nature communications

Article

https://doi.org/10.1038/s41467-024-50821-z

Large-scale calcium imaging reveals a
systematic V4 map for encoding

natural scenes

Received: 15 November 2023

Accepted: 22 July 2024

Tianye Wang ® %347, Tai Sing Lee®”’, Haoxuan Yao ®“2347, Jiayi Hong',
Yang Li"?>34, Hongfei Jiang"*3#, lan Max Andolina®® & Shiming Tang ®"%34

Published online: 30 July 2024

M Check for updates

Biological visual systems have evolved to process natural scenes. A full
understanding of visual cortical functions requires a comprehensive char-

acterization of how neuronal populations in each visual area encode natural
scenes. Here, we utilized widefield calcium imaging to record V4 cortical
response to tens of thousands of natural images in male macaques. Using this
large dataset, we developed a deep-learning digital twin of V4 that allowed us
to map the natural image preferences of the neural population at 100-um scale.
This detailed map revealed a diverse set of functional domains in V4, each
encoding distinct natural image features. We validated these model predic-
tions using additional widefield imaging and single-cell resolution two-photon
imaging. Feature attribution analysis revealed that these domains lie along a

continuum from preferring spatially localized shape features to preferring
spatially dispersed surface features. These results provide insights into the
organizing principles that govern natural scene encoding in V4.

The visual system has evolved to represent and process natural scenes
efficiently’. Behaviorally relevant information in visual scenes, such as
objects’ identities and locations, are not immediately accessible from
the retinal inputs. It is thought that disentangling scene information
is achieved by transforming and re-representing the retinal image
through a series of visual areas in primate visual cortex, from primary
visual cortex, through visual area V4, to inferotemporal cortex (IT)**.
Each of these visual areas provides a unique stage of representation for
the visual world. Yet, understanding how natural scenes are repre-
sented by the neuronal populations of a specific visual area remains an
incredibly difficult task.

One of the challenges arises from the sheer number of neurons
involved in the representation. With tens of millions of neurons in each
visual area®™, it is impossible to assess the neural codes of all these
neurons with the recording capabilities of current techniques. However,

there are principles in cortical organization that can help. Nearby neu-
rons in the cortex tend to have similar functional properties. It is
believed that local circuits formed by these neurons could facilitate
specific functional computations*®’. By identifying the visual features
that drive the excitation of a local population of neurons, we can gain
insights into what features of natural scenes are explicitly extracted and
represented by the local circuits. A complete though coarse picture of
how natural scenes are represented in a visual area can thus be obtained
by characterizing the feature preferences of all local populations within
that area. In the macaque visual cortex, the basic unit of this local
population corresponds to the cortical column with a diameter of
200-400 ym® ™2, Current imaging techniques™ allow us to simulta-
neously record neural responses at this scale over a large span of the
cortical surface, giving us a relatively complete sampling of the func-
tional units as well as their topological organization.
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However, the complexity and diversity of image features in nat-
ural scenes® pose an additional challenge for characterizing the neural
codes. Earlier studies had to resort to making hypotheses on the visual
features that neurons care about, and utilized simplified parametric
artificial stimuli to study neural coding. Such an approach introduces a
sampling bias, and may miss the visual features that a neuron is best
tuned to. This problem is particularly acute for higher visual areas such
as V4 and IT, where neurons have relatively large receptive fields and
more complex selectivities'®. Thus, to understand the neural repre-
sentation of natural scenes, it is crucial to capture the rich featural
variations in natural scenes by sampling an extensive set of natural
images".

In this work, we achieved long-term stable widefield calcium
imaging™ in awake monkeys, which allowed us to obtain a large-scale
dataset of V4. We recorded cortical responses spanning ten milli-
meters of the cortical surface of dorsal V4 in three monkeys, each to
over 17,000 color natural images at 0.1 mm spatial resolution. This
dataset enabled us to train deep-learning models'®* that accurately
predict the cortical response to arbitrary images. By identifying each
cortical location’s preferred natural images using our model, and then
verifying them using additional widefield and two-photon imaging, we
found V4 contains more diverse functional domains than previously
believed, with each domain encoding distinct natural image features.
Further feature attribution analysis to preferred images shows that
domains encoding shape-related attributes in V4 tend to prefer fea-
tures that are spatially localized within the receptive field, while
domains encoding texture or surface-related attributes prefer features
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Fig. 1| Widefield calcium imaging of V4 cortical responses to natural scenes.
a Schematic of the widefield calcium imaging setup. A shutter was used to control
intermittent illumination. On the detection side, a 525 nm dichroic mirror splits the
reflectance light into green and blue, projecting them onto Camera A and Camera
B, respectively. b Example blue reflectance image recorded by Camera B in V4. A,
anterior; M, medial; io, inferior occipital sulcus; lu, lunate sulcus. ¢ Top: Average
time course of V4 responses to a stimulus, averaged over the responses to 100
natural images. Blue areas indicate “on” illumination. Image frames used for
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dispersed in the receptive field. This separate processing of features
with different dispersity provides a functional organization principle
for V4 neural coding.

Results

A large dataset of macaque V4 cortical responses to

natural images

We performed widefield calcium imaging to record V4 cortical
responses to a large set of natural stimuli (Fig. 1a). AAVs expressing the
calcium indicator GCaMP5G* were injected into macaque visual cor-
tical area V4. A 10mm-diameter optical window was implanted for
imaging (Fig. 1b). During calcium imaging, a 470 nm blue light was
used to illuminate the cortex through the optical window, and the
green fluorescence excitation signals were recorded using a CCD
camera (Camera A in Fig. 1a).

To obtain neural responses to tens of thousands of stimuli we
needed to integrate recordings across multiple days. However, we
found that continuous blue light exposure causes severe photo-
bleaching that results in a gradual attenuation of the fluorescence
signal (Supplementary Fig. 1). To solve this problem, we developed an
intermittent illumination paradigm. A shutter synchronized to the
stimulus presentation was inserted into the blue light pathway to
control the illumination. Each trial consisted of a 900 ms blank pre-
stimulus period followed by 500 ms of stimulus presentation while the
subject maintained fixation. Optical illumination lasting 250 ms
occurred twice: one epoch 150 ms before, and one epoch 350 ms after
stimulus onset. These corresponded to the baseline period before
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Cortical responses

computing cortical responses are extracted from the periods indicated by the black
labels on the response curve within the shutter “on” periods. Bottom: Control
signal for shutter on-off; black bar denotes the stimulus presentation period.
Source data are provided as a Source Data file. d Example cortical responses to
natural images across trials and days. The last two columns show the average
responses of 5 repeats on Day 4 and Day 5. e The dataset, used for training the
deep neural network, contains cortical responses to 19,900 natural images from
monkey C.

Day 5
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response initiation, and the peak response period, respectively
(Fig. 1c). The fluorescence images recorded in these two periods were
used to calculate cortical responses (AF/Fo, see Methods). This inter-
mittent illumination method significantly improved the long-term
stability of signals (Supplementary Fig. 1), enabling the extensive
sampling of the stimulus variations. To facilitate multi-day imaging
registration, we recorded the blue reflectance images with another
camera (Camera B in Fig. 1a) and used the cortical capillaries (Fig. 1b) as
the reference for image registration. We found that the calcium signal
was robust between different trials and across days (Fig. 1d), allowing
us to more confidently integrated data across multiple days into a large
dataset.

