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1 Introduction

Mixing in fluid flows is a ubiquitous phenomenon
and arises in many situations ranging from everyday
occurrences, such as mixing of cream in co↵ee, to
fundamental physical processes, such as circulation in
the oceans and the atmosphere. From a theoretical
point of view, mixing has been studied since the late
nineteenth century in di↵erent contexts, including
dynamical systems, homogenization, control, hydro-
dynamic stability and turbulence theory. Although
certain aspects of these theories still elude us, sig-
nificant progress has allowed to provide a rigorous
mathematical description of some fundamental mix-
ing mechanisms. In this survey, we address mixing
from the point of view of partial di↵erential equations,
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motivated by applications that arise in fluid dynamics.
A prototypical example is the movement of small, light
tracer particles (in laboratory experiments, these are
often tiny glass beads) in a liquid. One can visually
see the particles “mix”, and our interest is to quan-
tify this phenomenon mathematically and formulate
rigorous results in this context.

When the di↵usive e↵ects are negligible, the evolu-
tion of the density of tracer particles is governed by
the transport equation

@t⇢+ u ·r⇢ = 0 . (1.1)

Here ⇢ = ⇢(t, x) is a scalar representing the density of
tracer particles, and u = u(t, x) denotes the velocity
of the ambient fluid. We will always assume that the
ambient fluid is incompressible, which mathematically
translates to the requirement that u is divergence free.
Moreover, we will only study situations where ⇢ is a
passive scalar (or passively advected scalar) – that is,
the e↵ect of tracer particles on the flow is negligible
and the evolution of ⇢ does not influence the velocity
field u. One example where passive advection arises in
nature is when light, chemically non-reactant particles
are carried by a large fluid body (e.g. plankton blooms
in the ocean). Examples of active scalars (i.e., tracers
for which their e↵ect on the flow cannot be neglected)
are quantities such as salinity and temperature in
geophysical contexts.
Our interest is to study mixing away from bound-

aries, and hence we will study (1.1) with periodic
boundary conditions. For simplicity, and clarity of
exposition, we fix the dimension d = 2. The spatial
domain is henceforth the torus T2, which we normal-
ize to have unit sidelength. We mention, however,
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that most of the results we state can be extended to
higher dimensions without too much di�culty. We
supplement (1.1) with an initial condition ⇢0 at time
t = 0. If the velocity u is su�ciently regular (Lip-
schitz continuous in space uniformly in time, to be
precise), solutions to equation (1.1) can be expressed
explicitly in terms of the time-dependent flow map
�(t, t0, x) of the velocity field u, which is obtained by
solving the system of ordinary di↵erential equations:
(
@t�(t, t0;x) = u(t,�(t, t0;x)), t0, t 2 R, x 2 T2,

�(t0, t0;x) = x, x 2 T2 .

Now, a direct calculation shows that the unique solu-
tion to (1.1) with initial condition ⇢0 is given by the
formula

⇢(t, x) = ⇢0(�(0, t;x)) .

This is known as the method of characteristics.
The condition divu = 0 is equivalent to imposing

that for each time t, t0, the map �(t, t0; ·) : T2 !
T2 is area preserving. Since u is divergence free,
integrating (1.1) in space shows that the total mass

⇢̄ =

Z

T2

⇢(t, x) dx

is a conserved quantity (i.e. remains constant in time).
Thus replacing ⇢0 with ⇢0 � ⇢̄ if necessary, there is no
loss of generality in assuming ⇢0 (and hence ⇢(t, ·))
has zero mean. We stipulate from now on that ⇢̄ = 0.
Physically, ⇢ now represents the deviation from the
mean of the density of tracer particles.

Mixing, informally speaking, is the process by which
uneven initial configurations transform into a spa-
tially uniform one. In our setting (since the flow
is area preserving), the area of regions of relatively
higher (or lower) concentration is preserved. That
is, for any c 2 R, the area of the sub-level sets {x |
⇢(t, x) < c} and the super-level sets {x | ⇢(t, x) > c}
are both constant in time. Thus if initially the set
where ⇢0 is positive occupies half the torus, then for
all time the set where ⇢(t) is positive must also occupy
half the torus. The process of mixing will transform ⇢
in such a way that the set {⇢(t) > 0} will be stretched
into many long thin filaments (that still occupy a total
area of half), and are interspersed with filaments of

the set {⇢(t) < 0} in such a manner that averages at
any fixed scale become small (see Figure 1, below).
Mathematically, this process is known as weak con-

Figure 1: Example of mixing. The red and blue level
sets in both figures have exactly the same area. For
the left figure, averages on scales comparable to 1/8th

of the period are of order 1. On the right, however, the
sets are stretched and interspersed in such a manner
that averages at the same scale are much smaller.

vergence. More precisely, we say ⇢(t) becomes mixed
as t ! 1 if ⇢(t) converges weakly to ⇢̄ = 0 in L2.
That is, for every L2 test function f we have

lim
t!1

Z

T2

⇢(t, x)f(x) dx = ⇢̄

Z

T2

f(x) dx = 0 . (1.2)

The standard notation for this convergence is to write

⇢(t)
t!1���*
L2

0 ,

while we denote strong L2 convergence by

⇢(t)
t!1���!
L2

0 ,

which means k⇢(t)kL2 ! 0 as t ! 1. As the name
suggests, strong convergence implies weak conver-
gence, but the converse is generally false. In fact, in
our situation where u is divergence free, for all t 2 R
we have k⇢(t)kL2 = k⇢0kL2 . Thus while many of our
examples exhibit mixing (i.e. weak convergence of ⇢(t)
to 0), they will not have strong convergence of ⇢(t)
to 0, unless ⇢0 is identically 0. We remark that all Lp

norms are conserved by a volume-preserving map, but
L2 is a natural choice. Indeed, readers familiar with
ergodic theory will recognize that weak convergence
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in L2 is equivalent to the concept of strong mixing in
dynamical systems.

Even though weak convergence is a natural way to
study mixing, the disadvantage is that it does not
a priori give a quantifiable rate. To explain further,
if ⇢(t) converges to 0 strongly in L2, then at time t
the quantity k⇢(t)kL2 is a measure of how close ⇢(t)
is to its (strong) limit. If ⇢(t) converges to 0 weakly,
then k⇢(t)kL2 may not contain any useful informa-
tion about the convergence. (Indeed, for solutions
to (1.1), k⇢(t)kL2 is independent of t.) It turns out,
however, that in our situation, weak L2 convergence
to 0 is equivalent to strong convergence to 0 in any
negative Sobolev space. Now the norm in these neg-
ative Sobolev spaces (which we will define shortly)
can be used as a measure of how “well mixed” the
distribution is (see for instance [Thi12]).
It is easiest to define the negative Sobolev norms

using the Fourier series. Given an (integrable) func-
tion ✓ on the torus, we define its Fourier coe�cients
by

✓̂k =

Z

T2

✓(x)e�2⇡ihx,ki dx , where k 2 Z2 .

