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have superior capability on three representative tasks: table-class
detection, column-type annotation and join-column prediction. On
all three tasks, we show that a foundation-model-based approach
outperforms the task-specific models and so the state of the art. Fur-
ther, our approach often surpasses human-expert task performance.
We investigate the fundamental characteristics of this approach in-
cluding generalizability to several foundation models and the impact
of non-determinism on the outputs. All in all, this suggests a future
direction in which disparate data management tasks can be unified
under foundation models.
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1 INTRODUCTION

Data discovery and exploration are major components of the work-
flow of analysts and data scientists. A survey conducted by the
Anaconda data-science platform in 2021 found that analysts spend
40% of their working hours on data loading and cleaning [2]. Even
with this colossal effort, 60-70% of data within an enterprise still goes
unused for analytics [21], remaining as dark data [23, 63].

Recent developments in large language-models (LLms) have un-
locked human-level performance on diverse domain tasks. The dis-
covery that these models can generalize to diverse domain-specific
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@ Detect the ontology class the table
represents [...]
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Figure 1: Data discovery tasks considered in this work. Given
an ontology, such as DBPedia, () we assign an overall type
to the table and (2) we annotate the columns with semantic
types. Last, given another table, 3) we predict the join column.
The user provides the data while cHORuUS interacts with the
foundation model. Data from [44], full prompts in Figure 3.

VIN ID>

tasks that they have not been trained on [3, 26, 59, 60] has led to
emergence of the term foundation models [5].

Despite their promise, serious risks have hampered the reception
of foundation models. These include: spurious generation (including
“hallucination”) [24], factual recall limitations [39], bias [19], dataset
contamination [14], logical shortcuts [50] and fallacies [38]. Naive
deployment can lead to unanticipated problems: it has already led to
legal action [11] and recalls by major corporations [22]. These risks
are now acknowledged by the creators of these models [6, 45, 54].

The goal of this paper is to demonstrate the utility of founda-
tion models to the data discovery and exploration while mitigating



the aforementioned risks. We select three representative tasks to
show the promise of foundation models: Q) table-class detection, 2)
column-type annotation and (3) join-column prediction. An outline
of our approach is shown in Figure 1. We call our approach cHORuS.

Contributions. We summarize our contributions:

The first work to use foundation models for the data discov-
ery tasks of table-class detection, column-type annotation
and join-column prediction;

Propose anovel system, cHORUS, whose flexible architecture
enables the synthesis of multiple data discovery tasks and
deploying risk mitigations;

Design task-specific approaches that exploit zero- and few-
shot strategies and allow information flow between tasks;

model risks specific to this domain;

Empirically validate cHORUS, comparing its performance
with the state-of-the-art baselines across three individual
tasks.

Discussion. Prior work has addressed these tasks individually.
Landmark approaches like Sherlock [27] trained deep model archi-
tectures for a specific task, requiring 100K-1M labeled data points.
More recent work such as DoDuo [52] and TaBERT [62] has focused
on representation learning, learning embeddings for structured data
by improving their performance on one or more downstream tasks.

Foundation models allow a substantially different approach: rather
than the classical architecture where the outputs of the model are
task-specific, the inputs and outputs of the model are natural lan-
guage text. Training occurs not on tables or data management tasks
specifically, but on general text. Performance on domain-specific
tasks is solely by generalization.

This results in a high degree of flexibility. Novel tasks can be spec-
ified in natural text, without need for expensive data collection—task
examples, metadata and constraints are all incorporated into the task
easily. Another advantage of this approach is a unified architec-
ture: tasks can utilize the overall context and previous outputs. For
example, in Figure 1 the table class ElectricVehicle helps with
deducing the outputs Make, Model in the next task.

Outline. Section 2 defines the three tasks investigated in this paper.
Section 3 describes the architecture of cHORUS and key approaches.
We evaluate the performance of CHORUs in Section 4’s experiments.
In that section, we also investigate the fundamental characteristics of
this approach. We offer a discussion of those results in Section 5. This
includes a discussion of promising future directions. Finally, we place
this work within the literature in Section 6, discussing related works.

2 BACKGROUND
2.1 Tasks

We assume to be given a data collection consisting of a number of re-
lational tables T1,T5,.... Each table T; consists of a number of columns,
or attributes, A1,Aj,... and a number of rows, or tuples, r1,r2,... The
name of a table Tj is, in general, non-informative, for example it may
be simply a sequential 1p. The columns may optionally have a name
Hj,Hy,... or consist only of values.

