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Abstract—The paper describes several applications of informa-
tion inequalities to problems in database theory. The problems
discussed include: upper bounds of a query’s output, worst-case
optimal join algorithms, the query domination problem, and
the implication problem for approximate integrity constraints.
The paper is self-contained: all required concepts and results
from information inequalities are introduced here, gradually, and
motivated by database problems.

Index Terms—conjunctive query, information inequality, worst
case optimal join algorithm, approximate constraint implication

I. INTRODUCTION

Notions and techniques from information theory have found
a number of uses in various areas of database theory. For
example, entropy and mutual information have been used
to characterize database dependencies [1], [2] and normal
forms in relational and XML databases [3], [4]. More recently,
information inequalities were used with much success to
obtain tight bounds on the size of the output of a query
on a given database [5]-[9], and to devise query plans for
worst-case optimal join algorithms [8], [9]. Information theory
was also used to compare the sizes of the outputs of two
queries, or, equivalently, to check query containment under
bag semantics [10], [11]. Finally, information theory has been
used to reason about approximate integrity constraints in the
data [12], [13].

This paper presents some of these recent applications of
information theory to databases, in a unified framework. All
applications discussed here make use of information inequali-
ties, which have been intensively studied in the information
theory community [14]-[18]. We will introduce gradually the
concepts and results on information inequalities, motivating
them with database applications.

We start by presenting in Sec. III a celebrated result in
database theory: the AGM upper bound, which gives a tight
upper bound on the query output size, given the cardinalities
of the input relations. The AGM bound was first introduced
by Grohe and Marx [19], and refined in its current form by
Atserias, Grohe, and Marx [5], hence the name AGM. (A
related result appeared earlier in [20].) While the original papers
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already used information inequalities to prove these bounds, in
this paper we provide an alternative, elementary proof, which
is based on a family of inequalities due to Friedgut [21], and
which are of independent interest.

Next, we turn our attention in Sec. IV to an extension
of the AGM bound, by providing an upper bound on the
size of the query’s output using functional dependencies
and statistics on degrees, in addition to cardinality statistics.
The extension to functional dependencies was first studied
by Gottlob et al. [6] and then by Khamis et al. [8], while
the general framework was introduced by Khamis et al. [9].
Here, information inequalities are a necessity, and we use this
opportunity to introduce entropic vectors and polymatroids, and
to define information inequalities. We show simple examples
of how to compute upper bounds on the query’s output size
using Shannon inequalities (monotonicity and submodularity,
reviewed in Sec. IV-A).

A natural question is whether the upper bound on the query’s
output size provided by information inequalities is tight: we
discuss this in Sec. V. This question is surprisingly subtle,
and it requires us to dig even deeper into information theory,
and discuss non-Shannon inequalities. More than 30 years
ago, Pippenger [22] asserted that constraints on entropies are
the “laws of information theory” and asked whether the basic
Shannon inequalities form the complete laws of information
theory, i.e., whether every constraint on entropies can be derived
from the Shannon’s basic inequalities. In a celebrated result
published in 1998, Zhang and Yeung [16] answered Pippenger’s
question negatively by finding a linear inequality that is satisfied
by all entropic functions with 4 variables, but cannot be derived
from Shannon’s inequalities. Later, Matts [17] proved that, for
4 variables or more, there are infinitely many, independent non-
Shannon inequalities. In fact, it is an open problem whether the
validity of an information inequality is decidable. We provide
here a short, self-contained proof of Zhang and Yeung’s result.
This result has a direct consequence to our problem, computing
an upper bound on the query’s output size: we prove that
Shannon inequalities are insufficient to compute a tight upper
bound. In contrast, we show that the upper bound derived
by using general information inequalities is tight, a result
related to one by Gogacz and Torunczyk [23] (for cardinality
constraints and functional dependencies only) and another one
by Khamis et al. [9] (for general degree constraints). The take-

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 27,2024 at 23:20:19 UTC from IEEE Xplore. Restrictions apply.



away of this section is that we have two upper bounds on
the query’s output size: one that uses Shannon inequalities,
which is computable but not always tight, and another one that
uses general information inequalities, which is tight but whose
computability is an open problem.

This motivates us to look in Sec. VI at a special case,
when the two bounds coincide and, thus, are both tight
and computable. This special case is when the statistics are
restricted to cardinalities, and to degrees on a single variable.
We call the corresponding class of information inequalities
simple inequalities, and prove that they are valid for all

entropic vectors iff they are provable using Shannon inequalities.

Moreover, in this special case, the worst-case database instances
(where the size of the query’s output reaches the theoretical
upper bound) have a simple yet interesting structure, called
normal database instances, which generalize the product
database instances that are the worst case instances for the
AGM bound.

In Sec. VII we turn to the most exciting application of upper
bounds to the query’s output size: the design of Worst Case
Optimal Join, WCQJ, algorithms, which compute a query in
a time that does not exceed the upper bound on their output
size. Thus, a WCOIJ algorithm is worst-case optimal. The vast
majority of database systems today compute a conjunctive
query as a sequence of binary joins, whose intermediate results
may exceed the upper bound on the final output size. Therefore,
database execution engines are not WCOJ algorithms. For that
reason, the discovery of the first WCOJ algorithm by Ngo, Porat,
Ré, and Rudra [24], [25] was a highly celebrated result. While
the original WCOJ algorithm was complex, some of the same
authors described a very simple WCOJ, called Generic Join
(GJ) in [26], which, together with its refinement Leapfrog Trie
Join (LFTJ) [27] forms the basis of the few implementations
to date [28]-[31]. Looking back at these results, we observe
that any concrete WCQOJ algorithm also provides a proof of the
upper bound of the query’s output size, since the size of the
output cannot exceed the runtime of the algorithm. A WCOJ
algorithm can be designed in reverse: start from a proof of the
upper bound, then convert that proof into a WCQOIJ algorithm.
We call this paradigm from proofs to algorithms, and illustrate
it on three different proof systems for information inequalities:

we derive GJ, an algorithm we call Heavy/Light, and PANDA.

Next, in Sec. VIII we move beyond upper bounds, and
consider a related problem: given two queries, check whether
the size of the output of the second query is always greater than
or equal to that of the first query. This problem, called the query
domination problem, is equivalent to the query containment
problem under bag semantics. The latter was introduced by
Chaudhuri and Vardi [32], is motivated by the semantics of
SQL, where queries return duplicates, hence the answer to a
query is a bag rather than a set. The query containment problem
is: given two queries, interpreted under bag semantics, check
whether the output of the first query is always contained in that
of the second query. It has been shown that the containment
problem is undecidable for unions of conjunctive queries [33]
and for conjunctive queries with inequalities [34], by reduction

from Hilbert’s 10th problem. However, it remains an open
problem to date whether the containment of two conjunctive
queries is decidable. We describe in this section a surprising
finding by Kopparty and Rossman [10], who have reduced
the containment problem to information inequalities. This
result was further extended in [11], and it was shown that the
containment problem under bag semantics is computationally
equivalent to information inequalities with max, which are
inequalities that assert that the maximum of a finite number of
linear expressions is > 0. The decidability of either of these
problems remains open to date.

Finally, we present in Sec. IX another, quite distinct applica-
tion of information inequalities: reasoning about approximate
integrity constraints. The implication problem for integrity
constraints asks whether a set of integrity constraints logically
implies some other constraint: this is a problem in Logic, and
consists of checking the validity of a sentence A, o; = o.
When the integrity constraints can be captured by some
information measures, such as is the case for Functional De-
pendencies and Multivalued Dependencies, then an implication
can be described as a conditional information inequality. The
problem we study is whether the exact implication problem
can be relaxed to an inequality between these information
measures, » . h(o;) > h(c). We review a result from [12]
stating that every exact implication between FDs and MVDs
relaxes to an inequality. However, in a surprising result, Kaced
and Romashchenko [18] have given examples of conditional
information inequalities that do not relax. In other words, the
exact implication holds, but the tiniest violation of an integrity
constraint in the premise may cause arbitrarily large violation of
the integrity constraint in the consequence. Yet in another turn,
[12] show that every conditional information inequality relaxes
with some error term, which can be made arbitrarily small, at
the cost of increasing the coefficients of the terms representing
the premise. In particular, every conditional inequality could
be derived from an unconditioned inequality, by having the
error term tend to zero, since in the conditional inequality the
premise is assumed to be zero, hence the magnitudes of their
coefficients do not matter. This section leads us to our deepest
dive into the space of entropic vectors and almost entropic
vectors: we show that the set of entropic vectors is neither
convex nor a cone, that its topological closure is a convex
cone, called the set of almost entropic functions, and use the
theory of closed convex cones to prove the relaxation-with-error
theorem.

Acknowledgments I am deeply indebted to my collaborators,
especially Hung Q. Ngo who introduced me to applications
of information inequalities to databases and with whom I had
wonderful collaborations, and also to Mahmoud Abo Khamis,
Batya Kenig, and Phokion G. Kolaitis. I also thank Dan Olteanu
and Andrei Romashchenko for commenting on an early version
of this paper.

II. BASIC NOTATIONS

For two natural numbers M, N we denote by [M : N] &f

{M,M+1,...,N};when M = 1 we abbreviate [1 : N] by N.
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We will use upper case X,Y, Z for variable names, and lower

case x,y, z for values of these variables. We use boldface for

tuples of variables, e.g. X,Y, or tuples of values, e.g. x,y.
A conjunctive query, CQ, is an expression of the form:

Q(Yo) =3Z(Ry (Y1) A+ A Ry (Yin)) (1

Each R;(Y}) is called an atom: R; is a relation name, and Y
are variables. We refer to Y interchangeably as the variables
of R;, or the attributes of R;. The variables Z are called
existential variables, while Y are called head variables. We
denote by n the total number of variables in the query, and
by X = {X;,...,X,} the set of these variables. Thus X =
YoUZ,and Y; C X, Vj.

Fix some infinite domain Dom. If X is a set of variables,
then we write Dom™ for the set of X -tuples. A database
instance is D = (RP ... RP), where, for each j = 1,m,
RJD C Doij, where Y; are the attributes of I?;. Unless
otherwise stated, relations are assumed to be finite. When D
is clear from the context, then we will drop the superscript
and write simply R; for the instance RJD ,for j=1,m.

We denote by Q(D) C DomY° the output, or answer to the
query @ on the database D. The query evaluation problem is:
given a database instance D, compute the output Q(D). The
design and analysis of efficient query evaluation algorithms
is a fundamental problem in database systems and database
theory. For the complexity of the query evaluation problem,
we consider only the data complexity, where @ is fixed, and
the complexity is a function of the input database D.

For a simple illustration, consider:

Q(X)=IY3IZ(R(X,Y)AS(Y,Z) AT(Z, X)) (2

@ returns all nodes x that belong to an RST triangle.

A Boolean conjunctive query is a conjunctive query with no
head variables. At the other extreme, a full conjunctive query is
a query with no existential variables. For example, the query:

3

is a full CQ computing all triangles formed by the relations
R, S, T. Full conjunctive queries are of special importance
because they often occur as intermediate expressions during
query evaluation. Unless otherwise stated, we will assume in
this paper that the query is a full conjunctive query without self-
Jjoins, meaning that the relation names of the atoms Rj, Ro, ...
are distinct. Such a query is also called a natural join of the
relations Rq,..., Ry,.

Fix a relation R(X), with n attributes. A functional depen-
dency, or FD, is an expression U — V, where U,V C X.
An instance R” satisfies the FD, and we write RP = U — V,
if for any two tuples x1, x5 € RP, 21U = ..U implies
x1.V = x5.V. A set of functional dependencies > implies
a functional dependency U — V, in notation ¥ U — V,
if, for every instance R”, if RP = ¥ then RP = U — V.
Armstrong’s axioms [35] form a complete axiomatization of
the implication problem for FDs. The closure of U C X,
denoted U™, is the set of all attributes X s.t. ¥ = U — X.

Q(X,Y,Z) =R(X,Y)AS(Y,Z) NT(Z,X)

The closure can be computed in polynomial time in the size
of U and X. A set U is closed if UT = U. A super-key for
R(X) is a set U with the property that Ut = X, and a key
is a minimal set of attributes that is a superkey.

A finite lattice is a partially ordered set (L, <) where every
two elements x,y € L have a least upper bound z V y, and a
greatest lower bound xzAy. In particular the lattice has a smallest
and a largest element, usually denoted by 0, 1. Consider now a
set of variables X, and a set of functional dependencies, ¥, over
X. We denote by (Lyx, C) the lattice consisting of the closed
sets, Ly, = {U | Ut = U}. One can verify that the operations
in this lattice are UAV & UNV and UV V & (U UV)*.

The cartesian product of two relations R(X), S(Y) with
disjoint sets of attributes is the set R x S &f {(z,y) |
x € R,y € S} with attributes X UY’; its size is |R X S| =
|R| - |S|]. Fix a set of attributes X, and two X-tuples
xz = (r1,...,oy) and &’ = (2),...,2},). Their domain
product is the X-tuple = ® «’ &f ((z1,21), oy (@nyxh))s
thus, the value of each attribute is a pair.

Definition I1.1. The domain product of two relation instances

R and S, with the same set of attributes X, is R ® S &
{x®@x' |z e Rx' €S}
We have |[R® S| = |R| - |S|. If D; = (RY",..., RDY),

it = 1,2, are two database instances over the same schema,
then we define their domain product Dy ® Dy as (RlD '®
RP2 ... RP' @ RP2). One can check that Q(D; ® Dy) =
Q(D;) ® Q(D3) for any conjunctive query Q. The domain
product should not be confused with the cartesian product. It
was first introduced by Fagin [36] (under the name direct
product) to prove the existence of an Armstrong relation
for constraints defined by Horn clauses, and later used by
Geiger and Pearl [37] to prove that Conditional Independence
constraints on probability distributions also admit an Armstrong
relation. The same construction appears under the name “fibered
product” in [10].

III. WARMUP: THE AGM BOUND

Consider a full conjunctive query:

QX)= A R;(Y))

j=1lm

“

where X = {X,..., X, }. Assume we have a database D,
and we know the cardinality of each relation R;-J. How large
could the query output be? The answer is given by an elegant
result, initially formulated by Grohe and Marx [19] and later
refined by Atserias, Grohe, and Marx [5], and is called today
the AGM bound of the query . To state this bound, we first
need to review the connection between conjunctive queries and
hypergraphs.

We associate () in (4) with the hypergraph H = (X, E),
where F = {Y1,...,Yn}. In other words, the nodes of the
hypergraph are the variables, and its hyperedges are the atoms
of the query. A fractional edge cover of the hypergraph H is a
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tuple of non-negative weights w = (w;);j—1,m, such that every
variable X; is covered, meaning:

Vi=1,n: (®)]

A fractional edge cover of the query @ is a fractional edge
cover of its associated hypergraph. The AGM bound is the
following:

Theorem III.1 (AGM Bound). For any fractional edge cover
w of the query (4), and every instance D:

D) < ] IrRP|™

j=1lm

Q)

To reduce clutter, we will often drop D from both Q(D)
and RY, and write the bound simply as |Q| < [T, |R;[*7.

Let B = (Bj;)j=1,m be a non-negative vector, representing
the cardinalities of the relations in the database. We define:

def . w
AGM(Q, B) = min I B (7)
j=1lm
where w ranges over all fractional edge covers of the query’s
hypergraph. Then Theorem III.1 can be restated as follows: for
every instance D, if |RP| < Bj for j = 1,m, then |Q(D)| <
AGM(Q, B). When B is clear from the context, then we
write the bound simply as AGM (Q).
Before we prove the bound, we illustrate it with a classic
example.

Example IIL.2. Consider the triangle query (3), which we
repeat here: Q(X,Y,Z) = R(X,Y)ANS(Y,Z)\NT(Z,X). Its
associated hypergraph is a graph with three nodes X,Y,Z
and three edges forming a triangle. A fractional edge cover is
any non-negative tuple (wWg, ws,wr) satisfying:

Cover X: wpr+ wr >1
Cover Y: wpr+ ws >1
Cover Z: ws+ wr >1

The inequality |Q| < |R|“% - |S|*¥s - |T|"T holds for every
fractional edge cover. Consider the following four fractional
edge covers: (0,1,1),(1,0,1),(1,1,0),(1/2,1/2,1/2): these
are the extreme vertices of the edge-covering polytope. It
follows that the AGM bound in (7) is achieved at one of
the four extreme vertices:

AGM(Q) =
min (8] - [T], | R - |71, || -S|, |RI"/2 - S]/2|T]'/2)

When |R| = |S| = |T| = N then AGM(Q) = N3/2,

In the rest of this section we will prove the AGM bound (6),
then show that the bound is tight.

Friedgut’s Inequalities While the original proof of the
AGM bound used information inequalities, we postpone the
discussion of information inequalities until Sec. IV, where we
consider more general statistics. Instead, we give here a simple,
elementary proof, based on an elegant family of inequalities
introduce by Friedgut [21].

Fix a hypergraph H = (X, E). Let N > 0 be a natural
number, and for each hyperedge Y; € E, let r; € Rf " be a
non-negative, multi-dimensional vector with |Y;| dimensions;
we will refer to 7; as a tensor. In what follows, we denote by
i atuple i = (i1,...,i,) € [N]X, and by i; its projection on
Y;.

