


the aforementioned risks. We select three representative tasks to
show the promise of foundation models: 1� table-class detection, 2�
column-type annotation and 3� join-column prediction. An outline
of our approach is shown in Figure 1. We call our approach ������.

Contributions. We summarize our contributions:

– The �rst work to use foundation models for the data discov-
ery tasks of table-class detection, column-type annotation
and join-column prediction;

– Propose a novel system, ������, whose �exible architecture
enables the synthesis of multiple data discovery tasks and
deploying risk mitigations;

– Design task-speci�c approaches that exploit zero- and few-
shot strategies and allow information �ow between tasks;

– Introduce thenovelmitigationofanchoring to reduce foundation-
model risks speci�c to this domain;

– Empirically validate ������, comparing its performance
with the state-of-the-art baselines across three individual
tasks.

Discussion. Prior work has addressed these tasks individually.
Landmark approaches like Sherlock [27] trained deep model archi-
tectures for a speci�c task, requiring 100K-1M labeled data points.
More recent work such as DoDuo [52] and TaBERT [62] has focused
on representation learning, learning embeddings for structured data
by improving their performance on one or more downstream tasks.

Foundationmodelsallowasubstantiallydi�erentapproach: rather
than the classical architecture where the outputs of the model are
task-speci�c, the inputs and outputs of the model are natural lan-
guage text. Training occurs not on tables or data management tasks
speci�cally, but on general text. Performance on domain-speci�c
tasks is solely by generalization.

This results in a high degree of �exibility. Novel tasks can be spec-
i�ed in natural text, without need for expensive data collection—task
examples,metadata and constraints are all incorporated into the task
easily. Another advantage of this approach is a uni�ed architec-

ture: tasks can utilize the overall context and previous outputs. For
example, in Figure 1 the table class ElectricVehicle helps with
deducing the outputs Make, Model in the next task.

Outline. Section2de�nes the three tasks investigated in thispaper.
Section 3 describes the architecture of ������ and key approaches.
We evaluate the performance of ������ in Section 4’s experiments.
In that section,we also investigate the fundamental characteristics of
this approach.We o�er a discussion of those results in Section 5. This
includes a discussionof promising future directions. Finally,weplace
this workwithin the literature in Section 6, discussing related works.

2 BACKGROUND

2.1 Tasks

We assume to be given a data collection consisting of a number of re-
lational tables)1,)2,.... Each table)8 consists of a number of columns,
or attributes,�1,�2,... and a number of rows, or tuples, A1,A2,... The
name of a table)8 is, in general, non-informative, for example it may
be simply a sequential ��. The columns may optionally have a name
�1,�2,... or consist only of values.

In addition to the data collection, we are also given a reference on-
tology of table classes⇠1,⇠2,..., and a reference ontology of column
typesg1,g2,.... Forexample, theDBPedia.org types for the table classes
include https://dbpedia.org/ontology/Actor andhttps://dbpedia.org/
ontology/Continent and column types include https://dbpedia.org/
ontology/areaTotal and https://dbpedia.org/ontology/birthDate.

We consider three tasks of interest on the data collection:

De�nition 2.1 ( 1� Table-class detection). For each table)8 , deter-
mine its appropriate class⇠ 9 , such that every row A1,A2,... represents
an instance of the⇠ 9 type. We adopt this de�nition from [33].

For example, table-class detection on the table given in Figure 1
could output ElectricVehicle, since each row of that table is
an instance of that class. Alternatively stated, the table is about
ElectricVehicles.

De�nition 2.2 ( 2�Column-type annotation). For each table)8 ,�nd
a mapping from its attributes (columns) �1,�2, ... to the reference
column types g1,g2,..., such that each value in�8 is an instance of the
g8 type. See [1, 13].

For example, column-type annotation on the �rst column in Fig-
ure 1 could output Manufacturer, since the values are the respective
manufacturers of each ElectricVehicle.

De�nition 2.3 ( 3� Join-column prediction). Assume an execution
log !, a history of user actions including table joins and their join con-
ditions, which maps many ()8 ,)9 )! (�: ,�; ) where�: 2)8 ,�; 2)9 .
Given two tables ) and ) 0, with columns �1, ... and �0

1, ... respec-
tively, the join-column prediction task is to suggest a pair (�: ,�

0

;
) of

columns such that the equality condition�: =�
0

;
, which can be used

to join the the tables, matches with the choice in the execution log
!. For more discussion, see [61].

