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Abstract
Undirected, binary network data consist of indicators of symmetric relations between pairs of actors.
Regression models of such data allow for the estimation of effects of exogenous covariates on the network
and for prediction of unobserved data. Ideally, estimators of the regression parameters should account for
the inherent dependencies among relations in the network that involve the same actor. To account for such
dependencies, researchers have developed a host of latent variable network models; however, estimation of
many latent variable networkmodels is computationally onerous and whichmodel is best to base inference
upon may not be clear. We propose the probit exchangeable (PX) model for undirected binary network
data that is based on an assumption of exchangeability, which is common to many of the latent variable
network models in the literature. The PX model can represent the first two moments of any exchangeable
network model. We leverage the EM algorithm to obtain an approximate maximum likelihood estimator
of the PX model that is extremely computationally efficient. Using simulation studies, we demonstrate the
improvement in estimation of regression coefficients of the proposed model over existing latent variable
network models. In an analysis of purchases of politically aligned books, we demonstrate political polar-
ization in purchase behavior and show that the proposed estimator significantly reduces runtime relative
to estimators of latent variable network models, while maintaining predictive performance.

Keywords: expectation-maximization; latent variable models; probit regression; exogenous regression; political networks

1. Introduction
Undirected binary network data measure the presence or absence of a relationship between pairs
of actors and have recently become extremely common in the social and biological sciences. Some
examples of data that are naturally represented as undirected binary networks are international
relations among countries (Fagiolo et al., 2008), gene co-expression (Zhang & Horvath, 2005),
and interactions among students (Han et al., 2016). We focus on an example of politically aligned
books, where a relation exists between two books if they were frequently purchased by the same
person on Amazon.com. Our motivations are estimation of the effects of exogenous covariates,
such as the effect of alignment of political ideologies of pairs of books on the propensity for books
to be purchased by the same consumer, and the related problem of predicting unobserved relations
using book ideological information. For example, predictions of relations between new books and
old books could be used to recommend new books to potential purchasers.

A binary, undirected network
{
yij ∈ {0, 1}:i, j ∈ {1, . . . , n}, i< j

}
, which we abbreviate {yij}ij,

may be represented as an n× n symmetric adjacency matrix which describes the presence or
absence of relationships between unordered pairs of n actors. The diagonal elements of the matrix
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{yii : i ∈ {1, . . . , n}} are assumed to be undefined, as we do not consider actor relations with
him/herself. We use y to refer to the

(n
2
)
vector of network relations formed by a columnwise

vectorization of the upper triangle of the matrix corresponding to {yij}ij.
A regression model for the probability of observing a binary outcome is the probit model,

which can be expressed

P(yij = 1)= P

(
xTijβ + εij > 0

)
, (1)

where εij is a mean-zero normal random error, xij is a fixed vector of covariates corresponding
to relation ij, and β is a vector of coefficients to be estimated. When each entry in the error
network {εij}ij is independent of the others, estimation of the probit regression model in (1) is
straightforward and proceeds via standard gradient methods for maximum likelihood estimation
of generalized linear models (Greene, 2003). The assumption of independence of {εij}ij may be
appropriate when the mean

{
xTijβ

}
ij represents nearly all of the dependence in the network {yij}ij.

However, network data naturally contain excess dependence beyond the mean: the errors εij and
εik both concern actor i (see Faust &Wasserman, 1994, e.g., for further discussion of dependencies
in network data). In the context of the political books data set, the propensity of “Who’s Looking
Out For You?” by Bill O’Reilly to be purchased by the same reader as “Deliver Us from Evil” by
Sean Hannity may be similar to the propensity of “Who’s Looking Out For You?” and “My Life”
by Bill Clinton to be co-purchased simply because “Who’s Looking Out For You?” is a popular
book. Or, in a student friendship network, the friendship that Julie makes with Steven may be
related to the friendship that Julie makes with Asa due to Julie’s gregariousness. Unlike the case
of typical linear regression, the estimator that maximizes the likelihood of the generalized linear
regression model in (1), when assuming independence of each entry in the error network {εij}ij, is
not unbiased for β . Ignoring the excess dependence in {εij}ij can thus be expected to result in poor
estimation of β and poor out-of-sample predictive performance. We observe this phenomenon in
the simulation studies and analysis of the political books network (see Sections 7 and 8, respec-
tively). Thus, estimators of β and P(yij = 1) in (1) for the network {yij}ij should ideally account for
the excess dependence of network data. A host of regression models exist in the literature that do
just this; we briefly review these here.