For mean-zero functions the 0-th Fourier coe�-
cient, ✓̂0, vanishes. Now, for any s 2 R we define
the homogeneous Sobolev norm of index s by

k✓k2
Ḣs

def
=

X

k2Z2,k 6=0

|k|2s|✓̂k|2 .

Note that for s > 0 the norm puts more weight on
higher frequencies. Thus functions that have a smaller
fraction of their Fourier mass in the high frequencies
will be “less oscillatory” and have a smaller Ḣs norm.
For s < 0, however, the norm puts less weight on
higher frequencies. Thus functions that have a larger
fraction of their Fourier mass in the high frequencies
will be “very oscillatory”, and have a smaller Ḣs

norm. This is consistent with what we expect from
“mixed” distributions. Moreover, the result mentioned
previously guarantees that mixing of ⇢ is equivalent
to

k⇢(t)k
Ḣs

t!1���! 0 , for every s < 0 .

Thus, for any s < 0, the quantity k⇢(t)k
Ḣs can be

used as a measure of how “mixed” the distribution is
at time t.

For this reason negative Sobolev norms are often
referred to as “mix norms”. Choosing s = �1 is partic-
ularly convenient, as the ratio of the Ḣ�1 norm to the
L2 norm scales like a length, and can be interpreted as
a characteristic scale of the tracer field. Since the L2

norm is preserved by equation (1.1), we can identify
the Ḣ�1 norm with the mixing scale of the scalar field
⇢. We mention that there is also a related notion of
mixing scale, which is more geometric in nature (see
for instance [Bre03]), but when studying evolution
equations the mix-norms described above are easier
to work with.

Practically, in order to mix a given initial configura-
tion to a certain degree, one has to expend energy by
“stirring the fluid”. A natural, physically meaningful
question, is to bound the mixing e�ciency [LTD11].
That is, given a certain “cost” associated with stirring
the ambient fluid, what is the most e�cient way to
mix a given initial configuration? Two cost functions
that are particularly interesting are the energy kuk2

L2

(which is proportional to the actual kinetic energy of
the fluid, assuming the fluid is homogeneous), or the
enstrophy kuk2

Ḣ1 (which is proportional to the fluid’s
viscous energy dissipation rate). Hence our question
about mixing e�ciency can now be formulated as fol-
lows: what are optimal bounds on k⇢(t)k

Ḣ�1 in terms
of the fluid’s energy or enstrophy?

Before answering this question, we note that so-
lutions to (1.1) can be given a classical meaning if
the velocity field is Lipschitz. However, the natural
constraints on the velocity u described above do not
require u to be Lipschitz. Moreover, one intuitively
expects e�cient mixing flows to be “turbulent”, and
many established turbulence models have velocity
fields that are only Hölder continuous at every point.
Thus, in many natural situations arising in the study
of fluids, one has to study (1.1) when the advecting ve-
locity field is not Lipschitz. Seminal work of DiPerna
and Lions in ’89, and the important extension of Am-
brosio in ’04, addresses this situation, and shows that
certain “renormalized” solutions to (1.1) are unique,
provided u,ru 2 L1.

Returning to the question of mixing e�ciency for-
mulated above, one can use direct energy estimates
to show that if the fluid is energy constrained (i.e.
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if ku(t)k2
L2 6 E, for some constant E), then k⇢(t)kH�1

can decrease at most linearly as a function of time. An
elegant slice and dice construction of Bressan [Bre03],
using piecewise-constant shear flows in orthogonal di-
rections in a self-similar fashion, provides an example
where this bound is indeed attained (see [LLN+12]).
In particular, this provides an example where for
some T < 1 and an incompressible, finite-energy ve-
locity field u, we have ⇢(t) ! 0 weakly in L2 as t ! T .
That is, the fluid mixes the initial configuration “per-
fectly” in finite time.

On the other hand, if one imposes an enstrophy con-
straint (i.e. a restriction on the growth of ku(t)k2

H1), or
more generally a restriction on the growth of kukLp +
kru(t)kLp , then the DiPerna–Lions theory guaran-
tees finite-time perfect mixing cannot occur. Indeed,
equation (1.1) is time reversible, and so finite-time
perfect mixing would provide one non-trivial solution
to (1.1) with initial data 0. Since ⇢ ⌘ 0 is clearly
another solution, we have non-uniqueness for weak
solutions to (1.1), which is not allowed by the DiPerna-
Lions theory when u,ru 2 L1. So one can not have
finite-time perfect mixing in this case.
Quantitatively, one can use the regularity of

DiPerna–Lions flows [CDL08] to obtain explicit expo-
nential lower bounds on the mix norm. Namely, one
can prove [IKX14]

k⇢(t)kH�1 > C0 exp
⇣
�C1

Z
t

0
kru(⌧)kLp d⌧

⌘
, (1.3)

for every p 2 (1,1], and some constants C0, C1 that
depend on ⇢0 and p. (We remark that, for p = 1,
an elementary proof of the lower bound (1.3) follows
from Gronwall’s inequality and the method of char-
acteristics. For p 2 (1,1), however, the proof is
more involved and requires some tools from geometric
measure theory.)
Interestingly, whether or not (1.3) holds for p = 1

is an open question. Indeed, the proof of the needed
regularity estimates for the flow in [CDL08] relies
on boundedness of a maximal function, which fails
for p = 1. The bound (1.3) for p = 1 is related
to a conjecture of Bressan [Bre03] on the cost of
rearranging a set, which is still an open question.

For optimality, there are now several constructions
of velocity fields that show (1.3) is sharp. These

constructions produce enstrophy constrained velocity
fields for which k⇢(t)k

Ḣ�1 decays exponentially in
time. A construction in [ACM19] does this by starting
with initial data which is supported in a strip and finds
a Lipschitz velocity field that pushes it along a space
filling curve. Constructions in [BCZG23, BBPS21,
MHSW22] produce regular velocity fields for which

k⇢(t)k
Ḣ�1 6 D e��tk⇢0kḢ1 , (1.4)

for every initial data ⇢0 2 Ḣ1. Such flows are called
exponentially mixing, and we revisit this in more detail
in Section 2.

