersen and
Tweedie, 1996, Roberts and Tweedie, 1996, Jarner and Hansen, 2000, Jarner and Tweedie,
2003, Johnson and Geyer, 2012, Chakraborty and Khare, 2017, Livingstone et al., 2019,
Durmus et al., 2023).

The following proposition shows that both the autocovariance sequence + and rolling
sum I' of the sequence v with a window size of 2 from a reversible chain have the following
moment representations, namely there exist measures F' and G supported on [—1,1] and
[0, 1], respectively, such that (k) and T'(k) are the kth moments of F' and G, respectively.

Let Mp denote the set of finite regular measures on R.
Proposition 1. Assume (A.2) and (B.1).

1. The true autocovariance sequence y(k) = (g,ngg)ﬂ, k € Z, has the following repre-

sentation for some F € Mg

(k) = / . );EWF(d:U), (13)

where o(Qq) 1is the spectrum of the linear operator Qo defined as in (12). Moreover,

o(Qo) lies on the real azxis, and o(Qo) C [—1,1].

2. The sequence I' = {T'(k)}ren defined by T'(k) = v(2k) + v(2k + 1), k € N, has the

following representation for some G € Mg

and o(Q3) C [0,1].

11



3. If we additionally assume (A.1) and (A.3) in addition to (A.2) and (B.1), there exists
0 < dp < 1 such that o(Qo) C [~1+ 6, 1 — do] and o(Q2) C [0, (1 — &)?].

The proof of Proposition 1 is deferred to Supplementary Material S3.1 [Berg and Song,
2023]. In the example below, the moment representation of the autocovariance sequence

from a reversible Markov chain is illustrated using an AR(1) chain.

Example 2.1. (Autoregressive chain example) Consider an AR(1) autoregressive process
with X¢v1 = pX¢ + €21, t = 0,1,2,... , where ¢ id N(0,72) and p € (—1,1). The
stationary measure 7 for the X; chain is the measure corresponding to a N(0,72/(1 — p?))
random variable, and the Xy chain can be shown to be reversible with respect to w. Consider
the autocovariance sequence y(k) = Er[g(Xo0)g(Xjx)] with the identity function g(x) = .
Since Ex[g(Xo)] =0, we have

7'2
(k) = Cova(g(Xo), 9(Xx)) = Vars(9(Xo))p" = 1",

2

Then (k) can be represented as v(k) = [«!FIF(dz) for all k € Z by letting F = 5200,

where 0, denotes a unit point mass measure at p.

We note that the second statement of Proposition 1 implies that the I'(k) sequence
is completely monotone, and therefore is a refinement of the result in Geyer [1992] which
showed that I'(k) is 2-monotone. This is due to the theorem of Hausdorff [1921] below,
in which an equivalence is shown between [0, 1]-moment sequences (sequences with the
representation m(k) = [ 2*F(dz) for some F with Supp(F) C [0, 1]; see Definition 1 for
the formal definition) and completely monotone sequences satisfying inequalities (7) for all
k,n € N. The relationship between sequences admitting certain moment representations

and their shape constraints will be further explored in the following Section 3.

Theorem 1 (Hausdorff moment theorem [Hausdorff, 1921]). There exists a representing
measure p supported on [0,1] for m € RN if and only if m is a completely monotone
sequence. Additionally, if m is a completely monotone sequence, the representing measure

w for m is unique.

We have from Proposition 1 that « is a [—1,1]-moment sequence. In general, v is
not a completely monotone sequence as its representing measure can have mass in [—1,0).

A simple example is the autocovariance sequence from an AR(1) stationary chain with a

12



negative AR(1) coefficient. The autocovariances oscillate between positive and negative

values as k — oo and therefore cannot decrease monotonically.

Notations

We let N be the set of non-negative integers {0, 1,2, ...} and Z the set of integers {..., —1,0,1,...}.

For a sequence m on N or Z, we define an £, norm for m by |ml|, = (3, [m(k)|P)'/? for
p=12,..., and |m| = maxy |m(k)|. In addition, when p = 2, we omit the subscript
and write ||+ || = |- [|2. We use £,(N) (or £,(Z)) to denote the space of sequences on N (or Z)
with finite £, norms. In particular, ¢;(Z) is the space of absolutely summable sequences on
Z,ie., 1(Z) = {m e RE; Y22 |m(k)| < oo} and ¢2(Z) is the space of square summable
sequences on Z, i.e., £2(Z) = {m € RZ; 322 m?2(k) < co}. We equip l(Z) with a usual
inner product (z,y) = S50 x(k)y(k) for x,y € l5(Z). Then ||z| = \/{(z,2) = ||z|2.
Also, for a € [~1,1], we define x4 = {xq(k)}rez such that z,(k) = ol¥l for k € Z. Note
that for a € (—1,1), x4 € ¢2(Z). Finally, for a measure u, we let Supp(u) denote the
support of p.

3 Moment least squares estimator (Moment LSE)

We now introduce the moment least squares estimator. We first formally define moment

sequences and moment sSpaces.

Definition 1 (moment sequence and representing measure). We say that a sequence m is
an [a,b]-moment sequence if there exists a positive measure p supported on [a,b] for some

—00 < a < b< oo such that the equation

m(k) = / o (dz) (15)

holds for any k € N (if m = {m(k)}?2, is a sequence defined on N) or any k € Z (if
m = {m(k)}2_ is a sequence defined on Z). We say that ;i is a representing measure

for the sequence m.

For a closed set C' C R, we write .#(C) to denote the the set of sequences on R? with
a moment representation with a measure supported on C. For example, .Z([a, b]) is the
set of [a,b]-moment sequences. By definition, we have #(I1) C M (I2) if I} C I for

two closed intervals I1,Io € R. The support [a,b] has a close relationship with the shape

13



constraints satisfied by sequences m € #([a,b]). When [a,b] = [0, 1], #([0,1]) is the
space of completely monotone sequences. In general, the true autocovariance v does not
belong to .#([0,1]), but does belong to .#(|—1,1]). Additionally, for a geometrically
ergodic chain, Proposition 1 shows v € #([-1 + 6,1 — 0]) for any 6 > 0 such that
0 < &o, where &g is the spectral gap of @) in Proposition 1. Throughout the remainder of
the paper, we will consider projections onto the set .#Z.([—1 + d,1 — §]), and thus we let
Moo(0) = Mo ([—1+ 9,1 — §]) for notational simplicity.

Now we define the moment least squares estimator Ils(rps) resulting from an initial

autocovariance sequence estimator ry; € 2(Z) by

s(rp) =  argmin  |lrp — m||2 (16)
ME Moo (8)N2(Z)

= argmin Z{T‘M(k‘) —m(k)}>.
MEMoo(5)N2(Z) 1o,
Note that II5(rp) is the closest moment sequence with respect to some measure supported
on [-1+4 4,1 — 6] to the input autocovariance sequence 73y, with respect to the ¢5 norm
|||l on £2(Z). This optimization problem can be formulated as a convex quadratic problem,
which we discuss further in Section 3.3.

The optimization problem (16) has one hyperparameter §, which needs be chosen suffi-
ciently small so that the true autocovariance sequence -y is a feasible solution, in the sense
that v € #(0) N la(Z), of the optimization problem (16). Note that any value of ¢ such
that 0 < 6 < §, makes v feasible for 6, = 1 — sup{|z|;z € Supp(F)} where F is the
representing measure for . Empirically, choosing 0 as large as possible subject to 6 < 4,
leads to better performance because, roughly speaking, larger § corresponds to more shape
regularization. However, the method appears to work for a wide range of § as long as ¢ is
chosen to be positive (see Section 5 for details). We also propose a practical choice of § in
Section 5. Theoretically, we showed the consistency of the proposed estimator ILs(rs) for
any 0 <6 < 9,.

For the choice of the initial autocovariance sequence estimator, any estimator ry; from

a Markov chain sample Xg, X1, ..., X371 of size M satisfying

(R.1) (a.s. elementwise convergence) (k) ¢ v(k) for each k € Z, P,-almost surely,
—00

for any initial condition x € X,
(R.2) (finite support) rpr(k) = 0 for k > n(M) for some n(M) < oo, and
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(R.3) (even function with a peak at 0) rpr(k) = ra(—k) and rps(0) > |ras(k)| for each
ke,

is allowed. As we demonstrate in Proposition 7, the empirical autocovariance sequence 7y
satisfies assumptions (R.1)—(R.3). In addition, (R.1)—(R.3) are satisfied by any windowed
empirical autocovariance sequence 7ys of the form 7y (k) = 7ar(k)was(|k|), where wyy (k) is

any window function which meets the following conditions (W.1) - (W.3):
(W.1) wpr(0) =1 for all M € N,
(W.2) Jwp (k)] <1forall ke Nand M € N,
(W.3) wyps(k) — 1 for any fixed k as M — oo

In particular, conditions (W.1) - (W.3) are satisfied for some widely used window functions
such as the simple truncation window wys (k) = I(k < bys) and the Parzen window function
wyr(k) = [1—k9/b%,]1(k < by) for g € {1,2,3,...}, which is the modified Bartlett window
when ¢ = 1.

In the following subsection, we provide some results relating to moment sequences,
and provide an alternative characterization of moment sequences in relation to complete

monotonicity.

3.1 Characterization of [a,b]-moment sequences

While v is not completely monotone when the support of the representing measure for
v is not contained in [0, 1], it still exhibits infinitely many constraints. Previous studies
have provided characterizations of [a, b]-moment sequences [Krein and Nudelman, 1977,
Chandler, 1988]. Specifically, an [a, b]-moment sequence m can be characterized equivalently
by the non-negativity of a specific family of quadratic forms derived from m, a, and b (e.g.,
Theorem 3.13 in Schmiidgen, 2017).

In Proposition 2, we present an alternative characterization for an [a,b]-moment se-
quence m in terms of the complete monotonicity of a transformed sequence T'(m; [a, b]). It
is important to note that while Proposition 2 gives insights on which (infinite number of)
constraints are imposed on an estimator at the sequence level by requiring the estimator
to be in the [a,b]-moment space .#([a,b]), the actual enforcement of these constraints
is achieved through a mixture representation as in (15). It is also technically convenient

to have this alternative characterization for [a, b]-moment sequences because we can, e.g.,
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verify that a sequence is an [a,b]-moment sequence by checking whether T'(m;[a,b]) is
completely monotone, and guarantee the uniqueness of the representing measures of [a, b]-
moment sequences based on Theorem 1.

For a sequence m = {m(k)}3, and constants a < b, we define 7T': RY — RN as follows:

k
T(m;a,b)(k) = (b—a)~* Z (?)m(i)(—a)k_i, k=0,1,2,.... (17)
=0

Note T'(m;a,b)(0) = m(0), and when a = 0,b = 1, we have T'(m;0,1) = m.

Proposition 2 ([a,b]-moment sequences). For a sequence m = {m(k)}}2, and a < b,
there exists a representing measure (v for m supported on [a,b] if and only if the sequence
T(m;a,b) is completely monotone. Additionally, if T'(m;a,b) is completely monotone, then

the representing measure for m is unique.

The proof of Proposition 2 is deferred to Supplementary Material S4.1 [Berg and Song,
2023]. Since throughout this paper we will consider sequences m = {m(k)};2 __ satisfying

the symmetry relation m(k) = m(—k) for each k € Z, we state the following corollary.

Corollary 1. Consider a sequence m = {m(k)}rez which is symmetric around 0, i.e.,
m(k) = m(—k) for k € Z. Additionally, consider a,b € R with a < b. Then there exists a
measure [ supported on |a,b] such that m(k) = fx‘k‘,u(d@ for all k € Z if and only if the
sequence T'({m(k)}ken; a, b) is completely monotone. Additionally, if T({m(k)}ren;a,b) is

completely monotone, then the measure corresponding to m is unique.

3.2 Properties of the moment least squares estimator

The moment least squares estimator (moment LSE) IIs5(rs) from an initial autocovariance
sequence estimator rj; involves a projection from ¢5(Z) to Mso([—1+ 0,1 — 6]) N 42(Z).
In this section, we show the existence and uniqueness of projections from ¢3(Z) to a mo-
ment sequence space #o(C) N ¥l2(Z) where C C [—1,1] is a closed set. For an r € ¢2(Z),
define II(7; C') be the projection of r onto #(C) N ¢2(Z). We present a variational char-
acterization of the projection II(r;C') . Finally, we obtain results on the properties of the
representing measure of II(r; C') . Namely, we show that for fixed sample size M, if r(k) =0
for k > n(M) for some n(M) < oo, the representing measure fic corresponding to II(r; C) is
discrete, with finite support set Supp(fic) having cardinality |Supp(fic)| < ng, where ng is

the smallest even number with ng > (n(M)—1). Similar discreteness and finite support set
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results appear in the setting of nonparametric maximum likelihood estimation for mixture
models, as in Lindsay [1983], as well as in the least-squares estimation of a k-monotone or
completely monotone pmf as in Giguelay [2017] and Balabdaoui and de Fournas-Labrosse
2020].

First of all, for any closed C' C [—1, 1], we show that #(C) N ¥¢2(Z) is a closed and
convex subset of o(Z). Then, since ¢2(Z) is a Hilbert space equipped with the inner product
(v,u) = > ez v(k)u(k), we obtain by the Hilbert space projection theorem the existence

and uniqueness of projections from ¢3(Z) to M (C) N la(Z).

Proposition 3. For any closed C C [—1,1], the set Moo(C) N Lo(Z) is a closed, convex
subset of Lo(Z). In particular, for any given vector r € Lo(Z), I(r; C) exists and is unique

in M (C) N lo(2).

Note that for any M, an initial input autocovariance sequence 7 satisfying (R.1) -(R.3)
is in ¢5(Z) since rp(k) = 0 for |k| > n(M), and therefore, the moment LSE Ils(ry) =
II(rpr; [—14 6,1 —4]) is well defined. In addition, the optimization problem (16) is convex.
The proof of Proposition 3 uses the alternative characterization in Corollary 1 of an [a, b]-
moment sequence and is deferred to Supplementary Material S4.2 [Berg and Song, 2023].

Next, we present a few results regarding the projection II(r;C) of r € ¢5(Z) onto
Moo (C) N Ua(Z). Proposition 4 provides a variational characterization of the projection

II(r; C).

Proposition 4. Let C be a closed subset of [—1,1]|, and suppose r € lo(Z). Then for
f € M (C)NLa(Z), we have f =TI(r; C) if and only if

1. for allao € CN(—1,1), (f,xaq) > (r,z0), i€,

o0

S kel = 3 r(kal, a8)

k=—o00 k=—00

2. (f.f) = (fir), e, 302 F(R)? = 3002 f(R)r (k).

A similar characterization of II(r; C') was also presented in Balabdaoui and de Fournas-
Labrosse [2020]. We omit the proof as the result can be obtained by a minor modification
of Proposition 2.2 in Balabdaoui and de Fournas-Labrosse [2020].