We obtained the widefield calcium imaging dataset from the
dorsal V4 of three monkeys. Each monkey’s dataset includes a training
set for fitting neural network models and a validation set for evaluating
the model’s prediction performance to novel stimuli. The stimulus
presentation area was selected such that the receptive field of the
imaged cortex, hand-mapped using small grating patches, was posi-
tioned at the center of the stimulus (Supplementary Fig. 2b). The
training set consists of single-trial cortical responses to
17,000-20,000 distinct color natural stimuli drawn from ImageNet*
(see Fig. le for examples). 500 natural images, distinct from the
training set, were used as validation stimuli. We also added a set of 56
conventional artificial stimuli (Supplementary Fig. 2¢), including grat-
ings of 8 orientations, 2 phases, and 3 spatial frequencies, as well as 8
uniform color patches, to the validation set. Each validation stimulus
was repeated ten times in a randomly interleaved fashion. Data col-
lection for each monkey spanned six consecutive days. To monitor the
stability of cortical responses across these days, we tested 100 natural
images selected from the validation set as fingerprint images in each
recording day. The high degree of correlation observed in the neural
responses to fingerprint images across days provides further con-
firmation of the long-term stability of the measurements, supporting
data integration (Supplementary Fig. 2d, e).

DNN modelling of the cortical response dataset

We found nature images elicit much stronger and more diverse
responses in V4 than conventional artificial stimuli (Supplementary
Fig. 3). For regions that showed significant selectivity to the validation
stimuli (Supplementary Fig. 2a, See Methods), we trained a deep
learning model to capture the encoding relationship between the
visual stimuli and the responses of the cortical pixels.

Earlier studies* ™ suggest that deep neural networks (DNNs)
optimized for object recognition provide a state-of-the-art model of
the primate ventral visual stream. These task-driven DNN’s internal
representations can be used to fit neural responses to image stimuli via
transfer learning. Typically, this is done by fitting the neural responses
with a linear transform of feature activations of a specific DNN layer in
response to the input image. This feature transfer approach has been
shown to produce acceptable response prediction performance, even
with relatively small training dataset’>*”, One drawback of this
approach however is that data fitting is restricted to the feature space
of the pre-trained DNN, and can potentially fail to capture some of the
characteristic of the feature space of the brain. One solution is to use
the neural data to fine-tune the feature detectors upstream of the
selected DNN layer via backpropagation. However, given the large
number of trainable parameters in the DNN for recognition tasks,
coupled with the modest size of the neural data, such models tend to
overfit, which could account for the decrease in their generalization
performance (Supplementary Table 1). To address this issue, we
developed a neural modeling strategy that leveraged knowledge dis-
tillation for transfer learning (Fig. 2a). Specifically, we used the feature
transfer model mentioned above as the teacher to train a student
network with significantly fewer parameters, known as knowledge
distillation**°. Subsequently, the student network was fine-tuned on

the targeted neural data again to obtain a final model that exhibit
improved generalization performance.

We found this modelling strategy to be very effective in producing
a model with superior neural response prediction performance on our
measured data (Fig. 2). We trained the feature transfer model with the
Add-6 layer of ImageNet pre-trained Xception® (Supplementary
Fig. 4a, b). Knowledge distillation was then performed by training a
small Xception-like DNN (Supplementary Fig. 4c, See Methods) on
100 K image-response pairs predicted by the feature transfer model.
The prediction performance of the transfer learning model obtained
with knowledge distillation (KD Transfer, 73.1% of the achievable per-
formance Fig. 2b) is significantly better than the original feature
transfer model (Feature Transfer, 68.2%; P=0.0, one-sided Wilcoxon
signed-rank test) and the small Xception-like DNN directly training
with neural data (Direct, 68.8%; P=0.0, one-sided Wilcoxon signed-
rank test). We also evaluated the dependence of the performance of
these three models on the size of the training data set (Fig. 2c). As the
data size increased, the direct data-driven model exhibited the most
significant improvement in performance. Its performance was much
weaker than the feature transfer model with limited data, but the two
became on par when the data size reached 17 K. This suggests that our
dataset is large enough for the data-driven model to learn a feature
space that is as effective as the feature space of the pre-trained net-
works. Our KD Transfer model is consistently better than the other two
models regardless of the size of the training dataset, suggesting it is a
superior approach for modeling V4 neural tuning.

Natural image preference maps in V4

Our neural network model that predicts V4 cortical responses with
high accuracy provides us with a digital twin of V4. This allows us to
perform extensive tests in silico to dissect and characterize the neural
coding in V4820323 We first employed the digital twin to identify the
natural stimuli that elicit the strongest responses in each cortical pixel,
which reflects the preference of a local population of neurons. Speci-
fically, we used the KD Transfer model to search for the preferred
stimuli for all the cortical pixels across a set of 50,000 natural images.
The model’s top nine preferred images for each location were then
showed in a 3 x 3 array over that location of the cortical surface
(Fig. 3a). The resulting map indicates the stimulus preference for each
visually responsive pixel across the imaged area (Fig. 3b, Supplemen-
tary Data 1-3). What appeared to be distinct clusters preferring dif-
ferent kinds of natural images were observed. To characterize the
organizational structure of the map, we performed hierarchical clus-
tering of cortical pixels based on the similarity of their top nine pre-
ferred images. The similarity in image preference between two cortical
pixels was computed based on the Pearson correlation between the
averaged cortical response patterns to their respective preferred
images (Supplementary Fig. 5, See Methods). Hierarchical clustering
was then employed to group the cortical pixels into multiple domains.
Each of these domains shows a preference for some specific features.
Some of these preferred features emphasize specific colors or specific
textures. Some prefer image patterns that are marked by transitions in
color or luminance, while others prefer specific objects, such as round
objects or even faces (Fig. 3c, d). These findings suggest V4 has a
diverse and rich set of functional domains, encoding a variety of dis-
tinct natural image features.

To evaluate the validity of these model-predicted domains
empirically, we performed additional widefield calcium imaging on
monkey B and monkey C. For each domain, 16 preferred images
predicted by the model were selected as test stimuli (Fig. 4a and
Supplementary Fig. 6a). We found that stimuli selected for different
domains elicited distinct cortical responses, and the measured
activation patterns were consistent with model predictions
(Fig. 4a, b). Figure 4c shows the responses of each cortical pixel to
each group of preferred images associated with the different
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Fig. 2 | DNN modeling on cortical response dataset. a Schematic of transfer
learning with knowledge distillation. We first used the neural data to train a feature
transfer model which uses a two-layer perceptron to map the responses of the Add-
6 layer of the Xception to input images to their evoked cortical responses. We then
performed knowledge distillation to condense this feature-transfer model to a
smaller DNN. This step was completed by training the small DNN using the
responses of feature transfer model to 100 K natural images. We finally fine-tuned
the small DNN on the recorded neural dataset. Parameters of the network layers in
blue are optimized on neural data. b Neural response prediction performance of
the feature transfer model (green), the data-driven model (Direct, light blue), and
the knowledge distillation transfer model (KD Transfer, dark blue) on the data of 3
monkeys, across all imaged cortical pixels. For each cortical pixel, the model’s
performance is quantified by computing the Pearson correlation between the
predicted responses and recorded responses on validation images and then
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normalizing it with the noise ceiling of the pixel (see Methods, Supplementary
Fig. 2f). The KD Transfer model performed significantly better than the data-driven
model and the feature transfer model (P=0.0 in all cases; one-sided Wilcoxon
signed-rank test) over n=7750 cortical pixels pooled across 3 monkeys. The data
distribution is shown in the boxplot. Boxplot center is median, box extends 25th
and 75th percentiles, whiskers extend to the most extreme data that are not con-
sidered outliers, dots denote outliers. Source data are provided as a Source Data
file. ¢ Performance measured in raw Pearson correlation as a function of training
sample size relative to the noise ceiling is shown. The plotted lines and error bars
indicate the mean and standard deviation of the performance of 27 sets of models.
Each set includes one model from each of the 3 monkeys, and each model is trained
on a random subsample of the data of a particular size. The performance of a set of
models is the averaged correlation over the total 7750 cortical pixels. Source data
are provided as a Source Data file.

functional domains (labeled in different colors). We found each
group of preferred images could locate a cortical region with the
strongest response to them. These regions were largely consistent
with the model-identified functional domains (monkey C con-
sistency = 77.9%, monkey B consistency = 87.3%, Fig. 4d). These
results indicated that the model-predicted natural image preference
map is a good reflection of the functional organization of V4, com-
prising a wide variety of domains preferring different visual features.
Note that this finding critically relies on the use of a large and diverse
set of natural stimuli. When testing V4 with conventional artificial
stimuli, we found that we missed the true preference of many
regions, overlooking the underlying functional differences among
them (Supplementary Fig. 7).