Introduce the novel mitigation of anchoring to reduce foundation-
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In addition to the data collection, we are also given a reference on-
tology of table classes C1,C, ..., and a reference ontology of column
types 71,72,.... For example, the DBPedia.org types for the table classes
include https://dbpedia.org/ontology/Actor and https://dbpedia.org/
ontology/Continent and column types include https://dbpedia.org/
ontology/areaTotal and https://dbpedia.org/ontology/birthDate.

We consider three tasks of interest on the data collection:

Definition 2.1 ((T) Table-class detection). For each table T;, deter-
mine its appropriate class C;, such that every row ry,r,... represents
an instance of the C; type. We adopt this definition from [33].

For example, table-class detection on the table given in Figure 1
could output ElectricVehicle, since each row of that table is
an instance of that class. Alternatively stated, the table is about
ElectricVehicles.

Definition 2.2 ((2) Column-type annotation). For each table T;, find
a mapping from its attributes (columns) A1, Aj,... to the reference
column types 71,7,..., such that each value in A; is an instance of the
7; type. See [1, 13].

For example, column-type annotation on the first column in Fig-
ure 1 could outputManufacturer, since the values are the respective
manufacturers of each ElectricVehicle.

Definition 2.3 (3 Join-column prediction). Assume an execution
log L, ahistory of user actions including table joins and their join con-
ditions, which maps many (T;,Tj) — (Ag,A;) where A € T;,Aj €T;.
Given two tables T and T/, with columns Ajy,... and A;, ... respec-
tively, the join-column prediction task is to suggest a pair (Ak,A;) of
columns such that the equality condition A =A;, which can be used
to join the the tables, matches with the choice in the execution log
L. For more discussion, see [61].

For example, given the table in Figure 1 and another table car_
registration(name, vehicle_id_number), join-column predic-
tion could output (VIN_prefix, vehicle_id_number). The cor-
rectness of the prediction depends on the ground truth of which
columns the user did in-fact join on.

Ontologies Foundation models contain knowledge of ontologies
such as DPBedia.org, Freebase and Wikidata. We focus on universal
ontologies, that is, ontologies that aim to represent all entities in
general. This is in-line with findings that foundation models en-
code highly technical knowledge, such as clinical reasoning [51] or
electrical engineering principles [53].

3 APPROACH

We outline the structure of cHORUS in this section. First, we explore
the core idea of ingesting relational data with foundation models
and performing data exploration tasks in Subsection 3.1. Next, we
describe the necessary post-processing and mitigations we develop
in Subsection 3.2.

Figure 2 shows the architecture of the system. CHORUS has a
unified architecture which runs multiple tasks in the same context,
allowing for information flow. Each task is run sequentially, with
the output of one task fed as context into future tasks.

For each task instance, CHORUS generates a prompt by concate-
nating six inputs: context, demonstration, data samples, metadata,
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Figure 2: CHORUS system architecture.

task-specific knowledge, and prefixes. They form the “Model In-
puts” box in Figure 2 and are color-coded so that they match the
colored prompt components in Figure 3. This natural language input
is then fed to the foundation model. The output is then subject to
post-processing: checks of parsability and feasibility are conducted.
If these pass, the output is extracted. Otherwise, we activate a mit-
igation process, called anchoring, in order to repair the error and
prevent its propagation.

3.1 Model Inputs

We discuss what inputs are provided to the foundation model and
how they are pre-processed and synthesized. We discuss the six com-
ponents of the Model Inputs module in Figure 2, individually. These
correspond to the six color-coded prompt components in Figure 3.
Once generated, all the above inputs are concatenated to into a single
prompt provided to the model.

Instructions. A description of the specific task (table-class detec-
tion, column-type annotation or join-column prediction) is provided
to the foundation model in natural language. These are shown in yel-
low in Figure 3. For example, we translate the formal Definition 2.1
of the first task, table-class detection, into the English sentence “For
the following CSV sample, select one DBpedia.org ontology that
represents the dataset.” For the third task, join-column prediction,
we utilize a code-completion approach. We frame the task as code-
completing a Pandas fragment that performs a join, with the code to
complete shown in Figure 3c. We choose Pandas because it is a very
popular framework, with more than millions of example lines of code
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Legend: Instruction, Demonstration, Data sample, Metadata,
Task-specific knowledge, Prefixes.

For the following CSV sample, select one DBpedia.org ontology that
represents the dataset from the following list:

AcademicJournal, AdministrativeRegion, Airline, Airport, [...],
University, VideoGame, Work, Wrestler.