Proposition 5 below shows that (18) holds with equality for « in the support of the

representing measure for II(r; C) with |o| < 1.
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Proposition 5. Let C be a closed subset of [—1,1], and suppose r € €2(Z). Let ic denote
the representing measure for I(r; C'). Then for each o € Supp(fic) N (—1,1), we have

(II(r; ), xo) = (1, T4 -

The proof for Proposition 5 essentially follows from Proposition 4, as we have (Il(r; C) — r, z4) >

0 for all « € C'N(—1,1) and from the second condition in Proposition 4
[ W €) = 1) ictda) = (105 0). 1 €) — (111055 0)) =0,

which implies (II(r; C) — r,xz,) = 0, for fic-almost every . We show that this implies
that (II(r;C) —r,xzq) = 0 for all @ € Supp(iic) N (—1,1). The details are deferred to
Supplementary Material S4.3 [Berg and Song, 2023].

Finally, we show that for an input sequence r with finite support, i.e., r(k) = 0 for
|k| > M for some M, then the representing measure for the projection II(r; C) is discrete,
and the support of the representing measure contains at most a finite number of points.

More concretely, we have the following result:

Proposition 6. Let C be a closed subset of [—1,1], and suppose r € l3(Z) satisfies r(k) =0
for all k with |k| > M — 1 for M < oco. Let II(r;C) denote the projection of r onto
Moo (C) N Uo(Z). Let ic denote the representing measure for II(r;C). Then Supp(fic)
contains at most n points, where n is the smallest even number such that n > (M —1).

Additionally, the support of fic is contained in (—1,1), that is, Supp(iic) N{—1,1} = 0.

The proof follows similar lines as in Balabdaoui and de Fournas-Labrosse [2020], but
requires nontrivial modification to deal with the possible support of fic in [—1,0). We defer
the proof to Supplementary Material S4.4 [Berg and Song, 2023]. In particular, a moment
LSE IIs(rps) for any initial estimator rj; satisfying condition (R.2) has a representing
measure which is discrete and has support containing at most ng points, where ng is the
smallest even number such that ng > {n(M)—1}. The representing measure for an arbitrary
element of f € 4 (0) N l2(Z) is in general neither finitely supported nor discrete. Thus
Proposition 6 provides a considerable simplification of the form of the representing measure

of H(;(TM).
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3.3 Computation of the moment least squares estimator

Recall that IIs(ry) is the minimizer m of Y, ., {ra (k) — m(k)}? such that m € .#(5) N

l5(Z). By Proposition 6, since fi5 is a discrete measure, we have

y(ran)(k) = [ aMistda) = 37 alis({a)).
a€Supp(fis)
For a closed set © C [—1+ d,1 — §], recall II(r; ©) is the projection of r to the set of ¢o(Z)
moment sequences with representing measure supported on ©. Note we have Ils(r) =
II(r;[-1 49,1 — 9]) = II(r; Og) for any O¢ such that Supp(fis) € g C [-1+ 9,1 —4].
For a finite ® = {ay,...,as} C (=1,1), II(r; ©) can be computed by solving a simple

convex quadratic program. For m € #.(©) N ¥¢2(7Z), the least squares objective in (16)

becomes
~

> (rar(k) = m(k))? = S (rar(k) = 3 ), (19)

ke kEZ i=1
where we define w; = p,({ai}) for i = 1,...,s and s = |O| where p,, denotes the repre-
senting measure for m. Define w = [wy,...,w,] € R®. Define a = [ay,...,as] € R® such

k k 14aa;

that a; = > ey al |rM(k) = Zk;?‘M(k);éo OzL |rM(k) and B € R*** such that B;; = 1_322

Note that B can be computed easily based on © and a can be computed easily based
on © and rp; when 7y satisfies (R.2). Then with some algebra, we can show that
Srez(rm (k) —m(k))? = rar "rar—2a” w+w Bw (see Supplementary Material S1 of Berg

and Song, 2023). Therefore the optimization problem becomes

T

min  rp Ty — 2a'w + w' Bw
w

(20)
subject to w >0

which is a quadratic convex problem because B can be shown to be a positive definite
matrix (Supplementary Material S1 in Berg and Song, 2023). Note that this objective
is identical to the quadratic programming formulation of the non-negative least squares
problem.

For computing II5(ras), in practice, we approximate the interval [—1 + 4,1 — §] with a
finely spaced finite grid of s points © = {a1,...,as} C [-1+6,1 —4]. We then approximate
the solution Ils(ras) = I(rar; [—1 + 6,1 — §]) by II(rar; ©). Of course, if © contains the
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support of fis, then IIs(rpr) = (ra;©). We used a grid of s = 1001 « values in [—1 +
9,1 — 0], where we first created an equally spaced grid G in a log-scale from [0,1 — ]
and used § = —G U G. We used the support reduction algorithm by Groeneboom et al.
[2008] (ref. page 388) to solve (20) with this choice of ©. In terms of run-time of our
implementation, it took about .056 seconds on average to obtain Ils(rps) for rps from a
length M = 10000 AR1 chain and the choice of grid above, on an author’s typical personal
laptop operating Mac OS with a 3.2 GHz processor. The implementation is available in

https://github.com/hsongl/momentLS.

4 Statistical guarantee of the moment LS estimator

In this section, we analyze the statistical performance of the moment LS estimator. Specif-
ically, we show that the moment least squares estimator II;(rys) obtained from any eligible
initial autocovariance sequence estimator ry; satisfying (R.1)-(R.3) is fo-strongly consis-
tent for the true autocovariance sequence, and the asymptotic variance estimate based on
Is(ras) is strongly consistent for the true asymptotic variance o2 in (2).

First, the following Proposition shows that a wide range of estimators are allowed for
the choice of the initial autocovariance sequence estimator rps, including the empirical

autocovariance estimator as well as windowed autocovariance estimators.

Proposition 7. Assume that a Markov chain X = {Xo, X1,...,} with transition kernel Q
satisfies conditions (A.1)-(A.3), and the function of interest g is in L*(w). The empirical
autocovariance sequence 7, defined as in (4), satisfies conditions (R.1)-(R.3) where Yy =

-1 Zt -0 g( ¢). In addition, any windowed autocovariance sequence estimator 7y such
that 7pr(k) = 7pr(B)war(|k|) for any window function wyy satisfying (W.1)-(W.3) satisfies
(R.1)-(R.3).

The proof is deferred to S5.1 in the Supplementary Material [Berg and Song, 2023].

4.1 L2 consistency of the moment LSE

We now show the strong consistency (with respect to the /3 metric) of the moment LSE
II5(ryr) for the true autocovariance sequence, that is, we show ||TIs(ras) — | %3 0, for any

0 > 0 satisfying Supp(F) C [-1+ 6,1 — d].
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First of all, we present the following key lemma, which bounds the ¢5 distance between
the projection IIs5(r) of r € ¢2(Z), and an element v in .# () N l2(Z), with a mixture of
geometrically weighted differences between the input r and ~. This lemma plays a crucial
role in our convergence analysis. In our setting, the standard bound derived from the

property of the projection
s (rae) = Y12 < llrae =112

for v € Mo (5)Nl2(Z) is not helpful because we do not assume the consistency, with respect
to the fo metric, of rps for the true autocovariance ~y. In fact, the empirical autocovariance
sequence seems not to converge to v in the /o sense. Even so, we can still show that a
geometrically weighted difference between rj; and y converges to 0, which leads to the

convergence of II(rps) to v in the /5 sense.

Lemma 1. Suppose 0 € [0,1], and let f € Mo (0)NE2(Z). Additionally, suppose 1 € ly(Z).
Then

0 < |TLs(r) — 12 < — / (o — f) iy (dar) + / (tarr — fYis(da).  (21)

where [is is the representing measure for ls(r) and py is the representing measure for f.

Proof. Clearly 0 < |[II5(r) — f[|*. We have,

If = Ts(r) |1 = (f, f) — 2 (Ws(r), f) + (Hs(r), 5(r)) . (22)

First, for the third term in (22), by Proposition 5 and Lemma 4 in the Supplementary
Material [Berg and Song, 2023], we have

(W50, T150)) = [ (o T15(r) ()
_ / (@) fi5(da)
_ / {(@arr = ) + (Ta, f) }is(da)
:/@M_ £) fis(der) + (I5(r), f) |

where the second equality follows from (x4, Il5(r)) = (xq,7) for all @ € Supp(f). Thus,
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(22) becomes,

If = T = (£, ) — (Ms(r), f) + / (Tarr — f) is(dor).

Now, for the second term in (22),

where for the second inequality we use Proposition 5 which states (x,, [I5(r)) > (x4, 7) for
all v € [-1+9,1—6]N(—1,1), as well as Lemma 2 in the Supplementary Material [Berg
and Song, 2023]. Therefore, we obtain,

I£ = Ts)IP < = [ {ear = Fusda) + [ (wa,r = ) s(da).

O

The next two propositions, Proposition 8 and 9, serve as the basis for proving the
moment LS estimator’s £5 consistency by proving the uniform convergence of the geometri-
cally weighted difference between rj3; and v and the finiteness of the representing measure

of H(T‘M)

Proposition 8. Let ry; denote an initial autocovariance sequence estimator satisfying

(R.1)-(R.3). Let K denote a nonempty compact set with K C (—1,1). Then we have

Sup | (rar — v, %a) | = 0 Py-almost surely, (23)
aclkl

as M — oo, for each initial condition x € X.

Proposition 9. For a given § > 0 and an initial autocovariance sequence estimator rys

satisfying (R.1)-(R.3), let [is pm denote the representing measure for ls(rar). Then there
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exists a constant Cs~, < oo with Cs, depending only on v and 6 such that

limsup fi50([-1+6,1—0]) < Cs4

M—o0

P,-almost surely for any x € X. In particular, fispr([—1+0,1—0]) remains bounded almost

surely.

The proofs for Propositions 8 and 9 are in Supplementary Material S5.2 and S5.3 [Berg
and Song, 2023]. Finally, we present the main result of this section in Theorem 2 below,
which shows that the moment LSE is /s consistent for the true autocovariance sequence
~. This result is the consequence of the key inequality in Lemma 1 as well as the uni-
form convergence of (x4, 73 — ) and finiteness of the representing measure of Ils(rys) in

Proposition 8 and 9.

Theorem 2 (/5-consistency of Moment LSEs). Suppose Xo, X1, ..., is a Markov chain with
transition kernel Q satisfying (A.1)-(A.3), and suppose g : X — R satisfies (B.1). Let vy
denote the autocovariance sequence as defined in Proposition 1, and let F' denote the rep-
resenting measure for . Suppose § > 0 is chosen so that F is supported on [—1 + 0,1 — §].
Let rpr be an initial autocovariance sequence estimator satisfying conditions (R.1) - (R.3).

Then

|y — TLs(rar)]? 20, Pras.
— 00

for each initial condition x € X.

Proof. From Proposition 1 and by the choice of 0, we have v € #(d) for § > 0. Then
Lemma 3 in the Supplementary Material gives that v € ¢1(Z), and therefore v € (2(Z).
Thus, we have v € #(d) N la(Z). Additionally, ry; € l5(Z) since ry; satisfies (R.2).

Therefore, we can apply the result of Lemma 1, and we have the following inequality

Iy — Ts(ran) 2 < — /

| (@ =) Fde) + | Gasrar =) (o).
1,1

[_171}

where fi5 7 is the representing measure for II5(rys). Note Supp(F) C [-1 46,1 — 6] by the
assumption on §. Additionally, Supp(fsar) C [—1 46,1 — 6] since Il5(rar) € Moo (6)NV2(Z).
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Therefore, we have for any M

Iy = Ts(ran)|* < ( sup | (xa, 0 =) |> {(F(=1,1) + Asa (-1, 1))}
a€[—144,1-6]

and thus

limsup || — T5(rar)[|* < lim sup ( sup  [(Ta, v — ) !) F([-1,1])
M—o0 M—oco \ a€[—1+6,1-9]

+ lim sup ( sup | (o, ™0s — ) > lim sup /15,07 ([—1, 1]).
M—o0 a€[—1+4,1-4] M—co

Let the initial condition for the chain x € X be given. From Proposition 8, we know
that (supae[_1+571_5] | (o, — ) \) — 0 Py-a.s. Also we have F([—1,1]) = v(0) < co and
lmsupy, o0 fism([—1,1]) < C5, < 00 Pp-a.s. from Proposition 9. Therefore, we have
limsupyy_oo |7 — Os(rar)||* = 0 Pp-almost surely. Thus, ||y — Is(ra)]|> — 0 Pp-almost

surely as M — oo, as desired. O

An important consequence of Proposition 8, 9, and Theorem 2 is the measure conver-
gence of fi5 s to the true representing measure F'. Recall that for a sequence of measures
{vn}nen and v on R, vy, converges vaguely to v if and only if [ fdv, — [ fdv for all
[ € Co(R) [e.g., Folland, 1999], where Cy(RR) is the space of continuous functions that van-
ish at infinity, i.e. f € Cp(R) iff f is continuous and the set {z;|f(z)| > €} is compact for

every € > 0.

Proposition 10 (vague convergence of [i5 7). Assume the same conditions as in Theorem
2. For each initial condition x € X, we have Py(fi5;r — F vaguely, as M — oo) = 1, where

fis. v and Fare the representing measures for Is(rar) and v, respectively.

This proposition is a direct consequence of the a.s. ¢2 convergence of Il5(rys) to v and

Lemma 7 in the Supplementary Material S2 [Berg and Song, 2023].

4.2 Strong consistency of the asymptotic variance estimator based on the

moment LSE

In this subsection, we present the strong consistency result for the asymptotic variance
estimator based on the moment least squares estimators. It is well known that for a

stationary, t-irreducible, geometrically ergodic, and reversible Markov chain and for a
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square integrable g, the central limit theorem holds [e.g., see Corollary 6 in Haggstrom and

Rosenthal, 2007 |, i.e.,

VM(Yar = p) 5 N(0,0%(7)), (24)
with
o*(7) = lim MVar(Vay) = 3" ~(k) = / iZF(da) < oo, (25)

keZ

where F' denotes the representing measure associated with .
The main theorem for this subsection is Theorem 3, which shows that an asymptotic
variance estimate based on the moment least squares estimator o?(ILs(rar)) = ez s (rar) (k)

is strongly consistent for o(7y) for any r); which satisfies conditions (R.1) - (R.3).

Theorem 3 (strong consistency of asymptotic variance estimators based on Moment
LSEs). Assume the same conditions as in Theorem 2. Let o*(y) = Y ,.,7(k) be the
asymptotic variance based on the true autocovariance sequence . We let o?(Is(rar)) =
>z Us(rar) (k) be an estimate of o®(v) based on the moment least squares estimator
Os(ra). We have o*(Tls(ry)) — 02(7) Pe-a.s., for each initial condition x € X, as

M — oo.

Proof. Let 63, = o*(Ils(rar)) and o = o?(y) for notational simplicity. Lemma 3 and
Lemma 5 in the Supplementary Material give that &]2\4 = f[_l +6,1-0] % fis v (der), and we

have o2 = f[—1+6 1-6] 12 F(da) from (25). Thus, we have

1
/[ 1+a,&57M(da)—/[ 1+aF(da).