For example, given the table in Figure 1 and another table car_
registration(name, vehicle_id_number), join-column predic-
tion could output (VIN_prefix, vehicle_id_number). The cor-
rectness of the prediction depends on the ground truth of which
columns the user did in-fact join on.

Ontologies Foundation models contain knowledge of ontologies
such as DPBedia.org, Freebase andWikidata. We focus on universal
ontologies, that is, ontologies that aim to represent all entities in
general. This is in-line with �ndings that foundation models en-
code highly technical knowledge, such as clinical reasoning [51] or
electrical engineering principles [53].

3 APPROACH

We outline the structure of ������ in this section. First, we explore
the core idea of ingesting relational data with foundation models
and performing data exploration tasks in Subsection 3.1. Next, we
describe the necessary post-processing and mitigations we develop
in Subsection 3.2.

Figure 2 shows the architecture of the system. C����� has a
uni�ed architecture which runs multiple tasks in the same context,
allowing for information �ow. Each task is run sequentially, with
the output of one task fed as context into future tasks.

For each task instance, C����� generates a prompt by concate-
nating six inputs: context, demonstration, data samples, metadata,

https://dbpedia.org/ontology/Actor
https://dbpedia.org/ontology/Continent
https://dbpedia.org/ontology/Continent
https://dbpedia.org/ontology/areaTotal
https://dbpedia.org/ontology/areaTotal
https://dbpedia.org/ontology/birthDate






Table 1: Capabilities of related systems. Only our system

supports all studied tasks out-of-the-box and without

additional training.

System Table-
class
detection

Column-
type
annotation

Join-
column
prediction

D�D�� [52] l 3 7

T����� [62] l 3 7

Sherlock [27] 7 3 7

TrifactaWrangler [56] 7 l 3

C����� 3 3 3

3 supported out-of-the-box, 7 no support
l required modi�cation or training data collection (see text)

Table 2: Summary of the datasets used in the paper. Numbers

indicate the size of the data used.

Dataset Title # Tables Avg. #Columns Avg. Rows

T2������� v2 237 7.41 118
V��N�� ⇠10 600 3.03 5 200
GitNotebooks 24 579 30.9 60 242

Overall 35 416 23.0 43 491

D�D��provides two embedding variants: one trained on theWik-
iTables dataset and another on VizNet. We label themD�D���W���

andD�D���V��.

Datasets. Table 2 outlines the three experiment benchmarks we
use. For the table-class detection task, we test on the T2D-class v2
dataset [48], a “gold standard” corpus of 237 tables, manually anno-
tated by experts with one of 39 DBPedia.org classes. These tables
were in turn selected from the Common Crawl corpus of web ta-
bles [17]. For column-type annotation, we sample a subset of the
VizNet dataset [25], extracted by the Sherlock team [27], comprised
of32386 columnswithoneof�fteen types fromapproximately10600
tables. This is in line with prior work that uses VizNet [28]. For the
join-column prediction task, we use a dataset we call GitNotebooks,
extracted by the Auto-suggest team [61]. We select 300 tables from
that dataset forwhichwehave join data to runmanually.Hereweuse
a sample as one of the baselines, TrifactaWrangler, does not have an
API but instead predictions must be produced manually. Separately,
we runall 24 thousand tables on thebaselineswith an���. For the�rst
two tasks, which require de�ning a type system for classes and prop-
erties,weuse theDBPediaontology[40] forourexperiments.This isa
community-sourced ontology and is the standard in previous studies.

Setup. We use the GPT-3.5 model [45] as it is the most widely-
available largemodel with ��� access at the time of writing. All other
code was run on a commodity laptop with 8 physical ��� cores and
16GB of main memory. Running all experiments came to a total of
$20 in ��� costs.

We evaluate using the metrics precision, recall and �1 score. Preci-
sion is theproportionof truepositive results out of the total predicted
positive results, while recall is the proportion of true positive results

out of the total actual positive results in the dataset. The �1 score is
theharmonicmeanof precision and recall. Sincewedealwith amulti-
class setting,we calculate thesemetrics for each class separately then
aggregate by taking the mean, weighted by the class size. Weighted
precision, recall and �1 are the standard metrics in prior work [7, 27,
52, 64]. We also report average throughput and cost for each task.