For example, for a dataset about hospitals, return
“https://dbpedia.org/ontology/Hospital™. Begin your answer with

"https://dbpedia.org/ontology’.

Brand, ., ZIP, .,
Nissan, Leaf, 98112, JNTAZOCP4C,
Tesla, Model 3, 98074, 5YJ3E1EBXL,

)

(a) Table-class detection

Consider this example. Input:

Name, Famous Book, Rk, Year

Fyodor Dostoevsky, Crime and Punishment, 22.5, 1866
Mark Twain, Adventures of Huckleberry Finn, 53, 1884
Albert Camus, The Stranger, -23, 1942

Output:

“dbo:author, dbo:title, Unknown, dbo:releaseDate™.

For the following CSV sample, suggest a DBPedia.org Property for each
column from the “dbo: ~namespace.

B [

(b) Column-type annotation

Given two Pandas Dataframes, suggest what ~pd.merge”
parameters to use to join the dataframes.

df1 =
UL
df2 =
SN
Complete the correct Pandas merge command. ~pd.merge(df1, df2, left_on=

7o

(c) Join-column prediction

Figure 3: Prompts used in this paper, materialized with
examples. Most prompt elements are fixed—only the data
sample and metadata change for each instance.

on the web. This is the zero-shot prompt setting: the model can be pro-
vided with instructions for a novel task and performs them directly.

Demonstration. For the first two tasks, we use the foundation
models with task examples as an additional input: this is called the
few-shot prompt setting. The model is given a few demonstrations
of task completion, including inputs and outputs. This is shown in
Figure 3 as green text.

Data sample. By serializing the input tables, we can input them
into foundation models. For example, consider the example table
from Figure 1 in the introduction. Serializing the table allows the
foundation model to ingest the data. We use the comma-separated
values (csv) format, shown in blue in Figure 3.

Because the models have a limited context window size—typically
in the few thousands of tokens—tables cannot always be ingested as
a whole. Instead, we always serialize a sample of the rows. We find



a sample size of five is sufficient. Intuitively, it suffices to consider
only a few values to determine column type.

Metadata. Schema information including column names (head-
ers) and keys can be incorporated into the input, above the serialized
data sample. We found that foundation models can adaptively infer
whether the first column of the input is a header or data row, with
no modification of the input required. This is shown in orange in
Figure 3.

Task-specific knowledge. For some tasks, additional information
can be used to guide the model. For (D) table-class detection, if only
certain output classes are desired, these can be listed to the model.
The model will take these instructions into account when generating
an output but they are not hard constraints. The encoding of such
additional constraints for the table-class detection task is shown in
Figure 3a.

Prefixes. We also provide the model with prefixes with which to
complete. This includes the DBPedia format for the table-class detec-
tion task and a Pandas code fragment for the join-column prediction
task. Both prefixes are highlighted in pink in Figure 3. Prefixes in-
crease the likelihood the model will provide the output in a parsable
format rather than deviating into a natural language description.

3.2 Model Harness

The foundation model is run within a harness that parses outputs
into a symbolic representation and mitigates errors.

Constraint checks. Because the model is not constrained in its
outputs, it may not always output a feasible answer. In this setting
we impose three constraints: table types must belong to the ontology
classes, column types must belong to the ontology properties and
joins must be on existing columns. An output is infeasible if, in par-
ticular, it is not parsable or if it violates any of the three constraints.
If this occurs, cHORUS performs anchoring.

Anchoring. If the constraints are violated, we do not simply move
on to the next task. The risk is of hallucination snowballing [65]:
once a foundation model makes a single spurious generation, sub-
sequent outputs are more likely to also be wrong. The model will
make mistakes it would otherwise be able to avoid. For example, in
Figure 4(a): once nonexistent class iucnStatus is suggested, another
nonexistent class animalName follows. Because we maintain context
across tasks, we are particularly vulnerable to this.

We call the novel domain-specific mitigation we deploy anchor-
ing, shown in Figure 4(b). CHORUS ends the conversation when an
error is detected. It then initiates a new conversation, feeding the
LM with a false history in which the LM did not hallucinate. This
is possible because the conversational LLMm takes as input the full
history text, which we can retroactively modify. We insert artificially
an existing class from the ontology (e.g. the nearest neighbor in the
embedding space to the non-existing class). Fed with this cleaner
input, the model is able to directly provide the correct answer.