—146,1-4] l-a —146,1-0) 11—«

63 — 0% =

We can obtain f(a) € Co(R) such that f(a) = 1£2 on [—1+ 4,1 — §] by extending the two
endpoints of (1+a)/(1—a) at « € {—1+40,1—a} to 0 linearly so that f(a) = 0 for |o| > 1.
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More concretely, define f : R — R by

,

e a€[-1+04,1-4]
55 —1<a<-1+494

W 1-6<a<1

0 a< —lora>1.

\

Then f € Co(R) and f(a) = 12 for o € [~1 4 6,1 — 6]. Then, since Supp(fis.ar), Supp(F) C
[-1+ 9,1 — 4], we have

JM—02I—|/f Jisailda) - [ f(a)F

for any z € X by the almost sure vague convergence of fis5 s to F' in Proposition 10. O

5 Empirical studies

The goal of this section is two fold: first, we empirically illustrate some of the theoretical
aspects discussed in the previous section, in particular, the ¢5 sequence consistency and
asymptotic variance consistency of Moment LSEs. Second, we compare the performance of
our method to the performance of other current state-of-the-art methods for autocovariance
sequence estimation and asymptotic variance estimation. In Section 5.1.3, we propose a
method for tuning the hyperparameter § for moment LSEs. In Section 5.3, we use two
simulation settings: one from a Metropolis-Hastings algorithm (Metropolis et al. [1953]
and Hastings [1970]) with a discrete state space, and the other from a stationary AR(1)

chain. In Section 5.4, we use a Bayesian probit regression.

5.1 Settings
5.1.1 Settings for simulated chains

Metropolis-Hastings chain We consider a Metropolis-Hastings chain on the discrete
state space (X,2X) where X = {1,2,...,d}, so that d = 100 states are possible. The sta-
tionary distribution for the simulation was constructed by normalizing a length d random
vector U = [Uy, U, ..., Ug)T with U; b Uniform(0, 1), so that 7({i}) = U;/(3.%_, Ux). Each

row of the proposal distribution P was constructed in the same manner, with P(i, {j}) =
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Vii/ 2?21 V;; for random variables V;; i Uniform(0, 1). The Metropolis-Hastings algorithm
was used to construct a transition kernel () corresponding to the proposal distribution P.
Finally, a function g : X — R was constructed via g = [g1, ..., gq] With g; u N(0,1). We
generated a Markov chain Xy, X1, ... with stationary distribution 7 according to Q.

Since in this example, the transition kernel @) is on a small discrete state space, it is pos-
sible to compute the eigenvalues A\; and eigenvectors ¢; corresponding to A; fori =1,...,d
numerically. Therefore, the true autocovariance sequence -, the representing measure F' for
7, and the asymptotic variance o2(y) can be all computed explicitly. More concretely, let
A1 > Xo > -+ > )y denote the eigenvalues of (). Suppose the eigenvectors ¢; are normalized
so that (¢, ¢;). = 1[i = j]. Note we have A\; = 1 and ¢; = 14 since Q14 = 14. We can write
g and g = g — Exlg(Xo)]La as g(k) = 3L, (9,61 ¢i(k) and g(k) = ZiLs (9, 6i)y 6i(K)
since (g, 61), = Ex[g(Xo)l. Then, (k) = (Qq'9,9), = (Q"7.9), = ©iLy (9,003 AT, and

thus the representing measure for 7 is

d
F=> (g,6:)3 6, (26)
=2

where 0, denotes a unit point mass at a. Finally, we have o2(vy) = Z?:z (g, ¢1>72r %fi’

Autoregressive chain We also consider the autoregressive chain with the identity func-
tion g(x) =  as in Example 2.1. We let 72 = 1, and consider both positively and negatively

correlated cases by setting p = 0.9 and p = —0.9 in each case, respectively.
5.1.2 Descriptions of estimators

We investigated the following autocovariance sequence estimators:

1. (Empirical) the empirical autocovariance sequence {7ps(k)}rez,

2. (Bartlett) the windowed empirical autocovariance sequence 7ys (k) = war(|k|)7ar (k)

with was (k) = (1 — k/653)1(k < 0{3™™)) with threshold o}, and

3. (MomentLS(Emp) and MomentLS(Bartlett)) our moment least squares estima-
tors with the empirical autocovariance sequence Ils(7ys) and the windowed empirical

autocovariance sequence II5(7ys) as initial input sequences.

For all three sequence estimators (Empirical, Bartlett, and MomentLS), asymptotic variance

estimates were obtained by summing up the sequence estimators over all k£ € Z. In the
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case of Empirical and Bartlett estimators, this amounts to summing up the non-zero terms
in the estimated autocovariance sequences 7y; or 7. For MomentLS estimators, for each
input sequence ry; € {Tar,7ar} and given § > 0, the sequence estimates were computed
following steps outlined in Section 3.3. To elaborate further, we start by creating a grid © =
{ai,...,as} C[-1+40,1—d]. We then solve the optimization problem (20) to obtain w =
[fis({a1}), ..., as({as})]T. The momentLS sequence estimate for (k) is Il5(rar; ©)(k) =

Za;ﬂg({a})>0 ol¥fi5({a}). The asymptotic variance estimate is

(s ©)) = S M(meO)K) = 3 1 is({o)).

keZ a;fus ({a})>0

The choice of § is described in the next subsection 5.1.3.

For the comparison of asymptotic variance estimation performance, in addition to
asymptotic variance estimates from the aforementioned estimators, we considered batch
means, overlapping batch means, and initial sequence estimators. Let Y3, = M~} Zt 0 g( t)-
For i« < M — b, define the batch mean starting at ¢ with batch length b by Yj(i) =

Zk —09(Xitr). Then the batch means, overlapping batch means, and initial sequence

estimators are defined as
. ~92 . . (BM)
4. (BM) the batch mean estimator 63,, with batch size by, ",

apr— 1

6%M:aM_1 Z{ o (kb)) = Yary?,

where ap = | M /b BM)j is the number of batches,

5. (OLBM) the overlapping batch mean estimator 62 ;,, with batch size b\o ",

(]
27 OLBM) M=bQ M
M

2
OLBM OLBM Z {Y(OLBM)( ) — Y},
(M ="My (v = 0P 1y =

~2 o
O0OLBM —

6. (Init) the initial (positive,monotone,convex) sequence estimator 62, type computed
as
T-1 (typ0)
&2 = r{type
Oinit,type — _TM(O) +2 Z 1—‘M (k)
k=0

for type € {pos, mono, conv}, where y(k) = 7ar(2k) + 7ar(2k + 1), T := min{k €
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N;Tar(5) < 0,} is the first time point where T'y;(k) becomes negative, and fg@os)(k),

D37 (k), and D{F™) (k) are defined for k < T as

o TP (k) = Ty (),

o 1) (1) = min <, T (), and

. fg&onv) (k) is the kth element of the greatest convex minorant of I'y7(0), ..., Tpr(T—

1)
fork=0,...,7T —1.

The asymptotic variance estimator from the empirical autocovariance sequence is always
0, ie., o*(Fp) = Y pez™m(k) = 0 [e.g., Brockwell and Davis, 2009], and therefore is
inconsistent for o2(y) whenever ¢?(y) > 0. The asymptotic variance estimator from a
windowed empirical autocovariance sequence is also sometimes called a spectral variance

estimator since it corresponds to an estimated spectral density function at frequency 0.

5.1.3 Choice of hyperparameters

Hyperparameters are required for the Bartlett windowed estimators, BM, OLBM, and
Moment LSEs. A batch size by; needs to be specified a priori for the Bartlett windowed
sequence estimate, BM, and OLBM, and ¢ determining the set .#,(§) N ¢2(Z) onto which
the initial autocovariance sequence rj; is projected must be specified for the MomentLS
estimators.

For BM and OLBM, we used oracle hyperparameter settings when possible. From Flegal
and Jones [2010], for the BM and OLBM methods, the mean-squared-error optimal batch

sizes for estimating o2(7y) are

b(BM) _ F2M 1/3 nd b(OLBM) _ 8F2M 1/3 (27)
M 7*(v) M 302(7)
respectively, where I' = —23"22, sy(s). Since the spectral variance estimator based on

the Bartlett window is asymptotically equivalent to the overlapping batch mean estimator
[Damerdji, 1991], we let bﬁart) = b%?LBM). If oracle hyperparameters cannot be obtained
because v is unknown, we used the batch size tuning method implemented in the R package
mcmcese [Liu et al., 2021].

For MomentLsS estimators, we consider an oracle and data-driven choice of §. An oracle

choice of ¢ for MomentLS would be 6, = 1 — sup{|z|;2 € Supp(F)} for the representing
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measure I’ for the autocovariance sequence . For the data-driven choice of ¢, we tune §
based on a modification of an adaptive bandwidth selection method proposed by Politis
[2003].

Politis [2003] proposed an empirical rule of picking a lag m at which to truncate the
autocovariance sequence. Under the assumption of uniform convergence of the empirical
autocorrelations pas(k) = 7as(k)/7a(0) such that

g |pri (k) — p(k)| = Op(y/log M /M) (28)

(ref. eq (10) in Politis [2003]), Politis [2003] proposed the use of an estimator m satisfying
m/log(M) — —1/(2log |«|) in probability, for stationary discrete-time process X1, ..., Xys
with an exponentially-decaying autocovariance sequence satisfying v(k) = Calkl, |k| > ko
for some ko < oo and |a| < 1.

In our setting, y(k) = [a/FIF(da) is a mixture of al*l. Recall that any fixed choice
of § > 0 such that Supp(F) C [-1 + 4,1 — ] is valid to guarantee the a.s. sequence and
asymptotic variance estimator convergences in Theorems 2 and 3. In particular, any fixed
0 < 44 is a valid choice for a moment LS estimator. Note that J, can be larger than the
spectral gap of the transition kernel (). With a modification of the empirical rule in Politis
[2003], we propose to use a data-driven S such that 6y < 0, with high probability under
the condition of (28).

Compared to the empirical rule by Politis [2003], our proposed rule focuses only on even

lags of empirical autocorrelations. More concretely, we first choose m such that
m = min{t € 2N; pps(t +2) < epr/log M /M } (29)

for some cpr > 0. This change is motivated by the fact that for reversible chains, (k) is
always nonnegative for even k, and the magnitude of (k) can be arbitrarily small for odd
k due to the potential cancellations of o terms from positive and negative a values. To
illustrate this point, consider a simple example with (k) = (=0.9)*+0.9¥ for k = 0,1,2,...;
it is clear that (k) = 0 for any odd k.

Once we have determined m, we let

onr = max{1 — exp{—log(M)/(2m)},1/M}. (30)
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Under the condition (28), we show that 1 — exp{—1log(M)/(2m)} is not asymptotically
larger than 4, for any choice of c); > 0, and converges to d, in probability as M — oo if
we choose c¢jr so that ¢y — oo such that cpr = O(log(M)) (see Supplementary Material
S6 of Berg and Song, 2023). Therefore for any positive ¢s < 1, S = c(;SM should serve
as an asymptotically conservative choice for 6,. We choose cs < 1 in Sar = csd M, since for
¢s = 1, the probability of §y; > 0, may not go to 0, even in the case that ar converges to 0y
in probability. We note that whereas the Politis [2003] procedure allows for nonincreasing
e = ¢, we were unable to verify i/ log(M) 2 —1/{2log(1 — ,)} without the condition
cpr — 0.

Additionally, since Sar is random, the finite sample performance of momentLS estimators
is influenced by the variability of Sr. We use an averaging procedure in order to reduce
the variability of Sar, in which & estimates from separate segments of the observed chain
{g(X) M5! are averaged. Specifically, we partition the observed series {g(X;)}¥! into
L equal length splits, and compute the empirical autocovariances for each split in the
following way. Let B = |M/L|. The kth autocovariance from the lth split, for { = 1,..., L,

is computed as

LB a(X (X er) I=1

B ek (X0G(Xek) 1>1

(k) =

where we recall §(X;) = g(X;) — M~! th\ialg(Xt). Then we computed SE\Q/L using

{fj(\Z)/L(k)}sz_ol for il =1,..., L. Finally, we used

|

L

~ 1 A

o =08+ 8%,
=1

with the choice L = 5 as the input for the Moment LS estimators in the experiments.

It is worth mentioning that in Theorems 2 and 3, the provided almost sure convergence
guarantees are applicable to a Moment LS estimator IIs(rys) with a valid, non-random 4.
Also, while uniform convergence of empirical autocovariance sequences has been studied
and the uniform bound (28) has been established for certain stationary time series whose
examples include IID chains and the AR(1) chain of Example 2.1 with g(x) = x, see e.g.,
An et al. [1982], Kavalieris [2008], it is still an open question to establish similar results for

a general geometrically ergodic Markov chain with arbitrary initial condition. We leave it
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as a future work to provide a full justification for moment LS estimators with this tuned

choice of 4.

5.2 Empirical illustration of the convergence properties of Moment LSEs

We recall that the convergence guarantees in Theorems 2 and 3 apply for Moment LS
estimates with ¢ chosen such that 6 > 0 and Supp(F) C [-1 + §,1 — ¢], where F is
the representing measure for the autocovariance sequence. Here, we empirically explore
convergence of both the autocovariance sequence and the asymptotic variance estimators
at varying d levels, including cases in which the support of F'is not contained in [—14-6, 1—4].
This latter setting is not covered by our Theorems 2 and 3, and in this case we expect the
projection to . (0) N ¥¢2(7Z) to lead to bias in the corresponding Moment LSE.

For 0 chosen such that Supp(F) C [-1 + 4,1 — 6], Figures 1 and 2 show that Mo-
ment LSEs lead to consistent estimates for both the autocovariance sequence (with respect
to the ¢ distance) and the asymptotic variance o?(7). Larger values of § (subject to
Supp(F) C [-1+ 9,1 — 4]) lead to relatively better performance in the estimation of both
the autocovariance sequence and the asymptotic variance, although the rates of convergence
at different values of § appear to be similar.

When ¢§ = 0, the moment LS estimator appears to be consistent for the true autoco-
variance sequence with respect to the ¢ norm distance, but inconsistent with respect to
the asymptotic variance (Figure 1). On (—1,1), the function o — 12 is unbounded and
can no longer be uniformly approximated by polynomials of finite degree. Thus the /o
sequence convergence property at 6 = 0 does not transfer, as in Theorem 3 with § > 0, to
convergence of the estimated asymptotic variance.

In the setting where 6 > 0 is chosen so large that Supp(F') is not contained in [—1 +
9,1 — 4], we observe an apparent bias variance trade-off. Our results in this setting suggest
that an optimal choice of § will strike a balance between the increase in variability expected
in projecting to larger sets .#,(0) N ¢2(Z) for small §, and the increase in approximation
error expected when v ¢ #(9) N¥2(Z) for large §. In the discrete state space Metropolis-
Hastings example, 0 < 0.355 is required for Supp(F') C [-1 + 4,1 — 4], yet for the smaller
sample sizes in our study d = 0.5 leads to the best performance out of all values of §
considered for estimating both the autocovariance sequence and the asymptotic variance

(Figure 1). We suspect that the improved performance for § = 0.5 results from decreased
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variance, and that the bias introduced by restricting the support of fis s to [—0.5,0.5] is
not too large since the representing measure F' in this example has a substantial amount
of mass between [—0.5,0.5]. On the other hand, in the AR(1) example with p = 0.9, the
representing measure F' has no support within [—0.8,0.8], and the setting § = 0.2 leads

to poor performance, suggesting that the bias introduced at this value of § overcomes any

gains in performance due to variance reduction.
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Figure 1: Metropolis-Hastings example. The support of the representing measure for v is contained
in [—.645,.645], i.e., the valid 0 range is 0 < § < .355.
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Figure 2: AR(1) example with a positive correlation (p = 0.9). The representing measure has a
single support point at .9. The valid 6 range is 0 < § < .1.

