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ABSTRACT

Neural networks are an increasingly common tool for solving prob-
lems that require complex analysis and pattern matching, such
as identifying stop signs in a self driving car or processing medi-
cal imagery during diagnosis. Accordingly, verification of neural
networks for safety and correctness is of great importance, as mis-
predictions can have catastrophic results in safety critical domains.
As neural networks are known to be sensitive to small changes in
input, leading to vulnerabilities and adversarial attacks, analyzing
the robustness of networks to small changes in input is a key piece
of evaluating their safety and correctness. However, there are many
real-world scenarios where the requirements of robustness are not
clear cut, and it is crucial to develop measures that assess the level
of robustness of a given neural network model and compare levels
of robustness across different models, rather than using a binary
characterization such as robust vs. not robust.

We believe there is great need for developing scalable quantita-
tive robustness verification techniques for neural networks. Formal
verification techniques can provide guarantees of correctness, but
most existing approaches do not provide quantitative robustness
measures and are not effective in analyzing real-world network
sizes. On the other hand, sampling-based quantitative robustness
is not hindered much by the size of networks but cannot provide
sound guarantees of quantitative results. We believe more research
is needed to address the limitations of both symbolic and sampling-
based verification approaches and create sound, scalable techniques
for quantitative robustness verification of neural networks.
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1 INTRODUCTION

Machine learning techniques based on neural networks have revo-
lutionized computer vision [9, 22, 28], speech recognition [1, 18],
and natural language processing [26]. The technological revolution
caused by advancements in machine learning has had a significant
impact on society already, and its impact continues to broaden as
neural network techniques are rapidly being adopted in a wide
range of domains. Increasing deployment of neural network tech-
niques in safety-critical and socially sensitive areas (e.g., self-driving
cars [5, 8], robotics [2, 11], computer security [29], criminal jus-
tice [23], and medical diagnosis [30]) has created an urgent need to
address dependability and safety of neural networks in a systematic
and principled way.

Failures and unexpected behavior from these safety-critical Al
systems are all too common, including notable examples such as
the test of a military drone [33] that determined (via AI) that the
best way to fulfill its objective was to kill the human in charge of
its operations. More commonly in day-to-day life, the stories of
various self driving car crashes fill newspapers as self-driving cars
crash in ways that seem easy to avoid, such as running into stopped
police cars as is reported in [19].

In some cases, like in [33], it is clear that an outcome should never
occur. Traditional verification, which poses a constraint and asks
the yes/no question of whether or not an outcome is possible, can
handle these such cases. However, in domains such as self-driving
cars it is common that avoiding all undesirable outcomes is not
entirely possible, and in this case traditional verification will not
suffice. It is not always possible to expect perfection—for example,
it is intuitive that building a self-driving car that can never crash
is unachievable. Thus, being able to produce a usable quantitative
metric for the likelihood of crashes is a necessity.

A common method of verification for neural networks is robust-
ness verification, where a correctly classified input and a perturba-
tion radius around that input is given, and the verifier returns either
(traditionally) whether or not a differently classified input exists
in the radius, or (quantitatively) how many incorrectly classified
inputs exist in that radius.

Quantitative robustness, as opposed to traditional robustness
verification, makes it possible to have a meaningful comparison
between the robustness of two neural networks in determining
the best one for the problem at hand. If two networks both show
an input and perturbation radius to be not robust with traditional
verification, no more information is given to differentiate them.
However, with quantitative robustness, it is possible to further com-
pare of those two networks which one is more robust on the input
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and perturbation in question. For a case where 100% robustness
is not reasonably achievable, for example if determining whether
there exists any perturbation to a stop sign that makes it unrecogniz-
able, this ability to obtain levels of robustness allows for evaluation
and comparison of networks that cannot be expected to have 100%
robustness on an input and perturbation.

2 MOTIVATING EXAMPLES

Within this section we present a few cases from neural networks
in the real world where quantitative analysis could help shed light
on the likelihood and causes of undesirable outcomes, allowing for
more understanding and also hopefully better analysis of safety-
critical systems before release.

2.1 Natural Language Processing and
Generation

ChatGPT [26] and similar tools have made great strides in language
processing, but have also shown some notable and dangerous draw-
backs. One of these is the creation and citation of fake sources,
which has shown to have concerning consequences such as ac-
cusing people of crimes they could not have committed [38]. This
is a clear case where traditional verification will not suffice. We
already know a tool like ChatGPT can be incorrect or produce false
citations, but for adequate analysis of the risk we need to know
how often this can occur—which necessitates quantitative analy-
sis. With analysis of the likelihood of incorrect claims, it would be
possible to give a level of confidence for a result given by ChatGPT
and help users approach answers with an understanding of how
much those answers should be trusted. Analyzing the likelihood of
false claims in different scenarios can also give insight into which
conditions are most conducive to this issue, and thus allow for
better training of future language models.