In addition to optimal mixing, there are three other
themes discussed in this article. We briefly intro-
duce these themes here, and elaborate on them in
subsequent sections.
(A.) Loss of regularity. When u is regular, classical

theory guarantees regularity of the initial data ⇢0 is
propagated by the equation (1.1). However, when u
is irregular (e.g. when ru 2 Lp with p < 1), it
may happen that all regularity of the initial data ⇢0
is immediately lost. Not surprisingly, this loss is
intrinsically related to mixing. Indeed, the process of
mixing generates high frequencies, making the solution
more irregular. When u is not Lipschitz one can
arrange rapid enough growth of high frequencies to
ensure that all Sobolev regularity of the initial data
is immediately lost. We describe this construction in
detail in Section 3.
(B.) Enhanced dissipation. In several physically

relevant situations, both di↵usion and transport are
simultaneously present. The nature of di↵usion is
to rapidly dampen high frequencies. Since mixing
generates high frequencies, the combined e↵ect of
mixing and di↵usion will lead to energy decay of
solutions that is an order of magnitude faster than
when di↵usion acts alone. This phenomenon is known
as enhanced dissipation and is described in Section 4.
(C.) Anomalous dissipation. Even under the en-

hanced dissipation mentioned above, for which the
energy decay is much faster due to the combined e↵ect
of di↵usion and transport, the energy decay rate van-
ishes with the di↵usivity. In some sense, this outcome
is expected, as solutions to (1.1) (formally) conserve
energy. For certain (irregular) flows, however, it is
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possible for the energy decay rate in the presence of
small di↵usivity to stay uniformly positive, a phe-
nomenon known as anomalous dissipation. It implies,
in particular, that the vanishing-di↵usivity limit can
produce dissipative solutions of (1.1), that is, weak
solutions for which the energy decreases with time.
We discuss anomalous dissipation in Section 5.

2 Optimally mixing flows

In this section, our primary focus centers around un-
derstanding the concept of shearing as one of the
central mechanisms of mixing, and how this mecha-
nism gives rise to flows that mix optimally.

2.1 Shear flows

Shear flows are the simplest example of incompressible
flows on T2. Their streamlines (lines tangent to the
direction of the velocity vector) are parallel to each
other and the velocity takes the form u = (v(x2), 0).
The corresponding transport equation is

@t⇢+ v(x2)@x1⇢ = 0, ⇢(0, x) = ⇢0(x), (2.1)

the solution ⇢(t, x1, x2) = ⇢0(x1�v(x2)t, x2) of which
can be computed explicitly via the method of charac-
teristics.
If the initial datum only depends on x2, then the

solution remains constant for all times. Otherwise, a
hint of creation of small scales is given by the growth
of k@x2⇢kL2 linearly in time. To deduce a quantitative
mixing estimate, one can take a partial Fourier trans-
form in x1 of (2.1): denoting ⇢̂(t, k, x2), with k 2 Z,
the Fourier coe�cients of ⇢, (2.1) becomes

@t⇢̂+ 2⇡ikv(x2)⇢̂ = 0, ⇢̂(0, k, x2) = ⇢̂0(k, x2).
(2.2)

Since ⇢̂(t, k, x2) = e�2⇡ikv(x2)t⇢̂0(k, x2), mixing fol-
lows by estimating oscillatory integrals of the form
Z

T
e�2⇡ikv(x2)t⇢̂0(k, x2)�̂(k, x2)dx2, � 2 Ḣ1(T2).

A duality argument and an application of the
stationary-phase lemma entails a (sharp) mixing esti-
mate.

Theorem 2.1. Assume that v 2 Cm(T), for some
integer m > 2, and its derivatives up to order m do
not vanish simultaneously: |v0(x2)|+ |v00(x2)|+ · · ·+
|v(m)(x2)| > 0, for all x2 2 T. Then there exists a
positive constant C = C(v) such that

k⇢(t)k
Ḣ�1 6 C

t1/m
k⇢0kḢ1 , 8t > 1,

for all initial data ⇢0 2 Ḣ1(T2) with vanishing x1-
average.

The mixing rate is solely determined by how de-
generate the critical points of v are, and Theorem 2.1
tells us that the flatter the critical points, the slower
the (universal) mixing rate. In the case of simple or
non-degenerate critical points, for which the second
derivative does not vanish, such as for the Kolmogorov
flow v(x2) = sin(2⇡x2), we have m = 2.
We observe that if k = 0 in (2.2) then ⇢̂(t, 0, x2)

is constant in time; hence unless ⇢̂(0, 0, x2) = 0, no
mixing can occur. Therefore, it is essential to assume
that the initial condition ⇢0 has vanishing average
in the x1 variable, which is equivalent to imposing
that ⇢̂0(0, x2) = 0. This requirement excludes func-
tions that are constant on streamlines, i.e., eigenfunc-
tions (with eigenvalue 0) of the transport operator,
which do not enjoy any mixing.

2.2 General two-dimensional flows

Although regular shear flows can achieve algebraic
mixing rates, we could be inclined to think that their
simple structure constitutes an obstruction to faster
mixing. It turns out that if H is an autonomous,
non-constant Hamiltonian function on T2, of class
C2, generating an incompressible velocity field u =
r?H = (�@x2H, @x1H), then the mixing rate of u
is at best 1/t, and can be even slower depending
on the structure of H, see [BCZM22]. This result
can be interpreted as follows: despite the fact that
H could have hyperbolic points, at which the flow
map displays exponential stretching and compression,
shearing is the main mixing mechanism in 2d. This
can be deduced from the existence of an invariant
domain for the Lagrangian flow on which u is bounded
away from zero, which in turn implies that there
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exists a well-defined, regular and invertible change of
coordinates (x1, x2) 7! (h, ✓) 2 T ⇥ (h0, h1), where
the interval (h0, h1) ⇢ range(H) is determined by the
invariant set. An example is a simple cellular flow,
where H(x1, x2) = sin(2⇡x1) sin(2⇡x2). The level
sets of the Hamiltonian H are given in Figure 2, and
clearly show shearing away from the separatrices.

Figure 2: Level sets of the Hamiltonian H(x1, x2) =
sin(2⇡x1) sin(2⇡x2).

Proposition 2.2. Let H 2 C2(T2). There exists an
invariant open set I ⇢ T2 such that for any ⇢0 2
C1(T2) with supp(⇢0) ⇢ I, the corresponding solution
⇢ of (1.1) satisfies

k⇢(t)k
Ḣ1 6 C(1 + t)kr⇢0kL1 , (2.3)

for some C = C(I, H) and all t > 0.

The set of coordinates (h, ✓) are the so-called action-
angle coordinates, and reduce the transport operator
u ·r to the much simpler from 1

T (h)@✓, where T (h),

which is a C1 function, is the period of the closed orbit
{H(x1, x2) = h}. The analogy with (2.1) is then ap-
parent, and estimate (2.3) is derived from the explicit
solution, obtained via the method of characteristics.
Thanks to interpolation, the growth (2.3) is a lower
bound on the mix-norm of ⇢, hence proving that 1/t
is a lower bound on the mixing rate of u.