Testing single-neuron selectivity on the preference map

Having demonstrated a correspondence between the neural response
at the columnar scale and the model-predicted preference map, we
next tested the relationship between columnar-scale preference and
single-neuron selectivity. We performed a series of two-photon cal-
cium imaging recordings* on ten selected fields of view (FOVs) of
monkey C and monkey B respectively (Fig. 5a, b and Supplementary
Fig. 8a). To ensure that the test stimuli could effectively activated the
neurons, we used the model to select a set of images preferred by
dozens of representative cortical pixels to compose the test stimulus
set (see Methods). The stimulus sets for monkey C and monkey B
include 905 and 537 natural stimuli, respectively. We identified soma
and dendrites that responded robustly to test stimuli as ROIs for the
two-photon imaging analysis (see Methods, Supplementary Fig. 8b).

We found that the cortical preferences obtained by widefield imaging
are roughly consistent with the stimulus preferences of single neurons
in the corresponding region (Fig. 5c, d, f and Supplementary Fig. 8c).
As shown in Fig. 5c, d, the neurons at the face and dot domains also
preferred face or dot stimuli. The average tuning of single-cell
responses within each FOV is in good agreement with that measured
by widefield imaging (Fig. Se, f). However, single cells (ROIs) exhibited
a much greater degree of diversity and sparsity of tuning compared to
the FOV responses, indicating that single neurons can encode and
discriminate subtler variations of the image features (Fig. 5c, d, f).

Characterizing feature tuning using feature attribution analysis
Above, we characterized neural coding in terms of natural image
preference. Natural images typically encompass a mixture of visual
features. To gain a deeper understanding of the neural codes for
visual features, it is necessary to decompose the specific features in
the preferred images that drive the neural responses. Taking
advantage of our V4 digital twin, we performed feature attribution
analysis on our model using the SmoothGrad-Square®*® method.
For a given input image, this gradient-based algorithm generates a
heatmap that reflects the contribution of each pixel in the input
image to the response of the target cortical region. The heatmap
thus highlights the critical features in the image that drive the neural
responses. Figure 6a shows several heatmap examples. It is evident
that heatmaps provide a reasonable estimation of the critical fea-
tures in domains that prefer shape attributes, such as dots, edges,
and curvature, as well as domains that prefer texture or surface
attributes. Notably, for identified face domains, the heatmap reveals
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Fig. 3 | Natural image preference maps predicted from a DNN model. a The KD
Transfer model was used to predict cortical responses to a 50,000-image set. For
each cortical pixel (90 x 90 um physical size; the single pixel example is marked
with an orange cross), the top 9 ranked images are shown as a 3 x 3 grid (only the
center 4x4 degree of each image is visualized). b Overall preference map obtained
from monkey C. Domains preferring different colors can easily be observed.
Zooming into the two regions marked by white rectangles, we observe cortical
pixels preferring distinct shapes and texture attributes. ¢ The cortical pixels in
monkey C were hierarchically clustered based on the similarity of the cortical

responses to their top 9 preferred images. Clusters that contained connected
region with more than 40 pixels were identified as functional domains, marked by
distinct color. Clusters that did not meet the above criteria were marked in gray.
Left: The dendrogram of the hierarchical clustering. Right: Cortical map with
functional domains colored. Bottom: the images predicted to evoke strong
responses for the identified domains. The same color scheme, indicating the
functional domain categories, is used for the dendrogram, the cortical map and the
image frames. d Same as in (c), for monkey B.

Nature Communications | (2024)15:6401



Article

https://doi.org/10.1038/s41467-024-50821-z

Stimuli Measured Predicted Stimuli Stimuli
a c , LB R e d Monkey C
i I Consistency = 77.9%
U
I '
K
[T}
X
[ &
®
2
5
I o
“ |
2 | :
of Y |
[2] o
o oo
€ i
8 I Monkey B
| | ““?‘ i Consistency = 87.3%
4% ‘ ‘ |
i Monkey B
1% I W I4
i
b Monkey C Model Pred. Monkey B i g
0.41 0.96 0.37 0.97 | , g
¥ Control M 3 v M N I
2 2 1 “
c =
=1 3 || IR
o o
O o 4;‘
0 |
0.5 1 0.5 1 . 1 mm
Correlation Correlation Monkey C _

Fig. 4 | Experimental verification of the model-predicted preference map. a Test
stimuli for the four example domains and their corresponding average activation
patterns. The first column shows the central 4x4 degrees of each stimulus. The
second and third columns show the measured and model-predicted average acti-
vation patterns, respectively. R denotes the correlation coefficient between the
measured and the predicted pattern. The scale bar denotes 2 mm. b The blue bars
in the histogram show the distribution of correlation coefficients between the
measured and the model-predicted activation patterns. As a control, the red bars in
the histogram display the correlation coefficients between measured activation
patterns of all pairs of different stimulus categories. Arrows indicate means of the

respective distributions. Source data are provided as a Source Data file.

¢ Population response matrices (z-scored, color scale lower left) to the test stimulus
set for all classified cortical pixels (Fig. 3c). Cortical pixels were sorted from top to
bottom based on their responses to the test stimuli for their respective category.
d Measured stimulus preferences across the cortical surface. For each cortical pixel,
we averaged its response to the test stimuli for each domain and identified the one
with the highest response as its preferred category. The color of the cortical pixel
represents its preferred category, the black contour outlines the model-predicted
domains, and the hatched area represents the unclustered regions (grey in

Fig. 3¢, d).

face components such as the nose and mouth are responsible for
driving the neural responses.

We perform an in vivo widefield imaging experiment to check
whether the ablation of the critical features would indeed cause a
significant drop in neural response. We targeted the face domain in
monkey C and tested 12 sets of images, each derived from an image
that was preferred by the face domain. Each set consisted of three test
images: the original preferred image, the preferred image with the
critical feature masked out, the preferred image with only the critical
feature remaining (Supplementary Fig. 6b). Figure 6b shows the cor-
tical responses to an example set of test images. We obtained the face
domain’s response by averaging the cortical pixels’ responses within
the face domain (the salmon-colored domain in Fig. 3c). The measured
responses of the face domain to the 12 sets of images are highly con-
sistent with the model-predicted responses (Fig. 6d, Pearson correla-
tion = 0.84). We found that, although critical features constituted only
a small part of the whole image, their occlusion resulted in a greater
decrease in face domain’s response compared to occlusion of all other
parts of the image (Fig. 6e). This evidence suggests that the critical
feature revealed by the heatmap is indeed the part of the image critical
for driving the response of the target domain.