Theorem IIL.3 (Friedgut’s Inequality). [21] For every frac-
tional edge cover w of the hypergraph H, the following holds:

SOOI mtil< I er[ij]“’%

i j=lm j=1,m \ i,

W

®)

Fig. 1 illustrates several instances of (8). We invite the
reader to check that Loomis—Whitney’s inequality [38] is also
an instance such an inequality. Using Theorem III.3 we can
prove the AGM bound as follows. Given a relational instance

D = (RP,..., RD) define the following tensors:
1 if (x1,...,24,) € RP
Tj[xla"'axa‘]déf ' (‘rl. xj) J
! 0 otherwise

Then the LHS of (8) is |Q(D)| and the RHS is [, [R;[*7.

Proof. (of Theorem II1.3) While the original proof also used
information inequalities, we give here a direct proof, by
induction on the number n of vertices of the hypergraph H.
(This proof generalizes Loomis—Whitney’s proof in [38].)

We replace each tensor expression r;[¢;] with (r;[¢;])*7,
then in order to prove (8) it suffices to prove:

D mtis™ <JT{ 2omitis]

i

wj

©))

We notice that the index variables ¢ = (iy,...,i,) used in
the summation correspond one-to-one to the nodes of the
hypergraph X = {X;,...,X,}, and the subset %; contains
the index variables corresponding to nodes in Y;. We now
prove (9) by induction on n.

When n = 1 then this is Holder’s inequality (see Fig. 1),
whose proof can be found in textbooks. Assume n > 1 and
consider the hypergraph H’ obtained by removing the last
variable X, its nodes are { X1, ..., X,,—1} and its hyperedges
are {Y; — {X,,} | j =1, m}. The weights wy,...,w,, con-
tinue to be a fractional edge cover for H’. Group the LHS
of Eq. (9) by factoring out the sum over the variable i,,, and
apply induction hypothesis to the summation over the other
variables i1, . ..,%,—_1, which form the hypergraph '

> Z It | < ST DD rilds]

in T1yeeey fn—1 J in J ij_{in}

We factor out the products that do not depend on the variable %,,,
then use the fact that > jiXney, Wi > 1 because X, is covered,

w 3

and apply Holder’s inequality (Fig. 1) with a;[iy,] &ef (45
The RHS of the expression above becomes:
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Cauchy-Schwartz:

Holder: ZH%‘MS ' <Zaj[i
Friedgut: >~ ali, ] - blj K] - ek, i) < | D ali, )2

i,k 9

1/2 1/2
aW) : (Z b[i]2>

o J
]“’j) when 3 w; > 1

@

&)

1/2

ik

?
1/2 1/2

/ / A 7
Zc[k’,i]2

ki

Fig. 1. Examples of Friedgut’s inequalities (8). In each case we show the associated hypergraph on the right.

(o) =,

I1 (Z T [M) "’ :

3 Xn€Y;
This is the RHS of (9), which completes the proof.

I1

]Xng.},‘]

( ooy [ij])
":j*{in}

11 (Z > Tj[ij]) j

J: Xn€Y; in ij—{in}

<

O

The lower bound How tight is the AGM bound? One key
insight in [5] is that, while the upper bound is described by
a linear program, a lower bound can be described using the
dual linear program: tightness follows from the strong duality
theorem for linear programs. They proved:

Theorem II1.4. For any query QQ with n variables, and vector
B there exists a database D s.t. |Q(D)| > 3= AGM(Q, B).
We call such a database D a worst-case instance.

Proof. The logarithm of the AGM bound (7) is the optimal
value of the following primal linear program:

minimize Z w; log B;
J
where Vi : Z wj > 1
j:XrieYj
Vj:w; >0

The dual linear program is:

maximize Z V;
7
where vy Z v; < log Bj
1:X; €Y
Vi:v; >0

For any two feasible solutions w, v of the primal and dual,
weak duality holds: }_ wjlog Bj > 3, v;. If w*,v* are the

optimal solutions, then the strong duality theorem states that
these two expressions are equal, therefore:

AGM(Q, B) =225 v 8P = 22wl =TT 2% (10)

If v is any dual solution, we construct the following database
instance D: for each variable X, define the domain V; def
[12°]] = {1,2,...,]2" ]}, and set RP = X, x, ey Vi, for
7 = 1,m. We call D a product database instance, because
each relation is a cartesian product. D satisfies the cardinality

constraints |RP| < B; because
‘RJD| — H |_21)1:J < quczxieyj Vi < glog B _ Bj
i: X; €Y

Similarly, the output to the query is the product Q(D) = X, V;,
and its size is []| 2% ]. At optimality, when v = v*,

QD) =]]l2"]
Theorem II1.4 follows from (10) and (11), and observing that
|2vi | > dovi, O

Y

Thus, one could say that the AGM bound is tight up
to a “rounding error”. The original paper [5] provides an
extensive discussion on tightness and proves two facts. First,
they construct arbitrarily large databases D where the AGM
bound is tight exactly. Second, they describe an example where
the ratio between the lower and upper bound can be arbitrarily
close to 1/2™, as n grow arbitrarily large; despite this example,
the AGM bound is considered to be tight for practical purposes.

Discussion The AGM bound is elegant in that it solves
completely the problem it set out to solve: find the tight upper
bound when the cardinalities of all relations are known, and
nothing else is known. However, the bound is limited, in that
it cannot take advantage of other statistics or constraints on the
input data, which are often available in practice. For example,
consider the join of two relations, Q(X,Y,Z) = R(X,Y) A
S(Y, Z), and assume that both |R|, |S| < B. The AGM bound
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is |Q| < B? (because the only fractional edge cover is (1,1)),
and the reader can check that this is tight, i.e. there exists
relations where |R| = |S| = B and |Q| = B2. But, in practice,
joins are often key/foreign-key joins, for example, S.Y may
be a key in S, and in that case |Q| < B, because every tuple
in R joins with at most one tuple in S. In order to account for
additional information about the data, like keys or constraints
on degrees, we need to use a more powerful tool than Friedgut’s
inequalities: information inequalities.

IV. MAX-DEGREE QUERY BOUNDS

We describe now the general framework for computing
an upper bound for the query output size, using information
inequalities. We will use the cardinalities of the input relations
(like in the AGM bound), keys or, more generally, functional
dependencies for individual relations, and bounds on degrees,
also called maximum frequencies, which generalize keys and
functional dependencies. This section is based largely on [6],
[81, [9]. We start with a short review of information inequalities.

A. Background on Information Inequalities

Consider a finite probability distribution (D, p), where p :
D — [0,1], > cpp(r) = 1. We denote by X the random
variable with outcomes in D), and define its entropy as:

> p(x) log p(x)

xzeD

def

H(X) (12)

If N & D], then 0 < H(X) < log N, the equality H(X) = 0

holds iff X is deterministic (i.e. 3z € D, p(z) = 1), and the
equality H(X) = log N holds iff X is uniformly distributed
(i.e. p(x) = 1/N for all x € N).

Consider now a finite probability distribution (R, p), where
R C Dom* is a non-empty, finite relation with n attributes
X ={Xy1,...,X,}. We will always assume w.l.o.g. that R is

the support of p, otherwise we just remove from R the tuples

@ where p(x) = 0. For each « C [n], define X, def (Xi)ica

the joint random variable obtained as follows: draw randomly
a tuple * € R with probability p(x), then return x,. We

associate the probability space (R, p) with a vector h € Riﬁ],

by defining h,, ' (X4), and call h an entropic vector. For

any vector h (entropic or not) we will write h(X,) for h,.
In other words, we will blur the distinction between a vector
in Riw, a vector in Rix, and a function 2X — R;.

In analyzing properties of queries, we often examine the
entropic vector derived from a uniform distribution.

Definition IV.1. The uniform probability space associated
to a non-empty, finite relation R C Dom™ is (R, p) where
p(x) = 1/|R| for every tuple = € R. We will call its entropic
vector h uniform and say that it is associated to R.

If h is associated to R, then h(X) =log|R|, and h(U) <
log |IIgy (R)| for every subset U C X. Fig. 2 illustrates the
entropic vector h associated to a relational instance R with
attributes X, Y, Z; we call h the parity function, because the
relation R contains all triples (z, y, z) that have an even number
of 1.

XYZ h=2
— [ T
X|Y|Z XYh=2 YZh=2  XZh=2
0[0][0|p=1/4 ><><]
0|1|1|p=1/4 X h=1 Y h=1 7 h=1
1101 |p=1/4 —_—
1|1]0|p=1/4 @ h=0

Fig. 2. A relation defining the parity entropy h. The marginal distribution of
X is p(X = 0) = p(X = 1) = 1/2, hence its entropy is h(X) = 1, and
similarly for the others values.

I',,:  polymatroids

[#:  almost-entropic

I'}: entropic

T,: group realizable

N,: normal polymatroids
M,: modular polymatroids

Fig. 3. Landscape of polymatroids

Any entropic vector h € ]Rix satisfies the following basic
Shannon inequalities:

h(B) =0 (13)
h(U U V) >h(U) (14)
RU)+WV)>h(UUV)+h(UNV) (15)

The last two inequalities are called called monotonicity and
submodularity respectively. A Shannon inequality is a positive
linear combination of basic Shannon inequalities.

Any vector h : 2% — R, that satisfies the basic Shannon
inequalities is called a polymatroid. The set of entropic
vectors is denoted by I'; and the set of polymatroids is
denoted by T',,, where n = |X| is the number of variables.
The following holds: T%, C T, C R2" . In particular, not
every polymatroid is entropic, as we will see shortly (in
Fig. 5). Fig. 3 represents these two sets, as well as other
sets, defined later in this paper. In some of the literature the
entropic vectors and the polymatroids are defined as (2™ — 1)-
dimensional vectors, by dropping the (-dimension, because, in
that case, both sets I';, and I'), have a non-empty interior. We
prefer to use 2" dimensions since this simplifies most of the
discussion, and postpone dealing with the non-empty interior
until Section IX-F.

An information inequality is an assertion stating that a linear
expression of entropic terms is > 0.

Definition IV.2. We associate to any vector ¢ € R2"™ the
following information inequality:

Z cah(Xy) >0

aCln]

(16)

By using the dot-product notation, we can write the inequality
as ¢ -h > 0. If the inequality holds for all h € K, where
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n] . .. .
K C Ri is some set, then we say that it is valid for K, and
write K =c-h > 0.

Thus, we will talk about inequalities valid for entropic
vectors, or valid for polymatroids, and the latter are precisely
the Shannon inequalities (this is implicit in the proof of Th. V.2
below). Any Shannon inequality is also valid for entropic
vectors; however, we will see in Th. V.7 below a non-Shannon
inequality, which is valid for entropic vectors, but not for
polymatroids. In analogy with mathematical logic, one should
think the vectors h as models, inequalities c-h > 0 as formulas,
and sets K C Rf_[n] as classes of models.

Example IV.3. The following is a Shannon inequality, called
Shearer’s inequality:

WXY)+h(YZ)+h(ZX) —20(XYZ) >0  (17)

To prove it, we apply submodularity twice, underlining the
affected terms:

WXY) +h(YZ) + h(ZX)
> (XY Z)+h(Y)+h(ZX)
> XY Z)+hXYZ)+h0) = 20(XY Z)

Equivalently, we observe that (17) is the sum of the following
basic Shannon inequalities:
MXY)+h(YZ)—h(Y)—h(XYZ) >0
R(Y)+h(ZX)—h(0) — h(XYZ) >0
h(0) =0
We will prove shortly (Theorem V.2 below) that one can
decide in time exponential in n whether an inequality is valid

for all polymatroids. In contrast, it is an open problem whether
entropic validity is decidable.

>
>

B. The Entropic Bound and the Polymatroid Bound

The general framework for computing a bound on a query’s
output uses degree constraints, which, in turn, correspond to
conditional entropies. We define these two notions first.

We write UV for set U U V. Given h € R?F[n], define:

hWV|U) ErUV) — W) (18)

U,V need not be disjoint, and h(V|U) = h(V — U|U); for
example, h(XY|X) = h(Y|X). If h(V|U) = 0 then we say
that h satisfies the functional dependency U — V, and we
write h = U — V. Lee [1] proved that, if R is a relation
instance with attributes X, p : R — [0,1] is a probability
distribution, and h is its entropic vector, then R = U — V iff
h = U — V. For a simple illustration, referring to Fig. 2, both
R and its entropy h satisfy the FDs XY — Z, XZ — Y, and
Y Z — X: for example XY is a key (all 4 tuples have distinct

values XY) and h(Z|XY) = h(XYZ)—-h(XY)=2-2=0.

Fix U, and denote by h(—|U) : 2%~V — R, the function
V — h(V|U). If h is a polymatroid, then h(—|U) is also
a polymatroid, called the conditional polymatroid. If h is an
entropic vector, then, surprisingly, h(—|U) is not necessarily

entropic (as we will see later in Sec. IX-C), yet the name
conditional entropy is justified by the following. Suppose h
is associated to (R, p). Fix an outcome u € DomV, consider
the random variable V' conditioned on U = u, and denote its
entropy by A(V|U = u). Then:

WVID) =ERVIU = w) (19)
In other words, h(V|U) equals the expectation over the
outcomes u of the (standard) entropy of the random variable V'
conditioned on U = wu. The proof of identity (19) consists of
applying directly the definition of the entropy given in Eq. (12).

When proving Shannon inequalities it is sometimes con-
venient to write the submodularity inequality as h(V|U) >
h(VIUW).! In other words, conditioning on more variables
can only decrease the entropy.

Example IVA4. We illustrate a simple Shannon inequality with
conditionals:

hMZU)+ h(U|XZ)+ h(X|YU) >
hY)+h(ZU)+ h(U|XZ)+ h(X|YU)
hYZU)+ h(U|XZ)+ h(X|YU)
hYZU)+ h(U|XYZ)+ h(X|YZU)

Next, we define degrees of a relation instance R C Dom™.
Given subsets U,V C X, and u € DomY, the V-degree of
U = wu in R is the number of distinct values v that occur in
R together with w; the max-V -degree of U is the maximum
degree over all values w. Formally:

def ‘

degr(VIU =u) = |{v | (u,v) € Hyv(R)}|
degp(VIU) & max (degp(VIU = u))

We note that degr(V|U) > 1 (since we assumed R # 0),
and equality holds iff R satisfies the functional dependency
U—-V.

Definition IV.5. Fix a relation R(X). A degree statistics, or
a statistics in short, o, is an expression of the form ¢ =
(V|U) where U,V C X; when U = ( then we call o
a cardinality statistics, and write it as (V). If ¥ is a set
of statistics, then we call B = (B,),cx, where B, > 1,
statistics values associated to ¥.. The log-statistics values are
b=1logB = (b, :=1log By)sex-

We abbreviate h(V|U) and degp(V|U) with h(c) and
degp(o) respectively. If ¥ is a set of statistics, then a X-
inequality is an inequality of the following form:

> woh(o) =h(X)

oEX

(20)

where w = (w,)secx are nonnegative weights.

IThis is equivalent to h(UV) — h(U) > h(UVW) — h(UW); when
V N'W = () then this is a submodularity inequality.
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Fix a hypergraph H = (X, E'). We say that 3 is guarded by
H if, for every o = (V|U) in X, there exists a hyperedge Y, €
E such that U,V CY,; we call Y, the guard of 0. When H
is the hypergraph of a query @, then we say that 3 is guarded
by @, and that R, is the guard of o. The following theorem
establishes the key connection between information inequalities
and query output size. The proof relies on a method originally
introduced by Chung et al. for a combinatorial problem [39],
and adapted by Grohe and Marx for constraint satisfaction [7],
then by Atserias, Grohe, and Marx for their AGM bound [5].

Theorem IV.6. Assume X is guarded by Q. If the -
inequality (20) is valid for entropic vectors then:

QI < I degi; (o)

oEX

2

where R, is the guard of o € X..

Proof. Fix a database instance D, and let h be the entropic
vector associated to the relation Q(D); by uniformity, h(X) =
log |Q(D)|. If o = (V|U) € ¥ has guard R,, then:

hic) =E[R(V|U =u)] < max VU = u)
< %&}Xlog degp (VU = u)
=logdegp (V|U) = logdegp_(0)
Using (20) we derive:

> welogdegp () > woh(o) > h(X) = log|Q)|

O

Inequality (20) is similar to the AGM inequality (6). Next,
we proceed as we did for the AGM bound: fix numerical values
for the statistics, then minimize the bound over all valid w’s.
We say that a database instance D satisfies the statistics X, B,
in notation D [= (%, B), if degpp (o) < B, for all o € .
Similarly, we say that a vector h satisfies the log-statistics 3, b
if h(o) < b, for all . We define:

Definition IV.7 (Query Upper Bound). Let 3, B be statistics
values, guarded by the query Q). Fix some set K C R2™ | The
Upper Bound w.r.t. K of the query @Q is:

I 5

oeX

inf

def
U-Boundgk (Q, %, B) =

The entropic upper bound is U-Boundr and the polymatroid
upper bound is U-Boundr,,.

Sometimes it is more convenient to use the logarithm and
define:

def .
Log-U-Bound ,2,b) = inf E Wby
& K(@.%,0) w:K=Eq.(20)

ceX

(22)

Corollary IV.8. The following hold:

o U-Boundr- (Q,%, B) < U-Boundr,, (Q, %, B), and
o If D |= (%, B) then |Q(D)| < U-Boundr: (Q, %, B).

