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Abstract—The paper describes several applications of informa-
tion inequalities to problems in database theory. The problems
discussed include: upper bounds of a query’s output, worst-case
optimal join algorithms, the query domination problem, and
the implication problem for approximate integrity constraints.
The paper is self-contained: all required concepts and results
from information inequalities are introduced here, gradually, and
motivated by database problems.

Index Terms—conjunctive query, information inequality, worst
case optimal join algorithm, approximate constraint implication

I. INTRODUCTION

Notions and techniques from information theory have found

a number of uses in various areas of database theory. For

example, entropy and mutual information have been used

to characterize database dependencies [1], [2] and normal

forms in relational and XML databases [3], [4]. More recently,

information inequalities were used with much success to

obtain tight bounds on the size of the output of a query

on a given database [5]–[9], and to devise query plans for

worst-case optimal join algorithms [8], [9]. Information theory

was also used to compare the sizes of the outputs of two

queries, or, equivalently, to check query containment under

bag semantics [10], [11]. Finally, information theory has been

used to reason about approximate integrity constraints in the

data [12], [13].

This paper presents some of these recent applications of

information theory to databases, in a unified framework. All

applications discussed here make use of information inequali-

ties, which have been intensively studied in the information

theory community [14]–[18]. We will introduce gradually the

concepts and results on information inequalities, motivating

them with database applications.

We start by presenting in Sec. III a celebrated result in

database theory: the AGM upper bound, which gives a tight

upper bound on the query output size, given the cardinalities

of the input relations. The AGM bound was first introduced

by Grohe and Marx [19], and refined in its current form by

Atserias, Grohe, and Marx [5], hence the name AGM. (A

related result appeared earlier in [20].) While the original papers
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already used information inequalities to prove these bounds, in

this paper we provide an alternative, elementary proof, which

is based on a family of inequalities due to Friedgut [21], and

which are of independent interest.

Next, we turn our attention in Sec. IV to an extension

of the AGM bound, by providing an upper bound on the

size of the query’s output using functional dependencies

and statistics on degrees, in addition to cardinality statistics.

The extension to functional dependencies was first studied

by Gottlob et al. [6] and then by Khamis et al. [8], while

the general framework was introduced by Khamis et al. [9].

Here, information inequalities are a necessity, and we use this

opportunity to introduce entropic vectors and polymatroids, and

to define information inequalities. We show simple examples

of how to compute upper bounds on the query’s output size

using Shannon inequalities (monotonicity and submodularity,

reviewed in Sec. IV-A).

A natural question is whether the upper bound on the query’s

output size provided by information inequalities is tight: we

discuss this in Sec. V. This question is surprisingly subtle,

and it requires us to dig even deeper into information theory,

and discuss non-Shannon inequalities. More than 30 years

ago, Pippenger [22] asserted that constraints on entropies are

the “laws of information theory” and asked whether the basic

Shannon inequalities form the complete laws of information

theory, i.e., whether every constraint on entropies can be derived

from the Shannon’s basic inequalities. In a celebrated result

published in 1998, Zhang and Yeung [16] answered Pippenger’s

question negatively by finding a linear inequality that is satisfied

by all entropic functions with 4 variables, but cannot be derived

from Shannon’s inequalities. Later, Matús [17] proved that, for

4 variables or more, there are infinitely many, independent non-

Shannon inequalities. In fact, it is an open problem whether the

validity of an information inequality is decidable. We provide

here a short, self-contained proof of Zhang and Yeung’s result.

This result has a direct consequence to our problem, computing

an upper bound on the query’s output size: we prove that

Shannon inequalities are insufficient to compute a tight upper

bound. In contrast, we show that the upper bound derived

by using general information inequalities is tight, a result

related to one by Gogacz and Torunczyk [23] (for cardinality

constraints and functional dependencies only) and another one

by Khamis et al. [9] (for general degree constraints). The take-979-8-3503-3587-3/23/$31.00 ©2023 IEEE
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away of this section is that we have two upper bounds on

the query’s output size: one that uses Shannon inequalities,

which is computable but not always tight, and another one that

uses general information inequalities, which is tight but whose

computability is an open problem.

This motivates us to look in Sec. VI at a special case,

when the two bounds coincide and, thus, are both tight

and computable. This special case is when the statistics are

restricted to cardinalities, and to degrees on a single variable.

We call the corresponding class of information inequalities

simple inequalities, and prove that they are valid for all

entropic vectors iff they are provable using Shannon inequalities.

Moreover, in this special case, the worst-case database instances

(where the size of the query’s output reaches the theoretical

upper bound) have a simple yet interesting structure, called

normal database instances, which generalize the product

database instances that are the worst case instances for the

AGM bound.

In Sec. VII we turn to the most exciting application of upper

bounds to the query’s output size: the design of Worst Case

Optimal Join, WCOJ, algorithms, which compute a query in

a time that does not exceed the upper bound on their output

size. Thus, a WCOJ algorithm is worst-case optimal. The vast

majority of database systems today compute a conjunctive

query as a sequence of binary joins, whose intermediate results

may exceed the upper bound on the final output size. Therefore,

database execution engines are not WCOJ algorithms. For that

reason, the discovery of the first WCOJ algorithm by Ngo, Porat,

Ré, and Rudra [24], [25] was a highly celebrated result. While

the original WCOJ algorithm was complex, some of the same

authors described a very simple WCOJ, called Generic Join

(GJ) in [26], which, together with its refinement Leapfrog Trie

Join (LFTJ) [27] forms the basis of the few implementations

to date [28]–[31]. Looking back at these results, we observe

that any concrete WCOJ algorithm also provides a proof of the

upper bound of the query’s output size, since the size of the

output cannot exceed the runtime of the algorithm. A WCOJ

algorithm can be designed in reverse: start from a proof of the

upper bound, then convert that proof into a WCOJ algorithm.

We call this paradigm from proofs to algorithms, and illustrate

it on three different proof systems for information inequalities:

we derive GJ, an algorithm we call Heavy/Light, and PANDA.

Next, in Sec. VIII we move beyond upper bounds, and

consider a related problem: given two queries, check whether

the size of the output of the second query is always greater than

or equal to that of the first query. This problem, called the query

domination problem, is equivalent to the query containment

problem under bag semantics. The latter was introduced by

Chaudhuri and Vardi [32], is motivated by the semantics of

SQL, where queries return duplicates, hence the answer to a

query is a bag rather than a set. The query containment problem

is: given two queries, interpreted under bag semantics, check

whether the output of the first query is always contained in that

of the second query. It has been shown that the containment

problem is undecidable for unions of conjunctive queries [33]

and for conjunctive queries with inequalities [34], by reduction

from Hilbert’s 10th problem. However, it remains an open

problem to date whether the containment of two conjunctive

queries is decidable. We describe in this section a surprising

finding by Kopparty and Rossman [10], who have reduced

the containment problem to information inequalities. This

result was further extended in [11], and it was shown that the

containment problem under bag semantics is computationally

equivalent to information inequalities with max, which are

inequalities that assert that the maximum of a finite number of

linear expressions is ≥ 0. The decidability of either of these

problems remains open to date.

Finally, we present in Sec. IX another, quite distinct applica-

tion of information inequalities: reasoning about approximate

integrity constraints. The implication problem for integrity

constraints asks whether a set of integrity constraints logically

implies some other constraint: this is a problem in Logic, and

consists of checking the validity of a sentence
∧

i σi ⇒ σ.

When the integrity constraints can be captured by some

information measures, such as is the case for Functional De-

pendencies and Multivalued Dependencies, then an implication

can be described as a conditional information inequality. The

problem we study is whether the exact implication problem

can be relaxed to an inequality between these information

measures,
∑

i h(σi) ≥ h(σ). We review a result from [12]

stating that every exact implication between FDs and MVDs

relaxes to an inequality. However, in a surprising result, Kaced

and Romashchenko [18] have given examples of conditional

information inequalities that do not relax. In other words, the

exact implication holds, but the tiniest violation of an integrity

constraint in the premise may cause arbitrarily large violation of

the integrity constraint in the consequence. Yet in another turn,

[12] show that every conditional information inequality relaxes

with some error term, which can be made arbitrarily small, at

the cost of increasing the coefficients of the terms representing

the premise. In particular, every conditional inequality could

be derived from an unconditioned inequality, by having the

error term tend to zero, since in the conditional inequality the

premise is assumed to be zero, hence the magnitudes of their

coefficients do not matter. This section leads us to our deepest

dive into the space of entropic vectors and almost entropic

vectors: we show that the set of entropic vectors is neither

convex nor a cone, that its topological closure is a convex

cone, called the set of almost entropic functions, and use the

theory of closed convex cones to prove the relaxation-with-error

theorem.
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II. BASIC NOTATIONS

For two natural numbers M,N we denote by [M : N ]
def
=

{M,M+1, . . . , N}; when M = 1 we abbreviate [1 : N ] by N .
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We will use upper case X,Y, Z for variable names, and lower

case x, y, z for values of these variables. We use boldface for

tuples of variables, e.g. X,Y , or tuples of values, e.g. x,y.

A conjunctive query, CQ, is an expression of the form:

Q(Y0) =∃Z(R1(Y1) ∧ · · · ∧Rm(Ym)) (1)

Each Rj(Yj) is called an atom: Rj is a relation name, and Yj
are variables. We refer to Yj interchangeably as the variables

of Rj , or the attributes of Rj . The variables Z are called

existential variables, while Y0 are called head variables. We

denote by n the total number of variables in the query, and

by X = {X1, . . . , Xn} the set of these variables. Thus X =
Y0 ∪Z, and Yj ⊆ X , ∀j.

Fix some infinite domain Dom. If X is a set of variables,

then we write Dom
X

for the set of X-tuples. A database

instance is D = (RD1 , . . . , R
D
m), where, for each j = 1,m,

RDj ⊆ Dom
Yj , where Yj are the attributes of Rj . Unless

otherwise stated, relations are assumed to be finite. When D

is clear from the context, then we will drop the superscript

and write simply Rj for the instance RDj , for j = 1,m.

We denote by Q(D) ⊆ Dom
Y0 the output, or answer to the

query Q on the database D. The query evaluation problem is:

given a database instance D, compute the output Q(D). The

design and analysis of efficient query evaluation algorithms

is a fundamental problem in database systems and database

theory. For the complexity of the query evaluation problem,

we consider only the data complexity, where Q is fixed, and

the complexity is a function of the input database D.

For a simple illustration, consider:

Q(X) =∃Y ∃Z(R(X,Y ) ∧ S(Y, Z) ∧ T (Z,X)) (2)

Q returns all nodes x that belong to an RST triangle.

A Boolean conjunctive query is a conjunctive query with no

head variables. At the other extreme, a full conjunctive query is

a query with no existential variables. For example, the query:

Q(X,Y, Z) =R(X,Y ) ∧ S(Y, Z) ∧ T (Z,X) (3)

is a full CQ computing all triangles formed by the relations

R,S, T . Full conjunctive queries are of special importance

because they often occur as intermediate expressions during

query evaluation. Unless otherwise stated, we will assume in

this paper that the query is a full conjunctive query without self-

joins, meaning that the relation names of the atoms R1, R2, . . .
are distinct. Such a query is also called a natural join of the

relations R1, . . . , Rm.

Fix a relation R(X), with n attributes. A functional depen-

dency, or FD, is an expression U → V , where U ,V ⊆ X .

An instance RD satisfies the FD, and we write RD |= U → V ,

if for any two tuples x1,x2 ∈ RD, x1.U = x2.U implies

x1.V = x2.V . A set of functional dependencies Σ implies

a functional dependency U → V , in notation Σ |= U → V ,

if, for every instance RD, if RD |= Σ then RD |= U → V .

Armstrong’s axioms [35] form a complete axiomatization of

the implication problem for FDs. The closure of U ⊆ X ,

denoted U+, is the set of all attributes X s.t. Σ |= U → X .

The closure can be computed in polynomial time in the size

of U and Σ. A set U is closed if U+ = U . A super-key for

R(X) is a set U with the property that U+ = X , and a key

is a minimal set of attributes that is a superkey.

A finite lattice is a partially ordered set (L,⪯) where every

two elements x, y ∈ L have a least upper bound x ∨ y, and a

greatest lower bound x∧y. In particular the lattice has a smallest

and a largest element, usually denoted by 0̂, 1̂. Consider now a

set of variables X , and a set of functional dependencies, Σ, over

X . We denote by (LΣ,⊆) the lattice consisting of the closed

sets, LΣ = {U | U+ = U}. One can verify that the operations

in this lattice are U ∧V
def
= U ∩V and U ∨V

def
= (U ∪V )+.

The cartesian product of two relations R(X), S(Y ) with

disjoint sets of attributes is the set R × S
def
= {(x,y) |

x ∈ R,y ∈ S} with attributes X ∪ Y ; its size is |R × S| =
|R| · |S|. Fix a set of attributes X , and two X-tuples

x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n). Their domain

product is the X-tuple x ⊗ x′ def
= ((x1, x

′
1), . . . , (xn, x

′
n));

thus, the value of each attribute is a pair.

Definition II.1. The domain product of two relation instances

R and S, with the same set of attributes X , is R ⊗ S
def
=

{x⊗ x′ | x ∈ R,x′ ∈ S}.

We have |R ⊗ S| = |R| · |S|. If Di = (RDi

1 , . . . , RDi
m ),

i = 1, 2, are two database instances over the same schema,

then we define their domain product D1 ⊗ D2 as (RD1
1 ⊗

RD2
1 , . . . , RD1

m ⊗ RD2
m ). One can check that Q(D1 ⊗D2) =

Q(D1) ⊗ Q(D2) for any conjunctive query Q. The domain

product should not be confused with the cartesian product. It

was first introduced by Fagin [36] (under the name direct

product) to prove the existence of an Armstrong relation

for constraints defined by Horn clauses, and later used by

Geiger and Pearl [37] to prove that Conditional Independence

constraints on probability distributions also admit an Armstrong

relation. The same construction appears under the name “fibered

product” in [10].

III. WARMUP: THE AGM BOUND

Consider a full conjunctive query:

Q(X) =
∧

j=1,m

Rj(Yj) (4)

where X = {X1, . . . , Xn}. Assume we have a database D,

and we know the cardinality of each relation RDj . How large

could the query output be? The answer is given by an elegant

result, initially formulated by Grohe and Marx [19] and later

refined by Atserias, Grohe, and Marx [5], and is called today

the AGM bound of the query Q. To state this bound, we first

need to review the connection between conjunctive queries and

hypergraphs.

We associate Q in (4) with the hypergraph H = (X, E),
where E = {Y1, . . . ,Ym}. In other words, the nodes of the

hypergraph are the variables, and its hyperedges are the atoms

of the query. A fractional edge cover of the hypergraph H is a
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tuple of non-negative weights w = (wj)j=1,m, such that every

variable Xi is covered, meaning:

∀i = 1, n :
∑

j:Xi∈Yj

wj ≥1 (5)

A fractional edge cover of the query Q is a fractional edge

cover of its associated hypergraph. The AGM bound is the

following:

Theorem III.1 (AGM Bound). For any fractional edge cover

w of the query (4), and every instance D:

|Q(D)| ≤
∏

j=1,m

|RDj |
wj (6)

To reduce clutter, we will often drop D from both Q(D)
and RDj , and write the bound simply as |Q| ≤

∏

j |Rj |
wj .

Let B = (Bj)j=1,m be a non-negative vector, representing

the cardinalities of the relations in the database. We define:

AGM(Q,B)
def
=min

w

∏

j=1,m

B
wj

j (7)

where w ranges over all fractional edge covers of the query’s

hypergraph. Then Theorem III.1 can be restated as follows: for

every instance D, if |RDj | ≤ Bj for j = 1,m, then |Q(D)| ≤
AGM(Q,B). When B is clear from the context, then we

write the bound simply as AGM(Q).
Before we prove the bound, we illustrate it with a classic

example.

Example III.2. Consider the triangle query (3), which we

repeat here: Q(X,Y, Z) = R(X,Y )∧S(Y, Z)∧T (Z,X). Its

associated hypergraph is a graph with three nodes X,Y, Z
and three edges forming a triangle. A fractional edge cover is

any non-negative tuple (wR, wS , wT ) satisfying:

Cover X: wR+ wT ≥ 1
Cover Y : wR+ wS ≥ 1
Cover Z: wS+ wT ≥ 1

The inequality |Q| ≤ |R|wR · |S|wS · |T |wT holds for every

fractional edge cover. Consider the following four fractional

edge covers: (0, 1, 1), (1, 0, 1), (1, 1, 0), (1/2, 1/2, 1/2): these

are the extreme vertices of the edge-covering polytope. It

follows that the AGM bound in (7) is achieved at one of

the four extreme vertices:

AGM(Q) =

min
(

|S| · |T |, |R| · |T |, |R| · |S|, |R|1/2 · |S|1/2 · |T |1/2
)

When |R| = |S| = |T | = N then AGM(Q) = N3/2.

In the rest of this section we will prove the AGM bound (6),

then show that the bound is tight.

Friedgut’s Inequalities While the original proof of the

AGM bound used information inequalities, we postpone the

discussion of information inequalities until Sec. IV, where we

consider more general statistics. Instead, we give here a simple,

elementary proof, based on an elegant family of inequalities

introduce by Friedgut [21].

Fix a hypergraph H = (X, E). Let N > 0 be a natural

number, and for each hyperedge Yj ∈ E, let rj ∈ R
N |Yj |

+ be a

non-negative, multi-dimensional vector with |Yj | dimensions;

we will refer to rj as a tensor. In what follows, we denote by

i a tuple i = (i1, . . . , in) ∈ [N ]X , and by ij its projection on

Yj .

Theorem III.3 (Friedgut’s Inequality). [21] For every frac-

tional edge cover w of the hypergraph H, the following holds:

∑

i

∏

j=1,m

rj [ij ] ≤
∏

j=1,m





∑

ij

rj [ij ]
1

wj





wj

(8)

Fig. 1 illustrates several instances of (8). We invite the

reader to check that Loomis–Whitney’s inequality [38] is also

an instance such an inequality. Using Theorem III.3 we can

prove the AGM bound as follows. Given a relational instance

D = (RD1 , . . . , R
D
m) define the following tensors:

rj [x1, . . . , xaj ]
def
=

{

1 if (x1, . . . , xaj ) ∈ RDj
0 otherwise

Then the LHS of (8) is |Q(D)| and the RHS is
∏

j |Rj |
wj .

Proof. (of Theorem III.3) While the original proof also used

information inequalities, we give here a direct proof, by

induction on the number n of vertices of the hypergraph H.

(This proof generalizes Loomis–Whitney’s proof in [38].)