For each cortical pixel, we next averaged the heatmaps of its top
1000 images from the 50,000-image set. The resulting aggregated
heatmap provides a reasonable estimate of the receptive field (RF) for
the neuronal population in that pixel. We determined the location and
size of the RF by fitting the aggregate-heatmap with elliptical Gaussian

(Supplementary Fig. 9). Compared to traditional RF mapping approa-
ches, we found that this method was more general, effectively esti-
mating the RF of cortical regions that respond poorly to traditional
stimuli (Supplementary Fig. 10).

Combining the receptive field and the heatmap of preferred
images, we found that the strong responses of some cortical regions
were driven by spatially localized features, while the strong responses
of other regions depended on features that were more dispersed
inside the RF (Fig. 7a). This difference may reflect the mechanisms for
two distinct classes of feature computation. To quantify how dispersed
the features are in the receptive field, we designed a content removal
test. Specifically, for a preferred image of a cortical pixel, we identified
the K pixels with the highest heatmap values as the key area and
generated two versions of the image: one with the key area removed
and another with only the key area content preserved (Fig. 7b). As the
key area increases, the target cortical pixel’s responses to the key
content-removed image will gradually decrease, while the response to
the key content-preserved image will increase. We refer to the parti-
cular K pixels where these two responses are equal as the critical key
area. Feature disparity is defined as the proportion of this critical key
area relative to the RF area (Fig. 7c). According to this definition, if the
critical features of the preferred images are completely dispersed in
the RF, the feature dispersity will be close to 1; while when the critical
features only occupy a small part of the RF, the feature dispersity
will much smaller than 1. We used the model to calculate the feature
dispersity for each cortical pixel. Figure 7d shows topographical maps
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Fig. 5 | Stimulus preference testing of single-neurons with two-photon ima-
ging. a Two-photon imaging recording sites in monkey C. The color hue represents
the measured cortical preference, following the same color scheme as Fig. 4d.

b The two-photon fluorescence image of an example field of view (FOV) averaged
over all stimuli, located at the junction of the face and dot domains is shown.

¢ Responses of two example cell ROIs marked in (b) are shown. The error bar
represents the SEM across n = 8 repetitions. The red line denotes the cortical
responses of this FOV measured with widefield imaging. The stimuli are ranked
according to the FOV’s cortical responses. There is a significant correlation between
the response of ROl and FOV, as shown. The central 4x4 degrees of stimuli with the
top 10 neuronal responses are shown on the right side. For each stimulus, the
number on the top indicates its neuronal response, and the number on the bottom
indicates its ranked stimulus index based on widefield imaging. Source data are
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provided as a Source Data file. d Population response matrix of cell ROIs across the
example FOV region shown in (b). e Average responses of all ROIs (n=298) in the
example FOV region (error bar shows the SEM over the ROIs). As in (c), the red line
denotes the FOV’s response measured by widefield imaging, rescaled to minimize
mean square error with the averaged ROI responses. The correlation between the
two is 0.83. Source data are provided as a Source Data file. f The blue histogram
shows the distribution of correlation between the cortical response of each FOV
measured by widefield imaging and the average responses of the ROIs within the
FOV measured by two-photon imaging (FOV counts: n=10 for both monkey). The
red histogram shows the distribution of correlation between the cortical response
of each FOV and the single ROIs responses within the FOV (ROI counts: n = 1650 for
monkey B, n=3439 for monkey C). Arrows indicate means. Source data are pro-
vided as a Source Data file.

of feature dispersity in V4 for the two monkeys respectively, revealing
clusters of various degrees of feature dispersity distributed between
Oand 1

Previous studies have demonstrated that V4 has topographic
maps of color selectivity and spatial frequency selectivity. How does
the map of feature dispersity relate to these established functional
maps? To quantify how cortical responses are tuned to color or high-
frequency features, we introduce the color selectivity index (CSI) and
frequency selectivity index (FSI) for each cortical pixel. CSI is calcu-
lated as the difference in responses to the cortical pixel’s preferred
images and the gray images. FSI, on the other hand, is defined as the
difference in response to the preferred images, and to the Gaussian
blurred version of them (Supplementary Fig. 12a, see Methods). The
model shows that both indices form a specific topographic organiza-
tion in V4 (Supplementary Fig. 12b, c). However, the organization of

feature dispersity cannot be fully explained by the topographic orga-
nization of color selectivity and frequency selectivity. Although
domains with higher FSI tend to be associated with smaller degrees of
feature dispersity, and domains with lower FSI tend to be associated
with larger degrees of feature dispersity, there are exceptions. For
example, domains preferred for high-frequency textures have both
high FSI and high feature dispersity (Fig. 7e). Similarly, while most
domains with color selectivity have a high feature dispersity, there are
also domains with color selectivity but a low feature dispersity (Fig. 7f).
Feature dispersity is more closely associated with concepts of shape
and texture, rather than spatial frequency or color. Domains with a
preference for shape-related features like edges, curvature, and face
components tend to have smaller feature diversity. Conversely,
domains with a preference for surface or texture features tend to have
higher feature diversity (Fig. 7e). These results suggest that feature
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stimuli shown in (b). The error bar represents the SEM across n = 8 repetitions, and
dots denote single-trial responses. Source data are provided as a Source Data file.
d Face domain’s responses to the 12 sets of stimuli tested, showing a high corre-
lation between the measured and the model-predicted responses to the three types
of stimuli across the different images. Source data are provided as a Source Data
file. e Comparison of face domain’s responses to the three types of stimuli. P-values
for one-sided paired t-tests are: original-image vs. feature-only, P=1.35x107;
original-image vs. feature-masked, P=5.85 x 10°%; feature-only vs. feature-masked,
P=3.38x10"". P-values were corrected for multiple comparisons with Bonferroni
correction. Source data are provided as a Source Data file.

dispersity is an independent characteristic dimension of V4 functional
organization, distinct from color and frequency selectivity. The topo-
graphical organization of feature dispersity reflects the distinct pro-
cessing streams of shape and texture features in V4.

Discussion

Our study aims to identify the specific natural image features that are
prominently represented by local subpopulations of V4 neurons. To
capture the V4 representation of diverse natural scenes as compre-
hensively as possible, we used widefield calcium imaging to record
cortical responses of large spans of V4 to tens of thousands of natural
images. This dataset enables us to train a deep-learning model that can
accurately predict the responses of every imaged cortical pixel. This
model can be considered a functional digital twin of V4'>'572°%_ With
the help of this digital twin, we systematically investigated the natural
image features preferred by the neuronal populations across the cor-
tical surface. We found that V4, remarkably, contains a set of diverse
functional domains preferring many non-classical visual features.
These domains can be classified into those preferring shape related or
texture-related features based on how dispersed the preferred image
features are inside their receptive fields. This finding of distinct
domains of shape and texture related features suggest a possible
functional organization principle of V4 neural codes.

Biological visual systems are designed to process natural senses
and hence natural images should be the most effective stimuli for
probing the visual systems. However, the complexity and diversity of
natural image features pose a challenge for investigating the neural
codes of these features when only a limited number of stimuli can be

tested. Consequently, many studies have relied on simplified artificial
stimuli to explore the neural coding of specific stimulus attributes.
Such an approach has revealed that V4 contains maps for encoding
color®, orientation®, spatial frequency*>*, and curvature*>**. While
these findings have enriched our understanding of V4, they are, at best,
partial descriptions of the neural codes. Like blind men touching the
elephant, each study offers a limited perspective. This leaves us with an
incomplete picture of the feature representation of V4. In this study,
we establish the feasibility of a paradigm utilizing natural images to
characterize the neural codes. This paradigm leverages the testing
power of digital twins, modeled by deep neural networks. Using the
digital twin to search for the most preferred images for each cortical
pixel in a large set of natural images, we could comprehensively cap-
ture the visual features that are most salient to the neural population.
Through feature attribution analysis, we could then identify the critical
regions within the natural stimulus that drive the neural response. This
enabled us to effectively estimate the receptive fields of the cortical
pixels. Additionally, we could decipher the neural coding of specific
features via targeted image transformation (e.g., content removal,
image blur, image graying). This paradigm of understanding feature
tuning using natural images not only allows us to uncover detailed
functional organization that has been previously overlooked but also
provides a unified framework for integrating the knowledge gained
from past studies. This paradigm can be applied to any visual cortical
area, facilitating a more thorough investigation of the neural coding of
visual features.