The first item is by I';, C I';,, the second is by Th. IV.6.

Let’s compare these bound with the AGM bound (7). There,
we had to minimize an expression where w ranged over the
fractional edge covers of the query’s hypergraph. In our new
setting, w ranges over valid Y-inequalities, a much more
difficult task. To compute the polymatroid bound, w ranges
over X-inequalities valid for polymatroids, and we will show
in Th. V.2 that this bound can be computed in time exponential
in n. However, in order to compute the entropic bound, w
needs to define a valid entropic inequality, and it is currently
open whether this bound is computable. On the other hand,
we will prove that the entropic bound is asymptotically tight,
while the polymatroid bound is not. Thus, we are faced with a
difficult choice, between and exact but non-computable bound,
or a computable but inexact bound. This justifies examining
non-trivial special cases of statistics > when these two bounds
agree. We illustrate the entropic upper bound with an example.

Example IV.9. Consider the following conjunctive query:

Q(X,Y,Z,U) =R(X,Y) A S(Y, Z) AT(Z,U)
ANA(X, Z,U) A B(X,Y,U)

Suppose that we are given the following set of statistics ¥ =
{(XY),(Y2),(ZU),(U|XZ2),(X|YU)}. In other words, we
have bounds on the cardinalities of R, S, T, but not of A, B,
hence we can assume that |A| = |B| = co. Instead, we have
the statistics dega(U|XZ) and degg(X|YU). The AGM
bound (6) is |Q| < |R| - |T|, because the only fractional
edge cover whose bound is < oo is wg = wr = 1 and
wg =wq =wpg = 0.
The polymatroid bound follows from these X.-inequalities:

WXY) + h(YZ) + h(ZU) + h(U|XZ) + h(X|YU) >
> 2n(XY ZU)

WXY) + h(ZU) > h(XY ZU)

WXY)+h(YZ) +h(U|XZ) > (XY ZU)

WY Z) + h(ZU) + h(X|YU) > h(XY ZU)

We proved the first inequality in Example 1V.4, while the other
three are immediate. They imply:

Q| <(IR|-|S| - |T| - dega(U|X Z) - degp(X|YT))"/?
Q| <|R| - |T|

Q| <|R|-|S| - degp(X[YU)

Q| <IS| - |T| - dega(U|X 2)

The AGM bound is the second inequality. We show in Ap-
pendix A that the entropic bound is the minimum over all
four expressions above. (This requires proving that there is no
“better” inequality that gives us a smaller bound.) Since all four
inequalities are Shannon inequalities, it follows that, in this
case, the entropic bound is equal to the polymatroid bound.

When XZ is a key in A, and YU is a key in B, then the
polymatroid bound simplifies to:

QI < min((|R| - |S] - |T1)"/2, |R| - T, |RI - |S],1S] - 1)
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X1...X1 Xy Xip1...Xn | D
R=[0 ... 0 0 0 ... 0]1/2
0 0 1 0 0 |1/2
) 1 ifX;,eU
rXNi(U) = '
) {0 if X; €U

Fig. 4. A relation R with two tuples that agree on all attributes, except X.

Its entropic vector is called the basic modular function, hXi: it is used in
Th. IV.10, and discussed in more detail in Sec. VI.

Special Case: Cardinality Constraints We show next that
the AGM bound is a special case where the polymatroid
and entropic bounds coincide; we will see a more general
setting when this happens in Sec. VI. Assume X is restricted
to cardinality constraints, and assume for simplicity that > has
exactly one cardinality constraint (Y;) for each relation R;(Y;)
in the query; ¥ = {(Y1),...,(Ym)}. The X-inequality (20)
becomes:

> wh(Y;) >h(X) (23)
Jj=1lm
When wy = - - - = w,, then (23) is called Shearer’s inequality.

Theorem IV.10. The following are equivalent:
(i) Inequality (23) is valid for polymatroids.
(ii) Inequality (23) is valid for entropic functions.
(iii) The weights w form a fractional edge cover of the
hypergraph (X, {Y} | j = 1,m}).

Proof. (i) = (ii) is immediate. For (ii) = (iii), assume that (23)
holds for all entropic vectors, and consider any variable X; €
X, for ¢ = 1, n. Consider the basic modular entropic function
h*: shown in Fig. 4. Since h*X¢ satisfies inequality (23), it
follows that ijl,m:XieYj w; > 1 (because hXi(Y;) = 1 iff
X; €Y)}), proving that w 1s a fractional edge cover.

It remains to prove the implication (iii) = (i). This is a well
known result, and it admits multiple proofs (we give a second
proof in Sec. VII-B). Here, we will prove the inequality by
induction on n:

« Partition the set of indices j into Jy and Ji:

S X, 2Yy W 2| X, €Y}

o If j € J; then write h(Y;) = h(X,)) + h(Y; — X, | X,0).

Note that ;. ; w; > 1 because X, is covered.
o If j € Jy then write h(Y;) > h(Y; — X,| Xp).
Using the steps above we obtain:

ijh(YJ) >h(Xn) + ijh(Y} — Xn|Xn)
Zh(Xn) + h(X - Xn|Xn> = h(X)

The last line used induction on the polymatroid h(—|X,,). O

It follows immediately that the AGM bound, the entropic
bound, and the polymatroid bound coincide in the simple case
when the statistics are restricted to the cardinalities of the input
relations.

Discussion Degree constraints occur often and naturally in
database applications. For example, if a relation R;(Y;) has
a key U, then degg, (Y;|U) = 1. In practice almost every
relation has a key, so this case is very common. In other cases
some cardinality constraints can be obtained directly from
the application. For example, suppose that in a database of
customers we require that no customer may have more than 10
credit cards, which naturally leads to a max-degree constraint.
Such constraints are used in some modern systems, for example
in scale-independent query processing [40]-[42].

V. THE WORST-CASE INSTANCE

Informally, we call a database instance D a worst-case
instance if it satisfies the given statistics, and the query’s
output is as large as, or approaches asymptotically (in a sense
to be made precise), the entropic upper bound. We will show
that such a worst-case instance exists, proving that the entropic
bound is asymptotically tight, which is a weaker notion of
tightness than for the AGM bound in Th. II1.4. We will also
show that, in general, the polymatroid bound is not tight, even
for this weaker notion of tightness.

To construct the worst-case instance we need a dual definition
of the entropic and polymatroid bounds. We define them directly
using log-version:

Definition V.1 (Query Lower Bound). Fix log-statistics X, b.
For any set K C R2™ | the Log Lower Bound w.rt. K is:

Log-L-Bound (Q, %, b) « sup  h(X) (24

heK:h=(Z,b)
As before, the entropic log-lower bound is Log-L-Boundy-., and
the polymatroid log-lower bound is Log-L-Boundy .

The log-lower bound asks us to find a vector h that satisfies
all log-statistics X, b, and where h(X) is as large as possible.
We call h a worst case entropic vector, or the worst case
polymatroid respectively. Using h, we would like to construct
a worst-case database instance D), that satisfies >, B, and
log |Q(D)| = h(X). The difficulty lies in the fact that, when
h is a polymatroid then such a database may not exists general,
and when h is an entropic vector, then it may be realized by
a probability space that is non-uniform, hence we cannot use
it to construct . We start by observing the following, which
is easy to check:

Log-L-Bound (@, X, b) <Log-U-Bound, (Q,%,b) (25)
Indeed, if h € K satisfies h = (X,b), and w satisfies
Vh € K.Y wsh(oc) > h(X), then h(X) < wsh(o) <
> o Woby, and the claim follows from Log-L-Bound, =
supy, h(X) < Log-U-Bound - = infy, Y wsbs.

When K =T,,, then [9] showed that the two bounds are
equal. We prove a slightly more general statement:

Theorem V.2. Suppose the set K is defined by linear con-
straints: K = {h € Ri[n] | M -h >0}, where M is some
matrix.> Then, Log-L-Bound,; and Log-U-Bound;. are defined

2Equivalently: K is a polyhedral cone, reviewed in Sec. IX-C.
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by a pair of primal/dual linear programs, with a number of
variables exponential in n; the expressions inf sup in (22),
(24) can be replaced by min, max; and Eq. (25) becomes an
equality, h*(X) = _wjby, where h*, w* are the optimal
solutions of the primal and dual program respectively.

Proof. Denote s = |X|, and let A be the s x 2" matrix that
maps h to the vector A - h = (h(0))sex € R®. Let ¢ € R?"
be the vector cx = 1, ¢y = 0 for U # X. The two bounds
are the optimal solutions to the following pair of primal/dual
linear programs:

Log-L-Bound

Maximize c¢T - h

where A-h<b
—M-h<0

Log-U-Bound
Minimize w” - b
where wl - A—cT >uT - M

where the primal variables are h > 0, and the dual variables
are w,u > 0; the reader may check that the two programs
above form indeed a primal/dual pair. Log-L-Bound - is by
definition the optimal value of the program above. We prove
that Log-U-Bound - is the value of the dual. First, observe that
the Y-inequality (20) is equivalent to (w” - A —¢cT)-h > 0.
We claim that this inequality holds Vh € K iff there exists u
s.t. (w,u) is a feasible solution to the dual. For that consider
the following primal/dual programs with variables h > 0 and
u > 0 respectively:

Minimize (w? - A — ¢T) - h | Maximize 0
where M -h >0

The primal (left) has optimal value 0 iff the inequality (w?’ -
A — cT) -h > 0 holds forall h € K; otherwise its optimal
is —oo. The dual (right) has optimal value O iff there exists
a feasible solution w; otherwise its optimal is —oo. Strong
duality proves our claim. O

When K =TI}, then the two terms in (25) may no longer be
equal in general, but we prove that they are equal asymptotically.
Call a k-amplification of a set of log-statistics 3, b the log-
statistics X, kb, where k is a natural number. Observe that
the entropic log-upper bound increases linearly with the k-
amplification:

Log-U-Boundr.. (Q, X, kb) =kLog-U-Boundr... (@, 3, b) (26)

The lower bound increases at least linearly,
Log-L-Bound.. (@, %, kb) > kLog-L-Boundy. (@, %, b),
because of the following proposition: '

Proposition V.3. If hq, hy are two entropic vectors, then so
is hq + ho.

Proof. Suppose h1, ho are realized by two finite probability
spaces (R1,p1), (R2,p2). Then their sum is realized by (R; ®

Ry, p) (see Def. I1.1), where p(x1 ® T2) défp(acl) p(xz). O

We prove:

where ul M < wTA-cT

Theorem V4. Fix any QQ,X,b. The entropic upper and lower
bounds are asymptotically equal, in the following sense:

Log-L-Boundy. (Q, X, kb)
Log-U-Boundy.. (Q, 3, kb)

The proof of this result, which appears to be novel, requires
a discussion of the set of almost-entropic functions, and we
defer this to Sec. IX.

Finally, we can answer the central question in this section: the
entropic bound is tight asymptotically, while the polymatroid
bound is not.

=1

sup 27
k

Theorem V.5. (1) For any query Q and statistics 3, B, the

entropic bound is asymptotically tight, in the following sense:
“u SUPp:D=B* log |Q(D)|

kp Log-L-Boundy. (Q, X, kb)

(2) The polymatroid bound is not asymptotically tight: there
exists a query @) and statistics ¥, B such that:

supp.prp+ 10g |Q(D)| 43

sup <—

r Log-L-Boundy (Q,%,kb) ~44

=1

(28)

(29)

Here B % (B¥),cx, and b d:eflog B. Moreover, this property
holds even if ¥, B consists only of cardinality constraints

and functional dependencies, i.e. Vo € 3 either o = (V) or
B, =1.

Equivalently, Eq. (28) says that, for any statistics 2, B, if we
allow a sufficiently large amplification X, B*, then there exists
a worst-case instance D satisfying the amplified statistics such
that log |Q(D)| approaches L-Boundr- (Q, X, B). Notice that
this is a weaker notion of tightness than for the AGM bound
in Theorem III.4. There, tightness referred to the ratio betwen
the lower and upper bound, while here tightness refers to the
ratio of their logarithms, a weaker notion. Eq. (29) says that
even this weaker tightness fails for the polymatroid bound.

The first proof of asymptotic tightness was given by Gogacz
and Torunczyk [23], for the restricted case when the statistics
are either cardinalities, or functional dependencies. The general
case was proven in [9]. Both results were stated slightly
differently from ours, by using almost-entropic functions. We
prefer to state our result in terms of the entropic functions,
since it is more natural, and defer the discussion of almost
entropic functions to Sec. IX, where they have a very natural
justification.

In the rest of this section we prove Theorem V.5. We use
this opportunity to continue our dive into the fascinating world
of entropic functions, and non-Shannon inequalities, which are
needed for the proof. However, the rest of this section is rather
technical, and readers not interested in this background may
safely skip the rest of this section, since we do not need it,
except for the short introduction of mutual information.

A. Background: Non-Shannon Inequalities, Lattices, Groups

Mutual Information Given a vector h € R2" and three
disjoint sets of variables U,V , W C X, we denote by:

L(V;W|U) EnUV) + (UW) — h(U) — h(UVV) (30)
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When £ is clear from the context, then we will drop the index
h from I, and write simply /. When £ is an entropic vector,
then Ip,(V; W|U) is called the mutual information of V., W
conditioned on U. In that case, I,(V;W|U) = 0 iff the
probability space realizing h satisfies V' L W |U, meaning
that VW are independent conditioned on U. With some
abuse, we will call I}, a conditional mutual information even
when h is a polymatroid. The following properties hold:

Proposition V.6. For any polymatroid h:

o I(V;WIU) > 0 (this is a submodularity inequality).

o The chain rule holds:

LUV, W|Z)=1,(U;W|Z)+ I,(V; W|U Z).

o An elemental mutual information term is an expression of
the form I (X;; X;|\U), where X; # X; € U are single
variables. Every mutual information I(V;W|U) is the
sum of elemental terms.

o For any subsets Uy C U and Vo C V'

I(Ug; Vo|Z) <I,(U;V|Z)
If I, (U; V| Z) = 0, then I(Uy; Vo| Z) = 0.

€1y

Non-Shannon inequalities The first non-Shannon inequality
was proven by Zhang and Yeung [16]. We review it here,
following the simplified presentation by Romashchenko [43]
(see also Csirmaz [44]).

Zhang and Yeung [16] proved the following:

Theorem V.7. The following is a non-Shannon inequality:

In(X;Y) <In(X;Y|A) + I(X; Y|B) + In(A; B)  (32)
+In(X;Y[A) + In(A Y |X) + 1(A; X]Y)

In other words, this inequality is valid for entropic vectors,
but it cannot be proven using the basic Shannon inequalities,
hence the term non-Shannon. The proof of this inequality, and
that of several other non-Shannon inequalities proven after
1998, relies on the following copy lemma.

Lemma V.8 (Copy Lemma). Let X,Y be two disjoint sets of
variables, and let h be an entropic vector with variables XY .
Let Y’ be fresh copies of the variables Y. Thus, each variable
Y €Y has a copy Y' € Y'. Then there exists an entropic
vector h' over variables XYY’ such that the following hold:

Ih/(Y;Y/|X) =0
YU C XY : W(U) = h(U)
YU' C XY': W(U') =hU)

We say that Y' is a copy of Y over X.

The first inequality asserts Y L Y| X. The second asserts
that h, h’ agree on XY . And the last equality asserts that
h’ on XY’ is identical to h on XY up to the renaming of
variables from Y’/ to Y (assuming X’ = X for X € U).

Proof. (of Lemma V.8) Let p be a probability distribution
of random variables XY that realizes the entropic vector h.
Define the following probability distribution p’ of random
variables XYY": the domains of the variables Y is the same

as that of Y, and for all outcomes (z,y,y’), p'(X =z, Y =
y,Y' =19y def p(sz’YZ(y))(p:(f)zm’Yzy ). The claims in the

lemma are easily verified. O

In general, the copy lemma does not hold for polymatroids,
as we will see shortly. We prove now Zhang and Yeung’s
inequality (32). Start from the following Shannon inequality
over 5 variables, X,Y, A, B, A’

In(X;Y) < In(X; Y|A) + In(X;Y|B) + In(A; B)+
+In(X; Y‘A/) + Ih(A/; Y|X)+ Ih(A/; X|Y)+
+31,(A’; AB|XY) (33)
While this is “only” a Shannon inequality, it is surprisingly
difficult to prove; we invite the readers to try it themselves, but,
for completeness, we give the proof in Appendix B. Consider
now an entropic vector h over four variables, X,Y, A, B. We
apply the copy lemma, and copy AB over XY, resulting
in an entropic vector h’ with variables X,Y, A, B, A, B’. In
particular, I/ satisfies (33) (we don’t use B’). Now we observe
that (a) I(A’; AB|XY) = 0, and (b) every occurrence of
A’ in the second line can be replaced by A; for example
I(X;Y|A") = I[(X;Y]A), because I(X;Y|A’) is expressed
in terms of h(A’),h(XA"),h(YA"),h(XY A’), which are
equal to their copies h(A), h(XA),h(YA), (XY A). Thus,
inequality (33) becomes (32), proving that (32) is valid for all
entropic functions h.