We replace each tensor expression rj [ij ] with (rj [ij ])
wj ,

then in order to prove (8) it suffices to prove:

∑

i

∏

j

rj [ij ]
wj ≤

∏

j





∑

ij

rj [ij ]





wj

(9)

We notice that the index variables i = (i1, . . . , in) used in

the summation correspond one-to-one to the nodes of the

hypergraph X = {X1, . . . , Xn}, and the subset ij contains

the index variables corresponding to nodes in Yj . We now

prove (9) by induction on n.

When n = 1 then this is Hölder’s inequality (see Fig. 1),

whose proof can be found in textbooks. Assume n > 1 and

consider the hypergraph H′ obtained by removing the last

variable Xn: its nodes are {X1, . . . , Xn−1} and its hyperedges

are {Yj − {Xn} | j = 1,m}. The weights w1, . . . , wm con-

tinue to be a fractional edge cover for H′. Group the LHS

of Eq. (9) by factoring out the sum over the variable in, and

apply induction hypothesis to the summation over the other

variables i1, . . . , in−1, which form the hypergraph H′:

∑

in





∑

i1,...,in−1

∏

j

rj [ij ]
wj



 ≤
∑

in

∏

j





∑

ij−{in}

rj [ij ]





wj

We factor out the products that do not depend on the variable in,

then use the fact that
∑

j:Xn∈Yj
wj ≥ 1 because Xn is covered,

and apply Hölder’s inequality (Fig. 1) with aj [in]
def
= rj [ij ].

The RHS of the expression above becomes:

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 27,2024 at 23:20:19 UTC from IEEE Xplore.  Restrictions apply. 



Cauchy-Schwartz:
∑

i

a[i] · b[i] ≤

(

∑

i

a[i]2

)1/2

·

(

∑

i

b[i]2

)1/2 i

½ ½ 

Hölder:
∑

i

∏

j

aj [i] ≤
∏

j

(

∑

i

aj [i]
1

wj

)wj

when
∑

j wj ≥ 1
i

w
1
w
2
…

Friedgut:
∑

i,j,k

a[i, j] · b[j, k] · c[k, i] ≤





∑

i,j

a[i, j]2





1/2

·





∑

j,k

b[j, k]2





1/2

·





∑

k,i

c[k, i]2





1/2
i j

k

½ 

½ ½ 

Fig. 1. Examples of Friedgut’s inequalities (8). In each case we show the associated hypergraph on the right.

∏

j:Xn ̸∈Yj





∑

ij

rj [ij ]





wj

·
∑

in

∏

j:Xn∈Yj





∑

ij−{in}

rj [ij ]





wj

≤
∏

j:Xn ̸∈Yj





∑

ij

rj [ij ]





wj

·
∏

j:Xn∈Yj





∑

in

∑

ij−{in}

rj [ij ]





wj

This is the RHS of (9), which completes the proof.

The lower bound How tight is the AGM bound? One key

insight in [5] is that, while the upper bound is described by

a linear program, a lower bound can be described using the

dual linear program: tightness follows from the strong duality

theorem for linear programs. They proved:

Theorem III.4. For any query Q with n variables, and vector

B there exists a database D s.t. |Q(D)| ≥ 1
2nAGM(Q,B).

We call such a database D a worst-case instance.

Proof. The logarithm of the AGM bound (7) is the optimal

value of the following primal linear program:

minimize
∑

j

wj logBj

where ∀i :
∑

j:Xi∈Yj

wj ≥ 1

∀j : wj ≥ 0

The dual linear program is:

maximize
∑

i

vi

where ∀j :
∑

i:Xi∈Yj

vi ≤ logBj

∀i : vi ≥ 0

For any two feasible solutions w,v of the primal and dual,

weak duality holds:
∑

j wj logBj ≥
∑

i vi. If w∗,v∗ are the

optimal solutions, then the strong duality theorem states that

these two expressions are equal, therefore:

AGM(Q,B) =2
∑

j w
∗
j logBj = 2

∑
i v

∗
i =

∏

i

2v
∗
i (10)

If v is any dual solution, we construct the following database

instance D: for each variable Xi, define the domain Vi
def
=

[⌊2vi⌋] = {1, 2, . . . , ⌊2vi⌋}, and set RDj
def
= ×i:Xi∈Yj

Vi, for

j = 1,m. We call D a product database instance, because

each relation is a cartesian product. D satisfies the cardinality

constraints |RDj | ≤ Bj because

|RDj | =
∏

i:Xi∈Yj

⌊2vi⌋ ≤ 2
∑

i:Xi∈Yj
vi ≤ 2logBj = Bj

Similarly, the output to the query is the product Q(D) =×iVi,
and its size is

∏

⌊2vi⌋. At optimality, when v = v∗,

|Q(D)| =
∏

i

⌊2v
∗
i ⌋ (11)

Theorem III.4 follows from (10) and (11), and observing that

⌊2v
∗
i ⌋ ≥ 1

22
v∗i .

Thus, one could say that the AGM bound is tight up

to a “rounding error”. The original paper [5] provides an

extensive discussion on tightness and proves two facts. First,

they construct arbitrarily large databases D where the AGM

bound is tight exactly. Second, they describe an example where

the ratio between the lower and upper bound can be arbitrarily

close to 1/2n, as n grow arbitrarily large; despite this example,

the AGM bound is considered to be tight for practical purposes.

Discussion The AGM bound is elegant in that it solves

completely the problem it set out to solve: find the tight upper

bound when the cardinalities of all relations are known, and

nothing else is known. However, the bound is limited, in that

it cannot take advantage of other statistics or constraints on the

input data, which are often available in practice. For example,

consider the join of two relations, Q(X,Y, Z) = R(X,Y ) ∧
S(Y, Z), and assume that both |R|, |S| ≤ B. The AGM bound
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K ⊆ R
2[n]

+ is some set, then we say that it is valid for K, and

write K |= c · h ≥ 0.

Thus, we will talk about inequalities valid for entropic

vectors, or valid for polymatroids, and the latter are precisely

the Shannon inequalities (this is implicit in the proof of Th. V.2

below). Any Shannon inequality is also valid for entropic

vectors; however, we will see in Th. V.7 below a non-Shannon

inequality, which is valid for entropic vectors, but not for

polymatroids. In analogy with mathematical logic, one should

think the vectors h as models, inequalities c·h ≥ 0 as formulas,

and sets K ⊆ R
2[n]

+ as classes of models.

Example IV.3. The following is a Shannon inequality, called

Shearer’s inequality:

h(XY ) + h(Y Z) + h(ZX)− 2h(XY Z) ≥0 (17)

To prove it, we apply submodularity twice, underlining the

affected terms:

h(XY ) + h(Y Z) + h(ZX)

≥ h(XY Z) + h(Y ) + h(ZX)

≥ h(XY Z) + h(XY Z) + h(∅) = 2h(XY Z)

Equivalently, we observe that (17) is the sum of the following

basic Shannon inequalities:

h(XY ) + h(Y Z)− h(Y )− h(XY Z) ≥0

h(Y ) + h(ZX)− h(∅)− h(XY Z) ≥0

h(∅) =0

We will prove shortly (Theorem V.2 below) that one can

decide in time exponential in n whether an inequality is valid

for all polymatroids. In contrast, it is an open problem whether

entropic validity is decidable.

B. The Entropic Bound and the Polymatroid Bound

The general framework for computing a bound on a query’s

output uses degree constraints, which, in turn, correspond to

conditional entropies. We define these two notions first.

We write UV for set U ∪ V . Given h ∈ R
2[n]

+ , define:

h(V |U)
def
=h(UV )− h(U) (18)

U ,V need not be disjoint, and h(V |U) = h(V −U |U); for

example, h(XY |X) = h(Y |X). If h(V |U) = 0 then we say

that h satisfies the functional dependency U → V , and we

write h |= U → V . Lee [1] proved that, if R is a relation

instance with attributes X , p : R → [0, 1] is a probability

distribution, and h is its entropic vector, then R |= U → V iff

h |= U → V . For a simple illustration, referring to Fig. 2, both

R and its entropy h satisfy the FDs XY → Z, XZ → Y , and

Y Z → X: for example XY is a key (all 4 tuples have distinct

values XY ) and h(Z|XY ) = h(XY Z)−h(XY ) = 2−2 = 0.

Fix U , and denote by h(−|U) : 2X−U → R+ the function

V 7→ h(V |U). If h is a polymatroid, then h(−|U) is also

a polymatroid, called the conditional polymatroid. If h is an

entropic vector, then, surprisingly, h(−|U) is not necessarily

entropic (as we will see later in Sec. IX-C), yet the name

conditional entropy is justified by the following. Suppose h

is associated to (R, p). Fix an outcome u ∈ Dom
U

, consider

the random variable V conditioned on U = u, and denote its

entropy by h(V |U = u). Then:

h(V |U) =E
u
[h(V |U = u)] (19)

In other words, h(V |U) equals the expectation over the

outcomes u of the (standard) entropy of the random variable V

conditioned on U = u. The proof of identity (19) consists of

applying directly the definition of the entropy given in Eq. (12).

When proving Shannon inequalities it is sometimes con-

venient to write the submodularity inequality as h(V |U) ≥
h(V |UW ).1 In other words, conditioning on more variables

can only decrease the entropy.

Example IV.4. We illustrate a simple Shannon inequality with

conditionals:

h(XY )+h(Y Z) + h(ZU) + h(U |XZ) + h(X|Y U) ≥

≥h(XY Z) + h(Y ) + h(ZU) + h(U |XZ) + h(X|Y U)

≥h(XY Z) + h(Y ZU) + h(U |XZ) + h(X|Y U)

≥h(XY Z) + h(Y ZU) + h(U |XY Z) + h(X|Y ZU)

=2h(XY ZU)

Next, we define degrees of a relation instance R ⊆ Dom
X

.

Given subsets U ,V ⊆ X , and u ∈ Dom
U

, the V -degree of

U = u in R is the number of distinct values v that occur in

R together with u; the max-V -degree of U is the maximum

degree over all values u. Formally:

degR(V |U = u)
def
= |{v | (u,v) ∈ ΠUV (R)}|

degR(V |U)
def
=max

u
(degR(V |U = u))

We note that degR(V |U) ≥ 1 (since we assumed R ̸= ∅),

and equality holds iff R satisfies the functional dependency

U → V .

Definition IV.5. Fix a relation R(X). A degree statistics, or

a statistics in short, σ, is an expression of the form σ =
(V |U) where U ,V ⊆ X; when U = ∅ then we call σ
a cardinality statistics, and write it as (V ). If Σ is a set

of statistics, then we call B = (Bσ)σ∈Σ, where Bσ ≥ 1,

statistics values associated to Σ. The log-statistics values are

b = logB = (bσ := logBσ)σ∈Σ.

We abbreviate h(V |U) and degR(V |U) with h(σ) and

degR(σ) respectively. If Σ is a set of statistics, then a Σ-

inequality is an inequality of the following form:
∑

σ∈Σ

wσh(σ) ≥h(X) (20)

where w = (wσ)σ∈Σ are nonnegative weights.

1This is equivalent to h(UV )− h(U) ≥ h(UV W )− h(UW ); when
V ∩W = ∅ then this is a submodularity inequality.
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Fix a hypergraph H = (X, E). We say that Σ is guarded by

H if, for every σ = (V |U) in Σ, there exists a hyperedge Yσ ∈
E such that U ,V ⊆ Yσ; we call Yσ the guard of σ. When H
is the hypergraph of a query Q, then we say that Σ is guarded

by Q, and that Rσ is the guard of σ. The following theorem

establishes the key connection between information inequalities

and query output size. The proof relies on a method originally

introduced by Chung et al. for a combinatorial problem [39],

and adapted by Grohe and Marx for constraint satisfaction [7],

then by Atserias, Grohe, and Marx for their AGM bound [5].

Theorem IV.6. Assume Σ is guarded by Q. If the Σ-

inequality (20) is valid for entropic vectors then:

|Q| ≤
∏

σ∈Σ

deg
wσ

Rσ
(σ) (21)

where Rσ is the guard of σ ∈ Σ.

Proof. Fix a database instance D, and let h be the entropic

vector associated to the relation Q(D); by uniformity, h(X) =
log |Q(D)|. If σ = (V |U) ∈ Σ has guard Rσ , then:

h(σ) =E
u
[h(V |U = u)] ≤ max

u
h(V |U = u)

≤max
u

log degRσ
(V |U = u)

= log degRσ
(V |U) = log degRσ

(σ)

Using (20) we derive:
∑

σ

wσ log degRσ
(σ) ≥

∑

σ

wσh(σ) ≥ h(X) = log |Q|

Inequality (20) is similar to the AGM inequality (6). Next,

we proceed as we did for the AGM bound: fix numerical values

for the statistics, then minimize the bound over all valid w’s.

We say that a database instance D satisfies the statistics Σ,B,

in notation D |= (Σ,B), if degRD
σ
(σ) ≤ Bσ for all σ ∈ Σ.

Similarly, we say that a vector h satisfies the log-statistics Σ, b
if h(σ) ≤ bσ for all σ. We define:

Definition IV.7 (Query Upper Bound). Let Σ,B be statistics

values, guarded by the query Q. Fix some set K ⊆ R
2[n]

. The

Upper Bound w.r.t. K of the query Q is:

U-BoundK(Q,Σ,B)
def
= inf

w:K|=Eq.(20)

∏

σ∈Σ

Bwσ
σ

The entropic upper bound is U-BoundΓ∗
n

and the polymatroid

upper bound is U-BoundΓn
.

Sometimes it is more convenient to use the logarithm and

define:

Log-U-BoundK(Q,Σ, b)
def
= inf

w:K|=Eq.(20)

∑

σ∈Σ

wσbσ (22)

Corollary IV.8. The following hold:

• U-BoundΓ∗
n
(Q,Σ,B) ≤ U-BoundΓn

(Q,Σ,B), and

• If D |= (Σ,B) then |Q(D)| ≤ U-BoundΓ∗
n
(Q,Σ,B).

The first item is by Γ∗
n ⊆ Γn, the second is by Th. IV.6.

Let’s compare these bound with the AGM bound (7). There,

we had to minimize an expression where w ranged over the

fractional edge covers of the query’s hypergraph. In our new

setting, w ranges over valid Σ-inequalities, a much more

difficult task. To compute the polymatroid bound, w ranges

over Σ-inequalities valid for polymatroids, and we will show

in Th. V.2 that this bound can be computed in time exponential

in n. However, in order to compute the entropic bound, w

needs to define a valid entropic inequality, and it is currently

open whether this bound is computable. On the other hand,

we will prove that the entropic bound is asymptotically tight,

while the polymatroid bound is not. Thus, we are faced with a

difficult choice, between and exact but non-computable bound,

or a computable but inexact bound. This justifies examining

non-trivial special cases of statistics Σ when these two bounds

agree. We illustrate the entropic upper bound with an example.

Example IV.9. Consider the following conjunctive query:

Q(X,Y, Z, U) =R(X,Y ) ∧ S(Y, Z) ∧ T (Z,U)

∧A(X,Z,U) ∧B(X,Y, U)

Suppose that we are given the following set of statistics Σ =
{(XY ), (Y Z), (ZU), (U |XZ), (X|Y U)}. In other words, we

have bounds on the cardinalities of R,S, T , but not of A,B,

hence we can assume that |A| = |B| = ∞. Instead, we have

the statistics degA(U |XZ) and degB(X|Y U). The AGM

bound (6) is |Q| ≤ |R| · |T |, because the only fractional

edge cover whose bound is < ∞ is wR = wT = 1 and

wS = wA = wB = 0.

The polymatroid bound follows from these Σ-inequalities:

h(XY ) + h(Y Z) + h(ZU) + h(U |XZ) + h(X|Y U) ≥

≥ 2h(XY ZU)

h(XY ) + h(ZU) ≥ h(XY ZU)

h(XY ) + h(Y Z) + h(U |XZ) ≥ h(XY ZU)

h(Y Z) + h(ZU) + h(X|Y U) ≥ h(XY ZU)

We proved the first inequality in Example IV.4, while the other

three are immediate. They imply:

|Q| ≤
(

|R| · |S| · |T | · degA(U |XZ) · degB(X|Y U)
)1/2

|Q| ≤|R| · |T |

|Q| ≤|R| · |S| · degB(X|Y U)

|Q| ≤|S| · |T | · degA(U |XZ)

The AGM bound is the second inequality. We show in Ap-

pendix A that the entropic bound is the minimum over all

four expressions above. (This requires proving that there is no

“better” inequality that gives us a smaller bound.) Since all four

inequalities are Shannon inequalities, it follows that, in this

case, the entropic bound is equal to the polymatroid bound.

When XZ is a key in A, and Y U is a key in B, then the

polymatroid bound simplifies to:

|Q| ≤ min((|R| · |S| · |T |)1/2, |R| · |T |, |R| · |S|, |S| · |T |)
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R =
X1 . . . Xi−1 Xi Xi+1 . . . Xn p
0 . . . 0 0 0 . . . 0 1/2
0 . . . 0 1 0 . . . 0 1/2

hXi (U) =

{

1 if Xi ∈ U

0 if Xi ̸∈ U

Fig. 4. A relation R with two tuples that agree on all attributes, except Xi.
Its entropic vector is called the basic modular function, hXi ; it is used in
Th. IV.10, and discussed in more detail in Sec. VI.

Special Case: Cardinality Constraints We show next that

the AGM bound is a special case where the polymatroid

and entropic bounds coincide; we will see a more general

setting when this happens in Sec. VI. Assume Σ is restricted

to cardinality constraints, and assume for simplicity that Σ has

exactly one cardinality constraint (Yj) for each relation Rj(Yj)
in the query; Σ = {(Y1), . . . , (Ym)}. The Σ-inequality (20)

becomes:
∑

j=1,m

wjh(Yj) ≥h(X) (23)

When w1 = · · · = wm then (23) is called Shearer’s inequality.

Theorem IV.10. The following are equivalent:

(i) Inequality (23) is valid for polymatroids.

(ii) Inequality (23) is valid for entropic functions.

(iii) The weights w form a fractional edge cover of the

hypergraph (X, {Yj | j = 1,m}).

Proof. (i) ⇒ (ii) is immediate. For (ii) ⇒ (iii), assume that (23)

holds for all entropic vectors, and consider any variable Xi ∈
X , for i = 1, n. Consider the basic modular entropic function

hXi shown in Fig. 4. Since hXi satisfies inequality (23), it

follows that
∑

j=1,m:Xi∈Yj
wj ≥ 1 (because hXi(Yj) = 1 iff

Xi ∈ Yj), proving that w is a fractional edge cover.