5.3 Comparison with other state-of-the-art estimators for simulated chains

This subsection compares the performance of our method to the performance of other
current state-of-the-art methods for autocovariance sequence estimation and asymptotic

variance estimation using two simulated chains.

We computed the squared f5 autocovariance sequence error ||# — |3 (when eligible)
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and the squared asymptotic variance error (62 —o%(y))? for B = 400 simulations from each
method with varying chain lengths M € {4000, 8000, 16000, 32000, 64000, 128000}. All
simulations were performed using R software [R Core Team, 2020]. We used the mcmcse
package [Flegal et al., 2021] for computing BM and OLBM estimators and the mcmc
package [Geyer and Johnson, 2020] for computing initial positive, monotone, and convex
sequence estimators.

The average squared ¢ autocovariance sequence error and average squared asymptotic
variance estimation error are reported in Figures 3-5 and in tables in Supplementary Ma-

terial S7 [Berg and Song, 2023|. In these results,

e MomentLS(Tune,Emp) and MomentLS(Tune-Incr,Emp) refer to the moment LS es-
timators with the empirical autocovariance used for rj; and with § chosen using the
tuning procedure in Section 5.1.3, with the choices cp; = 0 and cp; = 0.014/log M in
(29), and

e MomentLS(Orcl,Emp), MomentLS(Orcl,Brtl) refer to the moment LS estimates with
oracle hyperparameter 6 = J, and the empirical and Bartlett windowed autocovari-

ances as inputs respectively.

We excluded the initial positive and monotone sequence estimators from the plots, since
these generally performed similarly to or worse than the initial convex sequence estimator.
To avoid overcrowding the plots, we also excluded the empirical estimator for the squared ¢
error and the empirical, Bartlett, and MomentLS(Orcl,Brtl) estimators for the asymptotic
variance error from Figures 3 - 5. We also reported only the MomentLS(Tune,Emp) results
and excluded the MomentLS(Tune-Incr,Emp) results in Figures 3 - 5 because both sets of
results were very similar. Tables that include these results can be found in Supplementary

Material Section S7 [Berg and Song, 2023].

Metropolis-Hastings chain The first plot in Figure 3 displays the squared {5 error
|# — 7||? for several estimators 7. Notably, the moment LSEs using the empirical autoco-
variance sequence as rj; perform best out of the estimators considered for all sample sizes,
with both the data driven and oracle tuning of . The moment LSE with the Bartlett
windowed sequence as the input sequence (MomentLS(Orcl,Brtl)) has reduced ¢2 sequence
error relative to the original Bartlett windowed autocovariance sequence (Bartlett). Mo-

mentLS(Orcl,Brtl) appear to converge slower than for the Moment LSEs with the empirical
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autocovariance sequence as input. This decrease in convergence rate may be due to infor-
mation loss from the thresholding of higher lag autocovariances in the Bartlett window
sequences, which prevents information at higher lags from being used at all, in contrast to
the empirical autocovariance sequence, where information from all lags can be used.

The second plot in Figure 3 compares mean squared errors for the asymptotic variance
estimation. The MomentLSEs using the empirical autocovariance sequence as input again
perform best out of the considered estimators. While the performance of the moment LSE
with the data-driven selection of § and that of the initial convex sequence estimator appear
to be quite similar, the former shows a slightly superior performance, especially for larger
values of M. The batch means estimator (BM) appears to perform slightly worse than the
overlapping batch means estimator (OLBM).

Figure 4 shows a plot of the true, empirical, and moment LS estimated covariances
for lags £ = 0,...,100 based on a single simulation with sample size M = 8000. The
empirical and moment LS estimated covariances are similar for very small k, but for larger
k the empirical autocovariances clearly have large fluctuations about the true covariances
relative to the moment LS covariances. These fluctuations apparently account for the large

squared o error ||y — 7a7]|? of the empirical estimator.
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Figure 3: Plots for the discrete state space Metropolis-Hastings example. The first plot shows squared
Uy error ||y — 7| and the second plot shows mean squared error for the asymptotic variance estima-

tion. The error bars represent 1 standard error from B = 400 simulations.

Autoregressive chain In Figure 5, we see generally comparable patterns in both of
the AR(1) chain settings as in the discrete Metropolis-Hastings scenario. The estimated
autocovariance sequences from the MomentLSEs with empirical autocovariances as the

input sequences generally perform the best of the considered estimators in terms of squared
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Figure 4: For the discrete state space Metropolis-Hastings example, a comparison of true, empirical,

and moment LS estimated autocovariances from a single simulation with M = 8000.

{5 error and mean squared error for estimation of the asymptotic variance. In the p = —0.9
setting, the performance of the initial convex sequence estimator appears to be quite poor
relative to the other estimators. Similarly to Figure 4 for the Metropolis-Hastings example,
Figure 6 clearly shows the benefit of imposing shape constraints on the autocovariance
sequence estimation, as the moment LS estimates II5(7ys)(k) are much closer to the true

autocovariance sequence than the empirical autocovariances 7y (k), especially for large lags

k.

5.4 Bayesian probit regression

In this section, we illustrate the effectiveness of our method in a more realistic Bayesian
probit regression model. We first compare the estimated asymptotic variances from the
competing methods. In addition to this, as we mentioned in the Introduction, an asymp-
totic variance estimator is needed to quantify uncertainty in the MCMC estimates and to
effectively terminate the chain based on the perceived precision of the MCMC estimates.
We conduct two experiments in this regard: first, we construct confidence intervals based
on the estimated asymptotic variances of competing methods for a fixed length chain and
compare their coverage probabilities; and second, we compare the coverage probabilities of
competing methods for a variable length chain, where for each method the chain length is
determined by a fixed-width rule.

We consider the Glass identification data from the UCI machine learning repository.
The dataset contains 214 examples of the chemical analysis of 7 different types of glass. We

aim to predict the first glass type based on its 9 chemical properties x = (z1,...,79) € RY.
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Figure 5: Plots for the autoregressive example. Plots in the left column show squared fo error
Iy = #||? at p = 0.9 and p = —0.9. Plots in the right column show mean squared error for the
asymptotic variance estimation at p = 0.9 and p = —0.9. The error bars represent 1 standard error

from B = 400 simulations.

For the ith observation, we let Y; = 1 if it is of the first glass type. We suppose
9
Pr(Yi=1)=®(Bo+ Y _ Bjaij)
j=1

and assign independent N (0, 1) priors on 8 = (B, ..., B9).

We sample {3(t)}M ! from the posterior distribution 3|{Y;}?4 ~ 7(-) using the data
augmentation Gibbs sampler of Albert and Chib [1993]. This sampler is displayed in Al-
gorithm 1. We let X € R™*10 be the design matrix where each row of X is [1,x;]. The
marginal chain {3(¢) }+>0, which we consider here, is reversible with respect to the posterior
7 [see, e.g., Liu et al., 1994, Robert and Casella, 2004]. Additionally, the {8(¢)}+>0 chain
has been shown to be geometrically ergodic [Chakraborty and Khare, 2017].

To compare estimated asymptotic variances and coverage probabilities from the com-
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Figure 6: For the autoregressive example with (a) p = 0.9 and (b) p = —0.9, a comparison of true,
empirical, and moment LS estimated autocovariances from a single simulation with M = 8000.

Algorithm 1 Albert and Chib [1993] sampler

1. Draw independent z1,...,z, with z; ~ TN(x} 8, 1,y;), i =1,...,n
Let z = [21,..., 2.

2. Draw B ~ N,((XTX + 1,,) "' X Tz, (XX + I,,)7}).

peting methods, we need accurate reference estimates of posterior mean and asymptotic

variance for each coefficient. Since both quantities are unknown, we independently gen-

erated a long chain {Biong(t)} Ml L with My = 5 x 10° iterations to estimate posterior

mean and also B = 1000 independent chains {ﬁpar( ) AEQ U with My =5 x 10* to estimate

asymptotic variance. Specifically, we use Borc1; = M, ZMI ! Blong,j(t) to estimate the

posterior mean of the jth coefficient, and use 02 ;=M 21000(51()2 i~ Epar,j)Z to estimate

the asymptotic variance for the jth coefficient, where Bpar j refers to the sample mean value

of B from the bth chain and Bpar,j 1000 Zlooo par ; refers to the sample mean of Bpar e
Table 1 shows some estimated summary properties for the chains from Albert and Chib

[1993] sampler, including the estimated posterior mean [, asymptotic variance UQOrd,

Monte Carlo standard error (MCSE) for S, as well as the estimated multiplier for the
effective sample size Mg /M = 1/(14+23,., p(t)), lag 1 autocorrelation p(1), and 6., the
gap between 1 and the largest support point (in magnitude) for the representing measure
of 7. Note that a smaller value of J, implies slower mixing, as the spectral gap should be at
least as small as 6. In the table, MCSE; = aorchj/\/ﬁl, Mg /M was estimated based on
Jgrd and the lag 0 empirical autocovariances from the parallel chains, p(1) was estimated
based on the empirical autocovariances at lag 0 and 1 of the long chain {Biong(t)}; M -1

t—o »and

0, was estimated by b1, in (30), also using the long chain {Biong (t )11 For many of the
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coefficients, the estimated gap 4., is relatively small.

Table 1: Some estimated summary properties of the chains from the Albert and Chib [1993]
sampler.

Coef  Boral agrd MCSE ~ Meg/M p(1) 0y

Bo -1.262 3.965 891x10~* 0.013 0.912 0.025
B1 0.301 0.337 2.56x10~* 0.268 0.553 0.114
B -0.198 1.187 4.87x10~% 0.102 0.351 0.050
Bs  1.555 3.055 7.82x10~* 0.111 0.257 0.039
B4 -0.768 1.611 5.68x107* 0.062 0.599 0.040
Bs 0.451 0.772 3.93x10~* 0.155 0.339 0.058
B -0.016 7.863 1.25%107%  0.025 0.708 0.042
B7 0.047 0.966 4.40x10~% 0.347 0.217 0.114
Bs 0.080 9.235 1.36x107% 0.019 0.791 0.027
By -0.103 0.056 1.06x10~* 0.216 0.567 0.088

Comparison of asymptotic variance estimates We first compare the asymptotic
variance estimates &;)7 obtained by BM, OLBM, Init-Convex, and MomentLS, for each
coefficient 8, j =0,...,9.

Table 2: Estimated mean squared relative errors (s.e.) for asymptotic variance estimates for
the Glass data Bayesian probit regression with B = 400 simulations. For each simulation,

we generated a length M = 16000 chain for 5. The method with the smallest estimated
mean squared errors is highlighted in bold for each coefficient.

Coef BM OLBM MomentLS.Tune.Emp.  Init.Convex
Bo 0.102 (0.003) 0.089 (0.003) 0.048 (0.004) 0.062 (0.006)
f1 0.008 (0.000) 0.007 (0.000) 0.003 (0.000) 0.004 (0.000)
B2 0.299 (0.002) 0.268 (0.002) 0.036 (0.002) 0.033 (0.002)
B3 0.446 (0.002) 0.415 (0.002) 0.069 (0.003) 0.046 (0.002)
B4 0.195 (0.002) 0.172 (0.002) 0.029 (0.002) 0.030 (0.002)
Bs 0.216 (0.002) 0.193 (0.002) 0.039 (0.002) 0.031 (0.002)
Be 0.235 (0.003) 0.204 (0.003) 0.024 (0.002) 0.026 (0.002)
Bz 0.113 (0.001) 0.101 (0.001) 0.054 (0.001) 0.035 (0.001)
Bs  0.229 (0.004) 0.201 (0.004) 0.052 (0.005) 0.061 (0.005)
By 0.020 (0.001) 0.017 (0.001) 0.011 (0.001) 0.011 (0.001)

Table 2 shows the mean squared relative errors {(6? — a%ml’ i)/ a%rd’ j}2 from B = 400
simulated chains of length M = 16000. Generally, both moment LS and initial convex
sequence estimators perform better than the batch means and overlapping batch means
estimators. The Moment LS estimator and initial convex sequence estimator perform quite

similarly.
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Comparison of coverage probabilities We compare the coverage probabilities of the
confidence intervals
GiM

Bint £ oo n—1—— (31)

VM

for each coefficient 3;, j =0,...,9, using 637 produced by BM, OLBM, Init-Convex, and

MomentLS. For comparison, we also consider Oracle coverage probabilities based on the

2

3 “. 2 3 3
estimated “true” asymptotic variances Ol j

as in the previous section.

Table 3 shows the estimated coverage probabilities for 95% confidence intervals (31)
from length M = 16000 chains based on the asymptotic variances from the four methods
(BM, OLBM, Init-Convex, and MomentLS) as well as using the Oracle asymptotic variance
estimate. We used B = 1000 independent simulations. From Table 3, we observe that the
coverage percentages for the BM and OLBM methods tend to be lower than the nominal
95% coverage probability. The moment LS and initial convex sequence estimates show more

similar behavior, with the initial convex sequence estimates achieving coverage closest to

the nominal 95% more often.

Table 3: Estimated coverage probabilities for the Glass data Bayesian probit regression with
B = 1000 simulations. For each simulation, we generated a length M = 16000 chain for 5.
The method whose coverage probability is closest to 95% (excluding the Oracle) is highlighted
in bold for each coefficient.

Estimator Bo Bi B2 B3 PBa Bs Bs Br Bs Bo

BM 0.88 0.93 0.81 0.73 0.85 0.81 0.84 0.89 0.84 0.92
OLBM 0.89 0.93 0.83 0.74 0.86 0.82 0.85 0.89 0.85 0.92
MomentLS(Tune,Emp) 0.94 0.93 0.93 0.91 0.93 0.91 0.94 0.92 0.93 0.92
Init-Convex 0.93 0.93 0.93 0.92 0.93 0.92 0.94 0.93 0.93 0.92
Oracle 0.94 093 0.94 094 095 095 0.95 0.95 0.95 0.93

We also compared the coverage probabilities in the context of fixed-width methodol-
ogy [Jones et al., 2006]. The idea of fixed-width rules is to terminate the simulation once a
desirable confidence interval half-width e for an MCMC estimate is achieved. For a specified

accuracy €, we terminate the chain the first time the following inequality holds:

max {ta/Q,M_l%, for j = 0,1,2,...,9} +p(M) <e (32)

where p(M) = el (M < M*)+ M~! and M* is a desirable minimum chain length. The role

of p(M) is to ensure that the simulation is not terminated too prematurely. Glynn and
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Whitt [1992] established that if a functional central limit theorem holds and if a strongly
consistent asymptotic variance estimator is used, the 1 — « confidence interval whose chain
length M is chosen based on the fixed-width rule (32) is asymptotically valid as € — 0.
We simulated B = 1000 chains using the fixed-width rules based on the BM, OLBM,
Init-Convex, and Moment LS asymptotic variance estimates. As before, the Oracle row of

the table refers to coverage probability and sample size selection based on the reference

2

orcl,j for each coefficient. We began each simulation with a

asymptotic variance values o
minimum chain length of M*, and if the criterion (32) is not satisfied, an additional 10%
of the current number of iterations were performed before checking the criterion again. We
computed the 95% confidence intervals based on the simulated chains (with random lengths)
and checked whether the constructed confidence intervals included the true posterior mean
or not. We used € = 0.05 and the minimum chain length M* = 1000.