It remains to prove that (32) is not a Shannon inequality,
and for that it suffices to describe one polymatroid that fails
the inequality. To “see” this polymatroid, it is best to view it
as being defined over a lattice. We take this opportunity to
discuss another important concept: polymatroids on lattices.

Polymatroids on lattices A polymatroid on a lattice (L, <)
is a function h : L — R satisfying:

h(0) =0
h(z Vy) >h(z) monotonicity
h(z) 4+ h(y) >h(x Vy) + h(z Ay)  submodularity

Let X be a set of n variables, and > a set of functional
dependencies for X. Recall from Sec. II that (Ly, C) is the
lattice of closed sets. If a (standard) polymatroid h € T,
satisfies the functional dependencies Y, then it is not hard to
see that its restriction to Ly; is a polymatroid on Ly,. Conversely,

any polymatroid h on the lattice (Ly, C) can be extended to

a standard polymatroid % : 2X — R, by setting h(U) &

h(U+), and, furthermore, h satisfies >. In short, there is a
one-to-one correspondence between polymatroids satisfying a
set of functional dependencies, and polymatroids defined on
the associated lattice.

We now complete the proof of Theorem V.7, by showing
that inequality (32) does not hold for the polymatroid h
in Fig. 5. To read the figure, recall that h(U) = h(U™T)
for any set U. For example, ABX+ = ABXY, therefore
hABX) = h(ABXT) = h(ABXY) = 4, and, also,
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Fig. 5. A lattice, and the polymatroid from [16] defined on the lattice.

hAB) = h(AB™) = h(ABXY) = 4. We check now that h
violates the inequality (32):

I(X;Y) =
I(X;Y|A) +I(X;Y|B)+I(A;B)=04+0+0
I(X;Y|A) +I(AYIX)+T(AX|)Y)=0+04+0

The LHS of (32) is 1, while the RHS is 0. This completes the
proof of Theorem V.7.

As a final comment, we note that it is instructive to check
directly that the polymatroid in Fig. 5 fails to satisfy the
copy lemma, without using Zhang and Yeung’s inequality; we
provide a direct proof in Appendix B.

Group-theoretic characterization of information inequali-
ties Chan and Yeung [45] described an elegant characterization
of information inequalities in terms of group inequalities. Given
a finite group G and a subgroup G C G, a left coset is a set
of the form aG', for some a € G. By Lagrange’s theorem,
the set of left cosets, denoted G/G1, forms a partition of G,

and |G/G;1| = |G|/|G;]. Fix n subgroups G4i,...,G,, and
consider the relational instance:
R ={(aG,...,aG,) | a € G} (34)

whose set of attributes we identify, as usual, with X =
{Xi,...,X,}. Notice that |R| |GI/IMi=1,, Gil- The
entropic vector h associated to the relation R (Def. IV.1)
is called a group realizable entropic vector, and the set of
group realizable entropic vectors is denoted by Y, C I'f,
see Fig. 3. One can check that, for any subset of variables
U C X, U) = log|G|/|Nx,ev Gil- The following was
proven in [45]:

Theorem V.9. For any h € I'}, there exists a sequence h() ¢
Y, such that lim,_, o %h(’“) = h.

It follows easily from the original proof that, if h satisfies
a set of functional dependencies, then so do all functions h(™),
for r > 0; for completeness, we will include the argument in
Appendix C.

Open Problems Characterizing the valid entropic informa-
tion inequalities is a major open problem. Matus [17] proved
that, for n > 4, there are infinitely many independent non-
Shannon inequalities. Currently, the only techniques known for
proving such inequalities consists of repeated applications of
Shannon inequalities and the Copy Lemma.

A related open problem is the complexity of deciding
Shannon inequalities: what is the complexity of checking
Iy, = c¢-h >0, as a function of ||c||;? It is implicit in
the proof of Theorem V.2 that this can be decided in time
exponential in n, but the complexity in terms of ||¢||; is open.
More discussion can be found in [46]

B. The Entropic Bound Is Asymptotically Tight

We prove here Theorem V.5 item (1). The plan is the
following. We need to find a database D such that log |Q(D)]
comes close to Log-L-Bound. (Q, %, b). By definition, there
exists h € I'* s.t. h(X) is close to Log-L- -Boundr.. (Q,%,b).
We can’t construct a database D out of h, because the
probability distribution realizing h may be non-uniform,
instead we use Chan and Yeung’s theorem to approximate
rh by a group realizable vector h("), which is by definition
associated to a relation instance. Hence, the need to amplify
by the factor . However, if we amplify, we don’t know how
Log-L-Boundy.. (Q, X, 7b) grows. Here we use Theorem V.4,
showing that Log -L- BoundF* and Log-U- BoundF* are asymp-
totically equal, then use the fact that Log-U- Boundr* is linear,
see Eq. (26). We give the details next.

By Corollary 1V.8, for all £ € N:

SUPp:D=B* log |Q(D)|
Log-U-Boundr.. (Q, X, kb)

Together with Theorem V.4 (Eq. (27)) this implies:

SUpp.ppp 1og |Q(D)|
sup <1
r Log-L-Boundp. (Q, %, kb)

To prove equality, it suffices to show that, Ve > 0, 3k € N
such that:

log |Q(D)| >(1 — ¢)*Log-L-Boundy.. (Q, %, kb)

<1

(35)

Let U & Log-U-Boundr., (@, %, b). We will assume that

Log-U-Boundy.. (Q, ¥, b) is finite; otherwise, we let U be an
arbitrarily largg number and the proof below requires only
minor adjustments, which we omit. We will assume w.l.o.g.
that U > 0. Recall that Log-U-Boundy.. is linear (26). We
prove: !

Claim 1. For all € > 0, there exists k € N, and a database
D such that D |= (X, B¥) and log |Q(D)| > (1 — e)*kU

Eq. (35) follows from kU = Log-U-Bound. (Q, X, kb) >
Log-L-Boundy. (Q, %, kb). It remains to prove Claim 1.
Since Log-L- Boundp and Log-U- Boundr* are asymptotically
equal (27), there exists ko € N such that

Log-L-Boundy.. (@, %, kob) >

> (1 —e)Log-U-Boundr., (@, 2, kob) = (1 — e)koU  (36)
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By the definition of Log-L-Boundr.. (Q, 3, kob) in (24), there
exists h € I'}, such that:

h(X) >(1 — £)Log-L-Boundy... (Q, X, kob) >
h(o) <koby, Yoe€X

(1 —¢€)%koU

At this point we need the following Slack Lemma:

Lemma V.10 (Slack Lemma). For every h € I'}, and every
e € 10,1], there exists k € N and h' € T}, such that:

B >(1—¢)kh

VU,V CX: K(VIU)<(1—2/2kh(V|U)

Proof. Assume w.l.o.g. that ¢ > 0, and set k &ef
n < (k — 1)h. Then L
€/2 S < e. We have:

[17] and
<k <1+1< 2 which implies

1
h’z(l—k)khz(l—a)kh

K (VIU) = (1 - k) kh(V|U) < (1 —¢/2)kh (V|U)

O

We apply the Slack Lemma to h and obtain a number k;
and an entropic vector h’ such that:

(X)) >(1—e)kih(X) > (1 —¢)3kok U (37)
B (o) <(1 —¢/2)k1h(o) < (1 —&/2)kok1by, Yo € X

Let g &ef ming vex:nvivyso V' (V|U) be the smallest non-
zero value of A/(V|U). By Chan and Yeung’s theorem V.9,
there exists a group realizable entropic vector h(") that satisfies
all the FDs satisfied by h/, and ||h’ — h(")||,, < eg/4. Since
U > 0 we have h/(X) > 0 hence h/(X) > ¢ and we derive
from (37):

Lh(X) 2R(X) ~ cg/4 > (1 /AW (X)
>(1—e)*kok U

On the other hand, A" (V|U) < h(V|U) + eg/2, for all
sets U, V. We use h' |= (1 — ¢/2)kok1b to prove h(") |=
rkok1b. Consider a statistics o € X. If h/(c) = 0, then h/
satisfies the FD o, and therefore h(") also satisfies this FD,
thus (") () = 0 < kok1b,. If ' (o) > 0 then A’ (o) > g and
the claim follows from:

%h(”)(o) <h(o)+eg/2
<H'(0) + (/21 (0) = (1 +¢/2)h(0)
S(l =+ 5/2)(1 — E/2)]€0k’1bﬂ S koklbﬂ

So far, we have:

A(X) >(1 —e)*rkokiU B =rkokib (38)

To complete the proof of Claim 1, we construct the database
D as follows. Let the relation R be the group realization of h(")

(Eq. (34)). For each relation R;(Y;), define RP = def Iy, (R).

By construction, Q(D) = R, and log |Q(D)| = h("(X) >
(1 — &)*rkok U by (38). Furthermore, since h() is group-
realized, for every statistics o € X, with guard R,, we have
logdegp, (0) = h(" (o) < rkokiby; thus, D |= (¥, Brkoky),
This implies:

log |Q(D)| >(1 — &)*rkok U

sup
D:D|=(x,B"kok1)

proving Claim 1 for k = rkok;.
C. The Polymatroid Bound Is Not Asymptotically Tight

We prove now Theorem V.5 item (2).

Proposition V.11. The following is a non-Shannon inequality:

11h(ABXYC) < (39)
3h(XY) + 3h(AX) + 3h(AY)

+h(BX) + h(BY) + 5h(C)

+(h(XYC|AB) + 4h(BC|AXY) + h(AC|BXY))

+(h(BXY|AC) + 2h(ABY |XC) + 2h(ABX|Y C))

Proof. Consider the following five inequalities:

0 <3h(AX) + 3h(AY) — 4h(AXY) — h(A)
+h(BX) + h(BY) — h(BXY)
h(AB) +3h(XY) — 2h(X) — 2h(Y)
<h(A) + h(C) — h(AC)
0 <2(h( ) +h(C) = h(XC))
0 <2(h(Y) + h(C) = h(Y'C))

11h(ABXYC) = 11h(ABXYC)

The first inequality holds because it is inequality Eq. (32),
expanded and re-arranged. The next three inequalities are basic
Shannon inequalities. The last line is an identity. A tedious
but straightforward calculation shows that if we add the five
(in)equalities above, then we obtain (39), proving the claim. [

Consider the following query, derived from inequality (39):

Q(A,B,X,KC) :Rl(Xay) AR?(AvX) A R3(A7Y)
AR4(B,X) A R5(B,Y) A Rg(C)

/\R'?(Aa Ba Xv Yv C)
and the following statistics:

5 ={(XY), (AX), (AY), (BX), (BY), (C),
(XYC|AB),(BC|AXY),h(AC|BXY),
(BXY|AC),(ABY|XC),(ABX|YC)}

b={bxy =bax =bay =bpx =bpy =3,bc =2,
bxycias = bpojaxy = bacipxy =0,
bexy|ac) = baBy|xc = bapx|yc = 0}

In other words, we are given the cardinalities of Ry, ..., Rg,
but are not given the cardinality of R, instead we are told that

it satisfies the 6 FD’s corresponding to the 6 conditional terms
in inequality (39). Consider any scale factor £ > 0, and the
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Fig. 6. A polymatroid proving that the polymatroid bound is not tight.

scaled log-statistics kb. Inequality (39) and the definition (22)
imply:
Log-U-Boundp.. (Q, %, kb) <

o 30xy +3bax +3bay +bpx +bpy +5bc _ 43k
11 S
By Corollary TV.8, for any database D, if D |= (X, B¥) then:
43k
log |Q(D))| Sﬁ

On the other hand, consider the polymatroid kh, where
h is the polymatroid in Fig. 6. Since h(ABXYC) = 4 and
h = (X, b), it follows that kh(ABXY C) = 4k, and kh = kb,
therefore:

supp.prp+ l0g |Q(D)| 43
Log-L-Bound (Q,3,kb) ~44

This implies Theorem V.5 item (2).

VI. SIMPLE INEQUALITIES

We have a dilemma: the entropic bound is asymptotically
tight, but it is open whether it is computable, while the
polymatroid bound is computable, but is provably not tight
in general. We show in this section that, under a reasonable
syntactic restriction on the statistics X, these two bounds are
equal. We do this by describing a similar syntactic restriction

for information inequalities, which we call simple inequalities.

In that case validity over entropic functions coincides with
validity over polymatroids, and we recover the stronger notion
of tightness that we had for the AGM bound.

A. Background: Subclasses of Polymatroids

A polymatroid h is called modular if the submodularity
inequality (15) is an equality. Equivalently, h is modular if
h > 0 and for every subset a C [n], h(Xa) = D, M(X5).
We will denote by M, the set of modular polymatroids, see
Fig. 3. For each i = 1,n, we call the function A in Fig. 4 a
basic modular function; recall that hX¢(U) = 1 when X; € U
and = 0 otherwise. The following holds:

Proposition VI.1. (1) A function h is modular iff it is a positive
linear combination of basic modular functions, h =3, a;hX,
where a; > 0 for all i. (2) Every modular function is entropic.

Proof. Ttem (1) is straightforward, but item (2) requires some
thought. It suffices to prove that ah™¢ is entropic for all real
numbers a > 0. For that purpose we need to describe one
random variable X, whose entropy is h(X;) = a. Let N
be a natural number such that log N > a, and consider the
uniform probability space where X; has N outcomes with
the same probabilities, p; = 1/N, i = 1, N. Replace p; by
p1+ 0, and replace each p; with j > 1 by p; —6/(N —1), for
0 € [0,1— +]. When 6 = 0 then the distribution is uniform
and h(X;) =log N; when 6 =1 — % then the distribution is
deterministic, p1 = 1,p2 = --- = py = 0, and h(X;) = 0. By
continuity, there exists some 6 where h(X;) = a. O

Fix a set of variables W C X. The step function at W is:

. ifU C
hW(U)d:f{o fUCW

i (40)
1 otherwise

There are 2™ — 1 non-zero step functions (since hx = 0). hy
is the entropy of the (uniform distribution of the) following
relation with 2 tuples:

_ _ W X-W| p
Ry & pX-w df 0---0 0---0 |1/2 41)
0---0 1---1 |1/2

Sometimes it is convenient to use an alternative notation. For
a set of variables V' C X, define:

hV(U)d;f{o fUNV =0

. 42)
1 otherwise

Then hY = hx_y . A basic modular function ¢ is the same
as the step function h{X:}; if |[V| > 2 then hY is not modular.

Definition VI.2. A normal polymatroid is a positive linear
combination of step functions,

h= >
VCX,V£)
where ay > 0 for all V.

ayhY (43)

We denote by N,, the set of normal polymatroids, see Fig. 3.
Normal polymatroids are the same as polymatroids with a
non-negative I-measure described in [11], [14].

Proposition VL.3. The 2" — 1 non-zero step functions hV,
V' £ 0 form a basis of the vector space {h € R2" | h()) = 0}.
More precisely, every such vector h satisfies h =, avh,
where:

de,
a® = 3 (-)VIn(VIX - U) (44)
vcu
The proof follows by solving the following system of linear

equations with unknowns ay :

VU #£0: h(U) = (45)
V.VAU#£D

av
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The solution is obtained by using Mobius’ inversion formula
(we prove this in Appendix D) and consists of the expres-
sion (44). Expression (44) is called conditional interaction
information, and denoted by I(X;,; X;,;---|X — U), where
U = {X,,X,,,...}. The following holds (the proof is
immediate and omitted):

Proposition VI.4. (1) A function h is a normal polymatroid
iff, for every set U C X, U # 0, the conditional interaction
information (44) is > 0. (2) Every normal polymatroid is
entropic.

Example VL5. The parity function h Fig. 2 is the simplest
example of a polymatroid that is not normal. The coefficients
can be derived using (44), or, we can check directly that:

h :hX,Y + hX,Z + hY,Z o hX,Y,Z
The coefficient of h"°Y+Z is negative, hence h is not normal.

B. Special Inequalities

We describe here a class of information inequalities, called
simple inequalities, were I'} -validity coincides with I',,-validity.
The modular and normal polymatroids turn out to be the key
tools to study these inequalities.

The following is sometimes referred in the literature as the
modularization lemma:

Lemma VL.6. For any polymatroid h there exists a modular
polymatroid h’ such that (a) h' < h and (b) h'(X) = h(X).

., X, and define
7Xi—1}'

Proof. Order the variables arbitrarily X7, ..
(X)) E h(Xi| X[1:i-1)), where X[1.;_1) X,

We check condition (a): for « C [n],

h'(X,) :Zh(Xi|X[1:i—l})
[A<Ye
< Z h(Xi| X 1:-1)na) = M Xa)
i€a

We check (b): (X)) =3, , M(X;|X[1;-1)) = R(X). O

The modularization lemma gives us an alternative, and more
general proof of Theorem IV.10:

Corollary VL7. Consider an inequality of the form
> wih(Vi) > h(X), where w; > 0 and V; are subsets of X.
The following conditions are equivalent:

(1) The inequality is valid for polymatroids.

(2) The inequality is valid for entropic functions.

(3) The inequality is valid for modular functions.