It remains to prove the implication (iii) ⇒ (i). This is a well

known result, and it admits multiple proofs (we give a second

proof in Sec. VII-B). Here, we will prove the inequality by

induction on n:

• Partition the set of indices j into J0 and J1:

J0
def
= {j | Xn ̸∈ Yj}, J1

def
= {j | Xn ∈ Yj}.

• If j ∈ J1 then write h(Yj) = h(Xn) + h(Yj −Xn|Xn).
Note that

∑

j∈J1
wj ≥ 1 because Xn is covered.

• If j ∈ J0 then write h(Yj) ≥ h(Yj −Xn|Xn).

Using the steps above we obtain:
∑

j

wjh(Yj) ≥h(Xn) +
∑

j

wjh(Yj −Xn|Xn)

≥h(Xn) + h(X −Xn|Xn) = h(X)

The last line used induction on the polymatroid h(−|Xn).

It follows immediately that the AGM bound, the entropic

bound, and the polymatroid bound coincide in the simple case

when the statistics are restricted to the cardinalities of the input

relations.

Discussion Degree constraints occur often and naturally in

database applications. For example, if a relation Rj(Yj) has

a key U , then degRj
(Yj |U) = 1. In practice almost every

relation has a key, so this case is very common. In other cases

some cardinality constraints can be obtained directly from

the application. For example, suppose that in a database of

customers we require that no customer may have more than 10

credit cards, which naturally leads to a max-degree constraint.

Such constraints are used in some modern systems, for example

in scale-independent query processing [40]–[42].

V. THE WORST-CASE INSTANCE

Informally, we call a database instance D a worst-case

instance if it satisfies the given statistics, and the query’s

output is as large as, or approaches asymptotically (in a sense

to be made precise), the entropic upper bound. We will show

that such a worst-case instance exists, proving that the entropic

bound is asymptotically tight, which is a weaker notion of

tightness than for the AGM bound in Th. III.4. We will also

show that, in general, the polymatroid bound is not tight, even

for this weaker notion of tightness.

To construct the worst-case instance we need a dual definition

of the entropic and polymatroid bounds. We define them directly

using log-version:

Definition V.1 (Query Lower Bound). Fix log-statistics Σ, b.

For any set K ⊆ R
2[n]

, the Log Lower Bound w.r.t. K is:

Log-L-BoundK(Q,Σ, b)
def
= sup

h∈K:h|=(Σ,b)

h(X) (24)

As before, the entropic log-lower bound is Log-L-BoundΓ∗
n

, and

the polymatroid log-lower bound is Log-L-BoundΓn
.

The log-lower bound asks us to find a vector h that satisfies

all log-statistics Σ, b, and where h(X) is as large as possible.

We call h a worst case entropic vector, or the worst case

polymatroid respectively. Using h, we would like to construct

a worst-case database instance D, that satisfies Σ,B, and

log |Q(D)| = h(X). The difficulty lies in the fact that, when

h is a polymatroid then such a database may not exists general,

and when h is an entropic vector, then it may be realized by

a probability space that is non-uniform, hence we cannot use

it to construct D. We start by observing the following, which

is easy to check:

Log-L-BoundK(Q,Σ, b) ≤Log-U-BoundK(Q,Σ, b) (25)

Indeed, if h ∈ K satisfies h |= (Σ, b), and w satisfies

∀h ∈ K,
∑

σ wσh(σ) ≥ h(X), then h(X) ≤
∑

σ wσh(σ) ≤
∑

σ wσbσ, and the claim follows from Log-L-BoundK =
suph h(X) ≤ Log-U-BoundK = infw

∑

σ wσbσ .

When K = Γn, then [9] showed that the two bounds are

equal. We prove a slightly more general statement:

Theorem V.2. Suppose the set K is defined by linear con-

straints: K = {h ∈ R
2[n]

+ | M · h ≥ 0}, where M is some

matrix.2 Then, Log-L-BoundK and Log-U-BoundK are defined

2Equivalently: K is a polyhedral cone, reviewed in Sec. IX-C.
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by a pair of primal/dual linear programs, with a number of

variables exponential in n; the expressions inf, sup in (22),

(24) can be replaced by min,max; and Eq. (25) becomes an

equality, h∗(X) =
∑

σ w
∗
σbσ, where h∗, w∗ are the optimal

solutions of the primal and dual program respectively.

Proof. Denote s = |Σ|, and let A be the s × 2n matrix that

maps h to the vector A · h = (h(σ))σ∈Σ ∈ R
s. Let c ∈ R

2n

be the vector cX = 1, cU = 0 for U ̸= X . The two bounds

are the optimal solutions to the following pair of primal/dual

linear programs:

Log-L-BoundK Log-U-BoundK
Maximize cT · h Minimize wT · b
where A · h ≤ b where wT ·A− cT ≥ uT ·M

−M · h ≤ 0

where the primal variables are h ≥ 0, and the dual variables

are w,u ≥ 0; the reader may check that the two programs

above form indeed a primal/dual pair. Log-L-BoundK is by

definition the optimal value of the program above. We prove

that Log-U-BoundK is the value of the dual. First, observe that

the Σ-inequality (20) is equivalent to (wT ·A− cT ) · h ≥ 0.

We claim that this inequality holds ∀h ∈ K iff there exists u

s.t. (w,u) is a feasible solution to the dual. For that consider

the following primal/dual programs with variables h ≥ 0 and

u ≥ 0 respectively:

Minimize (wT ·A− cT ) · h Maximize 0
where M · h ≥ 0 where uT ·M ≤ wTA− cT

The primal (left) has optimal value 0 iff the inequality (wT ·
A − cT ) · h ≥ 0 holds forall h ∈ K; otherwise its optimal

is −∞. The dual (right) has optimal value 0 iff there exists

a feasible solution u; otherwise its optimal is −∞. Strong

duality proves our claim.

When K = Γ∗
n, then the two terms in (25) may no longer be

equal in general, but we prove that they are equal asymptotically.

Call a k-amplification of a set of log-statistics Σ, b the log-

statistics Σ, kb, where k is a natural number. Observe that

the entropic log-upper bound increases linearly with the k-

amplification:

Log-U-BoundΓ∗
n
(Q,Σ, kb) =kLog-U-BoundΓ∗

n
(Q,Σ, b) (26)

The lower bound increases at least linearly,

Log-L-BoundΓ∗
n
(Q,Σ, kb) ≥ kLog-L-BoundΓ∗

n
(Q,Σ, b),

because of the following proposition:

Proposition V.3. If h1,h2 are two entropic vectors, then so

is h1 + h2.

Proof. Suppose h1,h2 are realized by two finite probability

spaces (R1, p1), (R2, p2). Then their sum is realized by (R1⊗

R2, p) (see Def. II.1), where p(x1⊗x2)
def
= p(x1) · p(x2).

We prove:

Theorem V.4. Fix any Q,Σ, b. The entropic upper and lower

bounds are asymptotically equal, in the following sense:

sup
k

Log-L-BoundΓ∗
n
(Q,Σ, kb)

Log-U-BoundΓ∗
n
(Q,Σ, kb)

=1 (27)

The proof of this result, which appears to be novel, requires

a discussion of the set of almost-entropic functions, and we

defer this to Sec. IX.
Finally, we can answer the central question in this section: the

entropic bound is tight asymptotically, while the polymatroid

bound is not.

Theorem V.5. (1) For any query Q and statistics Σ,B, the

entropic bound is asymptotically tight, in the following sense:

sup
k

supD:D|=Bk log |Q(D)|

Log-L-BoundΓ∗
n
(Q,Σ, kb)

=1 (28)

(2) The polymatroid bound is not asymptotically tight: there

exists a query Q and statistics Σ,B such that:

sup
k

supD:D|=Bk log |Q(D)|

Log-L-BoundΓn
(Q,Σ, kb)

≤
43

44
(29)

Here Bk def
= (Bkσ)σ∈Σ, and b

def
= logB. Moreover, this property

holds even if Σ,B consists only of cardinality constraints

and functional dependencies, i.e. ∀σ ∈ Σ either σ = (V ) or

Bσ = 1.

Equivalently, Eq. (28) says that, for any statistics Σ,B, if we

allow a sufficiently large amplification Σ,Bk, then there exists

a worst-case instance D satisfying the amplified statistics such

that log |Q(D)| approaches L-BoundΓ∗
n
(Q,Σ,Bk). Notice that

this is a weaker notion of tightness than for the AGM bound

in Theorem III.4. There, tightness referred to the ratio betwen

the lower and upper bound, while here tightness refers to the

ratio of their logarithms, a weaker notion. Eq. (29) says that

even this weaker tightness fails for the polymatroid bound.
The first proof of asymptotic tightness was given by Gogacz

and Torunczyk [23], for the restricted case when the statistics

are either cardinalities, or functional dependencies. The general

case was proven in [9]. Both results were stated slightly

differently from ours, by using almost-entropic functions. We

prefer to state our result in terms of the entropic functions,

since it is more natural, and defer the discussion of almost

entropic functions to Sec. IX, where they have a very natural

justification.
In the rest of this section we prove Theorem V.5. We use

this opportunity to continue our dive into the fascinating world

of entropic functions, and non-Shannon inequalities, which are

needed for the proof. However, the rest of this section is rather

technical, and readers not interested in this background may

safely skip the rest of this section, since we do not need it,

except for the short introduction of mutual information.

A. Background: Non-Shannon Inequalities, Lattices, Groups

Mutual Information Given a vector h ∈ R
2[n]

and three

disjoint sets of variables U ,V ,W ⊆ X , we denote by:

Ih(V ;W |U)
def
=h(UV ) + h(UW )− h(U)− h(UV V ) (30)
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When h is clear from the context, then we will drop the index

h from Ih and write simply I . When h is an entropic vector,

then Ih(V ;W |U) is called the mutual information of V ,W
conditioned on U . In that case, Ih(V ;W |U) = 0 iff the

probability space realizing h satisfies V ⊥ W |U , meaning

that V ,W are independent conditioned on U . With some

abuse, we will call Ih a conditional mutual information even

when h is a polymatroid. The following properties hold:

Proposition V.6. For any polymatroid h:

• Ih(V ;W |U) ≥ 0 (this is a submodularity inequality).

• The chain rule holds:

Ih(UV ;W |Z) = Ih(U ;W |Z) + Ih(V ;W |UZ).
• An elemental mutual information term is an expression of

the form Ih(Xi;Xj |U), where Xi ̸= Xj ̸∈ U are single

variables. Every mutual information I(V ;W |U) is the

sum of elemental terms.

• For any subsets U0 ⊆ U and V0 ⊆ V :

Ih(U0;V0|Z) ≤Ih(U ;V |Z) (31)

If Ih(U ;V |Z) = 0, then Ih(U0;V0|Z) = 0.

Non-Shannon inequalities The first non-Shannon inequality

was proven by Zhang and Yeung [16]. We review it here,

following the simplified presentation by Romashchenko [43]

(see also Csirmaz [44]).

Zhang and Yeung [16] proved the following:

Theorem V.7. The following is a non-Shannon inequality:

Ih(X;Y ) ≤Ih(X;Y |A) + Ih(X;Y |B) + Ih(A;B) (32)

+Ih(X;Y |A) + Ih(A;Y |X) + Ih(A;X|Y )

In other words, this inequality is valid for entropic vectors,

but it cannot be proven using the basic Shannon inequalities,

hence the term non-Shannon. The proof of this inequality, and

that of several other non-Shannon inequalities proven after

1998, relies on the following copy lemma.

Lemma V.8 (Copy Lemma). Let X,Y be two disjoint sets of

variables, and let h be an entropic vector with variables XY .

Let Y ′ be fresh copies of the variables Y . Thus, each variable

Y ∈ Y has a copy Y ′ ∈ Y ′. Then there exists an entropic

vector h′ over variables XY Y ′ such that the following hold:

Ih′(Y ;Y ′|X) = 0

∀U ⊆ XY : h′(U) = h(U)

∀U ′ ⊆ XY ′ : h′(U ′) = h(U)

We say that Y ′ is a copy of Y over X .

The first inequality asserts Y ⊥ Y ′|X . The second asserts

that h,h′ agree on XY . And the last equality asserts that

h′ on XY ′ is identical to h on XY up to the renaming of

variables from Y ′ to Y (assuming X ′ = X for X ∈ U ).

Proof. (of Lemma V.8) Let p be a probability distribution

of random variables XY that realizes the entropic vector h.

Define the following probability distribution p′ of random

variables XY Y ′: the domains of the variables Y ′ is the same

as that of Y , and for all outcomes (x,y,y′), p′(X = x,Y =

y,Y ′ = y′)
def
= p(X=x,Y =y)p(X=x,Y =y′)

p(X=x) . The claims in the

lemma are easily verified.

In general, the copy lemma does not hold for polymatroids,

as we will see shortly. We prove now Zhang and Yeung’s

inequality (32). Start from the following Shannon inequality

over 5 variables, X,Y,A,B,A′:

Ih(X;Y ) ≤ Ih(X;Y |A) + Ih(X;Y |B) + Ih(A;B)+

+Ih(X;Y |A′) + Ih(A
′;Y |X) + Ih(A

′;X|Y )+

+3Ih(A
′;AB|XY ) (33)

While this is “only” a Shannon inequality, it is surprisingly

difficult to prove; we invite the readers to try it themselves, but,

for completeness, we give the proof in Appendix B. Consider

now an entropic vector h over four variables, X,Y,A,B. We

apply the copy lemma, and copy AB over XY , resulting

in an entropic vector h′ with variables X,Y,A,B,A′, B′. In

particular, h′ satisfies (33) (we don’t use B′). Now we observe

that (a) I(A′;AB|XY ) = 0, and (b) every occurrence of

A′ in the second line can be replaced by A; for example

I(X;Y |A′) = I(X;Y |A), because I(X;Y |A′) is expressed

in terms of h(A′), h(XA′), h(Y A′), h(XY A′), which are

equal to their copies h(A), h(XA), h(Y A), h(XY A). Thus,

inequality (33) becomes (32), proving that (32) is valid for all

entropic functions h.

It remains to prove that (32) is not a Shannon inequality,

and for that it suffices to describe one polymatroid that fails

the inequality. To “see” this polymatroid, it is best to view it

as being defined over a lattice. We take this opportunity to

discuss another important concept: polymatroids on lattices.

Polymatroids on lattices A polymatroid on a lattice (L,⪯)
is a function h : L→ R+ satisfying:

h(0̂) =0

h(x ∨ y) ≥h(x) monotonicity

h(x) + h(y) ≥h(x ∨ y) + h(x ∧ y) submodularity

Let X be a set of n variables, and Σ a set of functional

dependencies for X . Recall from Sec. II that (LΣ,⊆) is the

lattice of closed sets. If a (standard) polymatroid h ∈ Γn
satisfies the functional dependencies Σ, then it is not hard to

see that its restriction to LΣ is a polymatroid on LΣ. Conversely,

any polymatroid h on the lattice (LΣ,⊆) can be extended to

a standard polymatroid h̄ : 2X → R+ by setting h̄(U)
def
=

h(U+), and, furthermore, h satisfies Σ. In short, there is a

one-to-one correspondence between polymatroids satisfying a

set of functional dependencies, and polymatroids defined on

the associated lattice.

We now complete the proof of Theorem V.7, by showing

that inequality (32) does not hold for the polymatroid h

in Fig. 5. To read the figure, recall that h(U) = h(U+)
for any set U . For example, ABX+ = ABXY , therefore

h(ABX) = h(ABX+) = h(ABXY ) = 4, and, also,

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 27,2024 at 23:20:19 UTC from IEEE Xplore.  Restrictions apply. 



XYAB
h=4

AX AY XY XB YBh=3

A X Y B

∅

h=3 h=3 h=3h=3

h=2 h=2 h=2 h=2

h=0

Fig. 5. A lattice, and the polymatroid from [16] defined on the lattice.

h(AB) = h(AB+) = h(ABXY ) = 4. We check now that h

violates the inequality (32):

I(X;Y ) = 1

I(X;Y |A) + I(X;Y |B) + I(A;B) = 0 + 0 + 0

I(X;Y |A) + I(A;Y |X) + I(A;X|Y ) = 0 + 0 + 0

The LHS of (32) is 1, while the RHS is 0. This completes the

proof of Theorem V.7.

As a final comment, we note that it is instructive to check

directly that the polymatroid in Fig. 5 fails to satisfy the

copy lemma, without using Zhang and Yeung’s inequality; we

provide a direct proof in Appendix B.

Group-theoretic characterization of information inequali-

ties Chan and Yeung [45] described an elegant characterization

of information inequalities in terms of group inequalities. Given

a finite group G and a subgroup G1 ⊆ G, a left coset is a set

of the form aG1, for some a ∈ G. By Lagrange’s theorem,

the set of left cosets, denoted G/G1, forms a partition of G,

and |G/G1| = |G|/|G1|. Fix n subgroups G1, . . . , Gn, and

consider the relational instance:

R ={(aG1, . . . , aGn) | a ∈ G} (34)

whose set of attributes we identify, as usual, with X =
{X1, . . . , Xn}. Notice that |R| = |G|/|

⋂

i=1,nGi|. The

entropic vector h associated to the relation R (Def. IV.1)

is called a group realizable entropic vector, and the set of

group realizable entropic vectors is denoted by Υn ⊆ Γ∗
n,

see Fig. 3. One can check that, for any subset of variables

U ⊆ X , h(U) = log |G|/|
⋂

Xi∈U Gi|. The following was

proven in [45]:

Theorem V.9. For any h ∈ Γ∗
n there exists a sequence h(r) ∈

Υn, such that limr→∞
1
rh

(r) = h.

It follows easily from the original proof that, if h satisfies

a set of functional dependencies, then so do all functions h(r),

for r ≥ 0; for completeness, we will include the argument in

Appendix C.

Open Problems Characterizing the valid entropic informa-

tion inequalities is a major open problem. Matús [17] proved

that, for n ≥ 4, there are infinitely many independent non-

Shannon inequalities. Currently, the only techniques known for

proving such inequalities consists of repeated applications of

Shannon inequalities and the Copy Lemma.
A related open problem is the complexity of deciding

Shannon inequalities: what is the complexity of checking

Γn |= c · h ≥ 0, as a function of ||c||1? It is implicit in

the proof of Theorem V.2 that this can be decided in time

exponential in n, but the complexity in terms of ||c||1 is open.

More discussion can be found in [46]

B. The Entropic Bound Is Asymptotically Tight

We prove here Theorem V.5 item (1). The plan is the

following. We need to find a database D such that log |Q(D)|
comes close to Log-L-BoundΓ∗

n
(Q,Σ, b). By definition, there

exists h ∈ Γ∗
n s.t. h(X) is close to Log-L-BoundΓ∗

n
(Q,Σ, b).