2.3 Exponentially mixing flows

Obtaining a faster mixing rate necessarily involves
non-autonomous velocity fields. A widely used ex-
ponential mixer, especially in numerical simulations,
is due to Pierrehumbert [Pie94], and consists of ran-
domly alternating shear flows on T2. The beauty of
this example is its simplicity: at discrete time steps
tn, it alternates the horizontal shear (sin(y � !1,n), 0)
and the vertical shear (0, sin(x � !2,n)). Here, ! =
{!1,n,!2,n} is a sequence of independent uniformly
distributed random variables so the phases are ran-
domly shifted. While widely believed to be exponen-
tially mixing, the first proof of this fact appeared only
recently in [BCZG23].

Theorem 2.3. There exists a random constant D
(with good bounds on its moments) and � > 0 such
that we have (1.4), almost surely.

By taking a realization of the above velocity field,
this result settles the question of the existence of a
smooth exponential mixer on T2, although it does not
produce a time-periodic velocity field.
The proof of Theorem 2.3 relies on tools from

random dynamical system theory and adopts a La-
grangian approach to the problem: this approach
involves proving the positivity of the top Lyapunov
exponent of the flow map via Furstenberg’s criterion
and a Harris theorem.

A related example has been produced in [MHSW22,
ELM23], constructed by alternating two piecewise
linear shear flows. This example is fully deterministic
and produces a time-periodic, Lipschitz velocity field.
The important feature of this flow is that it generates
a uniformly hyperbolic map on T2.

In general, constructing exponentially mixing flows
on T2 has proven to be quite a challenge, and only
recently there have been tremendous developments.
Besides the two works described above, that consti-
tute the latest works in the field, we mention the
deterministic constructions of [ACM19, EZ19], the
latter building upon prior results of Yao and Zlatos,
and the beautiful work on velocity fields generated
by stochastically forced Navier-Stokes equations of
[BBPS21].
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3 Loss of regularity

One of the e↵ects of mixing is the creation of striation
in the scalar field. Quantitatively, this e↵ect corre-
sponds to growth of derivatives of ⇢, which can also
be seen from the well-known interpolation inequality:

k⇢(t)k2
L2 6 k⇢(t)k

Ḣ�sk⇢(t)kḢs . (3.1)

In fact, recalling that the L2 norm of ⇢ is conserved
by the flow of u, if the negative Sobolev norms of
⇢(t) decay to zero at some time T 6 1, at that
same time the positive Sobolev norms must blow up.
However, we note that growth of derivatives is a local
phenomenon that can occur in the absence of mixing,
which is a global phenomenon.

One can ask whether the growth of Sobolev norms
can lead to loss of regularity for solutions of the trans-
port equation (1.1), when the velocity field is not
su�ciently smooth. The Cauchy-Lipschitz theory im-
plies that, if u is Lipschitz uniformly in time, then
the flow of u is also Lipschitz continuous, although
its Lipschitz constant can grow exponentially fast in
time. Hence, at least some regularity of the initial
data ⇢0 is preserved in time. When the gradient of
u is not bounded, but it is still in some Lp space
with p < 1, the direct estimates from the Cauchy-
Lipschitz theory do not apply. Therefore, it is natural
to investigate what, if any, regularity of the initial
data ⇢0 is preserved under advection by u.

We present two examples to show that no Sobolev
regularity is preserved in general: the first where the
flow is mixing and all Sobolev regularity, including
fractional regularity, is lost instantaneously; the sec-
ond where the flow is not mixing and we are able
to show at least that the H1 (and any higher) norm
blows up instantaneously. The second construction
applies to (almost) all initial conditions in H1, though
the resulting velocity field u still depends on the initial
condition ⇢0. In both examples, the simple key idea
is to utilize the linearity of the transport equation to
construct a weak solutions by adding infinitely-many
suitably rescaled copies of a base flow and a base
solution. The rescaling pushes energy to higher and
higher frequencies or small scales, leading to an ac-
celerated growth of the derivatives, which ultimately

results in an instantaneous blow-up (see [CEIM22]
and references therein).
The first result is the following:

Theorem 3.1. There exists a bounded velocity field u
such that ru(t) 2 Lp(R2), 1 6 p < 1, uniformly in
time and a smooth, compactly supported function ⇢0 2
C1

c
(R2), such that both u and the unique bounded

weak solution ⇢ with initial data ⇢0 are compactly
supported in space and smooth outside a point in R2,
but ⇢(t) does not belong to Ḣs(R2) for any s > 0 and
t > 0.

This result implies lack of continuity of the flow
map in Sobolev spaces and can be shown to be a
generic phenomenon in the sense of Baire’s Category
Theorem.

We sketch the proof of Theorem 3.1. Utilizing a
suitable exponentially mixing flow on the torus, it is
possible to construct a smooth, bounded, divergence-
free vector field u0 with ru0(t) 2 Lp(R2), 1 6 p <
1, uniformly in time and a smooth solution ⇢0 of
the transport equation with velocity field u(0), both
supported on the unit square Q0 in the plane, such
that all positive Sobolev norms k⇢0(t)k

Ḣs , s > 0, grow
exponentially fast in time. For each n 2 N, we define
velocity fields u(n) and functions ⇢(n) on squares Qn

of sidelength �n by rescaling:

u(n)(t, x) =
�n

⌧n
u(0)

⇣ t

⌧n
,
x

�n

⌘
,

⇢(n)(t, x) = �n⇢
(0)

⇣ t

⌧n
,
x

�n

⌘
, (3.2)

for some sequences �n, ⌧n, and �n to be chosen, up to
some rigid motions, which do not change the norms
and which we suppress for ease of notation. The
squares Qn can be taken pairwise disjoint. Then, by
setting

u
def
=

X

n

u(n), ⇢
def
=

X

n

⇢(n),

we have that ⇢ is a weak solution of (1.1) with velocity
field u. Lastly, we pick �n, ⌧n, and �n in such a
way that the squares Qn converge to a point, the
only point where u and ⇢ are not smooth, the norms
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ku(t)k
Ẇ 1,p and k⇢(0)k

Ḣs are controlled, while the
norm k⇢(t)k

Ḣs = 1.
The second result is the following:

Theorem 3.2. Given any non-constant function
⇢0 2 H1(R2), there exists a bounded, compactly sup-
ported, divergence-free velocity field u, with ru(t) 2
Lp(R2) for any 1 6 p < 1 uniformly in time, and
smooth outside a point in R2, such that the unique
weak solution ⇢(t) of (1.1) in L2(R2) with initial data
⇢0 does not belong to Ḣ1(R2) (even locally) for any
t > 0.

In fact, a stronger statement is true. The velocity
field u is in all Sobolev spaces that are not embedded
in the Lipschitz space (namely, u 2 W r,p for all r <
2/p+ 1, 1 6 p < 1).