Proof. The implications (1) = (2) = (3) are immediate. We
prove (3) = (1), by contradiction: if the inequality fails on some
polymatroid h, >, w;h(V;) < h(X), and h’ is the modular
function in Lemma VL6, then, Y, w;h/(V;) < >, w;h(V;) <
h(X) = 1 (X) contradicting (3). O

We prove in Appendix E the following extension of the
Modularization Lemma:

Lemma VL8. For any polymatroid h there exists a normal
polymatroid h' such that (a) h' < h, (b) h'(X) = h(X), and
(c) W (X;) = h(X;) for every variable X; € X.

Definition VI.9. We call a set of statistics Y simple if, for
all (V|U) € %, |U| < 1. A simple information inequality is
a Y-inequality where X is simple:

> weh(S) =h(X)

ceEX

(46)

We immediately derive:

Corollary VI.10. Given a simple inequality (46), the following
are equivalent:

(1) The inequality is valid for polymatroids.

(2) The inequality is valid for entropic functions.

(3) The inequality is valid for normal polymatroids

The proof is identical to that of Corollary VI.7 and omitted.

C. Special Databases

When the statistics 3 are simple, then we show here that the
polymatroid and the entropic bound coincide. We also show
that the bound is tight, using a similar notion of tightness as
in the AGM bound, where the ratio between the lower and
upper bound depends only on the query; also, there is no need
to amplify the statistics values. Moreover, like in the AGM
bound, the worst-case database instance has a special structure,
which we call a normal database. We start by showing:

Theorem VI.11. If ¥ is simple, then:

Log-U-Boundy, (Q,%,b) =
= Log-U-Boundp. (Q,%,b) = Log-U-Boundy (Q,%,b)

Proof. Since N, C Iy C T, we have inequalities
above: --- < ... < Corollary VI.10 implies
Log-U-Boundy, (@, %, b) = Log-U-Bound (Q,%,b), hence

all three quantities are equal. O

We describe now normal relational instances, and normal
databases. Start with a single relation R(X) with n attributes
X. Recall that an instance R is a product relation if R =
S x---x 8, forn sets Sy, ...,S,: the worst-case instance of
the AGM bound consisted of product relations. We generalize
this concept:

Definition VI.12. A relation instance T with n attributes is a
normal relation if there exists m finite sets S1,...,S, and a
function 1 : [n] — 2" such that

T :{(sw(l),sw(g),...7s¢(n)) | sES X+ X Sm}

In a normal relation the values of an attribute can be tuples
themselves. Every product relation is a normal relation, but
not vice versa. A database instance is normal if each of its
relations is normal. A basic normal relation of size N is the
following:

def

T]tf/ _{(k'1X1EVv"' 7k'1Xn€V) ‘kZOaN_l} (47)
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Here 1x,cv is an indicator variable that is 1 when X; € V
and O otherwise; thus, if an attribute X, is in V' then it takes
the values 0,1,..., N — 1 in the relation TR,/ , otherwise it has
constant values 0. The entropic vector of T is (log N)hY .
In particular, the relation RY in (41) is Ty .

Example VI.13. We give three examples of normal relations
with n = 3 attributes:

A={(i,j,k)|i,5,k€[0: N —1]}
B={(i,i,i)|i€[0: N —1]},
C:{(Z?<Za.7)».7) ‘ ivj € [0 i N — 1]}'

product relation
normal relation

normal relation

Their cardinalities are |A| = N3, |B| = N, |C| = N2. We
also notice:
A=TS TN ®T§ B=T{"? C=Ty" oTy’

We prove that the lower bound for simple statistics is tight.

Theorem V1.14. Let X be a set of simple statistics for a query
Q and let B be statistics values. Then there exists a worst-case
instance D such that |Q(D)| > sz U-Boundr- (Q,%, B).

Proof. We use the following, whose proof is immediate:

Proposition VI.15. Let R(X), R'(X) be relations over the
same attributes X.

o If R, R' are normal relations, then R ® R’ is normal.
o degrer (0) = degg(o)-degg/(0), forall o = (V|U).

Denote by U % U-Boundr: (Q,%,B), b £ logB,

then logU = Log-U-Boundy, (Q,%,d) =
Log-L-Bound, (Q,,b), by Theorem VI.11 and Theorem V.2
respectively. Let h* € N,, be the optimal solution to the linear
program defining Log-L-Boundy, (Q, ¥, b) (see Theorem V.2),
then h* = (X, b) and h*(X) = logU. Since h* is normal, it
can be written as:

h* = Z ayh’,

Then, logU = h*(X) = >y pav, and U =[], 29V.
For each set V, ) £V C X we define:

aVZO

def

bV ¢« |_2aVJ7 def,

pPY :Tb“// basic normal relation (47)

R d§f® PV normal relation
\%

Define the worst-case instance as D = (RP,..., RD), where
RJ-D = Ily, (R). We first check that D satisfies the constraints,
and for that let o € 3 have witness R, then:

logdegp,_ (o) =logdegg(o) = Zlog degpv (o)

v
:Z(log by )WY (o) < Zavhv(a) =h"(o) < bs
% %

Finally, we check the query’s output size:

log|Q(D)| = log |R| = log [ T|PV| =) _(logbv)h" (X)
% v

Since hY(X) = 1, this implies |Q(D)| =
[Ty [2°V ] > 5= U, because |29V | > $2°V. O

The reader may want to check the analogy with the worst-
case instance of the AGM bound: the optimal solution v* there
became here h*, and the domain V; = [|2 || defined for the
variable X; became here the normal relation PY. As before,
we constructed the worst-case instance D without amplifying
the statistics, and |Q(D)| is within a constant, which depends
only on the query, of U-Boundr: (Q, %, B).

Discussion The restriction to simple statistics occurs natu-
rally in many applications. Databases are often designed with
simple keys (consisting of a single attribute), and applications
that use degrees often consider only simple degrees. The
restriction to simple statistics is often acceptable.

It remains open where one can extend this definition to
richer classes of statistics, or inequalities, while still preserving
the property that validity for entropic vectors is the same as
validity for polymatroids. The set of statistics in Example IV.9
is not “simple”, yet the entropic bound coincides with the
polymatroid bound. This (and other examples) suggests that
other non-trivial syntactic classes may exist where these two
bounds agree.

VII. QUERY EVALUATION

The query evaluation problem is: given a conjunctive query
Q, evaluate it on a (usually large) database D. In this paper
we consider only the data complexity, where the query is fixed,
and the runtime is given as a function of the statistics of
D. Database systems compute queries using a sequence of
binary joins, of the form C(X,Y,Z) = A(X,Y) A B(Y, Z),
which are written as C = A < B. Assuming all relations
are pre-sorted, the time complexity of the join is O(]A| +
|B| + |A > B|). A semi-join, denoted C = A x B, is a join
followed by the projection on the attributes of the first relation,
meaning C(X,Y) = 3Z(A(X,Y)AB(Y, Z)). A semijoin can
be computed in time O(|A]).

A Worst Case Optimal Join (WCQJ) is an algorithm that
evaluates () in time no larger than its theoretical upper bound.
A sequence of binary joins is usually not a WCOJ, because
intermediate results may be larger than the theoretical upper
bound of the query. For example the upper bound for the
triangle query in Example II1.2 is N3/2, but if we evaluate it
as (R S) < T, the join R <1 S can have size N2.

Any WCOJ algorithm represents an indirect proof of the
query’s upper bound, since the size of the output cannot exceed
the time complexity of the algorithm. For example, if we are
given an algorithm for the triangle query, together with a proof
that its runtime is O(NN3/2), then we have a proof that the size
of the output is also O(N3/2). This means that proving an
upper bound on the query’s output is inevitable for designing a
WCOJ. We show in this section that one can proceed in reverse:
given a proof of the upper bound, convert it into a WCOJ.
We call this paradigm From Proofs to Algorithms. Thus, the
question to ask in designing a WCOJ algorithm is: how do we
prove an upper bound on the query’s output? And how do we
convert it into an algorithm?
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A. Generic Join

Consider the setting of the AGM bound: we are given only
cardinality statistics on the base relations. In that case, a proof
of the upper bound is a proof of }_, w;h(Y;) > h(X), since
it implies [Q[ < []; [R;[*7. We gave a proof of this inequality
in Theorem IV.10; the proof consists of conditioning on the
last variable X,,, then applying induction on the remaining
variables. We convert that proof into an algorithm: iterate X,
over its domain, and compute recursively the residual query.
This algorithm is called Generic Join, or GJ, and was introduced
by Ngo, Ré, and Rudra [26]. We describe it in detail next.

Fix a full conjunctive query with variables X, which we
write as Q@ = X ;_q ., R;. As usual, Y; are the variables of
R;. Generic Join computes () as follows:

o Let X, be an arbitrary variable.

« Partition the set of indices j into Jy and Ji:
hE G X gV} L€ (] X, €Y},

o Compute the set D =, ; Iy, (R;).

« For each value z € D, do:

- Compute Rj[z] :=1Ily; x,(0x,=2(R;)), for j € Ji.
Denote R;[x] := R; for j € J.

— Compute the residual query X ;_; ,, R;[x].

We invite the reader to check how the algorithm can be
“read off” the proof of Theorem IV.10. To compute the runtime
of the algorithm, assume that the relations are given in listing
representation, sorted lexicographically using the attribute order
Xn, Xn_1,...,X1. Then, the runtime, 7,,, is:

Tn(Rla ey Rm) :Tinlersection + Z Tnfl(Rl [‘T]» vy

T

Rm[ﬂ)

By induction hypothesis:

Tn—l(Rl [l’], ..

=0 H|R

JI*7

which leads to:

intersection + O H |R ‘UJJ Z H |R

J€Jo z jEJ1

STintersection + O H IRj|wj H <Z |RJ [Z‘] >

j€Jo je1

T, =T,

|“)J

~ ws
=intersection 0 H |RJ| ’
J

We used Holder’s inequality in Fig. 1 (since ) jesn Wi =1,
because X, is covered), and the fact that 3 |R;[z]| = |R;|
for j € Jj. The crux of the algorithm is the intersection: its
runtime should not exceed [[; |R;|*7, and for that it suffices
to iterate over the smallest set Iy, (R;), and probe in the
others: the runtime is O(minjc s, |R;|) < O(]] |R;|"7),

since 5 wj > 1.

JjE€J1

Example VIL.1. Using the variable order X,Y,Z, GJ com-
putes the triangle query R(X,Y)NS(Y,Z) ANT(Z,X) as
follows:

For z € Ux(R)NIIx(T) do:
For y € lly(R[X =z]) N1y (S) do:
For z € Hz(S[Y =y]) N1Iz(T[X = z]) do:
output(z,y, 2)

The choice of algorithm for computing the intersection
is critical for GJ. To see this, consider the simplest query,
Q(X) = R(X) A S(X), that is an intersection. The AGM
bound is min(|R|,|S|), corresponding to the edge covers
(1,0) and (0,1), and GJ must compute the query in time
O(min(|R|,|S])). By assumption, R, S are already sorted, but
we cannot run a standard merge algorithm, since its runtime
is O( ); instead, we iterate over the smaller relation
and do a binary search in the larger.

Because of its simplicity and ease of implementation, GJ
is the poster child of WCOJ algorithms. One remarkable
property of GJ is that its runtime is always bounded by the
AGM bound, no matter what variable order we choose. Before
GJ, Veldhuizen [27] described an algorithm called Leapfrog
Triejoin (LFTJ), which uses a similar logic as GJ, but also
specifies in the details of the required trie data structure. Several
implementations of GJ/LFTJ exists today [28]-[31], [47].

B. The Heavy/Light Algorithm

Balister and Bollobds [48] provided the following alternative
proof of an inequality of the form (23), which we write in an
equivalent form using integer coefficients:

de’rzkh

j=1lm

) >koh(X) (48)

where k; € N, for 4 = 0, m. View the expression E as a bag
of terms h(Y;) where each term h(Y;) occurs k; times. A
compression step consists of the following:
o Choose two terms h(U),h(V) € E such that U ¢ V
and V ¢ U.
« Replace h(U) + h(V

Theorem VIL.2. [48] Any sequence of compression steps
eventually leads to:

E =lyh(Zy) + t1h(Z1) + - -+,

) with A(UUV)+R(UNV).

where Zy D Z1 D --- (49)

Furthermore, if each variable X; is covered at least ky > 1
times® by the original expression E in (48), then Zy = X and
Ly > ko, in particular, the inequality (48) is valid.

Proof. Each compression step strictly increases the quantity
> on(z)er |Z|2. To see this, writte U = AUC, V = BUC

where A, B, C are disjoint sets, then |U|? + |[V|? = (|A| +
C)>+(|B|+|C|)2 while [UUV 2+ [UNV ] = (|A|+|B|+
|C|)?+|C|?, and the latter is strictly larger when |A|-|B| > 0.

This quantity cannot exceed (3_; k;j)n?, therefore compression

3Meaning: Zj:XieYj k; > ko.
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needs to terminate, and this happens when for any two sets in
FE one contains the other. Then, £ must have the form (49).
Finally, we observe that compression preserves the number of
times each variable X; is covered by E, because the number
of sets in {U, V'} containing X; is the same as the number
of sets in {U UV, U NV} containing X;. Therefore, if each
variable is covered by F at least kg times, then Zy = X and
by > ko. O

Call a sequence of compression steps that converts an
expression E in (48) to (49) a BB-proof sequence. To derive
an algorithm, we need to impose an additional restriction. Call
a BB-proof sequence divergent if, after each compression step
h(U)+h(V) - h(UUV)+h(UNV), we can split F into
E’' + E”, such that E’ contains h(U U V') and covers every
variable at least k{, times, E” contains h(U N V') and covers
every variable at least k{j times, and ko = k{, + k(.

We convert a divergent BB-proof sequence into an algorithm
called the Heavy/Light Algorithm. Let B be the statistics
values, b def log B, and set B def max; B;. Assume w.l.o.g.
that the inequality F &f > kih(Y;) > koh(X) is optimal,
meaning that >, (k;/ko)b; = Log-U-Boundr. (Q, 3, log(B))
(see Eq. (22)). Denote by h* an optimal solution to the dual,
meaning h* = (X, b) and h*(X) = Log-L-Bound (Q,,b)
(see Eq. (24)). These two quantities are the same by Thm. V.2:
>_i(kj/ko)bj = h*(X). The algorithm uses a working
memory which stores, for each term h(Z) in E, a temporary
relation S(Z), called the guard of h(Z), and maintains the
invariant: log |S(Z)| < h*(Z). Initially, the working memory
is {R; | k; > 0}: by complementary slackness, if k; > 0 then
the dual constraint constraint is tight, h*(Y;) = b;, and the
invariant holds because log|R;| < log B; = b; = h*(Y}).

The algorithm repeatedly processes a compression step
h(U)+h(V) = h(UUV)+h(UNV) of the BB-sequence,
as follows. If the two guards are S(U) and S’(V), let

Cc ¥ UnvV, witt U = AC, V = BC, and define

M % 97" (AIC) pariition the guard S(AC) into two subsets:

Slight(A’C) :{(a’ac) €S | degS(A|C = C) < M}
Sheny (C) ={c € TIo(S) | degs(A|C = ¢) > M}

Compute new guards using a join and a semijoin:

SN(A, B, C) ::S]jgh[(A7 C) > S/(B7 C)
S"(C) :=Sheavy(C) x S’ (B, C)

The invariant holds because |.S”| < M - |S| implies log |S”| <
h*(A|C) + h*(BC) < h*(ABC), and because |Sheavy| <
|S|/M (since every ¢ € Sheavy OCcurs > M times in S) implies
log|S"”'| <log|S| —logM = h*(AC) — h*(A|C) = h*(C).
The runtime of the join and semijoin is < O(2h*(x)) =
O(U-Boundr, (Q, ¥, B)). Next, the algorithm proceeds recur-
sively, by processing independently E’ and E”, semi-joins
the result of £’ with the relations missing from E’, similarly
semi-joins the result of E with the relations missing from
E" | then returns the union of these two results. Correctness is
easily checked.

XYAB - 3
XY, VA
X her Ve h=y; Z
@ h=0

Fig. 7. A simple polymatroid used in Example VIL3.

Example VIL3. Consider the triangle query R(X,Y) A
SY,Z) N T(Z,X), and the following divergent proof:
MXY)+h(YZ)+h(ZX) = h(XYZ)+h(Y)+ h(ZX) —
WMXYZ) + h(XYZ). Assume for simplicity that the three
relations have the same cardinalities |R| = |S| = |T| = B.
The optimal polymatroid is h* d:eflog B - h, for h in Fig. 7.

The Heavy/Light Algorithm proceeds as follows. For the first
compression step it partitioning R into:

Riigne :={(z,y) | degr(X|Y =y) < oh" (Y1X) = p1/2)
Rheavy :{y | degR(X|Y = y) > Qh*(Y‘X) — Bl/2}

then it computes:

Temp, (Xv Yv Z) ::Rligln(X» Y) > S(Y, Z)
Teme(Y) ::Rheavy(Y) X S(}/, Z)

At this point the BB-proof diverged into two branches,
MXYZ) > h(XYZ), and h(Y) + h(ZX) > h(XY2Z),
and we perform a recursive call for each branch. The first
branch immediately returns Temp,, which we semi-join with T ':
Q(X,Y,Z) = Temp,(X,Y,Z) x T(Z, X ). The other branch
applies the second compression step which corresponds to the
following join operation:

Temps(X,Y,Z) :=Tempy(Y) x T(Z, X)

which we semi-join with R and S: Q"(X,Y,Z) :=
Temps(X,Y,Z) x R(X,Y) x S(Y, Z). Finally, we return the
union Q' U Q". The reader may verify that the runtime is
O(B3/?),

An advantage of the Heavy/Light Algorithm over GJ is
that it reuses existing join operators, which already have very
efficient implementations in database systems. However, the
algorithm only works for divergent BB-proofs. This raises the
question: does every inequality (48) have a divergent proof?
The answer is negative, as provided by the following example
due to Yilei Wang [49].