Our results show that V4 primarily encodes natural image features
related to shape and texture. Contour shape and surface texture

Nature Communications | (2024)15:6401



Article

https://doi.org/10.1038/s41467-024-50821-z

i istri . S 0.4 1.0 C
Localized Distributed RF Area . . .
feature feature 3
Top K ‘ § 08 #+ .
| O - | - %
@® <
°
@
Top K N o4t
@@ Preserved @
£
S —
@@ z 02F FD = Kcross/ RFArea
Top K
0 1 1 .

-
d =
o o O
o 0P°
o
® o
o.
oA
L ]

0 0.5 1
Feature Dispersity

Fig. 7 | In silico tests reveal a V4 functional map of feature dispersity. a Example
of the distribution of critical features within receptive fields (RFs). Left: the pre-
ferred images and their corresponding heatmaps of a face-preferring cortical pixel;
right: those of a cortical pixel preferring grid textures. The contour outlines the

2 standard deviations (2-std) of the Gaussian envelope of the cortical pixels’ RF.
b lllustration of the content removal test. The first row shows the regions con-
taining the K pixels with the highest heatmap values; the second row shows images
with only the content in these regions preserved; the third row shows images with
these regions’ content removed. See content removal approach in Supplementary
Fig. 11 and Methods. The ratio of K pixels to the RF area is indicated at the top.

¢ Model-predicted responses of the two pixels in (a) to Top K removed and Top K
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standard errors (salmon: face-preferring, green: grid texture-preferring). We define
feature dispersity (FD) as the ratio between the K values and the RF area at the
intersect of the Top K removed and Top K preserved curves. Source data are
provided as a Source Data file. d Feature dispersity maps for monkey C and monkey
B. e Relationship between feature dispersity and frequency selectivity index across
domains in monkey C. We averaged the indices of cortical pixels within each
domain to obtain the domain index. Colors denote domain categories. Source data
are provided as a Source Data file. f Relationship between feature dispersity and
color selectivity index across domains in monkey C. Source data are provided as a
Source Data file. For better visualization, (e, f) Show the RF-cropped preferred
images of the example domains, where the cropped square region encompasses
the receptive field (2-std) of the domain. See all the domains’ RF-cropped preferred
images in Supplementary Fig. 13 and Supplementary Data 4, 5.

are important features that support object recognition and scene
segmentation®. The encoding of these two types of features in mid-level
visual area V4 has thus attracted considerable attention**>. An earlier
study** on the joint coding of shape and texture found that V4 neurons
lie along a continuum from strong tuning for boundary shapes to strong
tuning for texture, and among neurons tuned to both attributes, tuning
for shape and texture were largely separable. In that study, neural codes
for shape and texture were characterized using a set of artificially
defined stimulus prototypes. In contrast to their approach, we char-
acterized the feature continuum between shape and texture using a
quantitative measure of feature dispersity. This measure relates the
concepts of shape and texture to the degree of localization of preferred
features within the receptive field, with high dispersity being a char-
acteristic of texture and low dispersity a characteristic of shape. How this
dispersity measure can be related to the joint encoding characteristic of
shape and texture reported in the earlier study remains unclear. Further
deciphering the relationship between feature dispersity and coding of
shape and texture may help us understand the nature of shape and
texture processing and provide insights into how shape and texture
selectivities emerge in the primate brain.

The high-performing V4 model, derived from the large dataset,
allows us to systematically characterize the feature preferences of the
neuronal populations in V4. Beyond supporting the analysis and findings
in this study, our model and data can be useful for various other appli-
cations. One interesting possibility is using the model to generate images
that evoke responses similar to those of the original reference images,
known as ‘metamers™. This reconstruction analysis can provide insights
into the specific image contents represented in the V4 population,
enhancing our understanding of information processing in the ventral
visual stream. Our widefield imaging dataset can also be a useful
resource for benchmarking and evaluating computational models of V4.
A popular strategy of brain modeling is to develop task-driven artificial
neural networks so that their network features can best explain the
relationship between stimuli and neural responses®® %, The quality and
richness of the neural data available in our dataset will allow a reliable
evaluation of the competing computational models in terms of neural
response prediction and representational similarity. Furthermore, our
calcium imaging dataset provides information about columnar-scale
topographic organization, which is not available in existing datasets
based on fMRI® or electrophysiological recordings®*°. This unique
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feature of our dataset makes it particularly useful for assessing compu-
tational models that explore the principles underlying functional orga-
nization of the primate visual cortex®* %,

Our study focused on the image features most preferred by each
cortical pixel. A cortical pixel's response represents the average
response of hundreds of nearby neurons in the superficial layer.
Therefore, the preferred image features of a cortical pixel can indicate
the features that drive the simultaneous excitation of a local popula-
tion, which might reflect the functional computation emphasized by
local circuits. Based on the similarity of preferred images among cor-
tical pixels, we grouped cortical pixels into distinct functional
domains. Our two-photon data showed a relatively abrupt transition in
categorical labels at the boundaries of these domains (Supplementary
Fig. 8c). However, this does not necessarily imply discrete borders
between the domains, as characterizing neuronal selectivity based
solely on preferred image categories can by itself introduce dis-
continuities. To clarify whether the functional domains are discrete or
continuous, a more comprehensive investigation of the tuning prop-
erties of neurons to natural images, as well as their distribution across
the cortex, would be necessary.

Our two-photon experiment establishes the consistency between
neuronal tunings and the preference of the cortical pixels. It further
reveals the diversity and similarity in neuronal tuning of the local
population. The natural image preference maps obtained through
widefield imaging can be a useful guide for future studies on neuronal
tuning. These detailed maps enable us to apply a ‘divide and conquer’
strategy to study neuronal coding within each functional subpopula-
tion. By integrating information from different scales and neural codes
from all the local populations, we can ultimately achieve a compre-
hensive understanding of the neural representation of natural scenes.

Methods

Animal preparation and surgery

All experimental protocols followed the guidelines provided by the
Institutional Animal Care and Use Committee (IACUC) of Peking Uni-
versity Laboratory Animal Center and were approved by the Peking
University Animal Care and Use Committee (LSC-TangSM-3). Three
adult male rhesus macaques (Macaca mulatta) named A, B, and C, aged
between 4 and 6 years, were used in this study.

The details of animal preparation for long-term calcium imaging
in awake macaque have been described previously in ref. 34. In sum-
mary, each animal underwent three sequential surgeries while under
general anesthesia. These surgeries involved the implantation of head
posts implant, virus injection, and the installation of imaging window.
In the second surgery, a 20 mm craniotomy was made on the skull over
the dorsal V4 region, targeting the area encompassing the lunate sul-
cus (lu) and the terminal portion of the inferior occipital sulcus (io). We
then performed pressure injections of AAV1.hSynap.GCaMP5G.W-
PRE.SV40 (AV-1-PV2478, titer 2.37el13 GC/mL, Penn Vector Core) at
20-30 locations within the V4 cortex. These injections were adminis-
tered at a depth of approximately 350 pum. To ensure uniform
expression of GCaMP, the injection sites were spaced approximately
1 mm apart. Each injection had a volume of 100-150 nL.