The main steps in the proof of Theorem 3.2 are as
follows. The first step follows by a direct calculation
on functions on the torus T2. Given any non-constant
periodic function �̄, applying either a sine or cosine
shear flow parallel to one of the coordinate axes must
increase the Ḣ1 norm of �̄ by a constant factor A >
1 at time t = 1. Hence, at time t = n, where n
is a positive integer, the Ḣ1-norm of �̄ has grown
by a factor An, which implies that this norm grows
exponentially in time. By unfolding the action of
the shear flows on the torus, this observation can be
adapted to showing exponential growth of the Ḣ1-
norm of functions supported on a square (let’s say
again the unit square) in R2 by a combination of
sine and cosines shear flows. Next, rescaling the flow
alone in a manner similar to (3.2) gives a sequence
of well-separated squares, shrinking to a point, such
that the rescaled flow grows the Ḣ1-norm of functions
supported on each square by a larger and larger factor
at time 1. The final step consists in choosing the
location of the squares and the rescaling factor in
such a way that the Ḣ1 norm of the solution diverges
at any positive time, but the velocity field remains
su�ciently regular.
In view of the results above, one can ask if any

regularity of ⇢0, measured by a norm that is not
comparable with the Sobolev norm Ḣs, is preserved
under the advection by u. It was shown by Bruè
and Nguyen that essentially only the “logarithm” of

a derivative is preserved. In this sense, the loss of
regularity in Theorem 3.1 can be viewed as optimal.

4 Enhanced dissipation

We now turn our attention to problems where both
di↵usion and convection are present, and study the
combined e↵ect of both. A prototypical example is
the evolution of the concentration of a solute in an
ambient fluid (e.g. cream in co↵ee). The evolution
of the (normalized) concentration is modelled by the
advection-di↵usion equation

@t⇢
 + u ·r⇢ � �⇢ = 0 . (4.1)

Here ⇢ denotes the deviation of the concentration of
the solute from its spatial average, the quantity  > 0
is the molecular di↵usivity, and u denotes the velocity
field of the ambient fluid. As in the previous sections,
we will impose periodic boundary conditions on (4.1)
and restrict our attention to the incompressible setting
where u is divergence free. In this case the spatial
average is still preserved by (4.1), so we may, without
loss of generality, uphold our convention that ⇢ is
spatially mean zero.
Multiplying equation (4.1) by ⇢ and integrating

by parts gives the following identity:

k⇢(t)k2
L2 � k⇢(0)k2

L2 = �2

Z
t

0
kr⇢(⌧)k2

L2 d⌧

for any t 2 [0, T ] (4.2)

which expresses the fact that any loss in the L2 norm
of the scalar ⇢, called the energy by analogy with the
kinetic energy in fluids, is balanced by the dissipation
due to di↵usion. Furthermore, using incompressibility
and Poincaré’s inequality, one also has that

k⇢(t)kL2 6 e�4⇡2
tk⇢0kL2 . (4.3)

This estimate, however, is completely blind to the
e↵ect of the fluid advection, and in practice one ex-
pects k⇢kL2 to decay much faster than the rate pre-
dicted by (4.3). The reason for this is a phenomenon
most people have likely observed themselves when stir-
ring cream into co↵ee: the fluid flow initially spreads
the cream into fine filaments; di↵usion acts faster on
fine filaments, and so these uniformize very quickly.
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4.1 Quantifying dissipation enhance-

ment

One way to mathematically quantify and study this
phenomenon is through the dissipation time, denoted
by tdis. Explicitly define tdis = tdis(u,) to be the
smallest time t > 0 so that

k⇢(t0 + t)kL2 6 1

2
k⇢(t0)kL2 ,

for every time t0 > 0 and mean-zero initial data
⇢(s) 2 L2. Clearly (4.3) shows tdis 6 1/(4⇡2),
and one can precisely define enhanced dissipation as
situations where tdis ⌧ 1/(4⇡2). We now list several
situations where enhanced dissipation is exhibited.
Shear flows. If u is a shear flow with a C2 profile

that has non-degenerate critical points, then classical
work of Kelvin shows tdis 6 C/

p
. A matching lower

bound was also proved by Coti Zelati and Drivas.
Cellular flows. A cellular flow models the movement

of a 2D fluid in the presence of a strong array of
opposing vortices. The simplest example was already
introduced in Section 2. Here, the flow is rescaled to
generate stronger vortices at smaller scales, and it is
given by the formulas:

u =

✓
�@x2H
@x1H

◆
, H = A" sin

⇣2⇡x1

"

⌘
sin

⇣2⇡x2

"

⌘
,

where A � 1 is the flow amplitude and " ⌧ 1 is the
cell size. The enhancement of di↵usion by the presence
of a periodic flow has been extensively studied. We
mention in particular the early work of Childress
and then the work of Fannjiang and Papanicolau.
Standard homogenization results show that as " ! 0,
the operator �u ·r+ � behaves like De↵�, where

De↵ ⇡ C

r
A

"
,

is the e↵ective di↵usivity. As a result one would
expect

tdis = O
⇣ 1

De↵

⌘
= O

⇣r "

A

⌘

as , " ! 0, A ! 1. This is indeed the case (pro-
vided /" ⌧ A ⌧ /"3), and was proved recently by

Iyer and Zhou. A matching lower bound for tdis was
recently proved in [BCZM22].
Relaxation enhancing flows. The seminal work of

Constantin et al. [CKRZ08] shows that for time in-
dependent velocity fields, tdis = o(1/) if and only if
the operator u ·r has no eigenfunctions in H1. Such
flows are called relaxation enhancing. It is known
that weakly mixing flows are relaxation enhancing,
but relaxation enhancing flows need not be weakly
mixing.1

Mixing flows. Thus far, the examples provided only
reduce the dissipation time to an algebraic power 1/↵

for some ↵ < 1. Using exponentially mixing flows,
it is possible to reduce the dissipation time further
to |ln|2 (see [FI19, CZDE20]). In fact, we recall
that a velocity field u is exponentially mixing if, for
any ⇢0 2 Ḣ1, the mix norm of solutions to (1.1)
decays exponentially as in (1.4). Informally, then any
solution to (1.1) with initial data that is localized to a
ball of radius " becomes essentially uniformly spread
in time O(|ln "|). If u is exponentially mixing, one
can show that

tdis 6 C|ln|2 .

An elementary heuristic argument, however, suggests
we should have the stronger bound

tdis 6 C|ln| . (4.4)

Indeed, if the solute is initially concentrated at one
point x, then after time O(1) it will spread to a ball of
radius O(

p
). Now, since u is exponentially mixing, it

will get spread almost uniformly on the entire domain
in time O(|ln|), if the e↵ect of di↵usion is negligible.
Unfortunately, the e↵ects of di↵usion may not be
negligible on the time scales of order O(|ln|), and so
this argument cannot be easily made rigorous.