4 EXPERIMENTS

We empirically evaluate CHORUS on the three tasks defined in Sec-
tion 2.1. For each task, we select a task-specific benchmark and
compare with baselines representing the state of the art. Table-class
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Figure 4: Anchoring illustrated. The LLM hallucinates an
imagined label, iucnStatus. Under the standard approach,
this poisons all the upcoming tasks; the nearest-neighbor
post-processing cannot recover and outputs the incorrect
label animal. With anchoring, cHoRuUs intervenes when the
first error is detected. A new conversation is started and a
synthesized (false) history is provided to the LLM, in which
it did not make the mistake. With only clean inputs, LLM is
able to correctly answer the next task correctly: binomial.

detection (D is evaluated in Section 4.1, @) column-type annotation in
Section 4.2,and 3) join-column prediction in Section 4.3. The code for
the experiments in available at https://github.com/mkyl/CHORUS.

Baselines. We considered the following state-of-the-art systems
for data exploration: relevant systems include TABERT [62], Do-
Duo [52], Sato [64], TURL [13], TaBBIE [29], Auto-suggest [61],
Trifecta Wrangler [56], Paxata, Tableau Prep, and Sherlock. DoDuo
outperforms TURL and Sherlock on column-type annotation [52], so
we select it for evaluation. Sato and Sherlock are similar, with Sato
utilizing additional signals not found in our benchmarks, so we eval-
uate the better-established Sherlock. TaBBIE can embed tables but is
not trained on column-type annotation unlike DoDuo and Tabert, so
we avoid it for the column-type annotation task. TABERT is a work
similar to DoDuo and TURL, but from the NLP community rather
than the data management community, so we also test it too. For
join-column prediction, Trifacta Wrangler outperforms Paxata and
Tableau Prep [61]. Auto-Suggest is reported to outperform Trifacta
Wrangler, but is a proprietary research project not released publicly.
Thus we select Trifacta Wrangler for testing.

For the evaluated prior works TABERT, DoDuo, Trifecta Wrangler
and Sherlock [27, 52, 56, 62], we utilize each tool if applicable to the
task. If the baseline is not designed for a particular task, but can be
straightforwardly adapted, we do so. We describe all modifications
in the task subsection and always use established adaptations if
available. If the modifications required would be extensive enough
to become their own research project, we consider that task un-
supported. In all cases, we use the pretrained embeddings without
modification, as provided by the authors. Table 1 outlines the systems
we tested and tasks they support.



Table 1: Capabilities of related systems. Only our system
supports all studied tasks out-of-the-box and without
additional training,.

System Table- Column- Join-
class type column
detection annotation  prediction

DoDuo [52] v X

TABERT [62] v X

Sherlock [27] X v X

Trifacta Wrangler [56] X v

CHORUS v 4 v

v supported out-of-the-box, X no support
required modification or training data collection (see text)

Table 2: Summary of the datasets used in the paper. Numbers
indicate the size of the data used.

Dataset Title #Tables Avg.# Columns Avg. Rows
T2D-cLASS v2 237 7.41 118
VIZNET ~10600 3.03 5200
GitNotebooks 24579 30.9 60 242
Overall 35416 23.0 43 491

DoDuo provides two embedding variants: one trained on the Wik-
iTables dataset and another on VizNet. We label them DoDuo-WikI1
and DoDuo-Viz.

Datasets. Table 2 outlines the three experiment benchmarks we
use. For the table-class detection task, we test on the T2D-class v2
dataset [48], a “gold standard” corpus of 237 tables, manually anno-
tated by experts with one of 39 DBPedia.org classes. These tables
were in turn selected from the Common Crawl corpus of web ta-
bles [17]. For column-type annotation, we sample a subset of the
VizNet dataset [25], extracted by the Sherlock team [27], comprised
0f32386 columns with one of fifteen types from approximately 10 600
tables. This is in line with prior work that uses VizNet [28]. For the
join-column prediction task, we use a dataset we call GitNotebooks,
extracted by the Auto-suggest team [61]. We select 300 tables from
that dataset for which we have join data to run manually. Here we use
a sample as one of the baselines, Trifacta Wrangler, does not have an
API but instead predictions must be produced manually. Separately,
we run all 24 thousand tables on the baselines with an Ap1. For the first
two tasks, which require defining a type system for classes and prop-
erties, we use the DBPedia ontology [40] for our experiments. Thisisa
community-sourced ontology and is the standard in previous studies.

Setup. We use the GPT-3.5 model [45] as it is the most widely-
available large model with Ap1 access at the time of writing. All other
code was run on a commodity laptop with 8 physical ARM cores and
16GB of main memory. Running all experiments came to a total of
$20 in API costs.