2.2 Self-Driving Cars

Many companies are now working on self-driving cars, for the
dream that one day we could just tell our car where we want to
go, sit back, and read a book while the car does the navigation for
us. Safety, however, is a key concern not just for the passengers of
these cars but for everyone else interacting with the roads—other
drivers, bikers, pedestrians, and emergency responders [10].

The only way to be truly safe from a crash is to not move the
car; there will always be situations possible where unexpected
decisions made by other drivers can create an impossible-to-avoid
crash. The measure of car safety thus cannot be whether or not it
can crash, but rather how often it will crash, and how dangerous
those crashes will be. Multiple articles [25, 31, 35] show Tesla’s
efforts to conceal and manipulate these numbers. In no case are
they, or anyone else, arguing that they should have zero crashes—
rather it is all about the numbers, the quantity of crashes per mile
and how that compares to a human driver. This shows a need for
quantitative verification—the likelihood of misclassifications and
incorrect decisions by neural networks used in self-driving cars will
help in estimating the likelihood of crashes and be able to identify
likely failure patterns before human lives are on the line.

One example of a specific verification query would be to analyze
the likelihood of incorrect lane identification in rain—we know that
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rain can cause incorrect predictions [36], and it would be unrealistic
to expect that rain could never cause problems—with heavy enough
rain, a human driver will also struggle with or be unable to correctly
identify lane markers and street signs, so evaluating questions such
as which network from a set of neural networks produces fewer
misclassifications under harsh conditions will be more helpful than
just declaring that all tested neural networks are not completely
robust to rain-induced perturbations.

3 QUANTITATIVE ROBUSTNESS

Traditional robustness asks a yes/no question—does a misclassified
input exist in a given perturbation region. However, a yes/no answer
to a verification query about robustness does not give any infor-
mation about how many of the perturbations change the output.
For example in Fig. 1, both of these examples would be determined
not robust by a traditional verifier. As both neural networks fail the
robustness test, we cannot determine which one misclassifies fewer
perturbed inputs. Alternatively, with quantitative verification the
number of misclassified inputs is counted, and thus a distinction can
be made. A network with a higher number of misclassified inputs in
a given perturbation region is less robust (and, thus, more prone to
adversarial attacks) than a network with fewer misclassified inputs
in the same region.

Central input,
correctly
classified A

Class A

Class B

Figure 1: Image of two perturbation regions about an input,
with different numbers of incorrectly classified inputs within
the radius.
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the quantitative robustness measure R(N, X, Al’m) is as follows:

I
RN, X, A lm) = |SRobustSet|/|SPerturbRegion| where

SRobustSet = {)2 | arg max N(X) = arg max N (Xc)

) (denoting the perturbation limit value per feature),

Axi— 55"" <X <xi+ 5;""}
SPerturbRegion = {i( [ xi — 5llim <X <X+ 5fim}

In the definition above, SperturbRegion denotes the set of all per-
turbed inputs within the perturbation region A and Sgopustser
denotes the set of all perturbed inputs within the radius where the
output of N does not change. Since all inputs in SperyrpRegion that
are classified as expected are in Sgypysiser» We call remaining inputs
potentially adversarial inputs, and we can define S 4gyersariaiSer @S
follows: SgversarialSet = SPerturbRegion \ SRobustSet-

With traditional verification, if |Sagyersariaiser] > 0, then the
network is determined not robust for that input and perturbation
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radius. Quantitative robustness, alternatively, seeks to compute an
exact or estimated value of |SagversarialSet|- Some common ways
of achieving this are by counting |SAgversariaiset! OF |SRobustser| di-
rectly, or by estimating a ratio of |SAdversarialSet|/|SPerturbRegion| via
sampling a subset of the inputs in Spe,tyrbRegion-

It is possible to use traditional verification to produce a form
of quantitative result—one way to leverage traditional verification
for quantitative analysis is to compute minimum adversarial dis-
tortion (the closest incorrectly classified input to a given correctly
classified input). By determining the radius at which the traditional
robustness result changes from robust to not robust, it is possi-
ble to produce a sound lower bound on the minimum adversarial
distortion, as is shown in [41]. However, this analysis misses the
density of incorrectly classified inputs—for example, the two cases
shown in Figure 1 would have very similar minimum adversarial
distortions, despite their different quantitative robustness results.