Even though proving (4.4) for general exponentially
mixing flows is still an open question, there are sev-
eral examples of flows for which (4.4) is known: for
instance, when u is the velocity field from the stochas-
tically forced Navier–Stokes equations (see [BBPS21]
and references therein), or when u consists of alter-
nating horizontal/vertical shears with a tent profile

1Weakly mixing is a notion from dynamical systems which

requires (1.2) to hold in a time-averaged sense.
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and a su�ciently large amplitude [ELM23]. It is also
known that tdis cannot be smaller than O(|ln|) for
velocity fields that are Lipschitz in space uniformly
in time.

4.2 Blow up suppression

One application of enhanced dissipation is to control
certain nonlinear phenomena. For concreteness and
simplicity, we focus our attention on a simplified ver-
sion of the Keller–Segel system of equations, which
is used to model the evolution of the population den-
sity of micro-organisms when chemotactic e↵ects are
present. We again impose periodic boundary condi-
tions and study this system on 2 dimensional torus.
If n = n(t, x) > 0 represents the bacterial popula-
tion density, c > 0 represents the concentration of a
chemoattractant produced by the bacteria, and � > 0
is a sensitivity parameter, then a simplified version of
the Keller–Segel model is the following system:

@tn��n = �r ·
�
n�rc

�
, (4.5)

��c = n� n̄ ,

n̄ =

Z

T2

n dx .

This model stipulates that bacterial di↵usion is biased
in the direction of the gradient of the concentration
of a chemoattractant that is emitted by the bacteria
themselves, and that the chemoattractant di↵uses
much faster than the bacteria do.

From the equation we see that there is a competition
between two e↵ects: The di↵usive term �n drives
bacteria away from regions of high population, and
the chemotactic term r · (n�rc) drives the bacteria
towards it. If the chemotactic e↵ects dominate, they
will lead to a population explosion. This has been well
studied and it is now known that the di↵usive e↵ects
dominate (and there is no population explosion) if and
only if the total initial population is below a certain
threshold.

One natural question is to study the e↵ect of move-
ment of the ambient fluid on this system. If the
ambient fluid has velocity field u, equation (4.5) be-
comes

@tn+ u ·rn��n = �r ·
�
n�rc

�
. (4.50)

Intuitively, we expect that regions of high concentra-
tion of bacteria can be dispersed by vigorous stirring.
This result can be established rigorously.

Theorem 4.1. There exists t⇤ = t⇤(kn0kL2) such
that if

tdis(u, 1) < t⇤ ,

then there is no population explosion in (4.50).

The main idea being the proof can be explained in
an elementary fashion and we now provide a quick
sketch of the proof of Theorem 4.1.
First, we rewrite (4.50) as

@t✓ + u ·r✓ ��✓ = N (✓) , (4.6)

where ✓ = n� n̄ and

N (✓) = �r · ((✓ + n̄)�rc) .

Multiplying (4.6) by ✓ and integrating in space show
that

1

2
@tk✓(t)k2L2 + kr✓k2

L2 6
Z

Td

✓N (✓) dx .

Now using standard energy estimates one can show
that when the di↵usive term kr✓k2

L2 is large, then
@tk✓kL2 6 0. More precisely, one can show there
exists a constant C1 = C1(�, d, k✓0kL2) such that if

1

t⇤

Z
t⇤

0
kr✓k2

L2 dt > C1 , (4.7)

then we must also have k✓(t⇤)kL2 6 k✓0kL2 .
Suppose now (4.7) does not hold. In this case we

use Duhamel’s formula to write

✓(t⇤) = S0,t⇤✓0 +

Z
t⇤

0
S⌧,t⇤N (✓(⌧)) d⌧ ,

where Ss,t is the solution operator to (4.1). This
implies

k✓(t⇤)k2L2 6 kS0,t⇤✓0k2L2 +

Z
t⇤

0
kN (✓(⌧))kL2 d⌧ .

We notice that, since tdis 6 t⇤, the first term on the
right is at most k✓0kL2/2. For the second term we
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use standard energy estimates to control kN (✓)kL2 by
kr✓k2

L2 and k✓kL2 . Combined with the assumption
that (4.7) does not hold, we obtain an inequality of
the form

k✓(t⇤)k2L2 6
⇣1
2
+ t⇤F (C1)

⌘
k✓0k2L2 ,

for some explicit function F that arises from the bound
on the nonlinearity. If t⇤ 6 1/(2F (C1)) then the right
hand side is at most k✓0kL2 . Iterating this step, one
immediately sees that sup

t<1k✓(t)kL2 < 1. This
bound is enough to show that there is no population
explosion in (4.50), concluding the proof. A more
complete version of this proof can be found in [IXZ21].
It has also be extended to fourth order equations,
such as the Kuramoto-Sivashinsky equation, a model
of flame-front propagation, by Feng and Mazzucato.

5 Anomalous dissipation

In the previous section we saw several examples of en-
hanced dissipation, where the solution to (4.1) loses a
constant fraction of its L2 energy in time scales much
smaller than the dissipative time scale 1/. The ex-
amples outlined exhibited the energy loss on time
scales 1/↵, |ln|2 or |ln|, which diverge to infinity
in the vanishing di↵usivity limit  ! 0. A natural
question to ask is whether there are situations where
solutions to (4.1) lose a constant fraction of their L2

energy on a time scale that is O(1) as  ! 0. This
phenomenon is called anomalous dissipation. More
precisely, anomalous dissipation is the existence of so-
lutions of (4.1) with progressively smaller di↵usivity 
that converge to a dissipative solution of the transport
equation in the limit  ! 0. That is, as  ! 0, we can
find solutions ⇢ to (4.1), which converge (possibly
along a subsequence) to a weak solution ⇢0 of (1.1),
where

k⇢0(T )k2
L2 < k⇢0(0)k2

L2 ,

for some time T < 1.
The dissipation of the L2 energy of the solution ⇢

to (4.1) for time t 2 [0, T ] is encoded in the energy
identity (4.2). In the limit case  = 0, (4.2) expresses
(formally) the conservation of the L2 norm for solu-
tions of the transport equation (1.1). The velocity

field does not appear explicitly in (4.2). However, the
action of a mixing velocity field results in filamenta-
tion of the scalar and consequently in the creation
of large gradients, thus conceivably allowing for sce-
narios in which the right hand side of (4.2) remains
bounded away from zero even in the limit  ! 0 of
vanishing di↵usivity.