A method used to account for excess dependence in regression of binary network data is the
estimation of generalized linear mixed models, which were first introduced for repeated measures
studies (Stiratelli et al., 1984; Breslow & Clayton, 1993). In these models, a random effect, that
is, latent variable, is estimated for each individual in the study, to account for possible individual
variation. Warner et al. (1979) used latent variables to account for excess network dependence
when analyzing data with continuous measurements of relationships between actors, and Holland
& Leinhardt (1981) extended their approach to networks consisting of binary observations. Hoff
et al. (2002) further extended this approach to include nonlinear functions of latent variables,
and since then, many variations have been proposed (Handcock et al., 2007; Hoff, 2008; Sewell &
Chen, 2015). We refer to parametric network models wherein the observations are independent
conditional on random latent variables as “latent variable network models,” which we discuss in
detail in Section 2. Separate latent variable approaches may lead to vastly different estimates of
β , and it may not be clear which model’s estimate of β , or prediction, to choose. Goodness-of-
fit checks are the primary method of assessing latent variable network model fit (Hunter et al.,
2008b); however, selecting informative statistics is a well-known challenge. Finally, latent variable
network models are typically computationally burdensome to estimate, often relying on Markov
chain Monte Carlo methods.

Another approach to estimating covariate effects on network outcomes is the estimation of
exponential random graph models, known as ERGMs. ERGMs represent the probability of rela-
tion formation using a generalized exponential family distribution, P(yij = 1)∝ exp(t(yij, xij)Tθ),
where θ is a vector of parameters to be estimated. In this flexible formulation, the effects of the
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exogenous covariates are included in the network statistics t(yij, xij). ERGMs also account for
excess network dependence using the network statistics t(yij, xij), such as counts of the number
of observed triangles or the number of “2-stars”—pairs of indicated relations that share an actor.
ERGMs were developed by Frank & Strauss (1986) and Snijders et al. (2006) and are typically
estimated using Markov chain Monte Carlo (MCMC) approximations to posterior distributions
(Snijders, 2002; Handcock et al., 2019; Hunter et al., 2008a). ERGMs have been shown to be prone
to place unrealistic quantities of probability mass on networks consisting of all “1”s or all “0”s
(Handcock et al., 2003; Schweinberger, 2011), and the estimation procedures may be slow to
complete (Caimo & Friel, 2011). Further, parameter estimates typically cannot be generalized to
populations outside the observed network (Shalizi & Rinaldo, 2013).

A final approach to account for excess network dependence is to explicitly model the correla-
tion among network observations. This is the approach we take in this paper. In this approach,
an unobserved normal random variable, zij, is proposed to underlie each data point, such that
yij = 1[zij > 0] for z∼N(Xβ ,�(θ)). In this formulation, excess dependence due to the network
is accounted for in �. The parameters β and θ of the distribution of the unobserved normal ran-
dom variables {zij}ij may be estimated using likelihood methods. For example, Ashford & Sowden
(1970) propose likelihood ratio hypothesis tests and Ochi & Prentice (1984) give closed-form
parameter estimators for studies of repeated observations on the same individual, such that �(θ)
is block diagonal. In more general scenarios, such as unrestricted correlation structures, meth-
ods such as semi-parametrics (Connolly & Liang, 1988), pseudo-likelihoods (Le Cessie & Van
Houwelingen, 1994), and MCMC approximations to EM algorithms (Chib & Greenberg, 1998;
Li & Schafer, 2008) are employed for estimation.