Example VIL4. The following has no divergent BB-proof:

E=hXYZ)+hZUV)+h(VWX) +h(YUW) >2h(XY ZUVW)

Assume w.l.o.g. that we start by compressing h(XY Z) +
hZUV) — h(XYZUV) + h(Z) (by symmetry, all other

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 27,2024 at 23:20:19 UTC from IEEE Xplore. Restrictions apply.



choices are equivalent). Then we need to partition E into E' +
E". Suppose E’ contains h(Z); since E' covers every variable,
it must contain both remaining terms h(VW X) + h(YUW),
which means that E" can only contain h(XY ZUV') alone,
and it does not cover W.

C. PANDA

Both Generic Join and the Heavy/Light Algorithm are
restricted to cardinality statistics, in other words they only
work in the framework of the AGM bound. PANDA, introduced
in [9], is a WCOJ algorithm that works for general statistics.
While it runs in time given by the theoretical query upper
bound, it also includes a polylogarithm factor in the size of the
database, with a rather large exponent. We describe PANDA
here at a high level, and refer the reader to [9] for details.

Let X be a set of statistics, and consider a X-inequality with
integer coefficients:

ES N koh(o) >koh(X) (50)
ceX

A CD-proof sequence for the inequality (50) is a sequence of
steps that convert the LHS to the RHS, where each step is one
of the following:

o Composition: h(U) + h(V|U) — L(UV).

« Decomposition: A(UV) — h(U) + h(V|U).

o Submodularity: h(V|U) — h(VIUW).

e No-Op: h(U) — 0.
We say that the CD-proof sequence proves the inequality (50) if
its starts from the LHS and ends with the RHS. The following
was proven in [9]:

Lemma VILS. Inequality (50) is valid for polymatroids iff it
admits a CD-proof sequence.

PANDA converts a CD-proof sequence into an algorithm,
similarly to the way we converted a BB-sequence to an
algorithm. Given statistics X, B, guarded by the query @
(Sec. IV-B), assume that inequality (50) is the optimal so-
lution to Log-U-Boundy (Q,3,log(B)); otherwise, choose
a better inequality. Denote by hA* an optimal solution to
Log-L-Boundy (Q,¥,log(B)). The algorithm has a working
memory consisting of a guard, call it Sy 7 (Z), for every term
h(V|U) in E, satisfying the following invariant: V' C Z and
there exists a subset Uy C U N Z, such that:

logdegs, , (VIUn) <h*(VID)

The guard need not have all variables U, but only a subset

U that is sufficient to prove the bound on the max-degree.
Initially, the working memory consists of all guards R, of the

statistics 0 = (V|U) € X, where k, > 0. By complementary

slackness, if k, > 0, then the corresponding constraint on h*
def

is tight, h*(0) = b,(= log B, ), therefore logdegp_(0) <
b, = h*(o) because the input database satisfies the statistics.
PANDA performs the following action for each step of the

CD-proof sequence:

Composition h(U) + h(V|U) — h(UV). Compute the new
guard as:

Suv =y (Sv) < Hy,v (Sviu)

Since [Syv| < [Sul - degs,, , (V|Up), we have:

log|Suv| <logdegg,,, (U[0) + log degs,, ,, (V|Uo)
< (U) + b (V|U) = h*(V)

Thus, the invariant holds, and the runtime does not exceed
the polymatroid bound, whose log is h*(X).

Submodularity h(V|U) — h(V|UW). Here PANDA only
records that the new term h(V|UW) has the same guard
as the old term h(V'|U).

Decomposition h(UV) — h(U) + h(V|U). Here PANDA
first projects out the extra variables in the guard of
h(UV) and obtains a relation S := Iy (Syy) whose
size N & |S| satisfies log N < h*(UV). Next, it
performs regularization: partition .S into log N fragments
S = Ui:l,logN S;, where:

Si(U, V) L (u,v) € S | degg(V|U =u) € [2071,2]}

PANDA then continues with log B recursive calls. The
1’th recursive call replaces S with S; in the query, adds

two new statistics (V|U) and (U) to ¥, and two log-

.. def . def . .
statistics values, bV‘U = 4 and by = N/Ql_l, both with

guard S;(UV'). Then, PANDA computes a new optimal
primal/dual solutions to the polymatroid bound, resulting
in a new inequality (50) and a new polymatroid h*. It uses
these to compute the residual query where S is replaced
by S;. Finally, it returns the union of all log N results
from all recursive calls.

We leave out several details of PANDA, including the proof
of termination, and refer the reader to [9]. We also note that
PANDA was extended from computing full conjunctive queries,
to computing Boolean conjunctive queries, with a runtime given
by the submodular width of the query, a notion introduced by
Marx [50].

VIII. THE DOMINATION PROBLEM

We now move beyond the query upper bound problem, and
consider a related question, called the domination problem:
given two queries @,(Q’, check if, for any database D,
|Q(D)| < |Q'(D)|. The queries @ and Q' need not have
the same number of variables. In this section we consider
full conjunctive queries that may have self-joins, i.e. the same
relation name may occur several times in the query; for example
in R(X,Y) A R(Y,Z) the same relation R occurs twice.

Definition VIIL1. Given two conjunctive queries Q(X),
Q'(Y) we say that Q' dominates Q, and write QQ < @', if for
every database instance D, |Q(D)| < |Q’(D).

The original motivation for the domination problems comes
from the query containment problem under bag semantics.
Given a (not necessarily full) conjunctive query Q(Yp), as
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in (1), its value under bag semantics is a bag of tuples,
where each tuple yg occurs as many times as the number
of homomorphisms from @ to D that map Yj to yg. SQL
uses bag semantics. Chaudhuri and Vardi [32] were the first
to study the query containment problem under bag semantics:
given @, Q’, check whether Q(D) C Q'(D) for every D,
where both Q(D), Q'(D) are bags of tuples. This problem
has been intensively studied in the last thirty years. It has been
shown that the containment problem under bag semantics is
undecidable for unions of conjunctive queries [33], and for
conjunctive queries with inequalities [34]; both used reduction
from Hilbert’s 10th Problem. It should be noted that, under set
semantics, the containment problem for these two classes of
queries is decidable.

When () = ... is a Boolean query, then under standard set-
semantics it returns either {} or {()}, representing FALSE and
TRUE. Under bag semantics it may return a bag {(), (),..., ()},
representing a number, and this number is equal to the size
of the output of the full query, Q(X) = .... Based on this
discussion, the domination problem ) =< Q' for full conjunctive
queries is the same as the query containment problem under
bag semantics for Boolean queries.

Kopparty and Rossman [10] were the first to establish the
connection between the domination problem and information
theory. We describe this connection, following their example.

Example VIIL2. This example from [10] is attributed to Eric
Vee. Consider the following queries:

Q(X,Y,Z) =R(X,Y)AR(Y,Z) AR(Z,X)
Q' (U, V,W) =R(U,V) A R({U,W)

We will show that Q = Q'. Chaudhuri and Vardi [32] already
noted that, if there exists a surjective homomorphism Q' — Q,
then Q =< Q'. In our example we have three homomorpisms
01, 02,03 : Q — Q’, but none of them is surjective.

Consider the following linear expression in entropic terms,
defined over the variables U, V,W in Q':

E¥hUv) + h(UW) — h(U) = h(UV) + h(W|U)

(The expression is derived from the tree decomposition of @',
as we explain below.) For each of the three homomorphism
i, denote by E o p; the result of substituting the variables
U, V,W in E with p;(U),p;(V), p;(W).

Claim 2. The following inequality holds for all polymatroids:
WMXYZ) <max(E o ¢1, F o ps, Eo3) (51)
Proof. We expand:
max(E o ¢1,E 02, Eop3) =
=max(h(XY) + h(Y|X), (Y Z) + h(Z|Y), (X Z) + h(X|Z))
zé (MXY)+h(YZ) +h(ZX) + h(Y]|X) + h(Z|Y) + h(X|Z))

:% (MXY)+h(Z]Y))+ (MY Z) +h(X]|Z)) + (h(ZX) + W(Y|X)))

>h(XYZ)

where the last inequality follows from A(XY) 4+ h(Z|Y) >
hMXY)+ h(Z|XY) = h(XY Z) and similarly for the other
two terms. O

To prove Q X @Q', consider a database instance D, let

NY |Q(D)|, and consider the uniform probability distribution
(Q(D),p). Its entropy h satisfies inequality (51): assume
w.lo.g. that h(XY Z) < FEo ) = h(XY) + h(Y|X) (the
other two cases are similar). We use @1 to define a probability
space (Q'(D),p'): for every three constants u,v,w in the
instance D s.t. p(X = u) # 0, define

dp(X =u,Y =v)p(X =u, Y = w)
p(X =u)

Thus, V. L W|U, the distribution of UV is the same as that
of XY, and the distribution of UW is also the same as that
of XY. (This is similar to the Copy Lemma V.8.) Denoting by
h' the entropic vector associated to p', we derive:

p'(U=uV =0v,W=mw)

log |Q"(D)| > (UVW) = b/ (VW|U) + h(U)
=h'(VIU) + W (W|U) +h'(U) because V.1 W|U
=h(Y|X) + h(Y|X) + h(X) = h(XY) + h(Y|X)
=Eo¢1 > h(XYZ) = log|Q(D)|

We generalize Example VIIL.2. A tree decomposition of
a query Q(X) = A; R;(Y;) is a pair (T, x), where T is a
tree and x : Nodes(T) — 2% such that every atom R;(Y;)
is covered, meaning 3n, Y; C x(n), and for any variable
X € X, the set of nodes {n € Nodes(T") | X € x(n)} induces
a connected subgraph of T'. Each set x(n) is called a bag. Q
is chordal if it admits a tree decomposition where every bag
x(n) induces a clique in the Gaifman graph of Q; equivalently,
for any two variables X,Y € x(n) the query has a predicate
that contains both X, Y. A chordal query has a canonical tree
decomposition where the bags are the maximal cliques. @ is
called acyclic* if there exists a tree decomposition where each
bag is precisely one atom of the query, x(n) = Y; for some
j. An acyclic query is, in particular, chordal.

Fix a query Q(U) with variables U and a tree decomposition
T'. We define the following expression of entropic terms:

h(x(n) Nx(n"))  (52)

ErE Y

nENodes(T")

h(x(n)) — >

(n,n’)EEdges(T)

Equivalently, choose a root node for 7' and orient all edges
to point away from the root. Then:

D

n€Nodes(T")

Er = h(x(n)|x(n) N x(Parent(n)))

where we set y(Parent(Root)) &1). The following holds:
Theorem VIIL3. Ler Q(X), Q' (U) be two full conjunctive
queries, over variables X and U respectively.

4More precisely, it is called a-acyclic [51].
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o [10], [11] Let T be a tree decomposition for Q'. If the
Jollowing inequality holds for all entropic vectors h:
h(X) < max (53)
p:p€hom(Q’,Q)
then Q' dominates Q, Q = Q.

o [11]If Q' is chordal and Q =X Q’, then inequality (53)
holds for all entropic vectors, where T' is the canonical
tree decomposition of Q' consisting of its maximal cliques.
In other words, (53) is a necessary and sufficient condition
for dominance.

Erop

Let’s call a tree decomposition T' simple if for every edge
(n,n’) € Edges(T), |x(n)Nx(n')] < 1.If Q' admits a simple
tree decomposition, then condition (53) is decidable; the proof
follows immediately from Lemma VL8. This implies:

Corollary VIIL4. Assume that Q' is chordal and admits a
simple tree decomposition. Then it is decidable whether () <
Q'. Moreover, if Q £ Q’, then there exists a normal database
instance (Sec. VI-C) such that |Q(D)| > |Q'(D)|.

Finally, we remark that the connection between the query
domination problem and information inequalities is very tight.
The following was proven in [11]:

Theorem VIILS. The following problems are computation-
ally equivalent. (1) Check if an inequality of the form
maszlvp(c(j) - h) > 0 is valid for all entropic vectors h,
where ¢V ... ) € R2" are p vectors. (2) Given two queries
Q, Q" where Q' is acyclic, check whether Q < Q.

It is currently open whether these problems are decidable.

IX. CONDITIONAL INEQUALITIES AND APPROXIMATE
IMPLICATION

Our last application of information inequalities is for the
approximate implication problem, which can be described
informally as follows. Let o1, ..., 0, be some constraints on the
database (we will define shortly what constraints we consider),
and suppose we have a proof of the implication \; o; = oy.
The question is, if the database D satisfies the constraints
o; only approximatively, is it the case that that o also holds
approximatively? We will show here that this question is related
to conditional information inequalities, whose study requires
us to do another deep dive into the space of polymatroids
and entropic functions. We start by defining a conditional
inequality:

Definition IX.1. A conditional information inequality is an
assertion of the following form:

ci-h>0A---cy-h>0=cop-h>0 54

() .
where c; € R?" for i = 0,p are vectors.

Sometimes it will be more convenient to replace ¢; by —c¢;,
and write the implication as /\1 ¢, h<0=cy-h<0. As
before, the validity of a conditional inequality depends on the
domain of h, e.g. it can be valid for polymatroids, or entropic
functions, etc.

The first non-Shannon inequality discovered was a con-
ditional inequality [15], predating the first unconditioned
Shannon inequality [16]. Kaced and Romashchenko [18]
showed the first examples of essentially conditional inequalities
(explained below). We start by describing the connection
between conditional inequalities and the constraint implication
problem in databases, then study the relaxation problem, a
technique for transferring exact inferences to approximate
judgments. We end with the proof of Theorem V.4, which
we have postponed until we developed sufficient technical
machinery.

A. The Constraint Implication Problem

An integrity constraint, o, is an assertion about a relation
R(X) that is required to hold strictly. The constraints consid-
ered here are Functional Dependencies (FD), already reviewed
in Sec. II, and Multivalued Dependencies (MVD). An MVD
is a statement 0 = (U — V|W) where U UV U W form
a partition of X. A relation instance R satisfies the MVD,
R ': o,if R= HU\/(R) [ HUw(R)

The implication problem asks whether a set of FDs and/or
MVDs o, ¢ = 1, p, implies another FD or MVD oy:

o1 N Nop, =00 (55)

Armstrong’s axioms [35] are complete for the implication
problem for FDs, while Beeri et al. [52] gave a complete
axiomatization for both FDs and MVDs, and showed that the
implication problem is decidable. In contrast, Herrmann [53]
showed that the implication problem of Embedded MVDs is
undecidable; we do not discuss EMVDs here.

Lee [1] showed the following connection between infor-
mation theory and constraints. Fix a relational instance R,
and let h be its associated (uniform) entropic vector. Then
REU - Viff (VIU)=0,and R F U —» V|W iff
In(V; WU) = 0. Therefore, every implication problem for
FDs and MVDs can be stated as a conditional information
inequality. For example, the augmentation axiom [52] states

(A— B|CD) =(AC - B|D)
and is equivalent to the following conditional inequality:>

I(B;CD|A) = 0 =I(B; D|AC) =0 (56)

This can be proven immediately by observing that the identity
I(B;CD|A) = I(B;C|A) + I(B; D|AC) implies:

I(B; D|AC) <I(B; CD|A)

Since both terms are > 0, the implication (56) follows.
Beyond database applications, Conditional Independencies
(CI) are commonly used in Al, Knowledge Representation,
and Machine Learning. A CI is an assertions of the form
X L Y | Z, where X,Y,Z are three random variables,
stating that X is independent of Y conditioned on Z. The Al
community has extensively studied the implication problem for

SThis has the form in Def. IX.1 once we write it as —I(B; CD|A) > 0
implies —I(B; D|AC) > 0.
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ClIs. It was shown that the implication problem is decidable and
finitely axiomatizable for saturated ClIs [37] (where XY 7 =
all variables), but not finitely axiomatizable in general [54].

B. The Relaxation Problem

How can we prove a conditional inequality (54)? One
approach is as follows. Find p non-negative real numbers
A1, ..., Ap for which the following inequality is valid:

c-h>(Y Nei)-h

i=1,p

(57)

Then, observe that (57) implies (54). A natural question is
whether every conditional information inequality can be derived
in this way, from an unconditional inequality: when that is
the case, then we say that the conditional inequality (54)
relaxes to (57), or that it is essentially unconditional. Otherwise
we say that it is essentially conditional. For example, the
augmentation axiom above can be relaxed, hence it is essentially
unconditioned.

Besides offering an important proof technique, relaxation is
important in modern database applications, because often the in-
tegrity constraints don’t hold exactly, but only approximatively,
especially when they are mined from a given dataset [55]-[62].
The relaxation problem allows us to transfer proofs over exact
constraints to approximate constraints.