This phenomenon is the analogue in the linear case
of the so-called 0-th law of turbulence of the Onsager-
Kolmogorov theory of turbulence for the Euler/Navier-
Stokes equations. The 0-th law predicts uniform-in-
viscosity dissipation of the kinetic energy, due to the
nonlinear transfer of energy to high frequencies and
to the corresponding enhanced e↵ect of the di↵usion.
The 0-th law usually applies to stochastically forced
flows and the dissipation is the average over many
realizations of the flow. Our setting is akin to so-
called decaying turbulence instead, in the absence of
forcing.

In order to identify the critical regularity for anoma-
lous dissipation in solutions to (4.1) as  vanishes,
heuristically at least, we can formally rewrite the con-
tribution of the advection term in the energy estimate
as

Z

T2

(u ·r⇢)⇢ dx ⇠
Z

T2

r↵u
�
r

1�↵
2 ⇢

�2
dx ,

for any 0 6 ↵ 6 1, where ⇢ denotes both ⇢ and ⇢0.
The fractional derivatives r↵ can be estimated via
norms in Hölder’s spaces C↵. Criticality is therefore
expressed by the so-called Yaglom’s relation: focusing
for simplicity on regularity in space only, for u 2 C↵

and ⇢ 2 C� , the combined Hölder’s regularity of the
velocity field and the solution is:

• subcritical, if ↵+ 2� > 1,

• critical, if ↵+ 2� = 1,

• supercritical, if ↵+ 2� < 1.

The critical threshold for the exponents ↵ and � above
is the analogue for linear advection-di↵usion equa-
tions of the critical 1

3 -Hölder’s regularity in the case
of anomalous energy dissipation for solutions of the
Navier-Stokes equations as viscosity vanishes, accord-
ing to the Onsager-Kolmogorov theory of turbulence.
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In fact, setting u = ⇢ and so ↵ = � gives precisely
↵ = 1/3.
The Obukhov-Corrsin theory of scalar turbulence

(1949-1951) predicts that:

• in the subcritical regime, for a given u 2 C↵

there exists a unique solution ⇢0 2 C� of (1.1)
and such a solution conserves the L2 norm,

• in the supercritical regime, there exist velocity
fields u 2 C↵ such that nonuniqueness and dissi-
pation of the L2 norm are possible for solutions
⇢0 2 C� of (1.1); moreover, anomalous dissipa-
tion is possible, in the sense that

lim sup
!0



Z
T

0
kr⇢(⌧)k2

L2 d⌧ > 0 (5.1)

for solutions ⇢ of (4.1) uniformly bounded in C� .

The statement in the subcritical case can be proven
using a commutator argument similar to that of Con-
stantin, E, and Titi for the Euler equations, see for
instance [DEIJ22, Theorem 4]. We stress that the
uniqueness statement strongly relies on the linearity
of the equation. Addressing the supercritical case is
more challenging and has been done only very recently
from a rigorous mathematical perspective. We briefly
discuss these recent results in the next subsection.

5.1 Anomalous dissipation for boun-

ded solutions

The endpoint case ↵ < 1 and � = 0 has been ad-
dressed in [DEIJ22]. In this paper, for any ↵ < 1,
the authors provide an example of a bounded ve-
locity field, which belongs to L1([0, T ];C↵(T2)) and
is smooth except at the singular time t = T , that
exhibits anomalous dissipation for all initial data su�-
ciently close to a (nontrivial) harmonics. They are also
able to construct velocity fields that exhibit anoma-
lous dissipation for any (regular enough) initial datum,
although the velocity field depends on the chosen ini-
tial datum. The strategy for both examples is to
construct a velocity field which develops smaller and
smaller scales when the time approaches the singular
time t = T . This construction can be interpreted

as mimicking the development in time of a turbulent
cascade. However, it also causes the anomalous dissi-
pation to be concentrated at the singular time t = T ,
in the sense that for any " > 0 it holds

lim
!0



Z
T�"

0
kr⇢(⌧)k2

L2 d⌧ = 0 .

Several criteria that imply anomalous dissipation are
given in [DEIJ22]. The criterion that provides the
most intuition on the mechanism for anomalous dissi-
pation (even though such a criterion is not the one ef-
fectively exploited in the proof in [DEIJ22]) establishes
a link to mixing in solutions of the transport equa-
tion (1.1) and asserts that, if the solution ⇢ of (1.1)
satisfies

Z
T

0
kr⇢(⌧)k2

L2 d⌧ = 1

and k⇢(t)k
Ḣ�1k⇢(t)kḢ1 6 Ck⇢(t)k2

L2 , (5.2)

then anomalous dissipation holds. In view of the in-
terpolation inequality (3.1) with s = 1, the second
condition in (5.2) in particular implies that, in the
absence of di↵usion, the velocity field mixes essen-
tially at the optimal rate. However, it is not easy to
produce velocity fields with such strong mixing prop-
erties as in (5.2), and this is the reason why the proof
of [DEIJ22] needs to rely on weaker criteria. In fact,
the velocity field is a self-similar version of the alter-
nating shear flows example by Pierrehumbert [Pie94].
Although it enjoys weaker mixing properties, the ve-
locity field constructed in [DEIJ22] exhibits anoma-
lous dissipation due to the following heuristic reason:
mixing requires all energy to be sent to high frequen-
cies, while anomalous dissipation just requires a given
fraction of the energy to be sent to high frequencies.
As a corollary, the construction in [DEIJ22] pro-

vides a new example of nonuniqueness for the
transport equation (1.1) with a velocity field in
L1([0, T ];C↵(T2)) (for ↵ < 1), but outside the
DiPerna-Lions class. In order to see this fact, we
extend the velocity field for time t 2 [T, 2T ] by
reflecting it oddly across t = T , that is, setting
u(t) = �u(2T � t). We can then see that the fol-
lowing are two distinct weak solutions:
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• the vanishing-di↵usivity solution ⇢vd(t) for time
t 2 [0, 2T ], and

• the solution given by ⇢refl(t) = ⇢vd(t) for time
t 2 [0, T ], and by the odd reflection ⇢refl(t) =
⇢vd(2T � t) for time t 2 [T, 2T ].

Indeed, they are distinct for t 2 [T, 2T ], since ⇢vd

dissipates the L2 norm while ⇢refl conserves it. It must
be noted that, based on the approach in [DEIJ22], it
is unclear whether ⇢refl can be constructed in the limit
of vanishing di↵usivity along a suitable subsequence
n ! 0.