Table 4 reports the coverage probabilities. We observe a similar result as in the previous
comparison. BM and OLBM tend to produce too liberal intervals. Moment LS and initial
sequence estimates seem to achieve coverage probability closest to the nominal level on
average, with the initial sequence estimates achieving coverage closer to nominal more

often.

Table 4: Average chain length at termination and coverage probabilities for the Glass data
Bayesian probit regression with B = 1000 simulations using fized-width methods. The first
column displays the mean (s.e.) chain length at termination. The method whose coverage
probability is closest to 95% (excluding the Oracle) is highlighted in bold for each coefficient.

Estimator M(se) Bo B1 B2 B3 Bs Ps PBs Br Bs P

BM 4,227 (40) 0.82 0.94 0.75 0.63 0.80 0.79 0.74 0.88 0.77 0.91
OLBM 4,563 (42) 0.83 0.94 0.76 0.66 0.80 0.81 0.75 0.90 0.80 0.91
MomentLS(Tune,Emp) 9,850 (70) 0.93 0.95 0.93 0.87 0.93 0.89 0.94 0.93 0.92 0.94
Init-Convex 10,022 (76) 0.94 0.95 0.93 0.90 0.92 0.91 0.94 0.93 0.93 0.94
Oracle 10,832 (0) 0.95 0.94 0.96 0.94 0.94 0.94 0.95 0.95 0.94 0.94

We note that in this section we have treated asymptotic variance estimation for the
coefficient vector 8 in a component-wise fashion. It can be beneficial to also consider output
analysis tools that take cross-covariance between components into consideration [e.g., Vats
et al., 2019]. In this regard, extending the current framework to estimate the asymptotic
variance matrix for multivariate functions of the Markov chain state, as in Dai and Jones

[2017], Vats et al. [2018], is of interest.
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6 Conclusion

In this work, we proposed a novel shape-constrained estimator for the autocovariance se-
quence from a reversible Markov chain. To the best of our knowledge, this is the first
work in which the spectral representation of the autocovariance sequence is exploited to
estimate the autocovariance sequence subject to infinitely many shape constraints. We
have carried out a thorough analysis of the proposed Moment LS estimator, including its
characterization and theoretical guarantees. Especially, we showed the strong consistency
of the autocovariance sequence estimate from the Moment LS estimator in terms of an /5
error metric, convergence of the representing measure of the Moment LS estimator to the
true representing measure, and the strong consistency of an estimate of the Markov chain
CLT asymptotic variance based on our autocovariance sequence estimator. Our theoretical
results hold for reversible and geometrically ergodic Markov chains. Finally, we empirically
validated our theoretical findings and demonstrated the effectiveness of the proposed es-
timator compared to existing autocovariance estimators in both simulated and real data
settings, including batch means, spectral variance estimators, and initial sequence estima-

tors.
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S1 Computation of Moment LS estimators

In this section, we provide some details in obtaining the convex optimization problem in

(20). Recall

S k) = m(k)? = (rar (k) = > aflw;)?
=1

keZ keZ

= ru(k)? =2 ru(k) (i aL’“'m) +) (i aLHwi) :

k;€Z kEZ keZ \i1=1
($-1)

and the definitions of w, a, and B.

The first term in (S-1) is simply ra | ma for an input vector rjs. For the second term,

we have

ZTM(k) <i aikwi> = Z rar(k) (Zs: ayﬂwi)

keZ |k|<To—1

= Zs: Z rM(k)aLkl w; =a' w.

i=1 \|k|<To—1

For the third term, we have

S 2 S S

E : E :alk\w, _E :E :E :alklalk\w,w

i Wi = i Gy Wil

keZ \i=1 keZ i=1 j=1
S

Therefore we have

S1



as desired. Since we minimize over m € #,(©) N ¢2(Z), we require

w = [pm({a1}), s pm({as})] = 0

elementwise. Finally, we note that B is a positive definite matrix because w'Bw = 0
implies that > 7 alklwl = 0 for all k € Z. By choosing at least s distinct |k|, we obtain
w = 0.

S2 A few technical Lemmas

Lemma 2. Suppose f € #M(0)Nla(Z), and let F be the representing measure for f, i.e.,
f(k) = [x* F(dx). Then F({—1,1}) = 0. That is, the measure F does not have any point

mass on —1 or 1.

Proof. For any k € Z,

F({-1,1}) < /[_1 , 2 F(dx) = f(2k).

Since f € lo(Z), we have f(2k) — 0 as k — oco. Thus, F({—1,1}) = 0.

Lemma 3. Suppose f € M (6) for some § > 0. Then f € (1(Z).

Proof. Let F' denote the representing measure for f. We have

S 150 = Y [«

keZ keZ

< Z/mkF (dx)

keZ

/ Sl M F(dz)

keZ

where the last equality is due to Tonelli’s theorem. Also since

S lalM =142 foft = ‘g

kEZ k>1
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we have,

S IF(R) /1f:§:F<dw)s sup (i:ﬁ)/lF(daz):Qééf(O)@o.

keZ x€[—146,1-4]

where we used the fact 0 < [1F(dz) < oo since f € #(d) implies F is a finite, regular
measure. Thus f € ¢1(Z).

Lemma 4. Suppose f € Mn(0) N lo(Z) with f(k) = [z F(dx) and g € l2(Z). Then

(1:9) = [ {ra.9) Flda) = /H (targ) F(de).

Proof. We have

=5 Fk)g(k)

kEZ

=3 g(h) /[] o F(da)

keZ

= Z/[ . g(k)a* F(da).

keZ

We will show that f[—l 1 lg(k)a!*|F(da) < co. Then, the desired result follows

.. ;
from Fubini’s theorem, since

A >

kEZ

1y 2o o) = [, (e Fide)

We have

> [, loatea) = Sl [ el F(d) = 3 lgk1F®) < 7

keZ kEZ kEZ

where we define f(k) = f[il 1] |a|l* F(der) and we use Cauchy-Schwarz for the last inequality.
First, since g € £2(Z), ||lg|| < co. For || f||, we have f(k) = f(—Fk), and for 0 < k1 < ko, we
have f(k1) > f(ko). Additionally, for n = 2k we have f(n) = f(n). Thus

I1£13 =Y F(k)? )2+ 2f(1 +22f )2 < 3£(0 +4Zf2k < o0

keZ
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since f € {5(Z). O

Corollary 2. For f,g € Moo(0)W2(Z) with f(k f[ 1] 2 F(dx) and g(k) = f[ 1] z*ldG(z),

_ / / (Tay» Tay) F(day)G(das)
1) J1-1,1)

1+a1a2
dor)G(das).
/11]/11]1—a1a2 (don)G(do2)

Additionally, the order of integration in both expressions can be interchanged.

Proof. Note than since both f, g € #(0) N¥l2(Z), by Lemma 2, F({-1,1}),G({-1,1}) =
0. We have

_ / / (Tor+ 2ay) G(dan) F(dan)
(-1,1) J[-1,1]

_ / / (Tor+ 7ay) G(dan) F(dan)
[-1,1] J[-1,1]

_ / / (To s T} G(da) F(dan)
(-1,1) J(-1,1)

/ / MG(dO@)F(dOﬂ)
(—1,1) J(=1,1) I — 0

/ / Lt ST G(dag)F(day) < oo.
—11 Jieny L= anas

ra1a > 0 for all ay, a0 € [~1,1], we can interchange the order of

Since (zq,,Ta,) = T—ajas

integration. O
A by-product of the Corollary is (f,g) > 0 for all f,g € #(0) N l2(Z).

Lemma 5. Suppose f € Mn(0) N 01(Z) with f(k) = [ aFIF(da). Define

=Y fk)

k=—o00

Then

o2(f) = / L9 o).

l—«o
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Proof. We have

> [ lalFa) = £(0) + 23 [lalF(da) <3£0) + 43 F25) < o
k=1 j=1

k=—o0

where the first inequality follows from

/|a|F(da) < /1F(da)

and

/|a|2k+1F(da) < /anF(da), kE>1,

and the second inequality follows from f € ¢1(Z). Thus, from Fubini’s theorem, we have

Lemma 6. Let I be a closed interval in [—1,1]. The space Mo(I) N Lla(Z) is closed.

Proof. Let a = inf I and b = supI. Consider a sequence of vectors {m,} C .#([a,b]) N
l5(Z) where ||my, — f|| — 0 for some f = {f(k)}32_ . Weshow that f € .#([a,b])Nla(Z).
First, f € ¢5(Z) since

LAF< lImanll + 11 = mn|l < oo

for large enough n.

Next, we show that f € .#([a,b]). Note for any j € Z, |m,(j)— f(§)| < |[[mn— f]] = 0.
We consider two cases where Case I: b —a = 0 and Case II: b — a > 0,

Case I: we have f(0) = lim,, m,(0). Additionally, m, (k) = m,(0)a*! for k # 0, and
thus, f(k) = lim, m, (k) = f(0)al*l for k # 0. Then for the measure y with point mass at a
with mass f(0), i.e., 4 = £(0)dq, we have f(k) = [ «¥lu(dz) for k € Z, and p is supported
on {a}. Thus f € M ([a,b]) N Lla(Z).
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Case II: we define f on N as f(k) = T(f;a,b)(k). We have for any r,k € N,

(—1)"A" f(k) = (—=1)" A" lim T(mp; a, b)(k)

n—oo
= li_)m (=1)"A"T(my; a,b)(k)
> 0.

where the last inequality holds since m,, are [a, b]-moment sequences. Thus fis completely
monotone, so by Corollary 1, f is an [a, b]-moment sequence. Since in addition f € ¢5(Z),

we have f € M ([a,b]) Nla(Z). Thus Moo ([a,b]) NLla(Z) is closed. O

Lemma 7. Let I be a closed interval in [—1,1]. Consider a sequence of moment sequences
{fntnen and f such that {fn} C Mo(I)N2(Z) and || fr,—f|| = 0. Then f € Mo(I)Nl2(Z).
Let py, and i be the representing measures for fn, and f respectively. Then, we have py, —

vaguely.

Proof. First of all, f € (1) N¥3(Z) follows from Lemma 6. Let € > 0 and h € Cy(R)
given. We want to show that | [ h(a)u,(de) — [ h(a)p(da)] < € for a sufficiently large n.
Also, since ||f, — f]| = 0, we have f,(0) — f(0). In other words, u,(I) — u(I).

Now we approximate h on I. Since h is continuous, there exists a sequence of poly-
nomials py(a) = Zivzo cxa® which uniformly approximates h(a) on I, by the Weierstrass
approximation theorem. Let B = p(I) + sup,, un(I). Suppose B = 0. That is, f(0) =0
and f,(0) = 0 for all n. Therefore, both p, and p are null measures, and the conclusion

trivially holds. Now suppose B > 0. We choose N < oo so that

sup [h(@) = p(@)] < 5. (5-2)
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We have,

[ eun(da) [ ha)u(da)
=1 [ e (da) / B()u(da)|

\ [(ht@) = vt} (da) + [ p(a)m(da)

/ {h(e) = px(@)}utde) = [ pleutdo)].
/ Ih(@) — pv(0)|un(dar) + / Ih() — pv (@) |u(da)

Terml
; ' [ pt@ntde) = [ px(alnta)|.
Te;rm2
By the choice of N,
Term 1 < eugg) + e/;(I) < g, (S-3)

since (1) + pn(I) < B for any n.

For term II, define vy = {vn(k)}rez such that

c,. 0<EkE<ZN,
oy (k) =
0 otherwise.

for {c}4_, from the coefficients of the approximating polynomial py(a) = S o erak
Note that |lvx||?> = Zk, 0 G < oo since N < oo. In particular, vy € ¢2(Z), and thus by

Lemma 4,

/ N () i (der) = /chunda
1

k=0

/ZUN fin (dev)

Ikez

N /1 (U, Za) pn(da) = (vn, ) -

ST



Similarly, we can show [} py(a)u(da) = (vw, f) . Therefore,

Term 2 = [ (vn, fn) = (on, ) | < [lonll[[fn = £l

We can find L < oo such that for n > L, |lon||||fn — fl| < €/2.

Combining these results for term I and term II, we have for n > L,
Term 14+ Term 2 < ¢

But € > 0 was arbitrary. This proves the result. O

S3 Proofs for results in Section 2

S3.1 Proof of Proposition 1

Proof. The representation (13) is a consequence of the spectral theorem [e.g., Rudin, 1991]
since Qo is a self-adjoint bounded linear operator on L?(w). The spectrum o(Qo) lies on
the real axis due to (A.2). Since the spectral radius p(Qo) = sup{|p|;p € 0(Qo)} is equal
to [|Qoll2(x) since Qo is self-adjoint, and [|Qol[z2(r) < 1, we have o(Qo) C [-1,1].

For I', we have

I'(k) = (Q3Fg.9), + (QF9.9), = (QF (I + Qo)g, 9).

for k € N. Let (I + Qo)'/? denote the square root of I + Qo, which is well defined because
I + Qo is positive and self-adjoint, where the positivity of I + (g is due to the fact that
1Qollz2(r) < 1. Also, we have that (I + Qo)/? is positive, self-adjoint, and commutes with
Qo [e.g., Theorem in Riesz and Sz.-Nagy, 2012, p265]. Therefore,

T(k) = (I + Qo)"*Q¥ (I + Q0)"?g,9).
(Q3F(I + Qo)2g, (I +Qo)'?g).,

(QF)*Nh, h),

where h = (I + Qo)l/ 2g. Then by the spectral theorem, there exists a regular measure
H supported on ¢(Q3) such that T'(k) = [2*H(dz), k € N. Since Q2 is positive and
1Q32m) = [ Qll2a s we hiave o(Q3) < [0, 1]
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Finally, with the additional assumption of (A.1) and (A.3), the spectral gap 1—p(Qo) >
0 [Roberts and Rosenthal, 1997, Kontoyiannis and Meyn, 2012]. We can find d9 > 0 so
that p(Qo) = [|Qollz2(x) = 1 — do. Therefore a(Qo) C [~1 + o, 1 — do]. Since [|QFlL2(x) =
1Qol1 72y = (1= d0)?, we have o(QF) C [0, (1 — do)?]. O

S4 Proofs for results in Section 3

S4.1 Proof of Proposition 2

Proof. First, suppose there is a measure u on [a,b] such that m(k) = [aFu(dz) for all
k € N. Define gp(z) = ¥ and f(z) = (x — a)/(b — a). Also, we define ji(A) = u(h(A))
where h(z) = f~1(z) = (b — a)r + a and h(A) := {h(z);z € A}. We show that fi is a
representing measure for 7'(m;a,b) and [ is supported on [0, 1]. First of all, by the change

of variable formula, for k € N,

=(b—a)F x — a)* p(de
(b—a) /[a’b}( )" p(dz)
_ / I{f(z) € [0,1]} f(2)" u(de)

= / y* i(dy).
[0,1]

Also, 1 is supported on [0, 1] since
AR\ [0,1]) = p({h(z);z < 0 or z > 1}) = u(R \ [a,b]) = 0.