We evaluate using the metrics precision, recall and F; score. Preci-
sion is the proportion of true positive results out of the total predicted
positive results, while recall is the proportion of true positive results
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out of the total actual positive results in the dataset. The F; score is
the harmonic mean of precision and recall. Since we deal with a multi-
class setting, we calculate these metrics for each class separately then
aggregate by taking the mean, weighted by the class size. Weighted
precision, recall and F; are the standard metrics in prior work [7, 27,
52, 64]. We also report average throughput and cost for each task.

4.1 Table-class detection

For the first task, (D) table-class detection, we tag each table with the
DBPedia ontology entry that represents the row-type of the data. Of
the 1 000 datasets that comprise the T2Dv2 dataset, 237 tables have
table-class correspondences available while 763 do not—we exclude
the unlabelled ones from the supervised evaluation. We call this
subset of 237 annotated tables T2D-class v2 and use it for evaluation
on this task. We note that only 40 classes are utilized in this “gold
standard” mapping, while DBPedia ontology has 769 classes.

We compare against the baselines DoDuo and TABERT. No ap-
proach in the prior work provides out-of-the-box capabilities on this
task, so we add a classification layer on top of the pretrained embed-
ding layer. After computing the column embeddings using DoDuo
or TABERT, predictions are extracted by adding a pooling layer, fed
to a multi-layer perceptron, and then finally taking the soft-max.
This is a straightforward method of adapting the embeddings to our
multi-class setting, used in prior benchmarks for table-class detec-
tion [33]. We fix the embeddings to their pretrained values and learn
the weights of the classification layer using five-fold cross-validation.

Supervised variant. To allow for comparisons with prior work, we
initially restrict our system to picking out of the 33 classes. This is
because all other approaches require training on labelled instances—
the baselines cannot predict outside those classes. We test 33 classes
rather than 40 because the classes that occur only once cannot be
tested on baselines that require supervised training (DoDuo and
TaBERT), since a result requires a disjoint training and test set.

Table 3 shows the results. CHORUSs improves on the three baselines
on all metrics. F; score is improved by 0.169 points, precision by
17.5 percentage points and recall by 15.5 percentage points. Of the
baselines, DoDuo-Wiki provides the best F; and precision, while
TaBERT provides the comparable recall. The best performing models,
TaBERT and DoDuo-Wiki are trained on CommonCrawl, a superset
of the T2Dv2 benchmark. DoDuo-Viz which is trained on the VizNet,
a dataset disjoint from T2Dv2, has the weakest performance. The
numbers for TaBERT are in line with prior replications [33], while to
the best of our knowledge this is the first benchmarking of DoDuo
on this task.

Unsupervised variant. Next, we relax the classification domain,
allowing the foundation model to choose any of the 768 classes of the
DBPedia ontology. We then compare the quality of the classes with
that of the human-expert labels. DoDuo and TaBERT are not eval-
uated in this task setting as they cannot predict outside the classes
they have observed in training.

For 93% of tables, our system produces correct results. Of that
portion, 83 percentage points are comprised of exact matches, while
10 percentage points are better-than-correct results. This means we
judge the predicted labels are clearly and unambiguously better than
those selected by the benchmark authors. This is a strong claim so



Table 3: Weighted F; scores for table-class detection on T2Dv2
dataset. Systems are compared with the expert-annotated
classes for each table. The n =237 tables each correspond to
one of 33 DBPedia.org classes.

Fi-score Precision Recall
DoDuo-Viz 0.654 66.8% 68.3%
DoDuo-Wiki 0.757 78.6% 76.9%
TaBERT 0.746 76.3% 76.8%
CHORUS 0.926 96.1% 92.4%

we list all such datasets in the technical report [31], with evidence.
For the final 6% the answer is incorrect: this can mean the answer
is wrong or simply worse than the label provided by the expert.
This means that on the relations where cHoRUs and the expert-label
disagree, our system is 1.6X more likely to be correct.

CHoRrus has a throughput of nearly 31 tables per second on this
benchmark and cost an average 2.5¢ per 100 table-class predictions.

4.2 Column-type annotation

Next, we compare the ability of our system to assign classes to table
columns. VIzNET is a collection of tables, extracted by the Sher-
lock [27] team from the VizNet repository [25] of data visualizations
and open datasets. VizNet comprises 31 million columns in total, of
which a test set of 142 000 can be used for evaluation—the rest have
trained on by DoDuo and Sherlock. Of those, we select a subset of
15 classes which are supported by both DoDuo-Wiki and DoDuo-
VizNet (these baselines support a disjoint set of classes), arriving at
32 386 test columns used as a benchmark in this section.