Every implication problem for FDs and MVDs relaxes [12]:

Theorem IX.2. Consider the statement (55) asserting the im-
plication between a set of FDs/MVDs. Consider the associated
conditional information inequality:

(/\ h(o;) = o) =(h(0p) = 0)

where each expression h(o;) represents either I, (V; W |U)
or h(V|U). Then the following are equivalent:
o The implication (55) holds for FDs/MVD:s.
e The implication (58) holds for all polymatroids.
o The implication (58) holds for all entropic functions.
o The implication (58) holds for all normal polymatroids.
o The inequality n?/4(>", h(o;)) > h(og) holds for all
polymatroids. Furthermore, if og is an FD (rather than
MVD), then n?/4 can be replaced by 1.

(58)

Thus, the implication problem for FDs and MVDs relaxes.
A consequence of the theorem is that, if (58) fails, then there
exists a relation with only two tuples falsifying the implication,
namely one of the relations Ry in (41) associated to a step
function.

Next, we examine whether all conditional inequalities relax.
To do this, we need another (last) deep dive into the structure
of entropic functions, and introduce almost-entropic functions.

C. Background: Almost Entropic Functions

We start with a brief review of cones, following [63], [64]. A
set K C R™ is called a cone, if € K and 6 > 0 implies fx €
K. The cone is convex if x1,x2 € K and 6 € [0, 1] implies
Oz, +(1—0)xs € K. For any set K C R", we denote by K its

topological closure, and by K* &f {y |Vz € K,yT -z > 0},

it’s dual. The dual is always a closed, convex cone, K C K**
and, when K is a closed, convex cone, then K = K™**.

A cone is polyhedral if it has the form K = {x |
M - x > 0}, for some matrix M € R™*™. Any polyhedral
cone is closed and convex, and its dual is also polyhedral.

The set of polymatroids I',, and of entropic vectors I'}, are
subsets of R?". The superscript * in T is an unfortunate
notation, since it does not represent a dual, but this notation is
already widely used. Valid inequalities (Def. IV.2) are the dual
cones, (I'})*, and (T',)* respectively. Clearly, I, is polyhedral,
and therefore I',, = I'};*. What about I'}?

It turns out that, when n > 3, then I'} is neither a cone
nor convex. This may come as a surprise, so we take the
opportunity to briefly review here the elegant proof by Zhang
and Yeung [15]. Consider the parity function h, shown in Fig. 2,
and observe that h(X) = 1, h(Z|XY) = 0, and I;(X;Y) = 0.
If ¢ is a natural number, the vector ¢ - h is also entropic, by
Prop. V.3; but in general, ¢ - h is entropic only if there exists
a natural number N such that ¢ = log IV, which implies I}, is
neither a cone, nor convex. To prove this, assume that ¢ - h is
entropic, and realized by a probability distribution p(X,Y, Z).
Choose any two values x, y such that p(X = z) > 0 and
p(Y =y) > 0. Since I.p(X;Y) =c- I(X;Y) =0, it holds
that X L Y, hence p(X = 2)p(Y =y) = p(X = z,Y =
y) > 0. Furthermore, ¢ - h(Z|XY') = 0, therefore p satisfies
the functional dependency XY — Z, and there exists a unique
value z s.t. p(X =x,Y =y, Z = z) > 0. We have obtained
p(X = 2)p(Y =y) =p(X ==2,Y =y, Z = 2) and, by
symmetry, it also holds that p(X = z)p(Z = z) = p(X =
x,Y =y, Z = z). This implies p(Y = y) = p(Z = z). Since
y was arbitrary, it follows that p(Y = y) = p(Y = ¢/) for all
y,y’ in the support of Y. Therefore, the marginal distribution
of Y is uniform, and its entropy is ¢- h(Y) = log N, where N
is the size of the support, proving ¢ = log N, since h(Y) = 1.
Recall that in Sec. IV-B we stated that the conditional entropy
h(—|U) is not always an entropic vector: we invite the reader
to give such an example.

While I'}, is neither a cone nor convex, Yeung [14] proved:

Theorem IX.3. The topological closure [¥ of T} is a closed,
convex cone. A vector h € I'* is called almost-entropic.

The complete picture of all sets of polymatroids discussed
in this paper is shown in Fig. 3.

If an inequality is valid for T'%, then it is also valid for T,
by continuity. However, this no longer holds for conditional
information inequalities: Kaced and Romashchenko [18] gave
an example of a conditional inequality that is valid for I'};, but
not for ['%. Since we are interested in the relaxation problem,
we will consider only validity for T'%.

When n = 3 then one can show that T'; = I's, hence it is
polyhedral. However, Matus [17] showed that, for n > 4, f‘; is
not polyhedral. This explains the difficulties in understanding
the non-Shannon inequalities, and also in reasoning about
conditional inequalities.
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D. A Conditional Inequality that Does Not Relax

Kaced and Romashchenko [18] gave four examples of
essentially conditional inequalities. This is a very surprising
result: it means that a proof of the implication (55) becomes
useless if one of the assumptions has even a tiny violation in
the data. We describe here one of their examples, following
the adaptation in [12].

Theorem IX.4. [18] The following conditional inequality is
valid for I}, and is essentially conditional:

I(X;Y|A) = I(X;Y|B) = I(A;B) = (4 X|Y) = 0= I(X;Y) =0

Notice that none of the constraints is an FD or an MVD, so
this does not contradict Theorem IX.2. We prove the theorem,
and start by proving the conditional inequality. For that we
use the following non-Shannon inequality, by Matis [17]. For
every k > 1,

106Y) <2216y 14) 106 ¥ 1B) + (4 B)

k+1

FEILIA XY ) + %I(A;Y|X) (59)

When k& = 1, this is Zhang and Yeung’s inequality (32).

Matis proved (59) by induction on k, by applying the Copy
Lemma V.8 at each induction step; we omit the proof.

Since (59) holds for I'};, it also holds for I_“fl. To check the
conditional inequality in Thm. (IX.4), let h € T} such that
I(X;Y|A) =I(X;Y|B) =1(A; B) = I(A; X|Y) = 0: then
inequality (59) becomes I(X;Y) < 1I(A;Y|X) and, since k
is arbitrary, it follows that I(X;Y) = 0.

Finally, we show that the conditional inequality does not

relax, by describing, for each A > 0, an entropic vector h s.t.

I(X;Y) >MI(X;Y|A) + I(X;Y|B) 4 I(4; B) + I(A; X|Y))  (60)

Let h be the entropy of the following distribution:

ATB[X[Y |»p
010 [0 [0 |1/2—¢
1o ]o |1 |1/2-¢
o1 |1 |0 |e¢
110 |0 |e

If £ is small enough then one can check:®
I(X;Y) =+ O(%), I(A; X|Y) = O(e?),
I(X;Y|A) =I(X;Y|B)=1(A;B)=0
which proves (60) for ¢ is small enough.

E. Conditional Inequalities Relax with Error Terms

However, in another twist, it turns out that every conditional
inequality relaxes, if we admit a small error term. The following
was proven in [12]:

Theorem IX.5. Suppose that the following holds:

6Complete calculations are included in [12]; note that here we have swapped
the roles of A and B, in order to better draw the connection to Zhang and
Yeung’s inequality (32).

(61

Vh € T, (/\ ci.hgo) =co-h <0

i=1,p

Then, for every € > 0 there exists Ai,...,\p, > 0 such that:

VheT:, co-h< ( > e ~h) +eh(X) (62)

i=1,p
where X is the set of all n variables.

Even with the error term, condition (62) still implies (61),
because, if ¢;-h < 0 for all 4, then (62) implies ¢o-h < eh(X)
and, since ¢ is arbitrary, we obtain ¢y - h < 0. In fact, Matds’
inequality (59) can be seen as a relaxation, with an error term,
of the conditional inequality in Theorem IX.4. Theorem IX.5
shows that this was not accidental: every conditional inequality
follows from an unconditional with an error term that tends
to 0. In the next section we will show that Theorem IX.5 has
a surprising application, to the proof of Theorem V.4. Before
that, we prove Theorem IX.5 by showing:

Lemma IX.6. [12] Let K C R"™ be a closed, convex cone,
and c; € R", i = 0, p be vectors such that the following holds:

(63)

Vo € K : </\ ci-:c<0) =co-x <0
i=1,p

Then, for every € > 0, there exists A1, ..., A, > 0 such that:

(64)

Vee K: co-x< (Z )\icZ') -z + el

i=1,p

The lemma implies the theorem, because f; is a closed,
convex cone, and ||h||o = h(X).
Proof. (of Lemma IX.6) Let L &f {—¢; | i=1,p}. Then
condition (63) says that x € K N L* implies ¢y - < 0, or,
equivalently, —cg € (K N L*)*. The following holds for any
closed, convex cones K7, Ky (see [12, Sec.5.3]):

(K1 N K3)* =conhull(K} U K3)

where conhull(A) is the conic hull of a set A4, i.e. the set
of positive, linear combinations of vectors in A. Also, if L is
finite, then L** = conhull(L). Therefore, —c( belongs to the
following set:

(K NL")* =conhull(K* U L**)
=conhull(K* U conhull(L))
=conhull(K* U L)

For any € > 0, there exists e € R™ such that ||e||; < ¢ and:

—cp + e €conhull(K* N L)
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By the definition of the conic hull, and the fact that K* is a
convex cone, we obtain that there exists d € K* and \; > 0,
for ¢ = 1, p such that:

—cyp+e=d-— Z \iCi

i=1,p
We prove (64). Let € K, and observe that d - > 0, then:

Z Aici | x—cop-x+e-x=d-x>0
i=1,p

and (64) follows from e -« < ||e||1 - ||x]|co < €|l®]loo. O

We end this section with a brief discussion of why Theo-
rem IX.5 only holds for the set of almost entropic functions
f;, and fails for I'},. Kaced and Romashchenko [18] gave an
example of a conditional inequality that is valid for I'};, but not
for ['Y. If Theorem IX.5 were to hold for that inequality, then
the relaxed inequality (62) holds for I'*, and then we could
prove that the conditional inequality also holds for T'%.

FE. Proof of Theorem V.4

We have now the machinery needed to prove Theorem V.4,
which states that Log-L-Bound.. and Log-U-Bound. are
asymptotically equal. What makes the proof a little difficult is
the ill-behaved nature of the entropic functions I';. To cope
with that, use some help from the almost entropic functions
ffb, and prove that, here, the two bounds are equal (not just
asymptotically). We state and prove the theorem for an arbitrary
closed, convex cone K:

Theorem IX.7. Fix Q,X,b, and let K be a closed, convex
cone s.t. N, C K CT,,. (Recall that N,, is the set of normal
polymatroids, Def. VI.2.) Then:

Log-L-Bound - (Q, %, b) =Log-U-Bound ;(Q, 3, b)

In particular, the lower and upper bounds are equal for
K =T, while they are not necessarily equal for I'%. It shows
that the set [} is better behaved that T, and that explains
why it was used in prior work [9], [23] to study lower bounds.

Before we prove the theorem, we show how to use it to
prove Theorem V.4. Its proof follows from Theorem IX.7 and
two identities, (65) and (66), which we prove below. The first
is very simple:

Log-U-Boundy. (Q,%,b) = Log—U—Bounsz(Q, 3,b) (65)

and follows directly from the fact that T and T} have the
same dual cone, (I'%)* = (I'%)*; in other words, they define
the same set of valid inequalities ¢ - h > 0.

The second equality requires a proof, and we state it as a
lemma:

Lemma IX.8. The following holds:
Log-L-Boundy. (Q), X, kb)
Sup n

=1
x Log-L-Boundp. (Q, X, kb)

(66)

Proof. The proof is similar to that of Theorem V.5 item (1) in
Sec. V-B. The LHS is obviously < 1. To prove that it is > 1,

denote by’ L & Log-L-Bounds;. (@, X, b), and observe that
Log-L-Boundy. is linear in b, ﬂog-L—Boundf* (Q,%,kb) =
kL, because fi is a convex cone. It suffices to show that, for
all € > 0, there exists h € I'} such that h | (X, kb) and
h(X) > (1 —e)%kL.

Start with some h € T satisfying:

Vo € 3: h(o) <b,

h(X) =L
which exists by the definition of Log-L-Boundg. (Def. V.1) and

the fact that the set {h € R2™ | ||h]|coc < L} is compact. Chan
and Yeung’s Theorem V.9 proves that T, is dense in I'};, and
therefore it is also dense in T. Assume w.l.o.g. that h(X) > 0,
then ¢ &ef ming v.,(viuso) A(V|U) > 0 (the smallest non-

zero value of any expression h(V|U)). Let § &f eg/4. Since

T, is dense, there exists r € N and h(") € T,, such that
IR — Al < 5. We have h(X) > 0 hence h(X) > g,
therefore:

%hm(x) >h(X) — 6= h(X) —eg/4
>h(X) — (g/4)h(X) > (1 — &)h(X)

We claim that 2h("(V|U) < (14¢/2)h(V|U), forall U, V.
If h(V|U) = 0, then h satisfies the FD U — V, and therefore
h(") also satisfies this FD (see the note after Theorem V.9),
implying 2(")(V'|U) = 0. Otherwise, h(V|U) > g and,
1
;h(”(V\U) <h(V|U) +26 = W(V|U) +eg/2
<(1+¢/2)h(V|U)
Therefore, we have:
VoeX: (o) <(1+¢/2)rby h"(X)>(1—e)rL
Finally, by the Slack lemma, 3k € N, h’ € T’} such that:
Vo eX: h'(0) <(1—¢/2)kh( (6) < (1 — (¢/2)?)krbs < krbs
R(X) >(1 —e)kh(X) > (1 —&)krL
This completes the proof. O
In the remainder of this section we prove Theorem IX.7.

Proof. (of Theorem IX.7) We will use the following definition
from [64, Example 5.12]:

Definition IX.9. Let K be a proper cone (meaning: closed,
convex, with a non-empty interior, and pointed i.e. x,—x € K
implies x = 0). A primal/dual cone program in standard form®
is the following:

Primal ‘ Dual

Maximize cT -x Minimize

where A-x=0>b| where
xe K

7If Log-L-Boundg» (@, ¥, b) = co then we choose L an arbitrarily large
number, and make minor adjustments to the proof; we omit the details.

8We changed to the original formulation [64] by replacing ¢ with —e,
replacing y with —y.

y" b
(yT~A—cT)T€K*
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Denote by P*, D* the optimal value of the primal and dual
respectively. Weak duality states that P* < D*, and is easy
prove. When Slater’s condition holds, which says that there
exists @ in the interior of K such that Ax = b, then strong
duality holds too: P* = D*.

Log-L-Bound, (@, X, b) and Log-U-Bound, (Q, X, b) can
be expressed as a cone program, by letting A and c be the
matrix and vector defined in the proof of Theorem V.2 (thus,
A-h=(h(0))sex and cx =1, cy =0 for U # X):

Log-L-Bound | Log-U-Bound 5

Minimize w” - b
where (w?-A—c")T € K*
w >0

Maximize ¢? - h
where A-h+3=0»b
(h,B) € K x RS
(67)

Here 3 are slack variables that convert an inequality h(c) < b,
into an equality h(o) + 8, = b,. We leave it to the reader to
check that these two programs are indeed primal/dual as in
Def. IX.9.

However, in general, Slater’s condition need not hold for (67).

For example, K = I lies in the hyperplane () = 0, and thus
has an empty interior. This could be addressed by removing
the () dimension, but we have a bigger problem. Some of the
constraints may be tight: when b, = 0, then h(c) = 0, meaning
that no feasible solution h exists in the interior of K. Instead,
we will define a different cone, K, by using polymatroids on
a lattice, as in Sec. V-A.

Partition ¥ into ¥y = {0 | b, = 0} and X1 = {0 | b, > 0},
and denote by b; the restriction of b to ;. In other words, ¥
defines a set of functional dependencies, while (X1, b;) defines
non-tight statistics. Let (Ly,, C) be the lattice of the closed
sets of Xy (defined in Sec. II); we will drop the subscriBt] and

write simply (L, C) to reduce clutter. Define ¥ C R?" the
following cone’:
F dﬁf{h e R2"™ | Vo € 3o : h(o) =0}
Let Lo & L — {0}, N & |Lo|. Our cone K, C RY is:
Ko &I, (K N F) (68)

The function ITy,, projects a 2["-dimensional vector (hyy )y cox
to the N-dimensional vector (hy)uer,. Thus, Ky not only
removes the () dimension, but also removes all dimensions
subject to a tight constraint. We prove the following:
(1) Ky is proper
(2) Log-L-Bound,, = Log-L-Bound  and

Log-U-Bound . = Log-U-Bound
(3) Log-L-Boundy, = Log-U-Bound
Theorem IX.7 follows from these three claims.

We start with item (1), and observe that K is a closed,
convex cone, because K N F' is a closed, convex cone, and
I, is a linear isomorphism K N F' — Kjy: indeed, 11, is
surjective by the definition of K, and it is injective because, if
h,h’ € KNF,then Iy, (h) = I, (k') implies that, for every

In fact F is even a vector space.

set U, h(U) = h(U") =R (U") =K (U). It is immediate
to check that K is pointed, and we will show below that K
has a non-empty interior: this implies that it is proper.