We can’t construct a database D out of h, because the

probability distribution realizing h may be non-uniform,

instead we use Chan and Yeung’s theorem to approximate

rh by a group realizable vector h(r), which is by definition

associated to a relation instance. Hence, the need to amplify

by the factor r. However, if we amplify, we don’t know how

Log-L-BoundΓ∗
n
(Q,Σ, rb) grows. Here we use Theorem V.4,

showing that Log-L-BoundΓ∗
n

and Log-U-BoundΓ∗
n

are asymp-

totically equal, then use the fact that Log-U-BoundΓ∗
n

is linear,

see Eq. (26). We give the details next.
By Corollary IV.8, for all k ∈ N:

supD:D|=Bk log |Q(D)|

Log-U-BoundΓ∗
n
(Q,Σ, kb)

≤1

Together with Theorem V.4 (Eq. (27)) this implies:

sup
k

supD:D|=Bk log |Q(D)|

Log-L-BoundΓ∗
n
(Q,Σ, kb)

≤1

To prove equality, it suffices to show that, ∀ε > 0, ∃k ∈ N

such that:

log |Q(D)| ≥(1− ε)4Log-L-BoundΓ∗
n
(Q,Σ, kb) (35)

Let U
def
= Log-U-BoundΓ∗

n
(Q,Σ, b). We will assume that

Log-U-BoundΓ∗
n
(Q,Σ, b) is finite; otherwise, we let U be an

arbitrarily large number and the proof below requires only

minor adjustments, which we omit. We will assume w.l.o.g.

that U > 0. Recall that Log-U-BoundΓ∗
n

is linear (26). We

prove:

Claim 1. For all ε > 0, there exists k ∈ N, and a database

D such that D |= (Σ,Bk) and log |Q(D)| ≥ (1− ε)4kU

Eq. (35) follows from kU = Log-U-BoundΓ∗
n
(Q,Σ, kb) ≥

Log-L-BoundΓ∗
n
(Q,Σ, kb). It remains to prove Claim 1.

Since Log-L-BoundΓ∗
n

and Log-U-BoundΓ∗
n

are asymptotically

equal (27), there exists k0 ∈ N such that

Log-L-BoundΓ∗
n
(Q,Σ, k0b) ≥

≥ (1− ε)Log-U-BoundΓ∗
n
(Q,Σ, k0b) = (1− ε)k0U (36)
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By the definition of Log-L-BoundΓ∗
n
(Q,Σ, k0b) in (24), there

exists h ∈ Γ∗
n such that:

h(X) ≥(1− ε)Log-L-BoundΓ∗
n
(Q,Σ, k0b) ≥ (1− ε)2k0U

h(σ) ≤k0bσ, ∀σ ∈ Σ

At this point we need the following Slack Lemma:

Lemma V.10 (Slack Lemma). For every h ∈ Γ∗
n and every

ε ∈ [0, 1], there exists k ∈ N and h′ ∈ Γ∗
n such that:

h′ ≥(1− ε)kh

∀U ,V ⊆ X : h′(V |U) ≤(1− ε/2)kh(V |U)

Proof. Assume w.l.o.g. that ε > 0, and set k
def
= ⌈ 1

ε⌉ and

h′ def
= (k − 1)h. Then 1

ε ≤ k ≤ 1 + 1
ε ≤ 2

ε which implies

ε/2 ≤ 1
k ≤ ε. We have:

h′ =

(

1−
1

k

)

kh ≥ (1− ε)kh

h′(V |U) =

(

1−
1

k

)

kh(V |U) ≤ (1− ε/2)kh′(V |U)

We apply the Slack Lemma to h and obtain a number k1
and an entropic vector h′ such that:

h′(X) ≥(1− ε)k1h(X) ≥ (1− ε)3k0k1U (37)

h′(σ) ≤(1− ε/2)k1h(σ) ≤ (1− ε/2)k0k1bσ, ∀σ ∈ Σ

Let g
def
= minU ,V ⊆X:h′(V |U)>0 h

′(V |U) be the smallest non-

zero value of h′(V |U). By Chan and Yeung’s theorem V.9,

there exists a group realizable entropic vector h(r) that satisfies

all the FDs satisfied by h′, and ||h′− 1
rh

(r)||∞ ≤ εg/4. Since

U > 0 we have h′(X) > 0 hence h′(X) ≥ g and we derive

from (37):

1

r
h(r)(X) ≥h′(X)− εg/4 ≥ (1− ε/4)h′(X)

≥(1− ε)4k0k1U

On the other hand, 1
rh

(r)(V |U) ≤ h(V |U) + εg/2, for all

sets U ,V . We use h′ |= (1 − ε/2)k0k1b to prove h(r) |=
rk0k1b. Consider a statistics σ ∈ Σ. If h′(σ) = 0, then h′

satisfies the FD σ, and therefore h(r) also satisfies this FD,

thus h(r)(σ) = 0 ≤ k0k1bσ. If h′(σ) > 0 then h′(σ) ≥ g and

the claim follows from:

1

r
h(r)(σ) ≤h′(σ) + εg/2

≤h′(σ) + (ε/2)h′(σ) = (1 + ε/2)h′(σ)

≤(1 + ε/2)(1− ε/2)k0k1bσ ≤ k0k1bσ

So far, we have:

h(r)(X) ≥(1− ε)4rk0k1U h(r) |=rk0k1b (38)

To complete the proof of Claim 1, we construct the database

D as follows. Let the relation R be the group realization of h(r)

(Eq. (34)). For each relation Rj(Yj), define RD
j

def
= ΠYj

(R).

By construction, Q(D) = R, and log |Q(D)| = h(r)(X) ≥
(1 − ε)4rk0k1U by (38). Furthermore, since h(r) is group-

realized, for every statistics σ ∈ Σ, with guard Rσ, we have

log degRσ
(σ) = h(r)(σ) ≤ rk0k1bσ; thus, D |= (Σ,Brk0k1).

This implies:

sup
D:D|=(Σ,Brk0k1 )

log |Q(D)| ≥(1− ε)4rk0k1U

proving Claim 1 for k = rk0k1.

C. The Polymatroid Bound Is Not Asymptotically Tight

We prove now Theorem V.5 item (2).

Proposition V.11. The following is a non-Shannon inequality:

11h(ABXY C) ≤ (39)

3h(XY ) + 3h(AX) + 3h(AY )

+h(BX) + h(BY ) + 5h(C)

+(h(XY C|AB) + 4h(BC|AXY ) + h(AC|BXY ))

+(h(BXY |AC) + 2h(ABY |XC) + 2h(ABX|Y C))

Proof. Consider the following five inequalities:

0 ≤3h(AX) + 3h(AY )− 4h(AXY )− h(A)

+h(BX) + h(BY )− h(BXY )

−h(AB) + 3h(XY )− 2h(X)− 2h(Y )

0 ≤h(A) + h(C)− h(AC)

0 ≤2(h(X) + h(C)− h(XC))

0 ≤2(h(Y ) + h(C)− h(Y C))

11h(ABXY C) = 11h(ABXY C)

The first inequality holds because it is inequality Eq. (32),

expanded and re-arranged. The next three inequalities are basic

Shannon inequalities. The last line is an identity. A tedious

but straightforward calculation shows that if we add the five

(in)equalities above, then we obtain (39), proving the claim.

Consider the following query, derived from inequality (39):

Q(A,B,X, Y,C) =R1(X,Y ) ∧R2(A,X) ∧R3(A, Y )

∧R4(B,X) ∧R5(B, Y ) ∧R6(C)

∧R7(A,B,X, Y,C)

and the following statistics:

Σ ={(XY ), (AX), (AY ), (BX), (BY ), (C),

(XY C|AB), (BC|AXY ), h(AC|BXY ),

(BXY |AC), (ABY |XC), (ABX|Y C)}

b ={bXY = bAX = bAY = bBX = bBY = 3, bC = 2,

bXY C|AB = bBC|AXY = bAC|BXY = 0,

b(BXY |AC) = bABY |XC = bABX|Y C = 0}

In other words, we are given the cardinalities of R1, . . . , R6,

but are not given the cardinality of R7, instead we are told that

it satisfies the 6 FD’s corresponding to the 6 conditional terms

in inequality (39). Consider any scale factor k > 0, and the
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Fig. 6. A polymatroid proving that the polymatroid bound is not tight.

scaled log-statistics kb. Inequality (39) and the definition (22)

imply:

Log-U-BoundΓ∗
n
(Q,Σ, kb) ≤

k
3bXY + 3bAX + 3bAY + bBX + bBY + 5bC

11
=

43k

11

By Corollary IV.8, for any database D, if D |= (Σ,Bk) then:

log |Q(D)| ≤
43k

11

On the other hand, consider the polymatroid kh, where

h is the polymatroid in Fig. 6. Since h(ABXY C) = 4 and

h |= (Σ, b), it follows that kh(ABXY C) = 4k, and kh |= kb,

therefore:

supD:D|=Bk log |Q(D)|

Log-L-BoundΓn
(Q,Σ, kb)

≤
43

44

This implies Theorem V.5 item (2).

VI. SIMPLE INEQUALITIES

We have a dilemma: the entropic bound is asymptotically

tight, but it is open whether it is computable, while the

polymatroid bound is computable, but is provably not tight

in general. We show in this section that, under a reasonable

syntactic restriction on the statistics Σ, these two bounds are

equal. We do this by describing a similar syntactic restriction

for information inequalities, which we call simple inequalities.

In that case validity over entropic functions coincides with

validity over polymatroids, and we recover the stronger notion

of tightness that we had for the AGM bound.

A. Background: Subclasses of Polymatroids

A polymatroid h is called modular if the submodularity

inequality (15) is an equality. Equivalently, h is modular if

h ≥ 0 and for every subset α ⊆ [n], h(Xα) =
∑

i∈α h(Xi).
We will denote by Mn the set of modular polymatroids, see

Fig. 3. For each i = 1, n, we call the function hXi in Fig. 4 a

basic modular function; recall that hXi(U) = 1 when Xi ∈ U

and = 0 otherwise. The following holds:

Proposition VI.1. (1) A function h is modular iff it is a positive

linear combination of basic modular functions, h =
∑

i aih
Xi ,

where ai ≥ 0 for all i. (2) Every modular function is entropic.

Proof. Item (1) is straightforward, but item (2) requires some

thought. It suffices to prove that ahXi is entropic for all real

numbers a ≥ 0. For that purpose we need to describe one

random variable Xi, whose entropy is h(Xi) = a. Let N
be a natural number such that logN ≥ a, and consider the

uniform probability space where Xi has N outcomes with

the same probabilities, pi = 1/N , i = 1, N . Replace p1 by

p1+ θ, and replace each pj with j > 1 by pj − θ/(N − 1), for

θ ∈ [0, 1− 1
N ]. When θ = 0 then the distribution is uniform

and h(Xj) = logN ; when θ = 1− 1
N then the distribution is

deterministic, p1 = 1, p2 = · · · = pN = 0, and h(Xj) = 0. By

continuity, there exists some θ where h(Xj) = a.

Fix a set of variables W ⊆ X . The step function at W is:

hW (U)
def
=

{

0 if U ⊆ W

1 otherwise
(40)

There are 2n−1 non-zero step functions (since hX = 0). hW

is the entropy of the (uniform distribution of the) following

relation with 2 tuples:

RW
def
= RX−W def

=
W X −W p

0 · · · 0 0 · · · 0 1/2
0 · · · 0 1 · · · 1 1/2

(41)

Sometimes it is convenient to use an alternative notation. For

a set of variables V ⊆ X , define:

hV (U)
def
=

{

0 if U ∩ V = ∅

1 otherwise
(42)

Then hV = hX−V . A basic modular function hXi is the same

as the step function h{Xi}; if |V | ≥ 2 then hV is not modular.

Definition VI.2. A normal polymatroid is a positive linear

combination of step functions,

h =
∑

V ⊆X,V ̸=∅

aV hV (43)

where aV ≥ 0 for all V .

We denote by Nn the set of normal polymatroids, see Fig. 3.

Normal polymatroids are the same as polymatroids with a

non-negative I-measure described in [11], [14].

Proposition VI.3. The 2n − 1 non-zero step functions hV ,

V ̸= ∅ form a basis of the vector space {h ∈ R
2[n]

| h(∅) = 0}.

More precisely, every such vector h satisfies h =
∑

V aV hV ,

where:

aU
def
= −

∑

V ⊆U

(−1)|V |h(V |X −U) (44)

The proof follows by solving the following system of linear

equations with unknowns aV :

∀U ̸= ∅ : h(U) =
∑

V :V ∩U ̸=∅

aV (45)
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The solution is obtained by using Möbius’ inversion formula

(we prove this in Appendix D) and consists of the expres-

sion (44). Expression (44) is called conditional interaction

information, and denoted by I(Xi1 ;Xi2 ; · · · |X −U), where

U = {Xi1 , Xi2 , . . .}. The following holds (the proof is

immediate and omitted):

Proposition VI.4. (1) A function h is a normal polymatroid

iff, for every set U ⊆ X , U ̸= 0, the conditional interaction

information (44) is ≥ 0. (2) Every normal polymatroid is

entropic.

Example VI.5. The parity function h Fig. 2 is the simplest

example of a polymatroid that is not normal. The coefficients

can be derived using (44), or, we can check directly that:

h =hX,Y + hX,Z + hY,Z − hX,Y,Z

The coefficient of hX,Y,Z is negative, hence h is not normal.

B. Special Inequalities

We describe here a class of information inequalities, called

simple inequalities, were Γ∗
n-validity coincides with Γn-validity.

The modular and normal polymatroids turn out to be the key

tools to study these inequalities.

The following is sometimes referred in the literature as the

modularization lemma:

Lemma VI.6. For any polymatroid h there exists a modular

polymatroid h′ such that (a) h′ ≤ h and (b) h′(X) = h(X).

Proof. Order the variables arbitrarily X1, . . . , Xn and define

h′(Xi)
def
= h(Xi|X[1:i−1]), where X[1:i−1]

def
= {X1, . . . , Xi−1}.

We check condition (a): for α ⊆ [n],

h′(Xα) =
∑

i∈α

h(Xi|X[1:i−1])

≤
∑

i∈α

h(Xi|X[1:i−1]∩α) = h(Xα)

We check (b): h′(X) =
∑

i=1,n h(Xi|X[1:i−1]) = h(X).

The modularization lemma gives us an alternative, and more

general proof of Theorem IV.10:

Corollary VI.7. Consider an inequality of the form
∑

i wih(Vi) ≥ h(X), where wi ≥ 0 and Vi are subsets of X .

The following conditions are equivalent:

(1) The inequality is valid for polymatroids.

(2) The inequality is valid for entropic functions.

(3) The inequality is valid for modular functions.

Proof. The implications (1) ⇒ (2) ⇒ (3) are immediate. We

prove (3) ⇒ (1), by contradiction: if the inequality fails on some

polymatroid h,
∑

i wih(Vi) < h(X), and h′ is the modular

function in Lemma VI.6, then,
∑

i wih
′(Vi) ≤

∑

i wih(Vi) <
h(X) = h′(X) contradicting (3).

We prove in Appendix E the following extension of the

Modularization Lemma:

Lemma VI.8. For any polymatroid h there exists a normal

polymatroid h′ such that (a) h′ ≤ h, (b) h′(X) = h(X), and

(c) h′(Xi) = h(Xi) for every variable Xi ∈ X .

Definition VI.9. We call a set of statistics Σ simple if, for

all (V |U) ∈ Σ, |U | ≤ 1. A simple information inequality is

a Σ-inequality where Σ is simple:
∑

σ∈Σ

wσh(Σ) ≥h(X) (46)

We immediately derive:

Corollary VI.10. Given a simple inequality (46), the following

are equivalent:

(1) The inequality is valid for polymatroids.

(2) The inequality is valid for entropic functions.

(3) The inequality is valid for normal polymatroids

The proof is identical to that of Corollary VI.7 and omitted.

C. Special Databases

When the statistics Σ are simple, then we show here that the

polymatroid and the entropic bound coincide. We also show

that the bound is tight, using a similar notion of tightness as

in the AGM bound, where the ratio between the lower and

upper bound depends only on the query; also, there is no need

to amplify the statistics values. Moreover, like in the AGM

bound, the worst-case database instance has a special structure,

which we call a normal database. We start by showing:

Theorem VI.11. If Σ is simple, then:

Log-U-BoundNn
(Q,Σ, b) =

= Log-U-BoundΓ∗
n
(Q,Σ, b) = Log-U-BoundΓn

(Q,Σ, b)

Proof. Since Nn ⊆ Γ∗
n ⊆ Γn we have inequalities

above: · · · ≤ · · · ≤ · · · Corollary VI.10 implies

Log-U-BoundNn
(Q,Σ, b) = Log-U-BoundΓn

(Q,Σ, b), hence

all three quantities are equal.

We describe now normal relational instances, and normal

databases. Start with a single relation R(X) with n attributes

X . Recall that an instance R is a product relation if R =
S1×· · ·×Sn, for n sets S1, . . . , Sn: the worst-case instance of

the AGM bound consisted of product relations. We generalize

this concept:

Definition VI.12. A relation instance T with n attributes is a

normal relation if there exists m finite sets S1, . . . , Sm and a

function ψ : [n] → 2[m] such that

T ={(sψ(1), sψ(2), . . . , sψ(n)) | s ∈ S1 × · · · × Sm}

In a normal relation the values of an attribute can be tuples

themselves. Every product relation is a normal relation, but

not vice versa. A database instance is normal if each of its

relations is normal. A basic normal relation of size N is the

following:

TV
N

def
={(k · 1X1∈V , · · · , k · 1Xn∈V ) | k = 0, N − 1} (47)
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Here 1Xi∈V is an indicator variable that is 1 when Xi ∈ V

and 0 otherwise; thus, if an attribute Xi is in V then it takes

the values 0, 1, . . . , N − 1 in the relation TV
N , otherwise it has

constant values 0. The entropic vector of TV
N is (logN)hV .

In particular, the relation RV in (41) is TV
2 .

Example VI.13. We give three examples of normal relations

with n = 3 attributes:

A ={(i, j, k) | i, j, k ∈ [0 : N − 1]} product relation

B ={(i, i, i) | i ∈ [0 : N − 1]}, normal relation

C ={(i, (i, j), j) | i, j ∈ [0 : N − 1]} normal relation

Their cardinalities are |A| = N3, |B| = N , |C| = N2. We

also notice:

A =TXN ⊗ TYN ⊗ TZN B =TXY ZN C =TX,YN ⊗ TY,ZN

We prove that the lower bound for simple statistics is tight.