Then by Theorem 1, fi is the unique representing measure for 7'(m;a,b), and T'(m;a,b) is
completely monotone.

Now suppose T'(m;a,b) is completely monotone. Then there exists a measure ji sup-
ported on [0,1] such that T(m;a,b)(k) = [y*fi(dy). Define the measure u by p(A) =
A(f(A)) where f(A) := {f(z);x € A}. First, note that u is supported on [a,b]. From the
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definition of T'(m;a,b), we have m(0) = T'(m;a,b)(0) and, recursively,

k—1
(k) = (0= Tms )~ 3 (4 )mi) -t (s-4)

=0

We now show that m(k) = [2*u(dx) for k € N. Recall h(z) = f~1(z) = (b — a)z + a.

From the definition of T'(m;a,b) and change of variable formula, we have for any k € N,

T(m;a,b)(k) :/[01] yFfi(dy)
_ / I{f(h(y)) € [0, 1]} £ (h(y))*fildy)
_ / I{f(x) € [0, 1} f () (i o f)(de)

k
T—a
= w(dz
/[a,b} <b_a> ( )
z—a\F
=/(b_a) p(d).
When k = 0, m(0) = T(m;a,b)(0) = [1u(dx). Suppose m(i) = [z'u(dz) for i =0, ..., k.
We show m(k + 1) = [ zF1u( dm). By (S-4),

mlk 4 1) = (b— )T (ms a,b)(k + 1) i(’fﬂ) o
i=0
et 3= (7 Yot
/ki:l <k + 1) E(—a)" 1 (dar) — /Z (k:j 1>xk(—a)k+1_iu(da:)
=0
:/xk+1u(dx).

Thus, by induction, m(k) = [z*u(dx) for k = 0,1, ..., for u defined by u(A) = fi(f(A)).
Finally, for uniqueness, let u; and ps be two representing measures for m. From the

first part of the proof, we see that both fi1(A) := pi1(h(A)) and f2(A) := pe(h(A)) are

representing measures supported on [0, 1] for T'(m;a,b). Then fiy = fig = i from Theorem

1. Then for any measurable set E,

S10



Thus, the measure p corresponding to m is unique. O

S4.2 Proof of Proposition 3

Proof. We show . ,(C')Nl2(Z) is a convex and closed subset of ¢5(Z). Convexity holds since
for p, q € Moo (C)W2(Z) where p(k) = f[—1+6,1—6] x| Fy (dz) and (k) = f[71+6,175] = By (dx),
we have u = ap + (1 — a)q € l3(Z) and u(k) = f[ z*(aF 4+ (1 — @) Fy)(dx), i.e.,
U € Mx(C)N (7).

Now, we show #(C) N ¥l2(Z) is closed. In the case C is a closed interval, then from

—1+6,1—6]

Lemma 6, .#~(C)N¥2(Z) is closed. Otherwise for a general closed set C', consider a sequence
of vectors {m,} C M(C) N Lla(Z) where ||m, — f|| = 0 for some f = {f(k)}}Z_.-
Now, let a = inf C' and b = sup C. Then m, € #(la,b]) N¥l2(Z) so from Lemma 6,
f € Mx([a,b]) N la(Z). In particular, f is an [a,b]-moment sequence. Let i, denote the
representing measure for p, and let u denote the representing measure for f. We now show
fet(C)Nita(Z).

Suppose z € [a,b] and x ¢ C. We show = ¢ Supp(u). We show that there exists € > 0
such that p(Ne(x)) = 0 where N¢(x) = {y;|y — 2| < €}. Since C' is closed we can find an
¢’ > 0 such that No(z) N C = (. Take ¢ : R — [0,1] to be the continuous function with

0 ly — x| > 3¢ /4
1 ly —z| < €/2

L— (4/)y— (e +€/2)} a+e/2<y<a+3d/d

(4/eV{y — (x — 3€/4)} r—3¢/4<y<axz—¢€/2

\

From Lemma 7, 0 < u(Nep2(2) < [d(y) p(dy) = lim [4(y) pa(dy) = lim 0 = 0.
Taking € = ¢ /2, we obtain = ¢ Supp(u). Since z was arbitrary, Supp(u) € C and f €
Moo (C) N Lo (Z).

Since Moo (0) Nla(Z) is a closed, convex subset of the Hilbert space ¢2(Z), the existence

and uniqueness of II(r; C') follows from the Hilbert space projection theorem.
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S4.3 Proof of Proposition 5

Proof. In the case Supp(fic) N (—1,1) = 0, the statement in the Proposition is trivially
true. Otherwise, suppose Supp(fic) N (—1,1) is nonempty. Let & € Supp(ic) N (—1,1)
given. We show (II(r; C), zs) = (r,za).

First, we show that (xq,II(r;C)—r) = 0 for fic-almost every a. Let E = C N
(—=1,1). From Lemma 2, we have jic({—1,1}) = 0, and from the definition of ¢, we
have Supp(fic) C C, so fic(E) = fic(C°U{-1,1}) < c(C%) + fic({~1,1}) = 0. From

Proposition 4 and Lemma 4, we have

0= II(r; C),I(r; C) — 1) (o, I(r; C) — 1) 1o (dev)

m\\

(X, I(r; C) — 1) fio(da) (S-5)

From Proposition 4, (z4,II(r;C) —r) > 0 for all & € E. Thus, from (S-5) and the fact

fc(E€) =0, we have
(x,(r;C) —7r) =0, for ic-a.e. a. (S-6)

Now, we complete the proof that (Il(r; C'), x5) = (r,zs). Let € > 0 given. Choose R > 0
such that | (x4 — o, II(r; C) — 1) | < efor all @ € Nr(&), where Nr(&) = {a : |a—a| < R}.
Since

| (@6 = 2a, L(r; C) = 1) | < |25 — 2all[[T(r; C) = 7|

and

lim ||z — za| =0,
a—Q

such a choice of R > 0 exists. Now, since & € Supp(fic) and Ngr(&) is open, we have
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fic(Nr(a)) > 0, so
(wa,1(r;C) — 1) = {ic(Nr(a))} " @) (x5, 11(r; C) = r) fic(da)

={ic(Nr(@)} ™' | (2o +aa — 20, 11(r;C) =) fic(da)
Ng(&)

= {Aac(Nr(@)} (20, (r; ) = 1) fic(da)
Ng(&)

+{fic(Nr(a)} ™" (& — 20, I(r; €) — 1) fic(da)
Ng(&)

= {Aac(Nr(@)} (& — 20, I(r; €) — 1) fic(da)
Ng(&)

where we used (S-6). From the choice of R, we have | (x4 — x4, II(r;C) — 1) | < € for all

a € Ng(a), and thus
—e < (z5,1I(r;C) — 1) <e.

Since € > 0 was arbitrary, we have (z4,II(r;C) —r) = 0 and thus (II(r; C),zs) = (r,za).
This proves the result. ]
S4.4 Proof of Proposition 6

Proof. Define g(a) = (zq,r — I(r; C)) = 3, a¥{r(k)~1I(r; C)(k)}. We consider deriva-

tives of g, i.e., for n > 1,

9(0) = o ge) = S 3 al{r (k) ~ 110 €) )
keZ

We first show that the term-by-term differentiation of g(«) is justified, so that

0@ = Loy = 3 ke Hr(k) - T C)(k)} (5-7)

da
keZ:|k|>1

and, similarly,

@)=L gy= 3 ke e oy,

= — —
da kEZ:|k|>n (’k‘ n>

We first consider the case when n = 1. Let ag € (—1,1) be arbitrary. Let a@ =
(Jao| +1)/2. Then |ag| < & < 1. Take = & — |ag| =1 — |ap|/2 and define Ng(ap) = {c’ :
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o/ — ap| < B}. We will show that the term by term differentiation of g(«) at a = « is
justifiable, by showing that each summand in (S-7) for o € Ng(ayp) is dominated by some
absolutely summable §; (k).

For k € Z and a € (—1,1), define

(k) = dla¥ {r(k) — T1(r;C)(k)}] | [Kle®=Hr(R) =TI(5 C) ()} Kk >1
¥ = do -

0 k=0,
and for k € Z, define §1(k) = |g1(k, &)|. Then |g1(k, )| < g1(k) for all & € Ng(ayp).
Define the sequence A = {A(k)}?2__ by

A(k) = |r(k) = (r; C)(k)|, k € Z.

Since r(k) = 0 for |k| > M — 1, we have r € {3(Z), and so II(r; C) € ¢3(Z) also. Thus
A € U5(Z), since

AP =)A= Y {r(k)-TrO)ER)Y + > T C)(k)? <oo.  (S-8)

keZ |k|[<M—1 |k|>M—1

For n > 0 and a € (—1,1), define the sequence Zo, = {Za,n(k)}32_., by

n N L L e
Fan(h) = T2} ek >0
a,n da™ 0 |k| .

We have

ij, _22 |k: n o _

kEZ >0

< 00, (S-9)

for each a € (—1,1), n >0, s0 Zo,n € l2(Z) for any a € (—1,1), n > 0. Therefore by (S-8)

and (S-9), we can conclude that g; is absolutely summable,

Y gi1(k) = (Fa, A) < [Faall|All < oo
kEZ
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Then, by the Lebesgue differentiation theorem, we have

= okao)= D [Klag {r(k) ~ H(r O)(k)}

kEZ keZ:|k|>1

[see, e.g., Theorem 2.27 in Folland, 1999]. Since ap € (—1,1) was arbitrary, we have
gW(a) = Zkez;\k\21 |kl =1 {r (k) — TI(r; C)(k)} for each o € (=1,1).

Proceeding similarly, we obtain

N dr k| n
I = qma(@) = 3 a1 )
k€Z:|k|>n ’
fora € (—1,1), n > 1.
We now show that fic has finite support. Recall for |k| > M — 1, r(k) = 0, so for
n > (M — 1) we have

g(")(a)=—2§: i o MI(r; C) (k)

= (k —n)!
= -2 i k!ak_"/ ¥ i (dx).
k=n (k n ’I’L)' [-1.1]
For |p| < 1, we have
S S 1
2 (& —n)” (1= p)n+D) (8-10)

k=n

Recalln > (M —1). From Lemma 2, we have fic({—1,1}) = 0 since II(r; C) € M~ (C)N
l5(Z). Thus, by Fubini’s theorem,

/[ Tl )

i /( Tl el e a)
/ ) otz i (da)
/ M)| 3 > Grlaal ic(d)

n'|x|”
= sy T aagrrnhetds) <o
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for || < 1 where the last equality is due to (S-10). Thus, the integral and summation in

g™ () may be interchanged, so that

(n) nlx™ .

g(a) = -2 /( o [ o) (s-11)

Now, we consider two subcases. In the first subcase, Supp(fic) C {0} (that is, fic is the
null measure, or jic puts point mass on 0 only.) Then Supp(fic) N (—1, 1) contains at most
a single point. Otherwise, take n to be the smallest even number such that n > (M —1).
Then since the support of jic contains points away from 0, g(”)(a) <0 for all @ € (—1,1),
since for even n the integrand in ¢(™(a) in (S-11) is positive for z # 0. Since g(™ () # 0
for all @ € (—1,1), there exist at most n points —1 < a1 < ay < ... < a, < 1 such that
g(c;) = 0. Thus Supp(fic) N (—1,1) contains at most n points, where n is the smallest even
number with n > M — 1. Since fic has a finite number of support points in (—1,1), we have
sup{|z| : = € (—1,1) N Supp(fic)} < 1 — € for some € > 0 and thus {—1,1} N Supp(jic) =
0. O

S5 Proofs for results in Section 4

S5.1 Proof of Proposition 7

First we show that (R.1)-(R.3) hold for the empirical autocovariance sequence 7p7. The
convergence in (R.1) is shown in Lemma 8 which is presented at the end of this proof.
Assumption (R.2) holds from the definition of 7p; in (4), with the choice n(M) = M, and
the symmetry in (R.3) also follows from the definition of 73;(k) in (4) as (4) depends on k
only through |k|. Finally, we show that

[7ar (k)] < 70 (0) (S-12)

By symmetry, it is sufficient to prove the result for & € N. For notational simplicity, let
h(z) = g(x) — Y. First, we consider 0 < k < M — 1. We define M length M vectors
vj € RM j=0,...,M — 1 such that

Vo = [h(XO)v h(Xl)a cee 7h(XM—1)]7
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and for k=1,...,.M — 1,
Vi = [h(Xk), h(Xk_H), ce ,h(XMfl),0,0, cee ,0].

Then, for 0 < &k < M — 1, |lvg]l < ||lvo|| by the definition of the vg’s. Also, note that

Far (k) = M1 (vg,vi) by the definition of empirical autocovariance. We have
Far(h)| = 57 G ) | < ool < ool = 7ar(0)
ra (k)] =157 o, vk | < Frllvollilorll < grlivoll™ = mar(0).

Additionally, 7u(k) = 0 < [[vo]|* = 7, (0) for k with |k| > (M —1).

Now, we argue that a windowed autocovariance 7as(k) = was(|k|)7as (k) satisfying con-
ditions (W.1)-(W.3) satisfies (R.1)-(R.3). First of all, the symmetry in (R.3) holds since
Far(—k) = war(b)7ar (—k) = war (kD7 (k) = Far(k), Yk € Z. Also, 7af(0) = 7ar(0) =
[7ar (k)| > |7ar(B)||war(|E])| = |[7m(k)|, Yk € Z by (S-12), conditions (W.1) and (W.2).

Assumption (R.2) holds with the choice n(M) = min{by;, M} by conditions (W.3), and

assumption (R.1) follows from Lemma 8, (W.3), and Slutsky’s theorem.

Lemma 8. Assume (A.1), (A.2) and (B.1). Let k € Z given. Then

lim 7p(k) = ~v(k), Py-a.s.

M—o0
for each x € X.