Next, we prove item (2), and for that we will write h for a
vector in K N F and write h(?) for a vector in K. For any
statistics ¢ = (V|U) € X4, denote by ot = (UV)T|U™).
We say that a vector h() satisfies the statistics (31, b1), in
notation h(?) |= (£,,b,), if A9 (c1) < b, for all 0 € ¥;.
By definition, a vector h(*) € K| satisfies the FDs Y.

Lemma IX.10. The following holds:
Log-L-Bound (Q, %, b) = Log-L-Bound; (Q, X1, b1)
Equivalently, the lemma states:
sup {h(X) [ h € K,h |= (2,b)}
h
=sup {n(1) [ A € Ko, = (21,b1)}
h(0

and the proof is immediate, because the projection of a vector
h € K satisfying (X,b) is a vector h(®) € K, satisfying
(21, b1), and, conversely, every such h(®) is the projection of
a vector h.

Recall that we have assumed N,, C K CT',:

Lemma IX.11. The following holds:
Log-U-Boundy (Q, X, b) = Log-U-Bound,¢ (Q, X1, b1)

Proof. We need to prove:

inf {Z weby | K > woh(o) > h(X)} (69)
v gEY gEY
_ (0) ©)730)(5+) > 1,0
inf { ; wb, | Ko = ; T A AR ) (X)}
o 1 a 1

A vector w on the LHS defines an unconstrained inequality,
while a vector w ) on the RHS defines a constrained inequality,
because w(®) satisfies

VRO € Ko, 3" wDh®(0") > hO(X)
o€Y

iff it satisfies

vhe K, \ hio)=0= > wOhe*)>nX) (70)
og€Xg ocXy
which is a constrained inequality.

We start by showing that LHS>RHS in Eq. (69). For
that it suffices observe that, if w = (w,),cx defines a
valid inequality ) . wsh(o) > h(X), then its projection
w® = (Wy+)oex, defines a valid constrained inequality
> oes, wgl)h(o)(aﬂ > h(9(X), because all the missing
terms h(o) for 0 € Xy are = 0. Therefore inf,,(---) >
inf ()

We prove now that LHS<RHS. Let w(%) be a vector defining
a valid constrained inequality (70). The objective value of the
RHS of (69) is Eaezl w((rof bs. By the relaxation theorem IX.5,
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for every € > 0 there exists A\, > 0, for o € ¥, such that the
following is a valid, unconstrained inequality:

KEE Y Ah(o)+ > wno
oc€Xy oeY
This inequality is not yet of the form on the LHS of (69),
because we have terms h(o™) instead of h(o). For each such
term, h(cT) = h((UV)T|UT), where o = (V|U), we use
the following Shannon inequality:
h(o*) =h(UV)HU) < h(UV)*|U)
=h(UV|U) + h((UV)+|UV)
=h(o) +h((UV)T|IUV) < h(o

)+ eh(X) >h(X)

+ Y h(o

og€eXo

The last inequality, h(UV)T|UV) < 3 . h(0), can be
checked by induction on the number of steps needed to compute
the closure (UV)*" using the FDs in ;. (It also follows
from Theorem IX.2.) This implies that there exists coefficients
AL > 0 such that the following is a valid, unconstrained

inequality:
KDY ANho)+ Y wh(o
o€

o€

)+ eh(X) >h(X)

or, equivalently,
(0)

w7

>

oeY

h(o) >

= h(o) 2h(X)
c€X)

This is a valid inequality for the LHS of (69), and its objective

value is (D cx, wff(lr)bo)/(l — €), because b, = 0 for all

o € Xyp. Since € can be chosen arbitrarily small, it follows that

LHS<RHS in (69). O

This completes the proof of item (2). It remains to prove
item (3). For that we represent both Log-L-Bound . (@, X1, b1)
and Log-U-Boundg, (@,>1,b;) as the solutions to the pri-
mal/dual cone program (67) over the cone K. Notice that the
vector b is restricted to b; and, therefore, b, > 0 for all o € >1:
we no longer have tight constraints. Similarly, the matrix A
will be restricted to a matrix A; whose rows correspond to
the closed sets U C X. It remains to check Slater’s condition,
and, in particular, prove that K, has a non-empty interior. For
that purpose we extended the definition of step functions from
Sec. VI-A to our lattice L. For each closed set W € L, s.t.
W +£ i, we define the step function at W as follows.

0 fUCW

vUeL: nQw)¥
W( ) 1 otherwise

Let hyw € K be the standard step function in Eq. (40) (we
assumed N, C K). hy satisfies all FDs Y, because the
only FDs that it does not satisfy are of the form U — V
where U C W, V & W, and none of the FDs in %y have
this form because W+ = W. It follows hyy € K N F,
and this proves h%g,) = Iy, (hw) € Ky. There are N step
functions hgg,) € Ky, and it is straightforward to check that

they are independent vectors in R™V. Let £ > 0 be small enough

such that 26 N < min, ey, b,. Define h = &ef ZWGL chw, and

h(0) & Iz, (h). Since KNF is a convex cone, h € K NF and
therefore h(o) € K. We claim that there exists slack variables
3 such that (h(®), 3) is a feasible solution to the cone program
in (67) and, furthermore, (h(®), 3) belongs to the interior of
Ky x R?.. Indeed, for all o € 3y, h(o)(a) < eN < b,, hence,
if we define 8, & b, — h(® )(0), the pair (R(?), 8) € Ko x RS,
is a feasible solution to the primal (67). Next, we prove
that (h(©),3) is in the interior of Ky x R3. Since 8, > 0
for all o € X, it follows that B8 is in the interior of
R?. Set k' &f Y -wer, (€ + dw)hw, where éw € (—¢,¢)
are N arbitrary numbers, we have h’ € K N F, hence
M, (k') € Ky This proves that h(®) is in the interior
of Ky, thus, verifying Slater’s condition. It follows that
Log-L-Boundy (Q,%1,b1) = Log-U-Boundy (Q,%1,b1),
completing the proof of item (3). O

X. CONCLUSIONS

Data is ultimately information, and therefore the connection
between databases and information theory is no surprise. We
have discussed applications of information inequalities to
several database theory problems: query upper bounds, query
evaluation, query domination, and reasoning about approximate
constraints. There are major open problems in information
theory, for example the decidability of entropic information
inequalities, the complexity of deciding Shannon inequalities,
a characterization of the cone I', and each such open problem
has a corresponding open problem in database theory. In
some cases the converse holds too, for example the query
domination problem is computationally equivalent to checking
validity of max-information inequalities, hence any proof of
(un)-decidability of one problem carries over to the other.

A broader question is whether information theory can
find wider applications in finite model theory. For example,
functional dependencies and multivalued dependencies can
be specified either using first order logic sentences, or using
entropic terms. Are there other properties in finite model
theory that can be captured using information theory? Such a
connection would enable logical implications to be relaxed to
approximate reasoning, with lots of potential in modern, data-
driven applications that rely heavily on statistical reasoning.
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APPENDIX

A. Proof of the claim in Example IV.9

We prove that any valid X-information inequality is a
positive linear combination of the four inequalities shown
in Example IV.9. Such an inequality has the following form:

wrh(XY) + wsh(YZ) + wrh(ZU)

+wph(U|XZ) + wah(X|[YU) >W(XY ZU) (1)

where wg, ..., w4 > 0 are non-negative real numbers. Since
the inequality holds for all polymatroids, it also holds for every
step function hY (see Eq. (42)), for all V C {X,Y,Z,U}.
There are 2* — 1 = 15 step functions, but we only use 5 of
them:

hX : wr +wg >1
hY wr +wg >1
h?: wg +wp >1
hY . wr +wy >1
hXU . wgr +wr >1

Consider the three constraints for hY, h%, XY, which men-

tion only the variables wgr,wgs, wr. Any solution to these
three constraints can be immediately extended to a solu-
tion to all 5 constraints, by setting wp > max(0,1 —
wg) and waq > max(0,1 — wr). On the other hand, the
three constraints on wpg,wg,wr assert that they form a
fractional edge cover of a triangle. The fractional edge
covering polytope of a triangle has four extreme vertices,
(0,1,1),(1,0,1),(1,1,0),(1/2,1/2,1/2). Tt follows that the
extreme vertices of our polytope over all 5 variables are:

WR ws wr w A wp
0 1 1 0 1
1 0 1 0 0
1 1 0 1 0
1/2 1/2 1/2 1/2 1)2

Each of these vectors corresponds precisely to one of the four
inequalities that we listed in Example IV.9, and, conversely, any
Y-inequality of the form (71) is dominated by some convex
combination of one of these four.
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B. Proof of (33), and Failure of the Copy Lemma

We start by proving Inequality (33). The proof follows
immediately from the following identity:

—I(X;Y)+I(X;Y|A) + (XY |B) +I(A: B)+
+I(X;Y[A) + I(AY|X) + I(A X|Y) + 3I(A; ABIXY)
=I(A; B|A") + I(A; A'Y) + I(A; A'[X)

+I(A; A'|BXY) + I(B; A'|Y) + I(B; A'|X)

+I(B; A|AXY)+ I(X;Y|BA") + I(X;Y]|AA")

+I(X; A'|ABY )+ I(Y; A'|AB)

Next, we prove that the polymatroid in Fig. 5 does not
satisfy the Copy Lemma. Assuming otherwise, let 4’ denote
the polymatroid over variables X,Y, A, B, A’, B'. Using only
basic Shannon inequalities, we derive a contradiction. We will
drop the index A’ from Iy, (---) and write simply I(---). By
assumption, the values h/(U) for all sets U that do not contain
both A and A’, or both B and A’ are known, for example
N(A'|XY) = h(A|XY) = 1. We also known the value h'(U)
when U contain XY, example h'(AA’XY) = b/ (AA'| XY )+
W(XY)=h(AXY)+h(A|XY)+h(XY)=14143 =5.
We proceed by examining the other sets where A, A’ or B, B
co-occur, and start by showing h/(AA’) < 3:

I(A4; A X) =W (AX) + W (AX)—KW(X)—h(AAX)
=3+3-2-h(AAX)>0
and we derive h/(AA’X) < 4. Similarly (replacing X with Y")
we derive h/(AA'Y") < 4. Finally, we have:
I(X;Y]AA) =
=h'(AA'X)+ W (AAY) - W (AAXY) - KW (AA) >0
and we derive that h'(AA’") < 3. We repeat the argument above
by replacing A with B, and derive similarly that h’'(BA’) < 3.
Next, we show that h'(ABA’) > 5, which follows from:
I(XY;A'|AB) =
=h/(ABXY) + h'(ABA") — h'(AB) — b/ (ABA'XY)
=4+ h(ABA)—4-5>0
thus h'(ABA’) > 5. (We also have h/(ABA’) <
W(ABA'XY) =5, hence h/(ABA’) = 5, but the inequality
suffices for us.) Finally, we derive a contradiction:
I(A; B|A") =1/ (AA") + W (BA') — W (A) — h'(ABA')
<3+3—-2—-5=-1
C. Addendum to Theorem V.9

We briefly sketch here the proof that, if an entropic function
h satisfies a set of functional dependencies, then so do all h(’”),
for all » > 0. For that we need to review the main argument
of the proof in [45].

Let h be an entropic function, realized by a probability
distribution (R, p). The first step is to ensure that the proba-
bilities p(t) can be assumed to be rational numbers. Assume

w.l.o.g. that R is the support of p, then, by Lee’s result [1],
hi=U — V,iff R = U — V. Consider now any sequence
of probability distributions on R, p(¥) : R — [0, 1], of rational
numbers, such that lim; p*) = p. Then p®*), and its entropic
vector h(¥), continue to satisfy the same FDs as R and, thus,
the same FDs as h. Since h(*) can be arbitrarily close to
h, it suffices to prove that the theorem holds for an entropic
vector h realized by a probability distribution (R, p) where
the probabilities are rational numbers. Assume they have a
common denominator ¢ > 0, and let N = |R].

From here on, we follow Chan and Yeung’s proof [45].
For each r = ¢, 2q, 3¢, . . . define the following r X n matrix
M, = (M) p=1,ri=1,n- Its rows are copies of the tuples in R,
where each tuple € R occurs r-p(x) times in the matrix M,..
Intuitively, M, can be viewed as a relation with n attributes
and r tuples, including duplicates, whose uniform probability
distribution has the same entropic vector h as (R,p). Let G
be the symmetric group S, i.e. the group of permutation on
the set {1,2,...,7}; one should think of G as the group of
permutations on the rows of M,.. For each : = 1,...,n, let
G; the subgroup that leaves the column ¢ invariant, in other
words:

Gi ={o € G| my(p),i = Mpi,Yp=1,1}

Denoting similarly G, the subgroup of permutations that
leave the set of columns a C [n] invariant, one can
check that G, = [, Gi. Let h(") be the entropy of the
uniform probability distribution on the relational instance
{(aG41,...,aG,) | a € G}. Using a combinatorial argument,
Chan and Yeung [45] prove that lim,_, %h(” = h. We
will not repeat that argument here, but make the additional
observation that, if R satisfies the FD U — V, then Gy C Gy,
which implies that h(") also satisfies the same FD.

D. Proof of Equation (44)

Mobius inversion formula states that, if f,g: 2% — R are
two set functions, and one of the identities below holds, then
so does the other:

Y 9V) )= (1nTVifv) @2

vcu vcu

fU) =

It is immediate to derive that the following identities are also
equivalent:'°
(-nlvoUlp(v)

fU)= > g(v) gU)=

VCX-U

>

V:X-UCV

&ef f(X —U) then (72) becomes:

>

VCX-U

ODefine h(U)

hU) = g(V) 9= ()Y VInX -V)

vcu

The claim follows by replacing V' with X — V in the second equation, then
renaming h to f.
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To prove Equation (44), we use Equation (45), and the fact

that h(X) = ZVngX ay:
h(U)Z Z aV:h(X)— Z ay
V:VNU#D V:VCX-U
WXIU)= Y av
V:iVCX-U

Mobius’ inversion formula implies:
>, (-

V:X-UCV

If X —U C V, then we can write V uniquely as (X —U)UV,,

where V; C U. After renaming V; to V' we derive:

av =Y (-)VINX|(X -U)uV)
VCU

= > (~)VInx) -

\ 49

e

VU

= Z DVI(h(X -

\ 4154

P E

VvCcUu

aw = VU In(X|V)

Y (-nVin(x -vyuv)

VCU
DVIh(xX —U)uV)

U)UV)—h(X —U))

DVin(v|X —U)

We used twice the fact that )y, (—
This completes the proof. -
E. Proof of Lemma VI.8

To prove the lemma we need to establish a simple fact:
Proposition A.1. Let a1,...,a, > 0 be non-negative real
numbers. Define the following set function h : 2% — R:

nU) ¥

max «;
X, €U

Then h is a normal polymatroid.

def
Proof. Set ay = 0 and assume w.lLo.g. that ap < g < g <

def .
- < a,. Define §; = a; — a;—1 for i = 1,n. We prove:

h = Z §; R Xli+1m)

i=1,n

(73)

If k£ is the largest index s.t. X € U, then:

> sipXun(U) = > 6 = ap = h(U)

i=1,n i=1,k

which proves (73). Since §; > 0, Vi, h is a normal polymatroid.
O

Proof. (of Lemma VI.8) We prove the claim by induction on
the number of variables n = | X |. When n = 0 then the claim
holds vacuously, so assume n > 1. We will use the following
identity:

VU C X : h(U)=hU|X,)+1(U; X,)

DIVl =0 when U # 0.

Consider the following two set functions 2X —{X»} 5 R :

ho(U) & max I(X;; X,)

det

m(U) Eh(U]X,) max
Since hi, is a polymatroid in n — 1 variables, by induction
hypothesis we obtain a normal polymatroid h} satisfying
properties (a),(b),(c). The second function is already a normal
polymatroid, by Prop. A.l. Observe that ho(U) < I(U; X,,)
for any set U (see Eq. 31 in Prop. V.6). Define:
I(X;;Xp)) = h(Xy) —

a défmiin(h(Xn) - ha(X)

and observe that:
0<a < h(Xn) -

Since both k) and hs are normal polymatroids, we can write

them as:
>

Ri= )
VCX—{X,} VCX—{X,}

bvhY  hy = cvhY

where by, cy are non-negative coefficients. Define h' as:

2 2.

VCX—{X,} VCX—{X,}

<

byhY + ey hVYUERY 4 gnX

We claim that h’ satisfies the conditions of the lemma.
Obviously, h’ is a normal polymatroid, it remains to check
conditions (a),(b),(c). Observe that the following identities hold,
foral U C X — {X,}:
W(U) =h\(U) + h2(U)
W (U U{Xp}) =hi(U) + ha(X = {X,}) +a
:hll(U) + h(Xn)

We check condition (a). If U does not contain X,,, then

W (U) =y (U) + ha(U) < h(U|X,) + I(U; X,.) = h(U)
If X,, € U then:
W (U) =hy (U - {Xn}) + h(X,)
<h(U — {X,}|Xn) + h(X,) = h(U)
Next, we check condition (b):
W(X) =h(X = {Xn}) + h(X,)
=h(X — {X,}|X,) + h(X,) = h(X)
Finally, we check condition (c) for X;, i < n:
h(Xi) h/( i)+ ha(X;) = hi(Xy) + ho(X5)
and finally for X,,: h'(X,,) = R (D) + h(X,). O
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