Baselines. We compare against TaBERT [62], DoDuo [52] and
Sherlock [27] on this task. Since Sherlock and DoDuo are designed
for column annotation, we use the out-of-the-box model provided
by the original teams. We restrict both to the fifteen target classes
by setting the probabilities of non-target classes to zero. For DoDuo-
Wiki, which supports a distinct set of classes, we perform a manual
mapping to the class names used by DoDuo-VizNet and Sherlock.
For TaBERT we train an additional classification layer on top of the
pre-trained embeddings that these frameworks provide. We fix the
embeddings to their pretrained values and learn the weights of the
classification layer using five-fold cross-validation.

Results. Table 4 contains the results for the VizNET dataset. Our
FM-based approach improves performance on the measured metrics
of Fi-score, precision and recall. The best performing method is
Sherlock, narrowly beating DoDuo-VizNet, with a 0.954 F; score. If
we consider methods which are not specifically pretrained on VizNet
(note, which is also the test set) CHORUS is the best performing on
all three metrics. It has comparable F; and precision to Sherlock, but
6 percentage points lower recall.

Note in particular DoDuo-Wiki, which does not have access to
VizNet at pretraining time, has a large regression in performance
compared to DoDuo-Viznet, nearly half F; points. This drop is in
line with previous results, see Section 5. We sanity-check the low
scores of TaBERT by replicating previously reported scores [33].
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Table 4: Weighted F; scores for column-type annotation
on VizNET test set, with n = 32 000 columns. Systems are
compared with the “gold standard” classes for each column.
Methods which are also pre-trained on VizZNET are marked
with an asterisk .

Fi-score Precision Recall
DoDuo-VizNet* 0.876 89.4% 87.2%
Sherlocks 0.954 96.2% 94.6%
TaBERT 0.321 32.6% 32.0%
DoDuo-Wiki 0.440 59.2% 45.4%
CHORuUS 0.891 91.2% 88.8%

CHoORUS achieves a competitive throughput of 41 columns per sec-
ond (col/s), comparable to Sherlock’s 50 col/s and exceeding DoDuo’s
7.3 col/s and TaBERT’s 4.5 col/s. This corresponds to benchmark
completion in 13 minutes, as contrasted with over 2 hours 10 minutes
for TaBERT. The average cost of GPT-3.5 calls for this task was 1.3¢
cents per 100 columns.

4.3 Join-column prediction

Finally, we evaluate our approach’s ability to suggest which columns
are the correct choice for a join, the join-column prediction task.
We use the GitNotebooks dataset from [61], a collection of 4 million
Python notebooks (and their associated relational tables) including
24 thousand joins collected from Github. One of the baselines, Tri-
facta Wrangler, requires manual execution and recording of each
prediction. For that reason we restrict this benchmark to 300 ran-
domly sampled tables.

Baselines. For this task, we compare with three baselines. Jac-
card similarity, J, is the first. Two columns are selected such that
argmaxceCT’c,ECT/](c,c’) where J(X,Y)=|XNY|/|XUY|. Thisis a
commonly used approach in the literature [10, 12, 43, 61]. Another
baseline is Levenshtein distance [37], which selects the pair of col-
umn names with the smallest edit distance between them. The final
baseline is Trifacta Wrangler [56], a commercial product spun off
from the Wrangler research line [30]. When joining two tables in
this product, it suggests the keys on which to join them. As no Ap1
was available, we obtain all Trifacta predictions by joining manually.

Results. Table 5 shows the quality of estimates for our approach
and the baselines. We measure the quality of the predictions by the
same criteria as the previous tasks. By these metrics, our approach
improves the quality of predictions and beats the next-best approach
by a clear margin: F; score is improved by 0.072, precision by 8.4
percentage points and recall by 6.0 percentage points. This perfor-
mance is maintained when scaling to the full dataset. On this task,
our system has an average throughput of 23.5 predictions per second
and cost approximately 5¢ cents per 100 predicted joins.

4.4 Dataset contamination

Here we perform an experiment to validate whether any of the
testing data occurred in the training corpus of the large-language
model, an issue called dataset contamination or data leakage. Because



Table 5: F; scores, precision and recall for the join-column
prediction task on GitNotebooks dataset.

Fi-score Precision Recall

Manually-run subset, n=300

Jaccard 0.575 60.7% 54.7%

Levenshtein 0.718 72.3% 71.3%

Trifacta Wrangler 0.823 82.6% 82.0%

CHORUS 0.895 91.0% 88.0%
Full dataset, n=24 579

Jaccard 0.458 63.3% 35.9%

Levenshtein 0.777 78.7% 76.8%

Trifacta Wrangler No Ar1

CHORUS 0.912 93.2% 89.4%

Table 6: Data contamination experiment. Weighted F; scores
for table-class detection on public benchmarks versus tables
the foundation model is guaranteed to have not been trained
on.