5.2 Anomalous dissipation and lack of

selection

The possibility of having two distinct solutions, both
arising in the limit of vanishing di↵usivity, puts into
question the validity of the zero-di↵usivity limit as
a selection principle for weak solutions of the trans-
port equation outside of the DiPerna–Lions theory.
Solutions arising as zero-di↵usivity limit may be con-
sidered “more physical” than general weak solutions
and one may wonder whether uniqueness could be
restored in the sense of the possibility of a selection
mechanism among the many weak solutions. This was
the leading question behind the analysis in [CCS23],
in which it was shown that neither vanishing di↵u-
sivity nor regularization of the velocity field provide
such a selection mechanism. The lack of a selection
principle for weak solutions of the transport equation
was also explored in the recent work of Huysmans
and Titi, where the authors construct two di↵erent
renormalized solutions of (1.1) that are strong limits
of solutions to (4.1) along two di↵erent subsequences
as  ! 0. They also use perfect mixing and unmixing
in time to construct another sequence of solutions to
(4.1) that has, as unique limit as  ! 0, an entropy-
inadmissible solution to (1.1).
In terms of anomalous dissipation, in [CCS23] the

authors construct, for any ↵ and � in the super-
critical regime ↵ + 2� < 1, a velocity field u 2
L1([0, T ];C↵(T2)) and a smooth initial datum ⇢0
such that the solutions ⇢ to the advection-di↵usion
equation (4.1) with initial data ⇢0 are uniformly

bounded in L2([0, T ];C�(T2)) and exhibit anomalous
dissipation (more general exponents for the integra-
bility in time can be considered).

The basic mechanism is based on the same slice-and-
dice strategy that leads to the non-uniqueness results
of Depauw and Bressan for the transport equation
and is intrinsically related to mixing. In such an ex-
ample, the solution takes opposite constant values on
alternating tiles of a checkerboard, the size of which
gets refined as time increases, resulting in perfect mix-
ing (i.e., weak convergence to zero, the average of
the solution) at the critical time t = T . Compared
to the previous literature on mixing, a few impor-
tant twists are necessary for the analysis in [CCS23].
The refinement of the size of the checkerboards does
not follow the classical dyadic rescaling, but rather
obeys a superexponential scaling law, which allows
(upon suitable choices of the many parameters in the
construction) to achieve optimal regularity and to sep-
arate the relevant scales at each step of the evolution.
The transition from a checkerboard to the next one is
realized by shear flows, which are also concentrated
at suitable spatial scales. The approach of [CCS23] is
fairly explicit and relies on the fact that solutions of
the advection-di↵usion equation (4.1) have a stochas-
tic Lagrangian representation via the Feynman-Kac
formula

⇢(t, x) = E
⇥
⇢0
�
(X)�1(t, x)

�⇤
.

Here X satisfies the stochastic di↵erential equation

dX(t, x) = u(t,X(t, x)) dt+
p
2 dW ,

where W is a Brownian motion.
The principle behind the lack of selection in the

limit of zero di↵usivity can be best understood by
first considering the related question of whether regu-
larizing the velocity via convolution with a suitable
smoothing kernel can act as a selection principle for
the solution, as the regularization parameter vanishes.
That is, we pose the question whether limit points of
solutions ⇢" of

@t⇢
" + (u ⇤ ⌘") ·r⇢" = 0

are unique, where ⌘" is a standard mollifier. To this
extent, consider the slide-and-dice construction for
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t 2 [0, T ] sketched above, and reflect it oddly across
t = T , therefore “reconstructing large scales” for
t 2 [T, 2T ]. At each step in the reconstruction of the
large scales, add a new “move” which has the e↵ect
of changing the parity of the checkerboard, that is, it
swaps the black and the white tiles. When considering
the convolution of the velocity field with ⌘", all scales
below " are “filtered” and therefore the solution does
not get fully mixed at time t = T , but rather stays
at a finite scale when it crosses the singular time.
After the singular time, large scales are reconstructed,
but, as " ! 0, the solution will converge either to
an even or odd checkerboard for t ⇠ 2T , depending
on the “parity of "”. This construction provides two
subsequences that converge to distinct limit solutions.

We next focus on the case when di↵usion is present.
Consider again the evolution of the checkerboards
for t 2 [0, T ]. Now, add at each step a time inter-
val of suitable length on which the velocity vanishes
and, therefore, the solution obeys the heat equation.
Separation of scales (due to the choice of a superexpo-
nential sequence) provides the existence of a critical
time tcrit() ! T such that for 0 < t < tcrit() di↵u-
sion is a perturbation, while it is the dominant e↵ect
for times t ⇠ tcrit() due to the intervals where veloc-
ity vanishes. Although acting only for a short time,
di↵usion is enhanced by the high frequencies in the
solution, eventually reaching a balance which leads
to dissipate a fixed fraction, independent of  > 0,
of the L2 norm of the solution. Hence, anomalous
dissipation occurs.

In the construction sketched above, the possibility
of anomalous dissipation relies on a specific choice
of the subsequence  ! 0 that depends on all other
parameters. In fact, another result of [CCS23] is the
possibility of choosing another (distinct) subsequence
 ! 0 with the following property. Exploiting the
isotropy of the Brownian motion, the corresponding
subsequence of solutions ⇢ converges to a solution
of the transport equation which conserves the L2

norm. This example shows that the limit of zero
di↵usion cannot be used as a selection principle for
weak solutions of the transport equation outside of
the DiPerna-Lions class.

Building on the results of [CCS23], in collaboration
with Bruè and De Lellis the authors have obtained

analogous results for the forced Navier-Stokes and
Euler equations with full Onsager-supercritical regu-
larity, i.e., for velocity fields in Hölder spaces C↵ with
any ↵ < 1/3.

5.3 Anomalous dissipation via fractal

homogeneization

Both in [DEIJ22] and in [CCS23], anomalous dissipa-
tion only occurs at the singular time t = T (see (5.1)),
due to the nature of the construction based on mixing
and on the development in time of small scales. Such
a situation is somewhat inconsistent with the theory
of homogeneous isotropic turbulence, which postu-
lates (statistical) stationarity and, therefore, the fact
that there should be no “preferred” time in turbulent
phenomena: anomalous dissipation should happen
continuously in time, and for any randomly chosen
times t1 and t2 the corresponding values of the veloc-
ity field u(t1, ·) and u(t2, ·) should be macroscopically
indistinguishable.

In [AV23], the authors address this issue by relying
on an approach based on homogenization theory. For
any ↵ < 1

3 , they construct a time-periodic velocity
field on the torus that belongs to C↵ uniformly in time
and exhibits continuous-in-time anomalous dissipation
for bounded solutions with arbitrary H1 initial data.

In contrast to the examples in [CCS23]
and [DEIJ22], for the velocity field constructed
in [AV23] all scales are active at all times. Homoge-
nization theory allows to understand and quantify
the enhancement of di↵usivity due to the creation
of small scales in the solution at all times. This
result goes under the name of renormalization of
e↵ective di↵usivities: each homogenization step
along the cascade of scales enhances the e↵ective
di↵usivity, which after an iteration over all scales
remains of order one even as  ! 0 and, therefore,
gives anomalous dissipation. Homogenization is well
understood for a finite number of scales, but the
authors of [AV23] need to deal with infinitely many
scales at once.
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