Behavioural task

Monkeys were securely restrained using a head fixation apparatus and
performed an eye fixation task during image recording. The animal was
required to maintain fixation on a small white spot, measuring 0.1°,
within a circular window with a diameter of 1°, for 1.5 s to obtain a juice
reward. Eye position was monitored with an infrared eye-tracking
system (ISCAN) at 120 Hz.

Visual stimuli
Visual stimuli were generated using a ViSaGe system (Cambridge
Research Systems) and displayed on a 17-inch LCD monitor (Acer V173,

80 Hz refresh rate), positioned 45cm away from the subject’s eyes.
Each stimulus was presented for 0.5 seconds following a pre-fixation
period of 0.9s. For each monkey, the receptive field of the imaged
region was first hand-mapped with small gratings. Namely, we manu-
ally controlled the presentation of a 0.4-degree diameter grating to
determine the receptive field location. In the subsequent experiments,
the stimuli were presented over the region’s receptive field (Supple-
mentary Fig. 2b).

Stimuli for V4 large dataset. The natural image stimuli used in the
large dataset were sourced from ImageNet®, specifically ILSVRC2012
and 8 synsets from the person subtree. The original images were
cropped, resized and masked to create round patches measuring 180
pixels (6 degrees) in diameter with soft fade-off.

Our large-scale V4 dataset compromises a training set consisting
of neural responses with each image repeated once, and a validation
set consisting of neural responses with each image with ten repetitions
in random interleave. Each monkey’s training set contained cortical
responses to over 17,000 unique color natural images. Monkey A, B,
and C were tested with 20,000, 17,900, and 19,900 images, respec-
tively, over a period of 4 to 5 days. For validation purposes, a separate
set of 500 natural images was used. In addition, the validation stimuli
included 48 gratings and 8 color patches (Supplementary Fig. 2b). The
48 gratings comprised 8 orientations (22.5° increments), 3 spatial
frequencies (1.0, 2.0, and 4.0 cycles/degree), and 2 phases. The 8 color
patches consisted of red, orange, yellow, green, blue, purple, white,
and black. The validation sets were acquired over one day or two
consecutive days. To assess the image quality and consistency of
cortical responses across recording days, we generated a fingerprint
stimulus set comprising the first 100 pictures from the validation sti-
mulus set. On days when validation data was not collected, we recor-
ded the cortical responses to these 100 fingerprint stimuli with 5
repetitions. This allowed us to evaluate the consistency of the cortical
pixels’ tunings as well as their imaging quality.

Stimuli for testing the preference map. The test stimulus set includes
preferred images for multiple cortical sites. We manually selected 30
and 50 representative cortical sites with distinct feature preferences
for monkey B and monkey C, respectively. For each site, we used the
model’s predictions to identify the top 20 images from the 50,000-
image set, forming the test stimulus set. We eliminated duplicate
images that were selected for different sites, resulting in stimulus sets
containing 537 and 905 stimuli for monkey B and monkey C, respec-
tively. Neural responses to these stimuli were recorded using widefield
imaging and two-photon imaging techniques. During widefield ima-
ging, the response to each stimulus was measured eight times. In the
case of two-photon imaging, the response to each stimulus was mea-
sured 6-8 times within each field of view (FOV). To validate the func-
tional domains identified by the model, we selected 16 model-
predicted preferred images for each domain as follows. First, we nor-
malize each cortical pixel’s response to the 50 K images to zero-mean
and unit variance. Then we averaged the normalized responses of all
the pixels in a functional domain for each image, and select the 16
images from the test stimulus set with the highest averaged predicted
responses (Supplementary Fig. 5a). These images were then used to
test the cortical preferences and assess their alignment with the
model’s predictions.

Stimuli for testing the critical feature. From the above stimulus set
for testing the preference map, we selected 12 images that are pre-
ferred by the face domain of monkey C. For each of these selected
images, we computed a heatmap to identify the critical region within
the image that drove the response of the face domain. Using Adobe
Photoshop, we created two types of images: one in which the critical
region was masked and another in which only the critical region was
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visible while the rest of the image was masked. These additional ima-
ges, along with the original images, formed a test stimulus set com-
prising a total of 36 images (12 images x 3 types). We chose a mask
color to ensure a smooth transition between the masked and uncov-
ered regions. The cortical responses to these stimuli were recorded
using widefield imaging, with each stimulus repeated eight times.

Widefield calcium imaging

Widefield imaging setup. We performed widefield calcium fluores-
cence imaging with a camera imaging system adapted from Imager
3001/M (Optical Imaging). An excitation blue light was obtained with a
LED light source (S3000, Nanjing Hecho Technology Co.) passing
through a 470/40 nm filter. The reflected light was collected using a
pair of lens (Sigma, 50 mm) and split into green and blue light with a
dichroic mirror (525nm). The green light was further filtered (525/
50 nm) and projected onto a green channel camera (Imager 3001/M,
Optical Imaging) and was recorded as the fluorescence calcium images
at a rate of 33 Hz. The blue light was projected onto a blue channel
camera (ZWO ASI533MC Pro, ZWO) and was recorded as the reflec-
tance image at a rate of 20 Hz (Fig. 1a). The reflectance image, which
captured the blood vessels well, served as the reference for anatomical
registration. The imaging focus was adjusted to 300 pm below the
cortical surface. A fast-mechanical shutter was inserted into the blue
excitation light pathway to provide intermittent illumination for long-
term stable imaging.

Calculating cortical responses. During each stimulus presentation
epoch, there were two periods of illumination, each lasting 250 ms. We
utilized the fluorescence images recorded during these periods to
calculate cortical responses. The first illumination period commenced
at 150 ms prior to the onset of the stimulus, while the second illumi-
nation period began 350 ms after the stimulus onset. We averaged the
frames captured during these two periods to obtain the baseline image
(Fo) and peak response image (F;) respectively. From these images, we
computed maps of fluorescence change (AF/Fo map) using the formula
(Fr-Fo)/Fo. To eliminate global signal changes unrelated to the stimulus
and to reveal local modulation, we performed a subtraction operation,
subtracting a Gaussian blurred (o =1.0 mm) version of the AF/Fy map
from the original map, resulting in cortical responses that highlight
local changes. We found that the cortical responses obtained by this
high-pass filtering matched better the responses measured by two-
photon imaging as shown in Supplementary Table 2.

Image registration across days. Prior to imaging each day, we care-
fully adjusted the camera system to ensure alignment with the posi-
tions on the first day. Our procedure involves focusing on the plane
that exhibits the highest sharpness in the blood vessel image. We then
laterally moved the camera system to match the vessel image with the
reference image acquired on the first day. To assess alignment accu-
racy, we developed a custom MATLAB software that evaluates image
sharpness and lateral position error. Once the alignment is achieved,
we move the depth of focus down by 300 um for recording.

To correct for minor displacement and distortion of the cortex
across multiple imaging days, we incorporated additional image cor-
rection during data processing. We first aligned the blood vessel image
captured by the blue imaging camera with the fluorescence images
acquired by the green imaging camera. This alignment involved
rotating, rescaling, and translating the blood vessel images. Then, a
transformation matrix was generated between the blood vessel images
from each day and the reference image acquired on the first day. This
transformation matrix was then used to correct and align the fluores-
cence images across days. Since the blood vessel images acquired by
the blue channel camera have higher spatial resolution than the
fluorescence images, this approach allows us to achieve greater
registration accuracy.