Dataset Fi-score Precision Recall
Public benchmark (VizNet) 0.865 90.1% 86.7%
Guaranteed-unseen 0.857 90.0% 81.8%

these models are trained on internet data [18] and we use public
benchmarks, they may have seen the test data in training.

We test on seven guaranteed-unseen tables (listed in the technical
report [31]) and their columns, all uploaded between April-June 2023
to the federal data repository Data.gov. They are guaranteed-unseen
because the foundation model training was completed on or before
March 2023. Repeating the supervised column-type annotation task
as in Section 4.2, we measure a 0.857 F; score, 90.0% precision and
81.8% recall. This is within 0.01 F; points, 0.1% precision and 5%
recall of the benchmark results. See Table 6. The recall drop reflects
the datasets being more diverse and therefore difficult to classify.

4.5 System characteristics

Determinism. We examine the impact of nondeterminism in the
foundation model on the performance of cHoRrus. The randomness
of the generation is controlled by the temperature hyperparameter.
To assure that the results of cHORUS are reliable, we conduct the fol-
lowing experiment: we run the T2D table-class detection benchmark
25 times, five trials for each value of T between 0,1/4,...,1. Figure 5
shows the result. CHORUS s performance is consistent: at the ideal
temperature setting the F; score sees error bars of 0.01 F; points.
The best performance is obtained at lowest temperature, 0.0—this is
in contrast to NLP tasks like summarization that benefit from higher
temperatures. In the prior experiments we use the default tempera-
ture, as to get CHORUS running with minimal hyperparameter tuning.

Alternative models. To demonstrate the versatility of this ap-
proach, we run cHORUSs with three alternative, open-source foun-
dation models on the table-class detection task. We consider Vi-
cuna [67],a variant of LLaMA [54] at two sizes: 13 billion parameters
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Figure 5: Determinism vs. performance. We conduct 25 runs
of cHORUS on the T2D table class benchmark. Shaded bands
indicate confidence intervals. Temperature is a parameter
controlling the randomness of the foundation model, with
zero being the most (but not completely) deterministic.
Table 7: Alternative foundation models. Weighted F; scores for
table-class detection on T2Dv2 dataset, for different choices of
foundation model used by cHORuS. Parameter size in brackets.
GPT-3.5 numbers identical to experiment in Figure 3.

Table-class correctness

Model choice Fi-score Precision Recall
GPT-3.5(175B) 0.926 96.1% 92.4%
LLaMA 2 (70B) 0.893 92.2% 86.5%
Vicuna/LLaMA (13B) 0.713 79.2% 64.1%
Vicuna/LLaMA (7B) 0.713 75.3% 67.5%

and 7 billion parameters. The more advanced model is LLaMA 2 [55],
the SOTA open-source model with 70 billion parameters.

Table 7 shows the results. While OpenAI’s GPT model performs
best, the best open-source model is very competitive. LLaMA 2 out-
performs the best baseline model for this task—DoDuo-Wiki—by
0.136 F; points, on precision by 13.6 percentage points and on recall
by 9.6 percentage points. This model lags behind the proprietary
and larger GPT model by only a modest 0.03 F; points. Open-source
LLMs are now compelling alternatives on the tested task.

Ablations. We conduct ablation experiments to measure the con-
tribution of individual components of cHORUs. We remove one com-
ponent at a time and note the loss of scores compared to the unaltered
model. Figure 6 shows the results. First, we remove the demonstra-
tion from the prompt. This results in an F1 score loss of 0.03, a recall
loss of 4.7 and a precision loss of 4.7 percentage points. Next, we
remove the metadata where it is available. This results in a cumu-
lative F1 score loss of 0.04, a recall loss of 5.1 and a precision loss
of 5.6 percentage points. After that, we disable anchoring. This re-
sults in a cumulative F1 score loss of 0.389, a recall loss of 47.4 and a
precision loss of 31.9 percentage points. From this the prevalence of
hallucinations can be gleaned: the substantive score loss implies that
hallucination is highly prevalent. Finally, we remove the prefixes
from the prompt. This results in a cumulative F1 score loss of 0.736,
arecall loss of 92.3 and a precision loss of 53.1 percentage points.
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Figure 6: Ablation experiments. We ablate key features of
CHORuUSs and report performance characteristics on the T2D
table-class detection task.