Theorem VI.14. Let Σ be a set of simple statistics for a query

Q and let B be statistics values. Then there exists a worst-case

instance D such that |Q(D)| ≥ 1
22n−1 U-BoundΓ∗

n
(Q,Σ,B).

Proof. We use the following, whose proof is immediate:

Proposition VI.15. Let R(X), R′(X) be relations over the

same attributes X .

• If R,R′ are normal relations, then R⊗R′ is normal.

• degR⊗R′(σ) = degR(σ)·degR′(σ), for all σ = (V |U).

Denote by U
def
= U-BoundΓ∗

n
(Q,Σ,B), b

def
= logB,

then logU = Log-U-BoundNn
(Q,Σ, b) =

Log-L-BoundNn
(Q,Σ, b), by Theorem VI.11 and Theorem V.2

respectively. Let h∗ ∈ Nn be the optimal solution to the linear

program defining Log-L-BoundNn
(Q,Σ, b) (see Theorem V.2),

then h∗ |= (Σ, b) and h∗(X) = logU . Since h∗ is normal, it

can be written as:

h∗ =
∑

V ̸=∅

aV hV , aV ≥ 0

Then, logU = h∗(X) =
∑

V ̸=∅ aV , and U =
∏

V 2aV .

For each set V , ∅ ≠ V ⊆ X we define:

bV
def
= ⌊2aV ⌋, PV def

=TV
bV basic normal relation (47)

R
def
=
⊗

V

PV normal relation

Define the worst-case instance as D = (RD1 , . . . , R
D
m), where

RDj = ΠYj
(R). We first check that D satisfies the constraints,

and for that let σ ∈ Σ have witness Rσ , then:

logdegRσ
(σ) = log degR(σ) =

∑

V

log degPV (σ)

=
∑

V

(log bV )hV (σ) ≤
∑

V

aV h
V (σ) = h∗(σ) ≤ bσ

Finally, we check the query’s output size:

log|Q(D)| = log |R| = log
∏

V

|PV | =
∑

V

(log bV )hV (X)

Since hV (X) = 1, this implies |Q(D)| =
∏

V bV =
∏

V ⌊2aV ⌋ ≥ 1
22n−1U , because ⌊2aV ⌋ ≥ 1

22
aV .

The reader may want to check the analogy with the worst-

case instance of the AGM bound: the optimal solution v∗ there

became here h∗, and the domain Vi = [⌊2v
∗
i ⌋] defined for the

variable Xi became here the normal relation PV . As before,

we constructed the worst-case instance D without amplifying

the statistics, and |Q(D)| is within a constant, which depends

only on the query, of U-BoundΓ∗
n
(Q,Σ,B).

Discussion The restriction to simple statistics occurs natu-

rally in many applications. Databases are often designed with

simple keys (consisting of a single attribute), and applications

that use degrees often consider only simple degrees. The

restriction to simple statistics is often acceptable.
It remains open where one can extend this definition to

richer classes of statistics, or inequalities, while still preserving

the property that validity for entropic vectors is the same as

validity for polymatroids. The set of statistics in Example IV.9

is not “simple”, yet the entropic bound coincides with the

polymatroid bound. This (and other examples) suggests that

other non-trivial syntactic classes may exist where these two

bounds agree.

VII. QUERY EVALUATION

The query evaluation problem is: given a conjunctive query

Q, evaluate it on a (usually large) database D. In this paper

we consider only the data complexity, where the query is fixed,

and the runtime is given as a function of the statistics of

D. Database systems compute queries using a sequence of

binary joins, of the form C(X,Y, Z) = A(X,Y ) ∧ B(Y, Z),
which are written as C = A ▷◁ B. Assuming all relations

are pre-sorted, the time complexity of the join is Õ(|A| +
|B|+ |A ▷◁ B|). A semi-join, denoted C = A⋉ B, is a join

followed by the projection on the attributes of the first relation,

meaning C(X,Y ) = ∃Z(A(X,Y )∧B(Y, Z)). A semijoin can

be computed in time Õ(|A|).
A Worst Case Optimal Join (WCOJ) is an algorithm that

evaluates Q in time no larger than its theoretical upper bound.

A sequence of binary joins is usually not a WCOJ, because

intermediate results may be larger than the theoretical upper

bound of the query. For example the upper bound for the

triangle query in Example III.2 is N3/2, but if we evaluate it

as (R ▷◁ S) ▷◁ T , the join R ▷◁ S can have size N2.
Any WCOJ algorithm represents an indirect proof of the

query’s upper bound, since the size of the output cannot exceed

the time complexity of the algorithm. For example, if we are

given an algorithm for the triangle query, together with a proof

that its runtime is Õ(N3/2), then we have a proof that the size

of the output is also Õ(N3/2). This means that proving an

upper bound on the query’s output is inevitable for designing a

WCOJ. We show in this section that one can proceed in reverse:

given a proof of the upper bound, convert it into a WCOJ.

We call this paradigm From Proofs to Algorithms. Thus, the

question to ask in designing a WCOJ algorithm is: how do we

prove an upper bound on the query’s output? And how do we

convert it into an algorithm?
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A. Generic Join

Consider the setting of the AGM bound: we are given only

cardinality statistics on the base relations. In that case, a proof

of the upper bound is a proof of
∑

j wjh(Yj) ≥ h(X), since

it implies |Q| ≤
∏

j |Rj |
wj . We gave a proof of this inequality

in Theorem IV.10; the proof consists of conditioning on the

last variable Xn, then applying induction on the remaining

variables. We convert that proof into an algorithm: iterate Xn

over its domain, and compute recursively the residual query.

This algorithm is called Generic Join, or GJ, and was introduced

by Ngo, Ré, and Rudra [26]. We describe it in detail next.

Fix a full conjunctive query with variables X , which we

write as Q = ⋊⋉j=1,mRj . As usual, Yj are the variables of

Rj . Generic Join computes Q as follows:

• Let Xn be an arbitrary variable.

• Partition the set of indices j into J0 and J1:

J0
def
= {j | Xn ̸∈ Yj}, J1

def
= {j | Xn ∈ Yj}.

• Compute the set D =
⋂

j∈J1
ΠXn

(Rj).
• For each value x ∈ D, do:

– Compute Rj [x] := ΠYj−Xn
(σXn=x(Rj)), for j ∈ J1.

– Denote Rj [x] := Rj for j ∈ J0.

– Compute the residual query ⋊⋉j=1,mRj [x].

We invite the reader to check how the algorithm can be

“read off” the proof of Theorem IV.10. To compute the runtime

of the algorithm, assume that the relations are given in listing

representation, sorted lexicographically using the attribute order

Xn, Xn−1, . . . , X1. Then, the runtime, Tn, is:

Tn(R1, . . . , Rm) =Tintersection +
∑

x

Tn−1(R1[x], . . . , Rm[x])

By induction hypothesis:

Tn−1(R1[x], . . . , Rm[x]) =Õ





∏

j

|Rj [x]|
wj





which leads to:

Tn = Tintersection + Õ





∏

j∈J0

|Rj |
wj

∑

x

∏

j∈J1

|Rj [x]|
wj





≤Tintersection + Õ





∏

j∈J0

|Rj |
wj

∏

j∈J1

(

∑

x

|Rj [x]|

)wj





=Tintersection + Õ





∏

j

|Rj |
wj





We used Hölder’s inequality in Fig. 1 (since
∑

j∈J1
wj ≥ 1,

because Xn is covered), and the fact that
∑

x |Rj [x]| = |Rj |
for j ∈ J1. The crux of the algorithm is the intersection: its

runtime should not exceed
∏

j |Rj |
wj , and for that it suffices

to iterate over the smallest set ΠXn
(Rj), and probe in the

others: the runtime is Õ(minj∈J1 |Rj |) ≤ Õ(
∏

j∈J1
|Rj |

wj ),
since

∑

j∈J1
wj ≥ 1.

Example VII.1. Using the variable order X,Y, Z, GJ com-

putes the triangle query R(X,Y ) ∧ S(Y, Z) ∧ T (Z,X) as

follows:

For x ∈ ΠX(R) ∩ΠX(T ) do:

For y ∈ ΠY (R[X = x]) ∩ΠY (S) do:

For z ∈ ΠZ(S[Y = y]) ∩ΠZ(T [X = x]) do:

output(x, y, z)

The choice of algorithm for computing the intersection

is critical for GJ. To see this, consider the simplest query,

Q(X) = R(X) ∧ S(X), that is an intersection. The AGM

bound is min(|R|, |S|), corresponding to the edge covers

(1, 0) and (0, 1), and GJ must compute the query in time

Õ(min(|R|, |S|)). By assumption, R,S are already sorted, but

we cannot run a standard merge algorithm, since its runtime

is O(|R|+ |S|); instead, we iterate over the smaller relation

and do a binary search in the larger.

Because of its simplicity and ease of implementation, GJ

is the poster child of WCOJ algorithms. One remarkable

property of GJ is that its runtime is always bounded by the

AGM bound, no matter what variable order we choose. Before

GJ, Veldhuizen [27] described an algorithm called Leapfrog

Triejoin (LFTJ), which uses a similar logic as GJ, but also

specifies in the details of the required trie data structure. Several

implementations of GJ/LFTJ exists today [28]–[31], [47].

B. The Heavy/Light Algorithm

Balister and Bollobás [48] provided the following alternative

proof of an inequality of the form (23), which we write in an

equivalent form using integer coefficients:

E
def
=
∑

j=1,m

kjh(Yj) ≥k0h(X) (48)

where ki ∈ N, for i = 0,m. View the expression E as a bag

of terms h(Yj) where each term h(Yj) occurs kj times. A

compression step consists of the following:

• Choose two terms h(U), h(V ) ∈ E such that U ̸⊆ V

and V ̸⊆ U .

• Replace h(U) + h(V ) with h(U ∪ V ) + h(U ∩ V ).

Theorem VII.2. [48] Any sequence of compression steps

eventually leads to:

E =ℓ0h(Z0) + ℓ1h(Z1) + · · · , where Z0 ⊃ Z1 ⊃ · · · (49)

Furthermore, if each variable Xi is covered at least k0 ≥ 1
times3 by the original expression E in (48), then Z0 = X and

ℓ0 ≥ k0; in particular, the inequality (48) is valid.

Proof. Each compression step strictly increases the quantity
∑

h(Z)∈E |Z|2. To see this, write U = A ∪C, V = B ∪C

where A,B,C are disjoint sets, then |U |2 + |V |2 = (|A| +
|C|)2+(|B|+|C|)2, while |U∪V |2+|U∩V |2 = (|A|+|B|+
|C|)2+ |C|2, and the latter is strictly larger when |A| · |B| > 0.

This quantity cannot exceed (
∑

j kj)n
2, therefore compression

3Meaning:
∑

j:Xi∈Yj
kj ≥ k0.
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needs to terminate, and this happens when for any two sets in

E one contains the other. Then, E must have the form (49).

Finally, we observe that compression preserves the number of

times each variable Xi is covered by E, because the number

of sets in {U ,V } containing Xi is the same as the number

of sets in {U ∪ V ,U ∩ V } containing Xi. Therefore, if each

variable is covered by E at least k0 times, then Z0 = X and

ℓ0 ≥ k0.

Call a sequence of compression steps that converts an

expression E in (48) to (49) a BB-proof sequence. To derive

an algorithm, we need to impose an additional restriction. Call

a BB-proof sequence divergent if, after each compression step

h(U) + h(V ) → h(U ∪V ) + h(U ∩V ), we can split E into

E′ + E′′, such that E′ contains h(U ∪ V ) and covers every

variable at least k′0 times, E′′ contains h(U ∩ V ) and covers

every variable at least k′′0 times, and k0 = k′0 + k′′0 .

We convert a divergent BB-proof sequence into an algorithm

called the Heavy/Light Algorithm. Let B be the statistics

values, b
def
= logB, and set B

def
= maxj Bj . Assume w.l.o.g.

that the inequality E
def
=
∑

j kjh(Yj) ≥ k0h(X) is optimal,

meaning that
∑

j(kj/k0)bj = Log-U-BoundΓn
(Q,Σ, log(B))

(see Eq. (22)). Denote by h∗ an optimal solution to the dual,

meaning h∗ |= (Σ, b) and h∗(X) = Log-L-BoundΓn
(Q,Σ, b)

(see Eq. (24)). These two quantities are the same by Thm. V.2:
∑

j(kj/k0)bj = h∗(X). The algorithm uses a working

memory which stores, for each term h(Z) in E, a temporary

relation S(Z), called the guard of h(Z), and maintains the

invariant: log |S(Z)| ≤ h∗(Z). Initially, the working memory

is {Rj | kj > 0}: by complementary slackness, if kj > 0 then

the dual constraint constraint is tight, h∗(Yj) = bj , and the

invariant holds because log |Rj | ≤ logBj = bj = h∗(Yj).
The algorithm repeatedly processes a compression step

h(U) + h(V ) → h(U ∪V ) + h(U ∩V ) of the BB-sequence,

as follows. If the two guards are S(U) and S′(V ), let

C
def
= U ∩ V , write U = AC, V = BC, and define

M
def
= 2h

∗(A|C). Partition the guard S(AC) into two subsets:

Slight(A,C) ={(a, c) ∈ S | degS(A|C = c) ≤M}

Sheavy(C) ={c ∈ ΠC(S) | degS(A|C = c) > M}

Compute new guards using a join and a semijoin:

S′′(A,B,C) :=Slight(A,C) ▷◁ S′(B,C)

S′′′(C) :=Sheavy(C)⋉ S′(B,C)

The invariant holds because |S′′| ≤M · |S| implies log |S′′| ≤
h∗(A|C) + h∗(BC) ≤ h∗(ABC), and because |Sheavy| ≤
|S|/M (since every c ∈ Sheavy occurs ≥M times in S) implies

log |S′′′| ≤ log |S| − logM = h∗(AC)− h∗(A|C) = h∗(C).
The runtime of the join and semijoin is ≤ Õ(2h

∗(X)) =
Õ(U-BoundΓn

(Q,Σ,B)). Next, the algorithm proceeds recur-

sively, by processing independently E′ and E′′, semi-joins

the result of E′ with the relations missing from E′, similarly

semi-joins the result of E′′ with the relations missing from

E′′, then returns the union of these two results. Correctness is

easily checked.

XYAB

XY

X

XZ

Y

YZ

Z

∅

h=1

h=0

h=1 h=1

h=½ h=½ h=½ 

h= 3/2 

Fig. 7. A simple polymatroid used in Example VII.3.

Example VII.3. Consider the triangle query R(X,Y ) ∧
S(Y, Z) ∧ T (Z,X), and the following divergent proof:

h(XY ) + h(Y Z)+h(ZX) → h(XY Z)+h(Y ) + h(ZX) →
h(XY Z) + h(XY Z). Assume for simplicity that the three

relations have the same cardinalities |R| = |S| = |T | = B.

The optimal polymatroid is h∗ def
= logB · h, for h in Fig. 7.

The Heavy/Light Algorithm proceeds as follows. For the first

compression step it partitioning R into:

Rlight :={(x, y) | degR(X|Y = y) ≤ 2h
∗(Y |X) = B1/2}

Rheavy :={y | degR(X|Y = y) > 2h
∗(Y |X) = B1/2}

then it computes:

Temp1(X,Y, Z) :=Rlight(X,Y ) ▷◁ S(Y, Z)

Temp2(Y ) :=Rheavy(Y )⋉ S(Y, Z)

At this point the BB-proof diverged into two branches,

h(XY Z) ≥ h(XY Z), and h(Y ) + h(ZX) ≥ h(XY Z),
and we perform a recursive call for each branch. The first

branch immediately returns Temp1, which we semi-join with T :

Q′(X,Y, Z) = Temp1(X,Y, Z)⋉T (Z,X). The other branch

applies the second compression step which corresponds to the

following join operation:

Temp3(X,Y, Z) :=Temp2(Y )× T (Z,X)

which we semi-join with R and S: Q′′(X,Y, Z) :=
Temp3(X,Y, Z)⋉R(X,Y )⋉S(Y, Z). Finally, we return the

union Q′ ∪ Q′′. The reader may verify that the runtime is

Õ(B3/2).

An advantage of the Heavy/Light Algorithm over GJ is

that it reuses existing join operators, which already have very

efficient implementations in database systems. However, the

algorithm only works for divergent BB-proofs. This raises the

question: does every inequality (48) have a divergent proof?

The answer is negative, as provided by the following example

due to Yilei Wang [49].

Example VII.4. The following has no divergent BB-proof:

E = h(XY Z) + h(ZUV ) + h(VWX) + h(Y UW ) ≥2h(XY ZUVW )

Assume w.l.o.g. that we start by compressing h(XY Z) +
h(ZUV ) → h(XY ZUV ) + h(Z) (by symmetry, all other
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choices are equivalent). Then we need to partition E into E′+
E′′. Suppose E′ contains h(Z); since E′ covers every variable,

it must contain both remaining terms h(VWX) + h(Y UW ),
which means that E′′ can only contain h(XY ZUV ) alone,

and it does not cover W .

C. PANDA

Both Generic Join and the Heavy/Light Algorithm are

restricted to cardinality statistics, in other words they only

work in the framework of the AGM bound. PANDA, introduced

in [9], is a WCOJ algorithm that works for general statistics.

While it runs in time given by the theoretical query upper

bound, it also includes a polylogarithm factor in the size of the

database, with a rather large exponent. We describe PANDA

here at a high level, and refer the reader to [9] for details.

Let Σ be a set of statistics, and consider a Σ-inequality with

integer coefficients:

E
def
=
∑

σ∈Σ

kσh(σ) ≥k0h(X) (50)

A CD-proof sequence for the inequality (50) is a sequence of

steps that convert the LHS to the RHS, where each step is one

of the following:

• Composition: h(U) + h(V |U) → h(UV ).
• Decomposition: h(UV ) → h(U) + h(V |U).
• Submodularity: h(V |U) → h(V |UW ).
• No-Op: h(U) → 0.

We say that the CD-proof sequence proves the inequality (50) if

its starts from the LHS and ends with the RHS. The following

was proven in [9]:

Lemma VII.5. Inequality (50) is valid for polymatroids iff it

admits a CD-proof sequence.