Proof. First, we show that 7/ (k) “3 ~v(k) as M — oo, where 7y (k) = M~! Zi\igl_‘kl 9(X1)g( X (k)
where we define g(z) = g(z) — Ex[g(Xo)]. Without loss of generality, assume k£ > 0. We

define hy : @ — R such that hg(w) = g(Xo(w))g(Xg(w)) for k > 0. Note hy, € L1(Q2, F, Pyr)

by (B.1). Let 6 : Q — € be the shift operator. We first want to show that

1 M-1-k M-1-k
v 2. IX)I(Xign) = Z 0'hi — (k)

P,-almost surely, for any initial condition x € X.
Using the fact that the set of Pr-invariant events is trivial due to X being Harris

recurrent and from Theorem 17.1.2 in Meyn and Tweedie [2009], we have a set Fj, of full
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m-measure such that for any initial condition in x € Fj,

1 M—1—k M—Fk M—-1—k
. i t _ . t — — _
Jim ; 0 Jim = M - Z 0'hy, = Ex[h] = v(k), as. P. (S-13)

Now via a modification of Proposition 17.1.6 in Meyn and Tweedie [2009], we show (S-13)
holds for all z € X. Define hoo(z) = Py(limps oo M~ MR 5(X1)3( X k) = (k). We
know that hoo(z) = 1 for z € Fj,. If we show hoo(x) = 1 for all x € X, we have the desirable

result. We show that ho(z) is harmonic.

Qhoo(z)

M—-1-k

1
= Ey[Px,{ lim MY g(X0)g(Xir) = (k)]
T
>

EylPp{ lim M~ 9(Xt41)9(Xig148) = (k)| F1}]

t=0

= BIP Jim | S Y g0 - 179(X0)a(X0) | = ()]

= heo().

Therefore hoo(z) = 1 for any x € X, and (S-13) holds for any initial condition = € X.

Finally, we show that 7y/(k) — 7ar(k) — 0 as M — oo, Pr-as., for all z € X, where
(k) = MU (g(X) = Yan) (9(Xegw) — Yar) for Yar = 350251 g(X;). First we have
Yar — p, Pr-almost surely for all € X by SLLN in Theorem 17.1.7 in Meyn and Tweedie
[2009]. For any k € N, we have,

Fa(h) ~ Far (k) = 22 S {(0(X0) ~ Yar)9(Keew) — Vi) — (0(X0) — ) 0(Xes) — 1)}
=/ {(Yar — ) (9(Xesr) + 9(X2)) + p* — Yy}
t=0
M-1—-k
— Yo - 1) S {aXiua) +oX0) + MR viy. s

Since both ¢ iMol ¥ 9(Xy1x) and T i\/101 ¥ g(X;) converge to p by SLLN in

Theorem 17.1.7 in Meyn and Tweedie [2009], < t 0 M g(Xpn) + g(X)} = 2u, Py

almost surely for any x € X. Therefore, by continuous mapping theorem, (S-14) — 0 as
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M — oo, P-almost surely for any € X, which proves the result. O

S5.2 Proof of Proposition 8

Proof. First, we show that

| (xa,rar —7) | — 0 (S-15)

Pp-a.s. for any x € X, for any a € (—1,1). For the ease of notation, if a P,-almost sure
convergence holds for any x € X, we will just say the convergence holds almost surely. Let

€ > 0 given. Note for any B > 0,

(B-1) 0
(arsr =)= Y W ra(k) = y(k)} +2 ) ol ras (k) — 7 (k)
k=—(B—1) k=B

since rps (k) = rar(—k) by (R.3). Choose B such that

> lala(0) = {2 < e/t
k=B

Then

M—o0

lim sup | Z oF{rar(k) — (k)
k=B

< lim sup Z |Oé’k{|7“M(k3)‘ + [y (R)[}

M—o0 k—B

< lim sup Z lal*{rar(0) +~(0)}

=¢€/2

a.s.

where the second inequality uses |ras(k)| < rpr(0) in (R.3) and the equality uses r3,(0) =

7(0) by (R.1).
Furthermore, we have
(B-1)

Y aMru(k) = (k) 30

k=—(B—1)
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a.s.

since ry7(k) =5 (k) for each k € Z. Thus

lim sup | (za, ra — ) | < e
M—o0

Since € > 0 was arbitrary, we have (zqo, 73 —7) %0 as M — oco. This proves the a.s.
convergence result for each a € (—1,1).

Now, we show that the convergence is uniform over K. First, let 9 denote the minimum
distance between K and {—1,1}, i.e., 09 = inf{min(|]1 — z[,| =1 —z|) : « € K}. Since
K c (—1,1), the gap dp > 0. Since for z € K, z € (—1,1), we have o9 < 1. If §p = 1, then
K = {0} since K is nonempty by assumption, and sug (2o, Ts(rar) —7) | ¥ 0 from the

S

previously shown convergence for each o € (—1,1).

Otherwise, suppose dp < 1. Let €; > 0 be given, and choose § > 0 such that
B = e1/(4557(0)). (5-16)

For a € (—1,1), define Bg(a) = {|lz—a| < B}N[—1+do, 1 —do]. Take N(B) = [2(1—9)/f]
and define a; = (=1+dp) +jB, j =0,..., N(8) — 1. Then K C Uj-vz(g)_lBg(aj) and

sup | (za, 7 =) |

ael

S oM o | (Za,ar =) |

< o max aeg;l()gj) | (Ta = Tajsrae =) [+ {2y v — ) |

=101 achiy (o 7o T TNy e rar =S

From convergence (S-15), we have

lim su max Lo,y TM — =0 S-18

almost surely since N(f3) is finite.
To control the size of the first term by the distance between o and «;, we have the

following Lemma, the proof of which is deferred to the end of this proof.

Lemma 9. For any r such that v(0) > 0, r(k) = r(—k), and |r(k)| < r(0) for k € Z, and
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a,f € (—1,1), we have

2r(0)

[ (r@a —2p) | < la —pl.
©E = Tal)(T-18])
From Lemma 9, we have, for o € Bg(a;),
| {(Ta — Ty, T = V) | = [ (B0 — Zay, M) — (Ta — Tays V) |

S|<':UCM_:ljoz]‘;7ﬂ]\4>|—i_|<1‘C¥_':ECMJ'7'.Y>|

< Azl 0) 4 4(0)

— (= fa)( = ayl)
< 2(8/65){rar(0) +~(0)}.

Since this bound does not depend on j, we have,

limsup  max sup
M—oo j=0,...N(8)-1 a€Bg(ay)

< li]\r/[njup 2(8/63){ra(0) +~(0)}

|<$Q*Iaj,7‘M*'7>’

= 488, °(0) (S-19)
since r37(0) 3 4(0). Thus, from (S-17), (S-18), and (S-19), we have

lim sup sup] (Ta,Tr — ’Y) ‘
M—oo a€ek

<limsup  max sup | (xo — Ta s — V) |
M-s00 i=0.:N(B)~1 acBy(ay) v

+ lim su max Lo s TM —

< 435529(0) = €.

where the last equality is due to the choice of § in (S-16). But €; was arbitrary, so

lim sup|(zqa,rm — )| = 0 almost surely. This proves the result.
M—o0 qeic

Now we present the proof for Lemma 9.
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Proof of Lemma 9. By definition,
| (rars o — 2) | = 2 r(k){a* — 8"}
k=1
<2r(0) ) [oF - p*
k=1

where the second inequality uses the fact that maxy> |r(k)| < 7(0). Using the following

equality:
of — gk = Zak ipi—t
we have,
00 k o
| (ryza —xg)| < 2r(0 Z\ Z af=igi—
k=1 j=1
k
< 2r(0 ]a—ﬁ|ZZ|ak i
k=1 j=1
Ol = 51D > lal*I|sP
j=1k=j
2r(0) o — Bl
=2r(0)|a —
(1 —la)(1 —8])
where the last equality follows from
SN BT =D BT el = .
=1 k=j = py (1 —le)(1 —B])
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S5.3 Proof of Proposition 9

Proof. By Lemma 4 and Proposition 6, we have,

a0 Woran) = [ Wotrar) ) s ()

= Y (Hs(ry), za) frsn({a})

a€Supp(fis, )

= > ({nnwa) fsa({a)) (8-20)

a€Supp(fis,nr)

where the last equality is due to Proposition 5. On the one hand,

(Ws(ran), Ms(ra)) = Y (s(rar),za) s ({a})

a€Supp(fis,nr)

= Y Geradiul{adisu(ia))

o0 €Supp(fis, )

> inf
a,a’ €[—146,1-9]

(Ta) Tar) > ps({ab) s ({a'})  (S-21)

a,o’ €Supp(fis, v )

since (zq, Tor) = %fggi > 0 for any o, @’ € (—1,1). On the other hand, we have from (S-20)

that

(Ms(rar), Ms(rar)) < sup  [ranza) | Y. fsm({a}). (S-22)
a€[-1+4,1-9] a€Supp(fis,ar)

Thus, from (S-21) and (S-22), we have

(Ta, Tar) > fus.r({a})fis r ({@'})

o, €Supp(fis, )

< sw sz Y asa({al).

a€[—1+44,1-6] aeSupp(fis,ar)

inf
a,a’ €[—146,1-9]

That is,

Z fsar({a}) < SUPge[—145,1-06] | (M, Ta) |
7M _— N

- (S-23)
aeSupp(fis,ar) 1nf067a/€[—1+5,1—5] <.%'a, xa’>
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The denominator is deterministic, and we let Co := inf, ore[—1451-5] (T, o). Now we

show that the numerator is bounded almost surely. We have,

sup  [(rasza) [ < sup [(rm =y, @a) [+ sup [ (7, %a) |
a€g[—144,1-6] a€g[—144,1-6] a€g[—140,1-6]

The second term sup,e(_1441-4] | {7:Za) | is deterministic and bounded by v(0)(2 — 0)/6

from Holder’s inequality. For the first term, from Proposition 8, we have

lim sup sup | <7“M - %1’a> | =0
M—oo a€e[—146,1-¢]

almost surely. Define Cs,, = vgg;%ﬁ ). Then

limsup fis a([—1 40,1 —6])

M —o0

= lim sup Z frs. s ({a})

M— .
o a€Supp(fis,nr)

(-8
ST 9

almost surely by (S-23). O

S6 Proofs for results in Section 5

Proposition 11. Suppose Xo, X1, ..., is a Markov chain with transition kernel Q) satisfy-
ing (A.1)-(A.3), and suppose g : X — R satisfies (B.1). Let v denote the autocovariance
sequence as defined in Proposition 1, and let F denote the representing measure for . As-
sume that v(0) = Var,(g(Xo)) > 0. Let p(k) = ~v(k)/v(0), k € Z denote the autocorrelation
sequence and ppr(k) = Tar(k)/Tar(0) denote the empirical autocorrelation sequence. Define

0~ such that 6, = 1 —sup{|z|;x € Supp(F')} where F is the representing measure for ~y. Let
opr = 1 — exp{—log M/(2in)}, (S-24)

with 8y == 1 in the case i = 0. Suppose in addition to (A.1)-(A.3) and (B.1) that

. log M
sup  |par(k) — p(k)| = Op, (1) =2

S-25
k=0,...,.M—1 M ) ( )
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with respect to the Markov chain law P, for each x € X. Choose m such that

log M

m = min{t € 2N; ppr(t +2) < ey i

} (5-26)

for some cpr > 0. Then we have Sar is asymptotically not larger than 6., i.e., for any € > 0,
we have limps_s oo PI(EM > 6y +¢€) =0.
Furthermore, under the assumption of cyy — 0o such that ¢y = O(log M), on converges

in Py-probability to 6., i.e., for any € > 0, we have limps_,o0 ch(]SM — 04| >€)=0.

Proof. Define F such that

0 t<0

F((—o00,1]) =
YO THE([=tt]) t=0

Let Hp be the distribution function of F. Note 0 exists and is finite since y(0) > 0
implies Supp(F) is nonempty, and Supp(F) C [-1,1]. Also we note F((—o0,00)) =
3(0) 1 F((—o0,00)) = 1 since 4(0) = [ a’F(da) = F((—oc,0)).

We first show that 1 —d., is the smallest value of b such that [—b, b] has full F-measure,
ie., 1—0, =inf{t; F([—t,t]) > v(0)} = inf{t; Hz(t) > 1}, and for a > ¢, F([—(1—a),(1-
a)]) <~(0).

In the case ¢, = 1, then Supp(F) = {0}, and for a > 4, [—(1—a), (1 —a)] = 0, which is
not full measure since y(0) > 0. We next consider the case 6, < 1. From the definition of ¢.,,
Supp(F') C [—-(1—-05),1-6,]. Now, consider a such that 6, < a < 1. We show [—(1—a), 1—a]
is not full F' measure. Since Supp(F) is closed, we have {—(1 —d,),1 —d,} N Supp(F) # 0.
Let Ny(z) = {y : |y — x| < 8} denote the open #-neighborhood of z. Define §y = (a —d-)/2.
Then {—(1-46,),1—4,}NSupp(F) # () implies the open set A = Ny, (1—0,)UNg,(—(1—05))
has F(A) > 0, but AN[—(1—a),1—a] =0, and so F([—(1—a),1—a]) < F((—o00,00)) = v(0).
Thus

1 -6, =inf{t; F([~t,t]) > v(0)} = inf{t; Hz(t) > 1} (S-27)

From the definition of m, we have

log M
M

log M
N

~

pu(m) > cm

~ ~

and  pu(m+2) <cy

(S-28)
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First, we consider the case 6, < 1.

Let Ay be Apr = supg—g . -1 |p(k) = pa(k)|. Since Ay = Op,(y/log M /M), we have
Cs > 0 and a finite M; such that Ay, < CB\/W with probability at least 1 — 3 for
all M > Mj. Let £y be the event such that this inequality holds.

On the event &)y, the second condition in (S-28) implies

A log M
pu(m+2) <ecy i
. . . . log M
= p(ii+2) = | (o +2) = (i +2)| < eary| ==
log M
= p(m +2) < (Cg +cur) O§4.

Note by definition of p,

p(m +2) = ~v(0)~* /am+2F(do¢) =~(0)7! / la|™ 2 F (dor) = /am+2ﬁ’(da).

We will lower-bound [ a™+2F(de). First, define {a;}?°, such that

ap =sup{t > 0; Hx(t) < 1—1/+/log(k)}, (S-29)

where we take the convention of sup{(} = —oco. By definition of H, we have Hz(1-¢,) =1

and

Hp(1 - 8,) — Hplar) 21— (1 - 1//log(R)) = 1/v/log k) (3-30)

Also, ap > ap41 since H is an increasing function. Now, we show limy_,ocar = 1 — 6,:
first, we have ar < 1 — 0, for all k. Therefore the limit of aj, exists. Now suppose to the
contrary that limy ay = ¢, < 1 —46,. Then Hj(c,) < 1 by (S-27). Choose {¢;} such that
€p > 0, ap+€, < 1-0, and ¢, — 0. For each k, we have H z(ay+€x) > 1—1/\/10gi(k) by the
definition of aj. Then taking k limit to both sides, we have limy, Hz(ay, +€x) = Hp(ca) > 1
since Hp is a right continuous function, and we have a contradiction. Therefore we have
limy ap =1 —6,.