4 QUANTITATIVE ROBUSTNESS
VERIFICATION: CHALLENGES

There exist a number of verifiers for the robustness of full-precision
networks [3, 6, 7, 13-17, 20, 21, 24, 27, 32, 37, 39-41]. However, the
majority of these verifiers look at a traditional (non-quantitative)
verification problem—asking whether or not a misclassified input
exists in a perturbation region. A more in-depth analysis with
quantitative verification asks instead how many misclassified in-
puts exist within the radius, to give a more detailed analysis of
how vulnerable a network is to adversarial attacks—how likely it
is to encounter one of these misclassifications. Within this quan-
titative realm, there exist a handful of full-precision quantitative
verifiers [3, 27, 37, 40]. Of these verifiers, [27, 37] describe methods
for quantitative verification based on symbolic analysis, which can
produce reasonably precise results but are difficult to scale (Sec-
tion 4.1). Alternatively, sampling-based quantitative verifiers [3, 40]
are more scalable and are able to handle very large networks, but
struggle to make a conclusive distinction between fully robust and
almost fully robust regions (Section 4.2).

4.1 Symbolic Quantitative Verification

For symbolic quantitative verification [27, 37], a set of constraints
is generated describing the behaviour of the neural network given
an input and perturbation radius, and then a quantitative technique
such as volume computation or model counting is used to determine
how many solutions exist to the constraints. Volume computation
produces results accurate in the real-valued domain, which is not
exactly equivalent to the floating point domain, whereas model
counting can provide exact results but is incredibly difficult for
floating point constraints. Additionally, the the difficulty is com-
pounded by the complexity of neural network constraints as shown
in [37]. The difficulty of solving network constraints is also present
in traditional symbolic robustness verifiers, but to a lesser extent
as determining a count of satisfying solutions is a strictly more
complex problem than computing satisfiability for a constraint. The
symbolic approach, however, does allow for sound guarantees of
full robustness rather than probabilistic guarantees as with sam-
pling, and thus can differentiate between a fully robust region and
a region with only a few incorrectly classified inputs.
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4.2 Sampling-Based Quantitative Verification

Sampling-based quantitative verifiers [3, 40] do not have the same
challenge as symbolic quantitative verifiers in that they don’t have
to handle complex constraints, instead they repeatedly run inputs
through the network to achieve an estimate of the quantitative
robustness. However, for a full precision network with multiple
perturbed input features, there is no way to achieve an exact result
in a reasonable amount of time—the number of distinct inputs to
test explodes quickly with multiple features perturbed. Additionally,
as is seen in [4] it takes many samples to achieve high confidence
in a quantitative result via sampling. However, in many cases it
is not necessary to achieve an exact or close-to-exact quantitative
verification result, and a not so accurate result can be achieved
reasonably quickly.

One of the key drawbacks to sampling for robustness, however,
is that it struggles to distinguish between cases with few incorrectly
classified inputs and zero, as without testing every possible input
it is impossible to know for certain whether or not a lack of mis-
classified inputs found means there are none, or just few enough
to have been missed by the sampling thus far. With Ly,-ball type
perturbations, where each input feature (for example, each pixel) is
perturbed by a small amount from its original value, the number of
available inputs to test is easily beyond what can be tested in any
reasonable amount of time.

5 FUTURE DIRECTIONS

Both sampling-based quantitative verification approaches and sym-
bolic quantitative verification (which have been used effectively
in the software engineering domain for program evaluation) show
key strengths in the neural network domain, so one way to move
forward and create a more effective quantitative verifier could be
to combine symbolic and concrete/sampling-based verification into
a hybrid verifier. Outside of the neural network domain, hybrid
verification and testing tools have been investigated and have been
successful [12, 34, 42].

The largest issue with sampling-based robustness verification,
the inability to distinguish between 100% robustness and near-100%
robustness, can be solved with symbolic quantitative verification
to give useful network comparisons between networks with high,
but not complete, robustness for a given input and perturbation
radius. On the other hand, sampling can achieve usable approx-
imate robustness for regions with lower robustness much faster
than a symbolic approach. Thus, as the strengths of sampling and
symbolic verification for the neural network domain are partially
complimentary, finding a way to combine and balance the two is a
promising direction of research in order to create usable verification
tools for real-world neural networks.

Another direction to explore is extending and improving quan-
titative evaluation techniques for the types of constraints created
by neural networks. This approach has had success in traditional
network verification with Reluplex [20], which extends the simplex
method for satisfiability checking to include rules for ReLU func-
tions. Within the quantitative domain, either volume computation
or model counting could be tailored to neural network constraints
to allow for faster or more capable quantitative constraint solving
and expand the capabilities of symbolic quantitative verifiers.
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