PANDA converts a CD-proof sequence into an algorithm,

similarly to the way we converted a BB-sequence to an

algorithm. Given statistics Σ,B, guarded by the query Q
(Sec. IV-B), assume that inequality (50) is the optimal so-

lution to Log-U-BoundΓn
(Q,Σ, log(B)); otherwise, choose

a better inequality. Denote by h∗ an optimal solution to

Log-L-BoundΓn
(Q,Σ, log(B)). The algorithm has a working

memory consisting of a guard, call it SV |U (Z), for every term

h(V |U) in E, satisfying the following invariant: V ⊆ Z and

there exists a subset U0 ⊆ U ∩Z, such that:

log degSV |U
(V |U0) ≤h

∗(V |U)

The guard need not have all variables U , but only a subset

U0 that is sufficient to prove the bound on the max-degree.

Initially, the working memory consists of all guards Rσ of the

statistics σ = (V |U) ∈ Σ, where kσ > 0. By complementary

slackness, if kσ > 0, then the corresponding constraint on h∗

is tight, h∗(σ) = bσ(
def
= logBσ), therefore log degRσ

(σ) ≤
bσ = h∗(σ) because the input database satisfies the statistics.

PANDA performs the following action for each step of the

CD-proof sequence:

Composition h(U) + h(V |U) → h(UV ). Compute the new

guard as:

SUV :=ΠU (SU ) ▷◁ ΠU0V (SV |U )

Since |SUV | ≤ |SU | · degSV |U
(V |U0), we have:

log |SUV | ≤ log degSU|∅
(U |∅) + log degSV |U

(V |U0)

≤h∗(U) + h∗(V |U) = h∗(V )

Thus, the invariant holds, and the runtime does not exceed

the polymatroid bound, whose log is h∗(X).
Submodularity h(V |U) → h(V |UW ). Here PANDA only

records that the new term h(V |UW ) has the same guard

as the old term h(V |U).
Decomposition h(UV ) → h(U) + h(V |U). Here PANDA

first projects out the extra variables in the guard of

h(UV ) and obtains a relation S := ΠUV (SUV ) whose

size N
def
= |S| satisfies logN ≤ h∗(UV ). Next, it

performs regularization: partition S into logN fragments

S =
⋃

i=1,logN Si, where:

Si(U ,V )
def
={(u,v) ∈ S | degS(V |U = u) ∈ [2i−1, 2i]}

PANDA then continues with logB recursive calls. The

i’th recursive call replaces S with Si in the query, adds

two new statistics (V |U) and (U) to Σ, and two log-

statistics values, bV |U
def
= i and bU

def
= N/2i−1, both with

guard Si(UV ). Then, PANDA computes a new optimal

primal/dual solutions to the polymatroid bound, resulting

in a new inequality (50) and a new polymatroid h∗. It uses

these to compute the residual query where S is replaced

by Si. Finally, it returns the union of all logN results

from all recursive calls.

We leave out several details of PANDA, including the proof

of termination, and refer the reader to [9]. We also note that

PANDA was extended from computing full conjunctive queries,

to computing Boolean conjunctive queries, with a runtime given

by the submodular width of the query, a notion introduced by

Marx [50].

VIII. THE DOMINATION PROBLEM

We now move beyond the query upper bound problem, and

consider a related question, called the domination problem:

given two queries Q,Q′, check if, for any database D,

|Q(D)| ≤ |Q′(D)|. The queries Q and Q′ need not have

the same number of variables. In this section we consider

full conjunctive queries that may have self-joins, i.e. the same

relation name may occur several times in the query; for example

in R(X,Y ) ∧R(Y, Z) the same relation R occurs twice.

Definition VIII.1. Given two conjunctive queries Q(X),
Q′(Y ) we say that Q′ dominates Q, and write Q ⪯ Q′, if for

every database instance D, |Q(D)| ≤ |Q′(D)|.

The original motivation for the domination problems comes

from the query containment problem under bag semantics.

Given a (not necessarily full) conjunctive query Q(Y0), as
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in (1), its value under bag semantics is a bag of tuples,

where each tuple y0 occurs as many times as the number

of homomorphisms from Q to D that map Y0 to y0. SQL

uses bag semantics. Chaudhuri and Vardi [32] were the first

to study the query containment problem under bag semantics:

given Q,Q′, check whether Q(D) ⊆ Q′(D) for every D,

where both Q(D), Q′(D) are bags of tuples. This problem

has been intensively studied in the last thirty years. It has been

shown that the containment problem under bag semantics is

undecidable for unions of conjunctive queries [33], and for

conjunctive queries with inequalities [34]; both used reduction

from Hilbert’s 10th Problem. It should be noted that, under set

semantics, the containment problem for these two classes of

queries is decidable.

When Q() = . . . is a Boolean query, then under standard set-

semantics it returns either {} or {()}, representing FALSE and

TRUE. Under bag semantics it may return a bag {(), (), . . . , ()},

representing a number, and this number is equal to the size

of the output of the full query, Q(X) = . . .. Based on this

discussion, the domination problem Q ⪯ Q′ for full conjunctive

queries is the same as the query containment problem under

bag semantics for Boolean queries.

Kopparty and Rossman [10] were the first to establish the

connection between the domination problem and information

theory. We describe this connection, following their example.

Example VIII.2. This example from [10] is attributed to Eric

Vee. Consider the following queries:

Q(X,Y, Z) =R(X,Y ) ∧R(Y, Z) ∧R(Z,X)

Q′(U, V,W ) =R(U, V ) ∧R(U,W )

We will show that Q ⪯ Q′. Chaudhuri and Vardi [32] already

noted that, if there exists a surjective homomorphism Q′ → Q,

then Q ⪯ Q′. In our example we have three homomorpisms

φ1, φ2, φ3 : Q→ Q′, but none of them is surjective.

Consider the following linear expression in entropic terms,

defined over the variables U, V,W in Q′:

E
def
=h(UV ) + h(UW )− h(U) = h(UV ) + h(W |U)

(The expression is derived from the tree decomposition of Q′,

as we explain below.) For each of the three homomorphism

φi, denote by E ◦ φi the result of substituting the variables

U, V,W in E with φi(U), φi(V ), φi(W ).

Claim 2. The following inequality holds for all polymatroids:

h(XY Z) ≤max(E ◦ φ1, E ◦ φ2, E ◦ φ3) (51)

Proof. We expand:

max(E ◦ ϕ1, E ◦ ϕ2, E ◦ ϕ3) =

=max(h(XY ) + h(Y |X), h(Y Z) + h(Z|Y ), h(XZ) + h(X|Z))

≥
1

3
(h(XY ) + h(Y Z) + h(ZX) + h(Y |X) + h(Z|Y ) + h(X|Z))

=
1

3
((h(XY ) + h(Z|Y )) + (h(Y Z) + h(X|Z)) + (h(ZX) + h(Y |X)))

≥h(XY Z)

where the last inequality follows from h(XY ) + h(Z|Y ) ≥
h(XY ) + h(Z|XY ) = h(XY Z) and similarly for the other

two terms.

To prove Q ⪯ Q′, consider a database instance D, let

N
def
= |Q(D)|, and consider the uniform probability distribution

(Q(D), p). Its entropy h satisfies inequality (51): assume

w.l.o.g. that h(XY Z) ≤ E ◦ φ1 = h(XY ) + h(Y |X) (the

other two cases are similar). We use φ1 to define a probability

space (Q′(D), p′): for every three constants u, v, w in the

instance D s.t. p(X = u) ̸= 0, define

p′(U = u, V = v,W = w)
def
=

p(X = u, Y = v)p(X = u, Y = w)

p(X = u)

Thus, V ⊥W |U , the distribution of UV is the same as that

of XY , and the distribution of UW is also the same as that

of XY . (This is similar to the Copy Lemma V.8.) Denoting by

h′ the entropic vector associated to p′, we derive:

log |Q′(D)| ≥h′(UVW ) = h′(VW |U) + h(U)

=h′(V |U) + h′(W |U) + h′(U) because V ⊥ W |U

=h(Y |X) + h(Y |X) + h(X) = h(XY ) + h(Y |X)

=E ◦ ϕ1 ≥ h(XY Z) = log |Q(D)|

We generalize Example VIII.2. A tree decomposition of

a query Q(X) =
∧

j Rj(Yj) is a pair (T, χ), where T is a

tree and χ : Nodes(T ) → 2X such that every atom Rj(Yj)
is covered, meaning ∃n, Yj ⊆ χ(n), and for any variable

X ∈ X , the set of nodes {n ∈ Nodes(T ) | X ∈ χ(n)} induces

a connected subgraph of T . Each set χ(n) is called a bag. Q
is chordal if it admits a tree decomposition where every bag

χ(n) induces a clique in the Gaifman graph of Q; equivalently,

for any two variables X,Y ∈ χ(n) the query has a predicate

that contains both X,Y . A chordal query has a canonical tree

decomposition where the bags are the maximal cliques. Q is

called acyclic4 if there exists a tree decomposition where each

bag is precisely one atom of the query, χ(n) = Yj for some

j. An acyclic query is, in particular, chordal.

Fix a query Q(U) with variables U and a tree decomposition

T . We define the following expression of entropic terms:

ET
def
=

∑

n∈Nodes(T )

h(χ(n))−
∑

(n,n′)∈Edges(T )

h(χ(n) ∩ χ(n′)) (52)

Equivalently, choose a root node for T and orient all edges

to point away from the root. Then:

ET =
∑

n∈Nodes(T )

h(χ(n)|χ(n) ∩ χ(Parent(n)))

where we set χ(Parent(Root))
def
= ∅. The following holds:

Theorem VIII.3. Let Q(X), Q′(U) be two full conjunctive

queries, over variables X and U respectively.

4More precisely, it is called α-acyclic [51].
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• [10], [11] Let T be a tree decomposition for Q′. If the

following inequality holds for all entropic vectors h:

h(X) ≤ max
ϕ:ϕ∈hom(Q′,Q)

ET ◦ φ (53)

then Q′ dominates Q, Q ⪯ Q′.

• [11] If Q′ is chordal and Q ⪯ Q′, then inequality (53)

holds for all entropic vectors, where T is the canonical

tree decomposition of Q′ consisting of its maximal cliques.

In other words, (53) is a necessary and sufficient condition

for dominance.

Let’s call a tree decomposition T simple if for every edge

(n, n′) ∈ Edges(T ), |χ(n)∩χ(n′)| ≤ 1. If Q′ admits a simple

tree decomposition, then condition (53) is decidable; the proof

follows immediately from Lemma VI.8. This implies:

Corollary VIII.4. Assume that Q′ is chordal and admits a

simple tree decomposition. Then it is decidable whether Q ⪯
Q′. Moreover, if Q ̸⪯ Q′, then there exists a normal database

instance (Sec. VI-C) such that |Q(D)| > |Q′(D)|.

Finally, we remark that the connection between the query

domination problem and information inequalities is very tight.

The following was proven in [11]:

Theorem VIII.5. The following problems are computation-

ally equivalent. (1) Check if an inequality of the form

maxj=1,p(c
(j) · h) ≥ 0 is valid for all entropic vectors h,

where c(1), . . . c(p) ∈ R
2[n]

are p vectors. (2) Given two queries

Q,Q′ where Q′ is acyclic, check whether Q ⪯ Q′.

It is currently open whether these problems are decidable.

IX. CONDITIONAL INEQUALITIES AND APPROXIMATE

IMPLICATION

Our last application of information inequalities is for the

approximate implication problem, which can be described

informally as follows. Let σ1, . . . , σp be some constraints on the

database (we will define shortly what constraints we consider),

and suppose we have a proof of the implication
∧

i σi ⇒ σ0.

The question is, if the database D satisfies the constraints

σi only approximatively, is it the case that that σ0 also holds

approximatively? We will show here that this question is related

to conditional information inequalities, whose study requires

us to do another deep dive into the space of polymatroids

and entropic functions. We start by defining a conditional

inequality:

Definition IX.1. A conditional information inequality is an

assertion of the following form:

c1 · h ≥ 0 ∧ · · · cp · h ≥ 0 ⇒ c0 · h ≥ 0 (54)

where ci ∈ R
2[n]

for i = 0, p are vectors.

Sometimes it will be more convenient to replace ci by −ci,

and write the implication as
∧

i ci · h ≤ 0 ⇒ c0 · h ≤ 0. As

before, the validity of a conditional inequality depends on the

domain of h, e.g. it can be valid for polymatroids, or entropic

functions, etc.

The first non-Shannon inequality discovered was a con-

ditional inequality [15], predating the first unconditioned

Shannon inequality [16]. Kaced and Romashchenko [18]

showed the first examples of essentially conditional inequalities

(explained below). We start by describing the connection

between conditional inequalities and the constraint implication

problem in databases, then study the relaxation problem, a

technique for transferring exact inferences to approximate

judgments. We end with the proof of Theorem V.4, which

we have postponed until we developed sufficient technical

machinery.

A. The Constraint Implication Problem

An integrity constraint, σ, is an assertion about a relation

R(X) that is required to hold strictly. The constraints consid-

ered here are Functional Dependencies (FD), already reviewed

in Sec. II, and Multivalued Dependencies (MVD). An MVD

is a statement σ = (U ↠ V |W ) where U ∪ V ∪W form

a partition of X . A relation instance R satisfies the MVD,

R |= σ, if R = ΠUV (R) ▷◁ ΠUW (R).
The implication problem asks whether a set of FDs and/or

MVDs σi, i = 1, p, implies another FD or MVD σ0:

σ1 ∧ · · · ∧ σp ⇒σ0 (55)

Armstrong’s axioms [35] are complete for the implication

problem for FDs, while Beeri et al. [52] gave a complete

axiomatization for both FDs and MVDs, and showed that the

implication problem is decidable. In contrast, Herrmann [53]

showed that the implication problem of Embedded MVDs is

undecidable; we do not discuss EMVDs here.

Lee [1] showed the following connection between infor-

mation theory and constraints. Fix a relational instance R,

and let h be its associated (uniform) entropic vector. Then

R |= U → V iff h(V |U) = 0, and R |= U ↠ V |W iff

Ih(V ;W |U) = 0. Therefore, every implication problem for

FDs and MVDs can be stated as a conditional information

inequality. For example, the augmentation axiom [52] states

(A↠ B|CD) ⇒(AC ↠ B|D)

and is equivalent to the following conditional inequality:5

I(B;CD|A) = 0 ⇒I(B;D|AC) = 0 (56)

This can be proven immediately by observing that the identity

I(B;CD|A) = I(B;C|A) + I(B;D|AC) implies:

I(B;D|AC) ≤I(B;CD|A)

Since both terms are ≥ 0, the implication (56) follows.

Beyond database applications, Conditional Independencies

(CI) are commonly used in AI, Knowledge Representation,

and Machine Learning. A CI is an assertions of the form

X ⊥ Y | Z, where X,Y, Z are three random variables,

stating that X is independent of Y conditioned on Z. The AI

community has extensively studied the implication problem for

5This has the form in Def. IX.1 once we write it as −I(B;CD|A) ≥ 0
implies −I(B;D|AC) ≥ 0.
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CIs. It was shown that the implication problem is decidable and

finitely axiomatizable for saturated CIs [37] (where XY Z =
all variables), but not finitely axiomatizable in general [54].

B. The Relaxation Problem

How can we prove a conditional inequality (54)? One

approach is as follows. Find p non-negative real numbers

λ1, . . . , λp for which the following inequality is valid:

c · h ≥(
∑

i=1,p

λici) · h (57)

Then, observe that (57) implies (54). A natural question is

whether every conditional information inequality can be derived

in this way, from an unconditional inequality: when that is

the case, then we say that the conditional inequality (54)

relaxes to (57), or that it is essentially unconditional. Otherwise

we say that it is essentially conditional. For example, the

augmentation axiom above can be relaxed, hence it is essentially

unconditioned.

Besides offering an important proof technique, relaxation is

important in modern database applications, because often the in-

tegrity constraints don’t hold exactly, but only approximatively,

especially when they are mined from a given dataset [55]–[62].

The relaxation problem allows us to transfer proofs over exact

constraints to approximate constraints.

Every implication problem for FDs and MVDs relaxes [12]:

Theorem IX.2. Consider the statement (55) asserting the im-

plication between a set of FDs/MVDs. Consider the associated

conditional information inequality:
(

∧

i

h(σi) = 0

)

⇒(h(σ0) = 0) (58)

where each expression h(σi) represents either Ih(V ;W |U)
or h(V |U). Then the following are equivalent:

• The implication (55) holds for FDs/MVDs.

• The implication (58) holds for all polymatroids.

• The implication (58) holds for all entropic functions.

• The implication (58) holds for all normal polymatroids.

• The inequality n2/4(
∑

i h(σi)) ≥ h(σ0) holds for all

polymatroids. Furthermore, if σ0 is an FD (rather than

MVD), then n2/4 can be replaced by 1.

Thus, the implication problem for FDs and MVDs relaxes.

A consequence of the theorem is that, if (58) fails, then there

exists a relation with only two tuples falsifying the implication,

namely one of the relations RW in (41) associated to a step

function.

Next, we examine whether all conditional inequalities relax.

To do this, we need another (last) deep dive into the structure

of entropic functions, and introduce almost-entropic functions.

C. Background: Almost Entropic Functions

We start with a brief review of cones, following [63], [64]. A

set K ⊆ R
n is called a cone, if x ∈ K and θ ≥ 0 implies θx ∈

K. The cone is convex if x1,x2 ∈ K and θ ∈ [0, 1] implies

θx1+(1−θ)x2 ∈ K. For any set K ⊆ R
n, we denote by K̄ its

topological closure, and by K∗ def
= {y | ∀x ∈ K,yT · x ≥ 0},

it’s dual. The dual is always a closed, convex cone, K ⊆ K∗∗

and, when K is a closed, convex cone, then K = K∗∗.

A cone is polyhedral if it has the form K = {x |
M · x ≥ 0}, for some matrix M ∈ R

m×n. Any polyhedral

cone is closed and convex, and its dual is also polyhedral.

The set of polymatroids Γn and of entropic vectors Γ∗
n are

subsets of R
2n . The superscript ∗ in Γ∗

n is an unfortunate

notation, since it does not represent a dual, but this notation is

already widely used. Valid inequalities (Def. IV.2) are the dual

cones, (Γ∗
n)

∗, and (Γn)
∗ respectively. Clearly, Γn is polyhedral,

and therefore Γn = Γ∗∗
n . What about Γ∗

n?

It turns out that, when n ≥ 3, then Γ∗
n is neither a cone

nor convex. This may come as a surprise, so we take the

opportunity to briefly review here the elegant proof by Zhang

and Yeung [15]. Consider the parity function h, shown in Fig. 2,

and observe that h(X) = 1, h(Z|XY ) = 0, and Ih(X;Y ) = 0.