5 DISCUSSION

Training data collection. Amajoradvantage of afoundation-model
approach is that there is no need for training on specific tasks. In
contrast, TABERT requires 26 million tables for training its embed-
dings. In [13], the use of 250 labels for one task is considered a “small
dataset” by the authors and leads to subpar performance. In contrast,
our prompts in Figure 3 use zero or none examples for each task.

Out-of-domain performance. We note a troubling pattern of a
lack of cross-domain generalization in representation-learning ap-
proaches. The tested baselines degrade when used to embed tables
not from the dataset the embeddings were trained on. This finding is
in-line with prior work: regressions of up to 0.40 and 0.30 F; points
when generalizing to new datasets have been reported [13, 28].

Flexibility. Another advantage of CHORUS we observe in the ex-
periments is task adaptability. In the (T) table-class detection task, we
are able to switch the prediction domain easily. Restricting to the 33
classes used by the benchmark can be done by providing the permit-
ted classes to the foundation model; allowing the model to generalize
to other DBPedia classes (the unsupervised heading of Section 4.1)
is as simple as omitting those instructions. Contextual information,
such as table title or URL, could be as easily added. Previously, such
modifications would require retraining the embeddings.

Limitations and risks. We control the risk of dataset contamina-
tion by testing for it in Section 4.4. The performance of CHORUS on
guaranteed-unseen datasets is comparable to those in public bench-
marks, so good performance on the those benchmarks cannot be
explained away as simple data contamination. Separately, formal lin-
guistic fluency means that errors may fool human reviewers [35, 36].
This has been called subtle misinformation in prior work [47]. Finally,
prompts may not be robust to changes [66].

Future directions: Additional tasks. The above hypothesis sug-
gests the promising performance may extend to many more tasks. Re-
lated tasks to be explored include schema auto-completion [7], where
missing parts of a partial schema are suggested to the user; join-graph
traversal, where successive tables to join on are suggested [15]; and
outlier detection, where erroneous data are detected. These are all
promising because they involve composing simple patterns that are
prevalent in FM’s training data. On the other hand, novel approaches
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will likely be needed to apply Fums to tasks like data provenance [20],
since these involving tracking more patterns than rm’s are thought to
currently support. Incorporating proprietary information may also
be difficult to due the dearth of these patterns in the training data.

Private or domain-specific datasets. Aswith all the tested baselines,
the foundation models are trained on public data. The distribution
of data in the public sphere differs significantly from that in special-
ized domains or private data. It is worth investigating whether the
observed capabilities continue to hold on e.g. enterprise data lakes.
Further application to domain-specific ontology such as DrRON, a phar-
maceutical ontology of drugs, would also be a valuable investigation.

6 RELATED WORK

The seminal early work is WebTables [ 7], which extracts relational ta-
bles from web data, annotated with metadata for discoverability. This
work introduced the related tasks: schema auto-completion, attribute
synonym finding, and join-graph traversal. Early work on wrapper
induction [34] also extracted tables from heterogeneous sources.

The promise of foundation models for data profiling was outlined
in a recent position paper [58]. This paper was based on evidence of
foundation models being able to predict correlations in data from the
column names [57]. Another work considered foundation models
for data wrangling [41]: comprising the tasks of entity matching,
error detection and data imputation. Finally, most recently founda-
tion models have been applied to the classic problem of wrapper
induction in the system EVAPORATE [4].

The currently deployed generation of approaches has focused
on representation learning. These include TURL [13], TaBERT [62],
DoDuo [52] and TABBIE [29]. These explore the use of fine-tuned
language models for similar tasks. Prior to these table-embedding ap-
proaches, the prior generation of data tools involved data-intensive
deep learning for specific tasks, e.g. Sherlock [27] and Sato [64].

Data discovery within data lakes is an active area of research,
with recent works including: unionability search [32], joinability
search [68], new index structures for faster correlated dataset search [49]
and end-to-end systems for data ingestion and profiling [8]. Recent
tutorials [16, 42] outline the prevalence of the problem of unstruc-
tured document data management. A user-study of scientists con-
clude that “current systems fail to sufficiently support scientists in
their data-seeking process” [46]. One dataset-search survey [9] high-
lights key open problems: more natural query languages, better data
integration, and incorporating external knowledge.

7 CONCLUSION

We propose CHORUS to integrate foundation models for data discov-
ery. We show it provides superior performance on three exemplars:
table-class annotation, column-type detection and join-column pre-
diction. We conclude that foundation models hold promise as a core
component of next generation data discovery systems.
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