DNN Modeling

Data preprocessing for modeling. The stimulus images, initially
measuring 200 x200 pixels (30 pixels/degree), were resized to
100 x100 pixels and input to the model. The raw response map
acquired by the camera had a resolution of 512 x 512 pixels and a
sampling rates of 45 pixels/mm, which exceeded the intrinsic spatial
resolution of the widefield calcium imaging signal. To simplify the
modeling analysis, we rescaled the response maps to 128 x 128 pixels
using bilinear interpolation. We used validation set responses to
identify regions exhibiting significant stimulus-related fluorescence
changes. Specifically, we conducted one-way ANOVA across responses
of 556 validation stimuli, resulting in regions with P <107, indicating
highly significant changes. These regions were designated as regions
of interest (ROIs, Supplementary Fig. 2a) for modeling purpose.
Responses of regions from outside the ROIs were masked to zero
during modeling.

Network architecture. Our feature transfer model consisted of a fea-
ture extraction and a two-layer perceptron (Supplementary Fig. 3a).
The features are the output maps of Add-6 layer of Xception® to a
stimulus image. We used the Add-6 layer as its outputs have been
demonstrated to be a reliable predictor of V4 responses (see Supple-
mentary Fig. 3b). We used a Keras implementation of Xception, which
was trained for the ImageNet classification task. The two-layer per-
ceptron was used to map the features to the corresponding cortical
responses. The hidden layer of the perceptron consists of 200 units,
designed to extract effective features while avoiding overfitting. To
enhance the model’s expressive capacity, we incorporate an expo-
nential linear unit (ELU) nonlinearity in the hidden layer. This non-
linearity aids in capturing complex relationships and enhancing the
model’s ability to represent the data.

The small Xception-like DNN model (Supplementary Fig. 3c)
consisted of a CNN encoder that shared architectural similarities with
Xception, including depth-wise separable convolution layers and
residual learning blocks. The encoder generated nonlinear feature
responses from input images. A readout network was used to map the
output of encoder to cortical responses. Sigmoid activation function
was used to introduce nonlinearity. The encoder converted the RGB
input images to 7 x7 x400 feature maps, which were fed into the
readout network. Each position within the feature maps corresponded
to a distinct retinotopic spatial location, containing a column of fea-
tures, whereas different positions in the imaged V4 cortex encoded
different features with similar spatial receptive fields. In order to
transform the spatially organized maps of the encoder into feature-
organized maps that resembled the organization in the cortex, the
readout network first reorganized the input 7 x 7 x 400 spatial-feature
map into a 20x20x49 feature-spatial map. This reorganization
swapped the spatial and feature organization. The 400 feature chan-
nels were now organized as a 20 x 20 spatial map, with each column
containing that feature channel’s responses across various retinotopic
locations. This feature-spatial map was then passed through sequences
of convolutional and locally connected layers to generate the final
response output.

To prevent overfitting, dropout layers with a dropout ratio of 0.1
were introduced to all of the above models, meaning that during
training, 10% of the responses were randomly dropped to encourage
the model to generalize better to unseen data. Additionally, the feature
transfer model utilized an L1 penalty regularization on the connection
weights between the hidden layer and Xception features. This reg-
ularization encourages sparsity and promotes the selection of more
relevant and informative features, reducing the risk of overfitting and
improving generalization.

Model training. All the models were optimized using stochastic gra-
dient descent with the Adam optimizer® and a batch size of 20. When
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fitting the neural data, models are trained to minimize the mean square
error (MSE) on the training set. To prevent overfitting and ensure the
best generalization performance, we used early stopping based on the
MSE between predicted and measured neural responses on the vali-
dation set. If the MSE failed to decrease during any consecutive 50
passes through the entire training set (50 epochs), the training process
would be halted. The model that achieved the best performance on the
validation set during the training phase would be saved as the final
model. This approach allows us to capture the model’s optimal per-
formance while avoiding unnecessary training iteration.

For knowledge distillation, we used the results generated by the
feature transfer model as data to train the small DNN model using
supervised training. This generated data consisted of image-response
pairs derived from 100,000 ImageNet images. The responses were
predicted by the feature transfer model that was trained on the neural
data. The generated data was split into a training set containing
90,000 images and a validation set containing 10,000 images. We
trained the small DNN on this data by minimizing the training set MSE.
We also used early stopping based on the MSE on the validation set.
The training would be halted if the MSE on the validation set did not
decrease in ten consecutive epochs.

Predictivity evaluation. The models were assessed by evaluating the
correlation between the predicted responses and the measured
responses of each cortical pixel to the validation stimuli. There is an
inherent limit to the maximum achievable correlation due to response
variability within the same day and across days. To estimate this limit,
or noise ceiling, we calculated the correlation (see Supplementary
Fig. 2f for statistics) between the responses to the fingerprint stimuliin
the validation set and the responses to the fingerprint stimuli averaged
across days when the training set were collected. This allowed us to
determine the upper bound of correlation that can be achieved con-
sidering the inherent variability in the neural responses. The models’
achieved correlation is then normalized by the noise ceiling to provide
a performance measure.

Preference map analysis

Preference map synthesis. We gathered a set of 50,000 images from
ImageNet and prepared them in the same way as we did for generating
the stimulus sets used in the experiment. We used the KD Transfer
model to predict the cortical responses of these 50,000 images. We
then organized the nine most responsive images for each cortical pixel
into a 3 x 3 grid and display it at the corresponding cortical location in
the acquired image to derive the preference map.

Hierarchical clustering on the preference map. In the preference
map, the preference of each cortical pixel is represented by its top nine
images. To cluster these cortical pixels based on the similarities of their
preferred images, we employed a method illustrated in Supplementary
Fig. 4. First, we computed the model’s prediction of each cortical
pixel’s response to the entire set of 50,000 images, and normalized
them to range between O and 1. Then, we combined all the pixels’
normalized responses to generate a predicted cortical activation pat-
tern associated with each image. We then averaged the activation
patterns of the top nine images preferred by each pixel to create the
‘cortical response vector’ of that pixel. The similarity between two
cortical pixels was determined by computing the Pearson correlation
between their respective cortical response vectors. This similarity
metric enabled us to identify groups of cortical pixels that exhibited
similar activation patterns when exposed to their preferred images. To
identify functional domains within the V4 cortex based on shared
image preferences, we employed hierarchical clustering based on
average-linkage, and grouped cortical pixels within a distance thresh-
old of 0.4 (computed as one minus the similarity) into a cluster. Any
cluster that included connected regions larger than 40 pixels was

considered a functional domain. This approach allowed us to distin-
guish distinct functional domains within the V4 cortex, based on their
collective preference for specific image features.

Two-photon calcium imaging

Two-photon imaging setup. We performed two-photon calcium
imaging on monkeys B and C with a Bruker two-photon imaging sys-
tem (Prairie Ultima IV, Bruker Nano). The wavelength of the femtose-
cond laser (Insight X3, Spetra-Physics) was set to 1000 nm. Field of
views (FOVs) of 600 pm x 600 pm were imaged under 1.4x zoom with
a 16x objective (0.8-N.A., Nikon) at a resolution of 1.2 pm/pixel. A fast-
resonant scan (30 frames per second) was used to obtain images of
neuronal activity. We averaged every two frames, resulting in an
effective frame rate of 15 fps. In total, we recorded 20 FOVs, 10 from
monkey B and 10 from monkey C, with recording depths ranging from
100 pm to 300 um. To determine the precise position of each FOV
relative to the widefield imaging map, we recorded the blood vessel
image directly above each FOV as a reference to align the two-photon
imaging data with the widefield imaging map.