If c is a natural number, the vector c · h is also entropic, by

Prop. V.3; but in general, c · h is entropic only if there exists

a natural number N such that c = logN , which implies Γ∗
n is

neither a cone, nor convex. To prove this, assume that c · h is

entropic, and realized by a probability distribution p(X,Y, Z).
Choose any two values x, y such that p(X = x) > 0 and

p(Y = y) > 0. Since Ich(X;Y ) = c · Ih(X;Y ) = 0, it holds

that X ⊥ Y , hence p(X = x)p(Y = y) = p(X = x, Y =
y) > 0. Furthermore, c · h(Z|XY ) = 0, therefore p satisfies

the functional dependency XY → Z, and there exists a unique

value z s.t. p(X = x, Y = y, Z = z) > 0. We have obtained

p(X = x)p(Y = y) = p(X = x, Y = y, Z = z) and, by

symmetry, it also holds that p(X = x)p(Z = z) = p(X =
x, Y = y, Z = z). This implies p(Y = y) = p(Z = z). Since

y was arbitrary, it follows that p(Y = y) = p(Y = y′) for all

y, y′ in the support of Y . Therefore, the marginal distribution

of Y is uniform, and its entropy is c ·h(Y ) = logN , where N
is the size of the support, proving c = logN , since h(Y ) = 1.

Recall that in Sec. IV-B we stated that the conditional entropy

h(−|U) is not always an entropic vector: we invite the reader

to give such an example.

While Γ∗
n is neither a cone nor convex, Yeung [14] proved:

Theorem IX.3. The topological closure Γ̄∗
n of Γ∗

n is a closed,

convex cone. A vector h ∈ Γ̄∗ is called almost-entropic.

The complete picture of all sets of polymatroids discussed

in this paper is shown in Fig. 3.

If an inequality is valid for Γ∗
n, then it is also valid for Γ̄∗

n,

by continuity. However, this no longer holds for conditional

information inequalities: Kaced and Romashchenko [18] gave

an example of a conditional inequality that is valid for Γ∗
n, but

not for Γ̄∗
n. Since we are interested in the relaxation problem,

we will consider only validity for Γ̄∗
n.

When n = 3 then one can show that Γ̄∗
3 = Γ3, hence it is

polyhedral. However, Matúš [17] showed that, for n ≥ 4, Γ̄∗
n is

not polyhedral. This explains the difficulties in understanding

the non-Shannon inequalities, and also in reasoning about

conditional inequalities.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 27,2024 at 23:20:19 UTC from IEEE Xplore.  Restrictions apply. 



D. A Conditional Inequality that Does Not Relax

Kaced and Romashchenko [18] gave four examples of

essentially conditional inequalities. This is a very surprising

result: it means that a proof of the implication (55) becomes

useless if one of the assumptions has even a tiny violation in

the data. We describe here one of their examples, following

the adaptation in [12].

Theorem IX.4. [18] The following conditional inequality is

valid for Γ̄∗
n, and is essentially conditional:

I(X;Y |A) = I(X;Y |B) = I(A;B) = I(A;X|Y ) = 0 ⇒ I(X;Y ) = 0

Notice that none of the constraints is an FD or an MVD, so

this does not contradict Theorem IX.2. We prove the theorem,

and start by proving the conditional inequality. For that we

use the following non-Shannon inequality, by Matús [17]. For

every k ≥ 1,

I(X;Y ) ≤
k + 3

2
I(X;Y |A) + I(X;Y |B) + I(A;B)

+
k + 1

2
I(A;X|Y ) +

1

k
I(A;Y |X) (59)

When k = 1, this is Zhang and Yeung’s inequality (32).

Matús proved (59) by induction on k, by applying the Copy

Lemma V.8 at each induction step; we omit the proof.

Since (59) holds for Γ∗
n, it also holds for Γ̄∗

n. To check the

conditional inequality in Thm. (IX.4), let h ∈ Γ̄∗
n such that

I(X;Y |A) = I(X;Y |B) = I(A;B) = I(A;X|Y ) = 0: then

inequality (59) becomes I(X;Y ) ≤ 1
k I(A;Y |X) and, since k

is arbitrary, it follows that I(X;Y ) = 0.

Finally, we show that the conditional inequality does not

relax, by describing, for each λ > 0, an entropic vector h s.t.

I(X;Y ) ≥λ(I(X;Y |A) + I(X;Y |B) + I(A;B) + I(A;X|Y )) (60)

Let h be the entropy of the following distribution:

A B X Y p
0 0 0 0 1/2− ε
1 0 0 1 1/2− ε
0 1 1 0 ε
1 1 0 0 ε

If ε is small enough then one can check:6

I(X;Y ) =ε+O(ε2), I(A;X|Y ) = O(ε2),

I(X;Y |A) =I(X;Y |B) = I(A;B) = 0

which proves (60) for ε is small enough.

E. Conditional Inequalities Relax with Error Terms

However, in another twist, it turns out that every conditional

inequality relaxes, if we admit a small error term. The following

was proven in [12]:

Theorem IX.5. Suppose that the following holds:

6Complete calculations are included in [12]; note that here we have swapped
the roles of A and B, in order to better draw the connection to Zhang and
Yeung’s inequality (32).

∀h ∈ Γ̄∗
n,





∧

i=1,p

ci · h ≤ 0



 ⇒c0 · h ≤ 0 (61)

Then, for every ε > 0 there exists λ1, . . . , λp ≥ 0 such that:

∀h ∈ Γ̄∗
n, c0 · h ≤





∑

i=1,p

λici · h



+ εh(X) (62)

where X is the set of all n variables.

Even with the error term, condition (62) still implies (61),

because, if ci ·h ≤ 0 for all i, then (62) implies c0 ·h ≤ εh(X)
and, since ε is arbitrary, we obtain c0 · h ≤ 0. In fact, Matús’

inequality (59) can be seen as a relaxation, with an error term,

of the conditional inequality in Theorem IX.4. Theorem IX.5

shows that this was not accidental: every conditional inequality

follows from an unconditional with an error term that tends

to 0. In the next section we will show that Theorem IX.5 has

a surprising application, to the proof of Theorem V.4. Before

that, we prove Theorem IX.5 by showing:

Lemma IX.6. [12] Let K ⊆ R
n be a closed, convex cone,

and ci ∈ R
n, i = 0, p be vectors such that the following holds:

∀x ∈ K :





∧

i=1,p

ci · x ≤ 0



 ⇒c0 · x ≤ 0 (63)

Then, for every ε > 0, there exists λ1, . . . , λp ≥ 0 such that:

∀x ∈ K : c0 · x ≤





∑

i=1,p

λici



 · x+ ε||x||∞ (64)

The lemma implies the theorem, because Γ̄∗
n is a closed,

convex cone, and ||h||∞ = h(X).

Proof. (of Lemma IX.6) Let L
def
= {−ci | i = 1, p}. Then

condition (63) says that x ∈ K ∩ L∗ implies c0 · x ≤ 0, or,

equivalently, −c0 ∈ (K ∩ L∗)∗. The following holds for any

closed, convex cones K1,K2 (see [12, Sec.5.3]):

(K1 ∩K2)
∗ =conhull(K∗

1 ∪K∗
2 )

where conhull(A) is the conic hull of a set A, i.e. the set

of positive, linear combinations of vectors in A. Also, if L is

finite, then L∗∗ = conhull(L). Therefore, −c0 belongs to the

following set:

(K ∩ L∗)∗ =conhull(K∗ ∪ L∗∗)

=conhull(K∗ ∪ conhull(L))

=conhull(K∗ ∪ L)

For any ε > 0, there exists e ∈ R
n such that ||e||1 < ε and:

−c0 + e ∈conhull(K∗ ∩ L)
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By the definition of the conic hull, and the fact that K∗ is a

convex cone, we obtain that there exists d ∈ K∗ and λi ≥ 0,

for i = 1, p such that:

−c0 + e =d−
∑

i=1,p

λici

We prove (64). Let x ∈ K, and observe that d · x ≥ 0, then:




∑

i=1,p

λici



 · x− c0 · x+ e · x =d · x ≥ 0

and (64) follows from e · x ≤ ||e||1 · ||x||∞ ≤ ε||x||∞.

We end this section with a brief discussion of why Theo-

rem IX.5 only holds for the set of almost entropic functions

Γ̄∗
n, and fails for Γ∗

n. Kaced and Romashchenko [18] gave an

example of a conditional inequality that is valid for Γ∗
n, but not

for Γ̄∗
n. If Theorem IX.5 were to hold for that inequality, then

the relaxed inequality (62) holds for Γ̄∗
n, and then we could

prove that the conditional inequality also holds for Γ̄∗
n.

F. Proof of Theorem V.4

We have now the machinery needed to prove Theorem V.4,

which states that Log-L-BoundΓ∗
n

and Log-U-BoundΓ∗
n

are

asymptotically equal. What makes the proof a little difficult is

the ill-behaved nature of the entropic functions Γ∗
n. To cope

with that, use some help from the almost entropic functions

Γ̄∗
n, and prove that, here, the two bounds are equal (not just

asymptotically). We state and prove the theorem for an arbitrary

closed, convex cone K:

Theorem IX.7. Fix Q,Σ, b, and let K be a closed, convex

cone s.t. Nn ⊆ K ⊆ Γn. (Recall that Nn is the set of normal

polymatroids, Def. VI.2.) Then:

Log-L-BoundK(Q,Σ, b) =Log-U-BoundK(Q,Σ, b)

In particular, the lower and upper bounds are equal for

K = Γ̄∗
n, while they are not necessarily equal for Γ∗

n. It shows

that the set Γ̄∗
n is better behaved that Γ∗

n, and that explains

why it was used in prior work [9], [23] to study lower bounds.

Before we prove the theorem, we show how to use it to

prove Theorem V.4. Its proof follows from Theorem IX.7 and

two identities, (65) and (66), which we prove below. The first

is very simple:

Log-U-BoundΓ̄∗
n
(Q,Σ, b) = Log-U-BoundΓ∗

n
(Q,Σ, b) (65)

and follows directly from the fact that Γ̄∗
n and Γ∗

n have the

same dual cone, (Γ̄∗
n)

∗ = (Γ∗
n)

∗; in other words, they define

the same set of valid inequalities c · h ≥ 0.

The second equality requires a proof, and we state it as a

lemma:

Lemma IX.8. The following holds:

sup
k

Log-L-BoundΓ∗
n
(Q,Σ, kb)

Log-L-BoundΓ̄∗
n
(Q,Σ, kb)

=1 (66)

Proof. The proof is similar to that of Theorem V.5 item (1) in

Sec. V-B. The LHS is obviously ≤ 1. To prove that it is ≥ 1,

denote by7 L
def
= Log-L-BoundΓ̄∗

n
(Q,Σ, b), and observe that

Log-L-BoundΓ̄∗
n

is linear in b, Log-L-BoundΓ̄∗
n
(Q,Σ, kb) =

kL, because Γ̄∗
n is a convex cone. It suffices to show that, for

all ε > 0, there exists h ∈ Γ∗
n such that h |= (Σ, kb) and

h(X) ≥ (1− ε)2kL.

Start with some h ∈ Γ̄∗
n satisfying:

∀σ ∈ Σ : h(σ) ≤bσ, h(X) =L

which exists by the definition of Log-L-BoundΓ̄∗
n

(Def. V.1) and

the fact that the set {h ∈ R
2[n]

| ||h||∞ ≤ L} is compact. Chan

and Yeung’s Theorem V.9 proves that Υn is dense in Γ∗
n, and

therefore it is also dense in Γ̄∗
n. Assume w.l.o.g. that h(X) > 0,

then g
def
= minU ,V :h(V |U>0) h(V |U) > 0 (the smallest non-

zero value of any expression h(V |U)). Let δ
def
= εg/4. Since

Υn is dense, there exists r ∈ N and h(r) ∈ Υn such that

|| 1rh
(r) − h||∞ ≤ δ. We have h(X) > 0 hence h(X) ≥ g,

therefore:

1

r
h(r)(X) ≥h(X)− δ = h(X)− εg/4

≥h(X)− (ε/4)h(X) ≥ (1− ε)h(X)

=(1− ε)L

We claim that 1
rh

(r)(V |U) ≤ (1+ε/2)h(V |U), for all U ,V .

If h(V |U) = 0, then h satisfies the FD U → V , and therefore

h(r) also satisfies this FD (see the note after Theorem V.9),

implying h(r)(V |U) = 0. Otherwise, h(V |U) ≥ g and,

1

r
h(r)(V |U) ≤h(V |U) + 2δ = h(V |U) + εg/2

≤(1 + ε/2)h(V |U)

Therefore, we have:

∀σ ∈ Σ : h(r)(σ) ≤(1 + ε/2)rbσ h(r)(X) ≥(1− ε)rL

Finally, by the Slack lemma, ∃k ∈ N,h′ ∈ Γ∗
n such that:

∀σ ∈ Σ : h′(σ) ≤(1− ε/2)kh(r)(σ) ≤ (1− (ε/2)2)krbσ ≤ krbσ

h′(X) ≥(1− ε)kh(r)(X) ≥ (1− ε)2krL

This completes the proof.

In the remainder of this section we prove Theorem IX.7.

Proof. (of Theorem IX.7) We will use the following definition

from [64, Example 5.12]:

Definition IX.9. Let K be a proper cone (meaning: closed,

convex, with a non-empty interior, and pointed i.e. x,−x ∈ K
implies x = 0). A primal/dual cone program in standard form8

is the following:

Primal Dual
Maximize cT · x Minimize yT · b
where A · x = b where (yT ·A− cT )T ∈ K∗

x ∈ K
7If Log-L-BoundΓ̄∗

n
(Q,Σ, b) = ∞ then we choose L an arbitrarily large

number, and make minor adjustments to the proof; we omit the details.
8We changed to the original formulation [64] by replacing c with −c,

replacing y with −y.
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Denote by P ∗, D∗ the optimal value of the primal and dual

respectively. Weak duality states that P ∗ ≤ D∗, and is easy

prove. When Slater’s condition holds, which says that there

exists x in the interior of K such that Ax = b, then strong

duality holds too: P ∗ = D∗.

Log-L-BoundK(Q,Σ, b) and Log-U-BoundK(Q,Σ, b) can

be expressed as a cone program, by letting A and c be the

matrix and vector defined in the proof of Theorem V.2 (thus,

A · h = (h(σ))σ∈Σ and cX = 1, cU = 0 for U ̸= X):

Log-L-BoundK Log-U-BoundK
Maximize cT · h Minimize wT · b
where A · h+ β = b where (wT ·A− cT )T ∈ K∗

(h,β) ∈ K × R
s
+ w ≥ 0

(67)

Here β are slack variables that convert an inequality h(σ) ≤ bσ
into an equality h(σ) + βσ = bσ . We leave it to the reader to

check that these two programs are indeed primal/dual as in

Def. IX.9.

However, in general, Slater’s condition need not hold for (67).

For example, K = Γ̄∗
n lies in the hyperplane h(∅) = 0, and thus

has an empty interior. This could be addressed by removing

the ∅ dimension, but we have a bigger problem. Some of the

constraints may be tight: when bσ = 0, then h(σ) = 0, meaning

that no feasible solution h exists in the interior of K. Instead,

we will define a different cone, K0, by using polymatroids on

a lattice, as in Sec. V-A.

Partition Σ into Σ0 = {σ | bσ = 0} and Σ1 = {σ | bσ > 0},

and denote by b1 the restriction of b to Σ1. In other words, Σ0

defines a set of functional dependencies, while (Σ1, b1) defines

non-tight statistics. Let (LΣ0 ,⊆) be the lattice of the closed

sets of Σ0 (defined in Sec. II); we will drop the subscript and

write simply (L,⊆) to reduce clutter. Define F ⊆ R
2[n]

the

following cone9:

F
def
={h ∈ R

2[n]

| ∀σ ∈ Σ0 : h(σ) = 0}

Let L0
def
= L− {0̂}, N

def
= |L0|. Our cone K0 ⊆ R

N
+ is:

K0
def
=ΠL0

(K ∩ F ) (68)

The function ΠL0 projects a 2[n]-dimensional vector (hU )U∈2X

to the N -dimensional vector (hU )U∈L0
. Thus, K0 not only

removes the ∅ dimension, but also removes all dimensions

subject to a tight constraint. We prove the following:

(1) K0 is proper

(2) Log-L-BoundK = Log-L-BoundK0
and

Log-U-BoundK = Log-U-BoundK0

(3) Log-L-BoundK0
= Log-U-BoundK0

Theorem IX.7 follows from these three claims.

We start with item (1), and observe that K0 is a closed,

convex cone, because K ∩ F is a closed, convex cone, and

ΠL0
is a linear isomorphism K ∩ F → K0: indeed, ΠL0

is

surjective by the definition of K0, and it is injective because, if

h,h′ ∈ K∩F , then ΠL0
(h) = ΠL0

(h′) implies that, for every

9In fact F is even a vector space.

set U , h(U) = h(U+) = h′(U+) = h′(U). It is immediate

to check that K0 is pointed, and we will show below that K0

has a non-empty interior: this implies that it is proper.

Next, we prove item (2), and for that we will write h for a

vector in K ∩ F and write h(0) for a vector in K0. For any

statistics σ = (V |U) ∈ Σ1, denote by σ+ = ((UV )+|U+).
We say that a vector h(0) satisfies the statistics (Σ1, b1), in

notation h(0) |= (Σ1, b1), if h(0)(σ+) ≤ bσ for all σ ∈ Σ1.

By definition, a vector h(0) ∈ K0 satisfies the FDs Σ0.

Lemma IX.10. The following holds:

Log-L-BoundK(Q,Σ, b) = Log-L-BoundK0
(Q,Σ1, b1)

Equivalently, the lemma states:

sup
h

{h(X) | h ∈ K,h |= (Σ, b)}

=sup
h(0)

{

h(0)(1̂) | h(0) ∈ K0,h
(0) |= (Σ1, b1)

}

and the proof is immediate, because the projection of a vector

h ∈ K satisfying (Σ, b) is a vector h(0) ∈ K0 satisfying

(Σ1, b1), and, conversely, every such h(0) is the projection of

a vector h.

Recall that we have assumed Nn ⊆ K ⊆ Γn:

Lemma IX.11. The following holds:

Log-U-BoundK(Q,Σ, b) = Log-U-BoundK0
(Q,Σ1, b1)

Proof. We need to prove:

inf
w

{

∑

σ∈Σ

wσbσ | K |=
∑

σ∈Σ

wσh(σ) ≥ h(X)

}

(69)

= inf
w(0)

{

∑

σ∈Σ1

w
(0)
σ+bσ | K0 |=

∑

σ∈Σ1

w
(0)
σ+h

(0)(σ+) ≥ h(0)(X)

}

A vector w on the LHS defines an unconstrained inequality,

while a vector w(0) on the RHS defines a constrained inequality,

because w(0) satisfies

∀h(0) ∈ K0,
∑

σ∈Σ1

w
(0)
σ+h

(0)(σ+) ≥ h(0)(X)

iff it satisfies

∀h ∈ K,
∧

σ∈Σ0

h(σ) = 0 ⇒
∑

σ∈Σ1

w
(0)
σ+h(σ

+) ≥ h(X) (70)

which is a constrained inequality.