4.1 Table-class detection

For the �rst task, 1� table-class detection, we tag each table with the
DBPedia ontology entry that represents the row-type of the data. Of
the 1 000 datasets that comprise the T2Dv2 dataset, 237 tables have
table-class correspondences available while 763 do not—we exclude
the unlabelled ones from the supervised evaluation. We call this
subset of 237 annotated tables T2D-class v2 and use it for evaluation
on this task. We note that only 40 classes are utilized in this “gold
standard” mapping, while DBPedia ontology has 769 classes.

We compare against the baselines D�D�� and T�B���. No ap-
proach in the prior work provides out-of-the-box capabilities on this
task, so we add a classi�cation layer on top of the pretrained embed-
ding layer. After computing the column embeddings usingD�D��
or T�B���, predictions are extracted by adding a pooling layer, fed
to a multi-layer perceptron, and then �nally taking the soft-max.
This is a straightforward method of adapting the embeddings to our
multi-class setting, used in prior benchmarks for table-class detec-
tion [33].We �x the embeddings to their pretrained values and learn
theweights of the classi�cation layer using�ve-fold cross-validation.

Supervised variant. To allow for comparisonswith prior work, we
initially restrict our system to picking out of the 33 classes. This is
because all other approaches require training on labelled instances—
the baselines cannot predict outside those classes. We test 33 classes
rather than 40 because the classes that occur only once cannot be
tested on baselines that require supervised training (DoDuo and
TaBERT), since a result requires a disjoint training and test set.

Table 3 shows the results.C����� improves on the three baselines
on all metrics. �1 score is improved by 0.169 points, precision by
17.5 percentage points and recall by 15.5 percentage points. Of the
baselines, DoDuo-Wiki provides the best �1 and precision, while
TaBERTprovides the comparable recall. The best performingmodels,
TaBERT and DoDuo-Wiki are trained on CommonCrawl, a superset
of the T2Dv2 benchmark. DoDuo-Vizwhich is trained on the VizNet,
a dataset disjoint from T2Dv2, has the weakest performance. The
numbers for TaBERT are in line with prior replications [33], while to
the best of our knowledge this is the �rst benchmarking of DoDuo
on this task.

Unsupervised variant. Next, we relax the classi�cation domain,
allowing the foundationmodel to choose any of the 768 classes of the
DBPedia ontology. We then compare the quality of the classes with
that of the human-expert labels. DoDuo and TaBERT are not eval-
uated in this task setting as they cannot predict outside the classes
they have observed in training.

For 93% of tables, our system produces correct results. Of that
portion, 83 percentage points are comprised of exact matches, while
10 percentage points are better-than-correct results. This means we
judge the predicted labels are clearly and unambiguously better than
those selected by the benchmark authors. This is a strong claim so



Table 3:Weighted �1 scores for table-class detection on T2Dv2

dataset. Systems are compared with the expert-annotated

classes for each table. The = = 237 tables each correspond to

one of 33 DBPedia.org classes.

�1-score Precision Recall

DoDuo-Viz 0.654 66.8% 68.3%
DoDuo-Wiki 0.757 78.6% 76.9%
TaBERT 0.746 76.3% 76.8%
C����� 0.926 96.1% 92.4%

we list all such datasets in the technical report [31], with evidence.
For the �nal 6% the answer is incorrect: this can mean the answer
is wrong or simply worse than the label provided by the expert.
This means that on the relations where ������ and the expert-label
disagree, our system is 1.6⇥more likely to be correct.

C����� has a throughput of nearly 31 tables per second on this
benchmark and cost an average 2.5¢ per 100 table-class predictions.

4.2 Column-type annotation

Next, we compare the ability of our system to assign classes to table
columns. V��N�� is a collection of tables, extracted by the Sher-
lock [27] team from the VizNet repository [25] of data visualizations
and open datasets. VizNet comprises 31 million columns in total, of
which a test set of 142 000 can be used for evaluation—the rest have
trained on by DoDuo and Sherlock. Of those, we select a subset of
15 classes which are supported by both DoDuo-Wiki and DoDuo-
VizNet (these baselines support a disjoint set of classes), arriving at
32 386 test columns used as a benchmark in this section.