Data processing for two-photon imaging. We used customized
MATLAB code to process the data obtained from the experiments.
First, we associated the two-photon image series with the corre-
sponding visual stimuli using the time sequence information recorded
by Neural Signal Processor (Cerebus system, Blackrock Microsystem).
Then, the images were motion corrected using a normalized cross-
correlation-based translation algorithm®. This step helped to align the
images and mitigate any image shifts caused by motion during
recording. For the response to each stimulus, we computed the Fo
image by averaging the five frames preceding the onset of the stimu-
lus. Similarly, the F; image was obtained by averaging the frames from
the fifth to the tenth frames after stimulus onset. These Fo and F
images provided baseline and peak response information associated
with a stimulus, respectively. An additional non-rigid motion
correction® was applied to the Fy and F; images to correct for the
cortical deformation during the long recording session.

We used the differential image (AF) obtained by Fi-Fg to extract
regions of interest (ROIs). We averaged the differential images across
all repeated trials of the same stimulus. A band-pass Difference of
Gaussian filtering (standard deviations of positive and negative Gaus-
sians are 1and 30 pixels respectively) was then applied to the averaged
differential images. The connected subsets of pixels (> 30 pixels) with
pixel values >3.5 standard deviations of the mean brightness were
selected as ROIs. We further refined the shape of the ROI by calculating
the correlation between the AF values of the ROI and its neighboring
pixels. Pixels with a correlation greater than 0.3 will be assigned to the
ROL. Using the above methods, we obtained many overlapping ROls.
To determine whether these ROIs should be merged, we perform
hierarchical clustering on the responses of pixels within these ROIs.
The pixel response was calculated by AF/Fy of the ROI to which it
belonged. In cases where a pixel belonged to the multiple ROIs, the
response was computed as the average of AF/F, of those ROIs. We
calculated the response of each selected ROl using AF/Fy and identified
visually responsive ROIs that exhibit significant response selectivity
(P<107, tested with a one-way ANOVA) for any of the 537 and 905 test
stimuli for monkey B and monkey C, respectively.

Feature attribution analysis

Heatmap synthesis. We used the SmoothGrad-Square algorithm®~ to
produce heatmap of the input image for any output unit of the model.
This algorithm relies on computing the gradient map of the unit’s
response with respect to the input image. The SmoothGrad-Square
algorithm operates by introducing Gaussian noise to the image of
interest, generating a set of similar images. For each generated image,
the unit’s response is backpropagated to the input of the deep learning
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model to generate a gradient map, which captures the sensitivity of the
unit’s response to changes in the input. These gradient maps are then
squared and aggregated to produce the final heatmap. SmoothGrad-
Square involves two hyper-parameters: g, the standard deviation of the
Gaussian noise, and n, the number of samples to sum over. Here we
used 0= 0.2 (image value < [0,1]) and n = 20. To obtain the heatmap of
a specific cortical pixel, we applied the SmoothGrad-Square algorithm
to the corresponding model output unit. When generating heatmap
for a particular cortical region (e.g., the face domain in Supplementary
Fig. 6b), we first added a linear connection unit to the model that
summed the outputs of the relevant pixels. We then applied the
SmoothGrad-Square algorithm to this unit to produce the final
heatmap.

Estimating receptive field. To estimate the receptive field of a target
cortical pixel/region, we averaged the heatmaps generated from a
large set of natural images. Namely, we first calculated the heatmaps
for the top 1,000 images in the 50,000-image set for the target cortical
pixel/region. Next, we normalized the heatmap for each image to
ensure that the sum of values on the heatmap equals the cortical
response elicited by the image. Finally, we fitted the average of these
normalized heatmaps with an elliptical Gaussian:

fx,y)=A-Gx,y)+B @

s2 /2
X
G(x,y)=exp <— 202 2'27) 2)
a

= (x— 6+ (y—y.)sin0
{x (x —x,)cos 0+ (y — y,)sin @

= — (x—x.)sin@+(y—y.cosb

where A is the amplitude of the Gaussian, B is the offset, o, and g, are
the standard deviations of the elliptical Gaussian along its two principal
axes, and x” and y’ are transformations of the coordinates x and y, taking
into account the angle 8 and the offset (x. and y_) of the ellipse. In
total, there were seven free parameters in the fitting procedure:
A,B,0,,04,0,x, and y.. We define the RF area as the area within the
half-maximum contour of the G(x, y), and the receptive field size as the
square root of the RF area (i.e. \/2m In(2) 6,0,). This definition of the RF
area will ensure that [ ;i o area G0 Y) dXAY = [ e RE area O, Y) dxdy.

Content removal test. To quantify the dispersion of preferred fea-
tures within the receptive field, we define a metric called feature dis-
persity based on the content removal test. For a given cortical pixel, we
select its top 25 preferred images from the 50,000-image set. For each
preferred image, we first calculate the heatmap of the target cortical
pixel and identify the key area with the highest heatmap value. We then
generate a series of images, with the key area removed or preserved at
various key area sizes. We used the model to predict the target cortical
pixel’s responses to the 25 preferred images with and without the key
content. We call the area when the cortical pixel’s average response
curves to these two types of images intersect the critical key area. The
ratio of this critical key area relative to the RF area is defined as the
feature dispersity for that cortical pixel.

To smoothly remove the image content (inside or outside the
key area), we adopted a method that performs information removal
separately in the low-frequency and high-frequency domains (Sup-
plementary Fig. 11). We obtain the low-frequency information (X;) of
the original image by applying a Gaussian filter with a sigma value
equal to half of ogr (0rr = \/0,05). The Gaussian filter size was chosen
to ensure the receptive field does not contain sufficient information
to resolve period signals, in accordance with the Shannon sampling
theorem. The high-frequency information (X;) was then defined as

the difference between the original image and the low-frequency
image. To remove content in the low-frequency domain, we set the
target pixels’ RGB values to 0.5 and applied the same low-pass filter
as before, obtaining the content removed low-frequency image (X;).
For high frequencies, we apply Gaussian smoothing (sigma = 2 pixels)
to the target pixels’ spatial mask and then mask the X, with the
smoothed mask to obtain the content removed high-frequency
image (Xy)). The final content-removed image is obtained by adding
X{ and X5'.

Calculating frequency selectivity index and color selectivity index.
We used the frequency selectivity index (FSI) and color selectivity
index (CSI) to measure how cortical responses are tuned to high-
frequency and color information. For a given cortical pixel, we selected
its top 25 preferred images from the 50,000-image set. FSI is calcu-
lated for each image as the response difference between the original
image and its Gaussian blurred version (sigma = ogg/2), normalized by
the original image response. CSI is calculated as the difference in
response between the original image and its grayscale counterpart,
also normalized by the original image response. The grayscale con-
version is performed using the formula Gray = 0.299xR + 0.587xG +
0.114xB. The results from the 25 preferred images are averaged to
obtain the FSI and CSI for the target cortical pixel.

Statistics & Reproducibility

Statistical analyses were performed using MATLAB (R2021a). We used
the one-sided Wilcoxon signed-ranked test to compare the perfor-
mances of the models. The one-sided paired t-test followed by Bon-
ferroni correction was used to compare responses to 3 types of stimuli
for testing critical features. One-way ANOVA analyses were used to
identify significant differences in the means of multiple groups. Three
male macaque monkeys participated in the experiments. No statistical
method was used to predetermine sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The widefield calcium imaging dataset and the two-photon imaging
data used in this study are available at Zenodo (https://doi.org/10.5281/
zenodo.10972034). Natural images used in the stimulus set were taken
from the ImageNet database” (https://image-net.org/download-
images.php). Source data are provided with this paper.

Code availability
Custom code for model training and related analysis are available at
Zenodo (https://doi.org/10.5281/zenodo.10972034).
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