We start by showing that LHS≥RHS in Eq. (69). For

that it suffices observe that, if w = (wσ)σ∈Σ defines a

valid inequality
∑

σ∈Σ wσh(σ) ≥ h(X), then its projection

w(0) = (wσ+)σ∈Σ1
defines a valid constrained inequality

∑

σ∈Σ1
w

(0)
σ+h

(0)(σ+) ≥ h(0)(X), because all the missing

terms h(σ) for σ ∈ Σ0 are = 0. Therefore infw(· · · ) ≥
infw(0)(· · · )

We prove now that LHS≤RHS. Let w(0) be a vector defining

a valid constrained inequality (70). The objective value of the

RHS of (69) is
∑

σ∈Σ1
w

(0)
σ+bσ . By the relaxation theorem IX.5,
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for every ε > 0 there exists λσ ≥ 0, for σ ∈ Σ0, such that the

following is a valid, unconstrained inequality:

K |=
∑

σ∈Σ0

λσh(σ) +
∑

σ∈Σ1

w
(0)
σ+h(σ

+) + εh(X) ≥h(X)

This inequality is not yet of the form on the LHS of (69),

because we have terms h(σ+) instead of h(σ). For each such

term, h(σ+) = h((UV )+|U+), where σ = (V |U), we use

the following Shannon inequality:

h(σ+) =h((UV )+|U+) ≤ h((UV )+|U)

=h(UV |U) + h((UV )+|UV )

=h(σ) + h((UV )+|UV ) ≤ h(σ) +
∑

σ∈Σ0

h(σ)

The last inequality, h((UV )+|UV ) ≤
∑

σ∈Σ0
h(σ), can be

checked by induction on the number of steps needed to compute

the closure (UV )+ using the FDs in Σ0. (It also follows

from Theorem IX.2.) This implies that there exists coefficients

λ′σ ≥ 0 such that the following is a valid, unconstrained

inequality:

K |=
∑

σ∈Σ0

λ′σh(σ) +
∑

σ∈Σ1

w
(0)
σ+h(σ) + εh(X) ≥h(X)

or, equivalently,

K |=
∑

σ∈Σ0

λ′σ
1− ε

h(σ) +
∑

σ∈Σ1

w
(0)
σ+

1− ε
h(σ) ≥h(X)

This is a valid inequality for the LHS of (69), and its objective

value is (
∑

σ∈Σ1
w

(0)
σ+bσ)/(1 − ε), because bσ = 0 for all

σ ∈ Σ0. Since ε can be chosen arbitrarily small, it follows that

LHS≤RHS in (69).

This completes the proof of item (2). It remains to prove

item (3). For that we represent both Log-L-BoundK0
(Q,Σ1, b1)

and Log-U-BoundK0
(Q,Σ1, b1) as the solutions to the pri-

mal/dual cone program (67) over the cone K0. Notice that the

vector b is restricted to b1 and, therefore, bσ > 0 for all σ ∈ Σ1:

we no longer have tight constraints. Similarly, the matrix A

will be restricted to a matrix A1 whose rows correspond to

the closed sets U ⊆ X . It remains to check Slater’s condition,

and, in particular, prove that K0 has a non-empty interior. For

that purpose we extended the definition of step functions from

Sec. VI-A to our lattice L. For each closed set W ∈ L, s.t.

W ̸= 1̂, we define the step function at W as follows.

∀U ∈ L : h
(0)
W (U)

def
=

{

0 if U ⊆ W

1 otherwise

Let hW ∈ K be the standard step function in Eq. (40) (we

assumed Nn ⊆ K). hW satisfies all FDs Σ0, because the

only FDs that it does not satisfy are of the form U → V

where U ⊆ W , V ̸⊆ W , and none of the FDs in Σ0 have

this form because W+ = W . It follows hW ∈ K ∩ F ,

and this proves h
(0)
W = ΠL0(hW ) ∈ K0. There are N step

functions h
(0)
W ∈ K0, and it is straightforward to check that

they are independent vectors in R
N . Let ε > 0 be small enough

such that 2εN < minσ∈Σ1
bσ . Define h

def
=
∑

W∈L0
εhW , and

h(0) def
= ΠL0

(h). Since K∩F is a convex cone, h ∈ K∩F and

therefore h(0) ∈ K0. We claim that there exists slack variables

β such that (h(0), β) is a feasible solution to the cone program

in (67) and, furthermore, (h(0),β) belongs to the interior of

K0 × R
s
+. Indeed, for all σ ∈ Σ1, h(0)(σ) ≤ εN < bσ , hence,

if we define βσ
def
= bσ−h

(0)(σ), the pair (h(0),β) ∈ K0×R
s
+

is a feasible solution to the primal (67). Next, we prove

that (h(0),β) is in the interior of K0 × R
s
+. Since βσ > 0

for all σ ∈ Σ1, it follows that β is in the interior of

R
s
+. Set h′ def

=
∑

W∈L0
(ε + δW )hW , where δW ∈ (−ε, ε)

are N arbitrary numbers, we have h′ ∈ K ∩ F , hence

ΠL0
(h′) ∈ K0. This proves that h(0) is in the interior

of K0, thus, verifying Slater’s condition. It follows that

Log-L-BoundK0
(Q,Σ1, b1) = Log-U-BoundK0

(Q,Σ1, b1),
completing the proof of item (3).

X. CONCLUSIONS

Data is ultimately information, and therefore the connection

between databases and information theory is no surprise. We

have discussed applications of information inequalities to

several database theory problems: query upper bounds, query

evaluation, query domination, and reasoning about approximate

constraints. There are major open problems in information

theory, for example the decidability of entropic information

inequalities, the complexity of deciding Shannon inequalities,

a characterization of the cone Γ̄∗
n, and each such open problem

has a corresponding open problem in database theory. In

some cases the converse holds too, for example the query

domination problem is computationally equivalent to checking

validity of max-information inequalities, hence any proof of

(un)-decidability of one problem carries over to the other.

A broader question is whether information theory can

find wider applications in finite model theory. For example,

functional dependencies and multivalued dependencies can

be specified either using first order logic sentences, or using

entropic terms. Are there other properties in finite model

theory that can be captured using information theory? Such a

connection would enable logical implications to be relaxed to

approximate reasoning, with lots of potential in modern, data-

driven applications that rely heavily on statistical reasoning.
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APPENDIX

A. Proof of the claim in Example IV.9

We prove that any valid Σ-information inequality is a

positive linear combination of the four inequalities shown

in Example IV.9. Such an inequality has the following form:

wRh(XY ) + wSh(Y Z) + wTh(ZU)

+wBh(U |XZ) + wAh(X|Y U) ≥h(XY ZU) (71)

where wR, . . . , wA ≥ 0 are non-negative real numbers. Since

the inequality holds for all polymatroids, it also holds for every

step function hV (see Eq. (42)), for all V ⊆ {X,Y, Z, U}.

There are 24 − 1 = 15 step functions, but we only use 5 of

them:

hX : wR + wB ≥1

hY : wR + wS ≥1

hZ : wS + wT ≥1

hU : wT + wA ≥1

hXU : wR + wT ≥1

Consider the three constraints for hY ,hZ ,hXU , which men-

tion only the variables wR, wS , wT . Any solution to these

three constraints can be immediately extended to a solu-

tion to all 5 constraints, by setting wB ≥ max(0, 1 −
wR) and wA ≥ max(0, 1 − wT ). On the other hand, the

three constraints on wR, wS , wT assert that they form a

fractional edge cover of a triangle. The fractional edge

covering polytope of a triangle has four extreme vertices,

(0, 1, 1), (1, 0, 1), (1, 1, 0), (1/2, 1/2, 1/2). It follows that the

extreme vertices of our polytope over all 5 variables are:

wR wS wT wA wB
0 1 1 0 1
1 0 1 0 0
1 1 0 1 0
1/2 1/2 1/2 1/2 1/2

Each of these vectors corresponds precisely to one of the four

inequalities that we listed in Example IV.9, and, conversely, any

Σ-inequality of the form (71) is dominated by some convex

combination of one of these four.
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B. Proof of (33), and Failure of the Copy Lemma

We start by proving Inequality (33). The proof follows

immediately from the following identity:

−I(X;Y ) + I(X;Y |A) + I(X;Y |B) + I(A : B)+

+I(X;Y |A′) + I(A′;Y |X) + I(A′;X|Y ) + 3I(A′;AB|XY )

=I(A;B|A′) + I(A;A′|Y ) + I(A;A′|X)

+ I(A;A′|BXY ) + I(B;A′|Y ) + I(B;A′|X)

+ I(B;A′|AXY ) + I(X;Y |BA′) + I(X;Y |AA′)

+ I(X;A′|ABY ) + I(Y ;A′|AB)

Next, we prove that the polymatroid in Fig. 5 does not

satisfy the Copy Lemma. Assuming otherwise, let h′ denote

the polymatroid over variables X,Y,A,B,A′, B′. Using only

basic Shannon inequalities, we derive a contradiction. We will

drop the index h′ from Ih′(· · · ) and write simply I(· · · ). By

assumption, the values h′(U) for all sets U that do not contain

both A and A′, or both B and A′ are known, for example

h′(A′|XY ) = h(A|XY ) = 1. We also known the value h′(U)
when U contain XY , example h′(AA′XY ) = h′(AA′|XY )+
h′(XY ) = h′(A|XY )+h′(A′|XY )+h(XY ) = 1+1+3 = 5.

We proceed by examining the other sets where A,A′ or B,B′

co-occur, and start by showing h′(AA′) ≤ 3:

I(A;A′|X) =h′(AX) + h′(A′X)− h′(X)− h′(AA′X)

=3 + 3− 2− h′(AA′X) ≥ 0

and we derive h′(AA′X) ≤ 4. Similarly (replacing X with Y )

we derive h′(AA′Y ) ≤ 4. Finally, we have:

I(X;Y |AA′) =

=h′(AA′X) + h′(AA′Y )− h′(AA′XY )− h′(AA′) ≥ 0

and we derive that h′(AA′) ≤ 3. We repeat the argument above

by replacing A with B, and derive similarly that h′(BA′) ≤ 3.

Next, we show that h′(ABA′) ≥ 5, which follows from:

I(XY ;A′|AB) =

=h′(ABXY ) + h′(ABA′)− h′(AB)− h′(ABA′XY )

=4 + h′(ABA′)− 4− 5 ≥ 0

thus h′(ABA′) ≥ 5. (We also have h′(ABA′) ≤
h′(ABA′XY ) = 5, hence h′(ABA′) = 5, but the inequality

suffices for us.) Finally, we derive a contradiction:

I(A;B|A′) =h′(AA′) + h′(BA′)− h′(A′)− h′(ABA′)

≤3 + 3− 2− 5 = −1

C. Addendum to Theorem V.9

We briefly sketch here the proof that, if an entropic function

h satisfies a set of functional dependencies, then so do all h(r),

for all r ≥ 0. For that we need to review the main argument

of the proof in [45].

Let h be an entropic function, realized by a probability

distribution (R, p). The first step is to ensure that the proba-

bilities p(t) can be assumed to be rational numbers. Assume

w.l.o.g. that R is the support of p, then, by Lee’s result [1],

h |= U → V , iff R |= U → V . Consider now any sequence

of probability distributions on R, p(k) : R→ [0, 1], of rational

numbers, such that limk p
(k) = p. Then p(k), and its entropic

vector h(k), continue to satisfy the same FDs as R and, thus,

the same FDs as h. Since h(k) can be arbitrarily close to

h, it suffices to prove that the theorem holds for an entropic

vector h realized by a probability distribution (R, p) where

the probabilities are rational numbers. Assume they have a

common denominator q > 0, and let N = |R|.

From here on, we follow Chan and Yeung’s proof [45].

For each r = q, 2q, 3q, . . . define the following r × n matrix

Mr = (mρi)ρ=1,r;i=1,n. Its rows are copies of the tuples in R,

where each tuple x ∈ R occurs r ·p(x) times in the matrix Mr.

Intuitively, Mr can be viewed as a relation with n attributes

and r tuples, including duplicates, whose uniform probability

distribution has the same entropic vector h as (R, p). Let G
be the symmetric group Sr, i.e. the group of permutation on

the set {1, 2, . . . , r}; one should think of G as the group of

permutations on the rows of Mr. For each i = 1, . . . , n, let

Gi the subgroup that leaves the column i invariant, in other

words:

Gi ={σ ∈ G | mσ(ρ),i = mρ,i, ∀ρ = 1, r}

Denoting similarly Gα the subgroup of permutations that

leave the set of columns α ⊆ [n] invariant, one can

check that Gα =
⋂

i∈αGi. Let h(r) be the entropy of the

uniform probability distribution on the relational instance

{(aG1, . . . , aGn) | a ∈ G}. Using a combinatorial argument,

Chan and Yeung [45] prove that limr→∞
1
rh

(r) = h. We

will not repeat that argument here, but make the additional

observation that, if R satisfies the FD U → V , then GU ⊆ GV ,

which implies that h(r) also satisfies the same FD.

D. Proof of Equation (44)

Möbius inversion formula states that, if f, g : 2X → R are

two set functions, and one of the identities below holds, then

so does the other:

f(U) =
∑

V ⊆U

g(V ) g(U) =
∑

V ⊆U

(−1)|U−V |f(V ) (72)

It is immediate to derive that the following identities are also

equivalent:10

f(U) =
∑

V ⊆X−U

g(V ) g(U) =
∑

V :X−U⊆V

(−1)|V ∩U |f(V )

10Define h(U)
def
= f(X −U) then (72) becomes:

h(U) =
∑

V ⊆X−U

g(V ) g(U) =
∑

V ⊆U

(−1)|U−V |h(X − V )

The claim follows by replacing V with X − V in the second equation, then
renaming h to f .
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To prove Equation (44), we use Equation (45), and the fact

that h(X) =
∑

V :V ⊆X aV :

h(U) =
∑

V :V ∩U ̸=∅

aV = h(X)−
∑

V :V ⊆X−U

aV

h(X|U) =
∑

V :V ⊆X−U

aV

Möbius’ inversion formula implies:

aU =
∑

V :X−U⊆V

(−1)|V ∩U |h(X|V )

If X−U ⊆ V , then we can write V uniquely as (X−U)∪V0,

where V0 ⊆ U . After renaming V0 to V we derive:

aU =
∑

V ⊆U

(−1)|V |h(X|(X −U) ∪ V )

=
∑

V ⊆U

(−1)|V |h(X)−
∑

V ⊆U

(−1)|V |h((X −U) ∪ V )

=−
∑

V ⊆U

(−1)|V |h((X −U) ∪ V )

=−
∑

V ⊆U

(−1)|V | (h((X −U) ∪ V )− h(X −U))

=−
∑

V ⊆U

(−1)|V |h(V |X −U)

We used twice the fact that
∑

V ⊆U (−1)|V | = 0 when U ̸= ∅.

This completes the proof.

E. Proof of Lemma VI.8

To prove the lemma we need to establish a simple fact:

Proposition A.1. Let α1, . . . , αn ≥ 0 be non-negative real

numbers. Define the following set function h : 2X → R:

h(U)
def
= max
i:Xi∈U

αi

Then h is a normal polymatroid.

Proof. Set α0
def
= 0 and assume w.l.o.g. that α0 ≤ α1 ≤ α2 ≤

· · · ≤ αn. Define δi
def
= αi − αi−1 for i = 1, n. We prove:

h =
∑

i=1,n

δih
X[i+1:n] (73)

If k is the largest index s.t. Xk ∈ U , then:
∑

i=1,n

δih
X[i+1:n](U) =

∑

i=1,k

δi = αk = h(U)

which proves (73). Since δi ≥ 0, ∀i, h is a normal polymatroid.

Proof. (of Lemma VI.8) We prove the claim by induction on

the number of variables n = |X|. When n = 0 then the claim

holds vacuously, so assume n ≥ 1. We will use the following

identity:

∀U ⊆ X : h(U) =h(U |Xn) + I(U ;Xn)

Consider the following two set functions 2X−{Xn} → R+:

h1(U)
def
=h(U |Xn) h2(U)

def
= max
Xi∈U

I(Xi;Xn)

Since h1, is a polymatroid in n − 1 variables, by induction

hypothesis we obtain a normal polymatroid h′
1 satisfying

properties (a),(b),(c). The second function is already a normal

polymatroid, by Prop. A.1. Observe that h2(U) ≤ I(U ;Xn)
for any set U (see Eq. 31 in Prop. V.6). Define:

a
def
=min

i
(h(Xn)− I(Xi;Xn)) = h(Xn)− h2(X)

and observe that:

0 ≤a ≤ h(Xn)− I(U ;Xn), ∀U ⊆ X − {Xn}

Since both h′
1 and h2 are normal polymatroids, we can write

them as:

h′
1 =

∑

V ⊆X−{Xn}

bV hV h2 =
∑

V ⊆X−{Xn}

cV hV

where bV , cV are non-negative coefficients. Define h′ as:

h′ def
=

∑

V ⊆X−{Xn}

bV hV +
∑

V ⊆X−{Xn}

cV hV ∪{Xn} + ahX

We claim that h′ satisfies the conditions of the lemma.

Obviously, h′ is a normal polymatroid, it remains to check

conditions (a),(b),(c). Observe that the following identities hold,

for all U ⊆ X − {Xn}:

h′(U) =h′1(U) + h2(U)

h′(U ∪ {Xn}) =h
′
1(U) + h2(X − {Xn}) + a

=h′1(U) + h(Xn)

We check condition (a). If U does not contain Xn, then

h′(U) =h′1(U) + h2(U) ≤ h(U |Xn) + I(U ;Xn) = h(U)

If Xn ∈ U then:

h′(U) =h′1(U − {Xn}) + h(Xn)

≤h(U − {Xn}|Xn) + h(Xn) = h(U)

Next, we check condition (b):

h′(X) =h′1(X − {Xn}) + h(Xn)

=h(X − {Xn}|Xn) + h(Xn) = h(X)

Finally, we check condition (c) for Xi, i < n:

h′(Xi) =h
′
1(Xi) + h2(Xi) = h1(Xi) + h2(Xi)

=h(Xi|Xn) + I(Xi;Xn) = h(Xi)

and finally for Xn: h′(Xn) = h′1(∅) + h(Xn).
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