We hayve,

/am+215(da) > / W™ F(da) > altt? F(do) = ayi?(Hp(1 = 6,) — Hp(anr)).
(anr,1-84]

(anr,1—64]
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Since
aﬁ]\}[“(HF(l —0y) — Hp(an)) = aﬁ]\}ﬁz/\/logM,

we have,

log M
M

/OszrZF(dOé) < (CM + Cg)

) log M
:>aT/[+2§\/]ogM(CM+Cg) O;

1
= (m + 2)logan <log(y/log M)+ log(car + Cg) + §{log(log M) —log M}
N m S —2log aps + log(v/Iog M) + log(car + Cg) + 3{log(log M) — log M}
log M — log apr log M
log M,
2m

= 1 —exp(—

l—e 1 log aps log M
Cexpd —=
P17 —2log ay + log(v/Iog M) + log(car + Cp) + ${log(log M) — log M}

Since logay — log(1 — ) as M — oo, the RHS converges to d,. In other words, there

exists a finite My such that the RHS is ., + . Therefore,
SM § 57 + €0 (8—31)

on &y for M > M. Therefore, for M > max{Mi, M>}, we have Px(SM < 0y + €) >
P(&Ey) > 1 — B for arbitrarily chosen  and e, i.e., Snr is asymptotically not greater than
dy.

Now under the condition that ¢y; — oo and ¢y = O(log M), we show that Sy is
asymptotically not smaller than ¢, as well. The first condition in (S-28) implies on the

event &y,
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Note that if we only require cpr > 0, the RHS can be negative depending on cyps and Cjg.
However, with the choice of cy; — oo, there exists a finite M3 such that ¢y — Cg > 0 for
M > Ms.

We continue to upper bound the LHS. Since 171 is even, v(0) ™! [ a™F(da) = v(0)7! [ |a|™F(da) =
[ &™F(de). In particular, Supp(F) C [0,1 — d,], since F([0,1 —8,]) = F((—o0,1 —d,]) =
(0)"'F([-1+d,,1 —6,]) = 1 by the definition of d,. Therefore,

. log M
/amF(da) > (e — Cp) 054
5 log M
= (1=8,)™ > (enr — Cp)y| ==

= mlog(1 —dy) > log(cyr — Cp) + %{log(log M) —log M}

log(car — Cp)

n <
TS Tog(1—6,) | 2log(l—0,)

{log(log M) — log M }

since log(1 — d,) < 0. By dividing both sides by log(M)/2,

21 < 2log(cp — Cp) + log(log M) — log M
logM — log(1 — 0+) log(M)

~

2
=1 —exp(—im) > 1—exp<

log(1 — 0~) log(M) )
log M

" 2log(epy — Cjg) + log(log M) — log M

By the condition of ¢y = O(log(M)), car/log(M) < C for some constant C for a sufficiently
large M.

log(car — Cp) _ log(ear) _ log(Clog(M)) o
g1 = log(M) = logar) "W

Therefore, the RHS converges to ¢, and we can find a finite My such that
dnr > 6y — € (S-32)

on &y, for M > max{Ms, My}. Thus, under the additional condition that c¢p; — oo and
ey = O(log M), combining (S-31) and (S-32) yields P.({|6x — 85| > €0}) < P(E5,) < B,
for M > max;—1,. 4 M;, ie., ) M — 0 in probability since 8 and ey were arbitrary. This
shows the result in the case J, < 1.

Now we consider the case when 0, = 1. In this case, the inequality ou < 0y = 1is

trivially true with probability 1 from the definition of /, and therefore, we have P, (3 <
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dy + €o) = 1 for all M, for each ¢y > 0. Thus 5 M is not asymptotically larger than 4.

Now, under the additional assumption ¢y — oo and ¢y = O(log(M)), we show 6y =
0y = 1. Let €9, B > 0 given. As before, let Aps be Ay = supg_g  pr—1 [p(k)—par(k)|. Since
Ay = Op,(y/log M/M), we have Cg > 0 and a finite M; such that Ay, < C’g\/logT/]W
with probability at least 1 — 3 for all M > M;. Let £y; denote the event Ay < Cp %.
We also have a finite My such that cyy > Cg for M > M. Therefore, on &y,

log M log M

/3]\/[(2) < Cg = ﬁM(Z) <cum =m = 0,

holds for all M > Ms. Note d,; = 1 whenever 7 = 0. Thus for M > max{ M, My},
Pollba1 — 8] > c0) < Po(Bar £ 8,) = Poliit £ 0) < 3.

Since B was arbitrary, this proves the result o 2 0y = 1. O
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S7 Supplementary Tables for Section 5

Here we present some supplementary tables for Section 5.

Table S1: Estimated average ly error (s.e.) for the autocovariance sequence estimators and
mean squared error (s.e.) for the asymptotic variance estimators for discrete state space
Metropolis-Hastings example

(a) €5 error

Estimator 4000 8000 16000 32000 64000 128000
Empirical 1.2732 1.2639 1.2616 1.2668 1.2683 1.2666
(0.0074) (0.0051) (0.0035) (0.0025) (0.0018) (0.0013)
Bartlett 0.0092 0.0056 0.0034 0.0021 0.0012 0.0007
(0.0003) (0.0002) (0.0001) (0.0001) (0.0000) (0.0000)
MomentLS(Orcl,Brtl) 0.0054 0.0029 0.0016 0.0009 0.0005 0.0003
(0.0003) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000)
MomentLS(Tune,Emp) 0.0059 0.0030 0.0016 0.0008 0.0004 0.0002
(0.0003) (0.0002) (0.0001) (0.0000) (0.0000) (0.0000)
MomentLS(Tune-Incr,Emp) 0.0059 0.0030 0.0016 0.0008 0.0004 0.0002
(0.0003) (0.0002) (0.0001) (0.0000) (0.0000) (0.0000)
MomentLS(Orcl,Emp) 0.0056 0.0029 0.0015 0.0008 0.0004 0.0002

(0.0003)  (0.0001)  (0.0001) (0.0000) (0.0000) (0.0000)

(b) Asymptotic variance mean squared error

Estimator 4000 8000 16000 32000 64000 128000
BM 0.0917 0.0548 0.0377 0.0234 0.0134 0.0086
(0.0056)  (0.0035)  (0.0024)  (0.0017)  (0.0009)  (0.0006)
OLBM 0.0940 0.0559 0.0332 0.0204 0.0118 0.0070
(0.0058)  (0.0036)  (0.0022)  (0.0014)  (0.0008)  (0.0005)
Empirical 6.4180 6.4180 6.4180 6.4180 6.4180 6.4180
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
Bartlett 0.0921 0.0541 0.0325 0.0201 0.0115 0.0069
(0.0058)  (0.0034)  (0.0022)  (0.0014)  (0.0008)  (0.0005)
Init-Positive 0.1236 0.0571 0.0332 0.0154 0.0084 0.0038
(0.0146)  (0.0051)  (0.0041)  (0.0015)  (0.0011)  (0.0003)
Init-Decr 0.0878 0.0400 0.0230 0.0114 0.0058 0.0030
(0.0079)  (0.0030)  (0.0022)  (0.0009)  (0.0005)  (0.0002)
Init-Convex 0.0741 0.0348 0.0195 0.0101 0.0051 0.0026
(0.0063)  (0.0026)  (0.0019)  (0.0008)  (0.0004)  (0.0002)
MomentLS(Orcl,Brtl) 0.0521 0.0274 0.0148 0.0085 0.0048 0.0030
(0.0038)  (0.0018)  (0.0010)  (0.0005)  (0.0003)  (0.0002)
MomentLS(Tune, Emp) 0.0697 0.0342 0.0183 0.0092 0.0046 0.0023
(0.0059)  (0.0025)  (0.0017)  (0.0006)  (0.0004)  (0.0002)
MomentLS(Tune-Incr,Emp) 0.0675 0.0336 0.0179 0.0090 0.0046 0.0023
(0.0056)  (0.0025)  (0.0017)  (0.0006)  (0.0004)  (0.0002)
MomentLS(Orcl,Emp) 0.0558 0.0285 0.0148 0.0079 0.0038 0.0020

(0.0043)  (0.0020)  (0.0011)  (0.0005) (0.0003)  (0.0002)
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Table S2: Estimated average o error (s.e.) for the autocovariance sequence estimators and
mean squared error (s.e.) for the asymptotic variance estimators for AR1 example with

p=09
(a) €5 error
Estimator 4000 8000 16000 32000 64000 128000
Empirical 260.4808 262.8923 261.6753 261.7598 263.6259 263.6811
(3.3948)  (2.6730)  (1.8479)  (L.3180)  (0.9379)  (0.6410)
Bartlett 7.1962 4.4781 2.7572 1.6033 0.9710 0.5964
(0.2886)  (0.1685)  (0.0995)  (0.0540)  (0.0312)  (0.0175)
MomentLS(Orcl,Brtl) 3.9916 2.3139 1.3216 0.6979 0.4162 0.2675
(0.2211)  (0.1283)  (0.0762)  (0.0396)  (0.0241)  (0.0140)
MomentLS(Tune,Emp) 4.8135 2.9854 1.5289 0.7512 0.4092 0.1970
(0.2362)  (0.1719)  (0.0819)  (0.0416)  (0.0276)  (0.0117)
MomentLS(Tune-Incr,Emp) 4.7958 2.9674 1.5241 0.7509 0.4082 0.1973
(0.2356)  (0.1700)  (0.0816)  (0.0416)  (0.0275)  (0.0117)
MomentLS(Orcl,Emp) 3.7863 2.1209 1.1063 0.5141 0.2680 0.1247
(0.2114)  (0.1209) (0.0675) (0.0322) (0.0189)  (0.0078)
(b) Asymptotic variance mean squared error
Estimator 4000 8000 16000 32000 64000 128000
BM 441.3225 310.6322 207.5458 120.8707 75.7108 50.9232
(26.3386)  (18.7844)  (12.0461) (7.1677)  (4.5795)  (3.1021)
OLBM 530.6842 329.0258 200.7452 113.6880 70.3730 43.9050
(30.8007)  (18.6833)  (11.5641)  (6.9584)  (4.6056)  (2.8280)
Empirical 10,000.0000 10,000.0000 10,000.0000 10,000.0000 10,000.0000 10,000.0000
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
Bartlett 480.1497 304.9819 188.2221 108.3490 67.6490 42.5953
(28.6448)  (18.0249)  (11.0456)  (6.7378)  (4.5006)  (2.7620)
Init-Positive 727.0617 384.9189 200.7905 94.0732 53.6517 25.4210
(102.9961) (52.4958)  (24.7859)  (9.7885)  (5.0255)  (2.3289)
Init-Decr 442.0562 289.4032 141.7235 70.1543 39.3842 19.6494
(37.6246)  (30.6812)  (12.9728)  (5.7635)  (3.5004)  (1.7146)
Init-Convex 349.7933 240.7814 120.4678 59.7319 34.3007 16.8201
(23.8527)  (22.5304)  (9.4864)  (4.4887)  (3.1422)  (1.4084)
MomentLS(Orcl,Brtl) 206.4103 121.6584 73.4146 40.7843 24.8478 16.6819
(13.2641)  (7.7392)  (4.9726)  (2.6673)  (1.5947)  (0.9671)
MomentLS(Tune,Emp) 317.3013 217.8352 103.8053 52.8779 30.1932 14.2880
(21.2726)  (18.9499)  (7.7694)  (4.0613)  (3.0648)  (1.3012)
MomentLS(Tune-Incr,Emp) 313.1335 214.4295 103.0196 52.5359 30.0120 14.2162
(20.8190)  (18.4725)  (7.7013)  (4.0221)  (3.0511)  (1.2912)
MomentLS(Orcl,Emp) 187.2898 104.0514 56.0977 26.4687 13.3904 6.2344
(12.1154) (6.7444) (4.0863) (1.9108) (1.0194) (0.4571)
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Table S3: Estimated average s error (s.e.) for the autocovariance sequence estimators and
mean squared error (s.e.) for the asymptotic variance estimators for AR1 example with

p=-—0.9
(a) €5 error
Estimator 4000 8000 16000 32000 64000 128000
Empirical 260.2496 260.7740 260.8336 264.7212 263.1831 263.6014
(3.5967)  (2.6222)  (1.8960)  (1.2805)  (0.8522)  (0.6256)
Bartlett 6.6264 4.1319 2.6333 1.5941 0.9635 0.5946
(0.2658)  (0.1757)  (0.0993)  (0.0591)  (0.0202)  (0.0165)
MomentLS(Orcl,Brtl) 3.7670 2.0407 1.2248 0.6844 0.3941 0.2585
(0.2187)  (0.1308)  (0.0719)  (0.0449)  (0.0237)  (0.0146)
MomentLS(Tune,Emp) 4.6199 2.5181 1.3821 0.7286 0.3639 0.1968
(0.2543)  (0.1457)  (0.0754)  (0.0432)  (0.0217)  (0.0110)
MomentLS(Tune-Incr,Emp) 4.6113 2.5137 1.3793 0.7305 0.3638 0.1974
(0.2541)  (0.1459)  (0.0753)  (0.0436)  (0.0219)  (0.0111)
MomentLS(Orcl,Emp) 3.5910 1.8474 1.0294 0.5192 0.2388 0.1236
(0.2156)  (0.1215)  (0.0627) (0.0368) (0.0169)  (0.0079)
(b) Asymptotic variance mean squared error
Estimator 4000 8000 16000 32000 64000 128000
BM 0.0048 0.0030 0.0017 0.0010 0.0006 0.0005
(0.0003)  (0.0002)  (0.0001)  (0.0001)  (0.0000)  (0.0000)
OLBM 0.0025 0.0018 0.0011 0.0007 0.0005 0.0003
(0.0002)  (0.0001)  (0.0001)  (0.0000)  (0.0000)  (0.0000)
Empirical 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
Bartlett 0.0027 0.0019 0.0011 0.0007 0.0005 0.0003
(0.0002)  (0.0002)  (0.0001)  (0.0001)  (0.0000)  (0.0000)
Init-Positive 0.0973 0.0526 0.0232 0.0114 0.0059 0.0032
(0.0076)  (0.0036)  (0.0016)  (0.0008)  (0.0004)  (0.0002)
Init-Decr 0.1186 0.0663 0.0309 0.0149 0.0078 0.0044
(0.0079)  (0.0041)  (0.0020)  (0.0010)  (0.0005)  (0.0003)
Init-Convex 0.3009 0.1664 0.0835 0.0417 0.0209 0.0116
(0.0134)  (0.0076)  (0.0037)  (0.0019)  (0.0009)  (0.0005)
MomentLS(Orcl,Brtl) 0.0028 0.0017 0.0010 0.0007 0.0004 0.0003
(0.0002)  (0.0001)  (0.0001)  (0.0000)  (0.0000)  (0.0000)
MomentLS(Tune,Emp) 0.0034 0.0019 0.0010 0.0006 0.0003 0.0001
(0.0002)  (0.0001)  (0.0001)  (0.0000)  (0.0000)  (0.0000)
MomentLS(Tune-Incr,Emp) 0.0034 0.0019 0.0010 0.0006 0.0003 0.0001
(0.0002)  (0.0001)  (0.0001)  (0.0000)  (0.0000)  (0.0000)
MomentLS(Orcl,Emp) 0.0023 0.0012 0.0006 0.0003 0.0001 0.0001
(0.0001)  (0.0001)  (0.0000) (0.0000) (0.0000)  (0.0000)
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