Baselines. We compare against TaBERT [62], DoDuo [52] and
Sherlock [27] on this task. Since Sherlock and DoDuo are designed
for column annotation, we use the out-of-the-box model provided
by the original teams.We restrict both to the �fteen target classes
by setting the probabilities of non-target classes to zero. For DoDuo-
Wiki, which supports a distinct set of classes, we perform a manual
mapping to the class names used by DoDuo-VizNet and Sherlock.
For TaBERT we train an additional classi�cation layer on top of the
pre-trained embeddings that these frameworks provide. We �x the
embeddings to their pretrained values and learn the weights of the
classi�cation layer using �ve-fold cross-validation.

Results. Table 4 contains the results for the V��N�� dataset. Our
��-based approach improves performance on the measured metrics
of �1-score, precision and recall. The best performing method is
Sherlock, narrowly beating DoDuo-VizNet, with a 0.954 �1 score. If
we considermethodswhich are not speci�cally pretrained onVizNet
(note, which is also the test set) ������ is the best performing on
all three metrics. It has comparable �1 and precision to Sherlock, but
6 percentage points lower recall.

Note in particular DoDuo-Wiki, which does not have access to
VizNet at pretraining time, has a large regression in performance
compared to DoDuo-Viznet, nearly half �1 points. This drop is in
line with previous results, see Section 5. We sanity-check the low
scores of TaBERT by replicating previously reported scores [33].

Table 4: Weighted �1 scores for column-type annotation

on V��N�� test set, with = = 32 000 columns. Systems are

compared with the “gold standard” classes for each column.

Methods which are also pre-trained onV��N�� are marked

with an asterisk ⇤.

�1-score Precision Recall

DoDuo-VizNet⇤ 0.876 89.4% 87.2%
Sherlock⇤ 0.954 96.2% 94.6%

TaBERT 0.321 32.6% 32.0%
DoDuo-Wiki 0.440 59.2% 45.4%
C����� 0.891 91.2% 88.8%

C����� achieves a competitive throughput of 41 columns per sec-
ond (col/s), comparable to Sherlock’s 50 col/s and exceedingDoDuo’s
7.3 col/s and TaBERT’s 4.5 col/s. This corresponds to benchmark
completion in 13minutes, as contrastedwith over 2 hours 10minutes
for TaBERT. The average cost of GPT-3.5 calls for this task was 1.3¢
cents per 100 columns.

4.3 Join-column prediction

Finally, we evaluate our approach’s ability to suggestwhich columns
are the correct choice for a join, the join-column prediction task.
We use the GitNotebooks dataset from [61], a collection of 4 million
Python notebooks (and their associated relational tables) including
24 thousand joins collected from Github. One of the baselines, Tri-
facta Wrangler, requires manual execution and recording of each
prediction. For that reason we restrict this benchmark to 300 ran-
domly sampled tables.

Baselines. For this task, we compare with three baselines. Jac-
card similarity, � , is the �rst. Two columns are selected such that
argmax22⇠)

,202⇠) 0 � (2,20) where � (- ,. )= |-\. |/|-[. |. This is a

commonly used approach in the literature [10, 12, 43, 61]. Another
baseline is Levenshtein distance [37], which selects the pair of col-
umn names with the smallest edit distance between them. The �nal
baseline is Trifacta Wrangler [56], a commercial product spun o�
from the Wrangler research line [30]. When joining two tables in
this product, it suggests the keys on which to join them. As no ���
was available, we obtain all Trifacta predictions by joining manually.

Results. Table 5 shows the quality of estimates for our approach
and the baselines. We measure the quality of the predictions by the
same criteria as the previous tasks. By these metrics, our approach
improves the quality of predictions and beats the next-best approach
by a clear margin: �1 score is improved by 0.072, precision by 8.4

percentage points and recall by 6.0 percentage points. This perfor-
mance is maintained when scaling to the full dataset. On this task,
our system has an average throughput of 23.5 predictions per second
and cost approximately 5¢ cents per 100 predicted joins.

4.4 Dataset contamination

Here we perform an experiment to validate whether any of the
testing data occurred in the training corpus of the large-language
model, an issue called dataset contamination or data leakage. Because
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