In this paper, we propose the probit exchangeable (PX) model, a parsimonious regression
model for undirected binary network data based on an assumption of exchangeability of the
unobserved normal random variables {zij}ij. The assumption of exchangeability is pervasive in
random network models and, in fact, underlies many of the latent variable network models
(see Section 3 for a detailed discussion of exchangeability).1 We show that, under exchangeability,
the excess network dependence in {zij}ij may be quantified using a single parameter ρ such that
�(θ)= �(ρ). This fact remains regardless of the particular exchangeable generating model, and
thus, our approach can be seen as subsuming exchangeable latent network variable models, at least
up to the second moment of their latent distributions. The proposed model may be rapidly esti-
mated using an expectation-maximization (EM) algorithm to attain a numerical approximation
to the maximum likelihood estimator, where we make approximations in the expectation step for
runtime considerations. The estimation scheme we employ is similar to those used to estimate
generalized linear mixed models in the literature (Littell et al., 2006; Gelman & Hill, 2006).

This paper is organized as follows. As latent variable network models are strongly related to
our work, we review them in detail in Section 2. We provide supporting theory for exchangeable
random network models and their connections to latent variable network models in Section 3.
In Section 4, we define the PX model and then the estimation thereof in Section 5. In Section 6,
we give a method for making predictions on unobserved relations. We provide simulation studies
demonstrating consistency of the proposed estimation algorithm and demonstrating the improve-
ment with the proposed model over latent variable network models in estimating β in Section 7.
We analyze a network of political books in Section 8, demonstrating the reduction in runtime
when PX model, and compare its out-of-sample performance to existing latent variable network
models. A discussion with an eye toward future work is provided in Section 9.

2. Latent variable network models
In this section, we briefly summarize a number of latent variable network models in the literature
that are used to capture excess dependence in network observations. All latent variable network
models we consider here may be written in the common form
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P(yij = 1)= P
(
μij + fθ (vi, vj)+ xiij > 0

)
, (2)

vi
iid∼ (0,�v), xiij

iid∼ N(0, σ 2),

where vi ∈RK with mean 0 and covariance matrix �v, and μij is fixed. We avoid specifying a dis-
tribution for the latent vectors {vi}ni=1, although they are often taken to be multivariate Gaussian.
We set the total variance of the latent variable representation to be 1= σ 2 + var[fθ (vi, vj)], since
it is not identifiable. The function of the latent variables fθ :RK ×RK →R, parametrized by θ ,
serves to distinguish the latent variable network models discussed below. Regression latent vari-
able network models are formed when the latent mean is represented as a linear function of
exogenous covariates xij ∈Rp, such that μij = xTijβ . The latent nodal random vectors {vi}ni=1 rep-
resent excess network dependence—beyond the mean μij. Since relations yij and yik share latent
vector vi corresponding to shared actor i, and thus, yij and yik have related distributions through
the latent function fθ (vi, vj). Many popular models for network data may be represented as in (2),
such as the social relations model, the latent position model, and the latent eigenmodel.

2.1 Social relations model
The social relations model was first developed for continuous, directed network data (Warner et
al., 1979; Wong, 1982; Snijders & Kenny, 1999). In the social relations model for binary network
data (Hoff, 2005), fθ (vi, vj)= vi + vj and vi = ai ∈R for each actor i, such that

P(yij = 1)= P

(
xTijβ + ai + aj + xiij > 0

)
, (3)

ai
iid∼(0, σ 2

a
)
, xiij

iid∼ N(0, σ 2).
Each actor’s latent variable {ai}ni=1 may be thought of as the actor’s sociability: large values of
ai correspond to actors with a higher propensity to form relations in the network. The random
{ai}ni=1 in (3) also accounts for the excess correlation in network data; any two relations that share
an actor, for example, yij and yik, are marginally correlated.

2.2 Latent positionmodel
A more complex model for representing excess dependence in social network data is the latent
positionmodel (Hoff et al., 2002). The latent positionmodel extends the idea of the social relations
model by giving each actor i a latent position ui in a Euclidean latent space, for exampleRK . Then,
actors whose latent positions are closer together in Euclidean distance are more likely to share a
relation:

P(yij = 1)= P

(
xTijβ + ai + aj − ||ui − uj||2 + xiij > 0

)
, (4)

ai
iid∼(0, σ 2

a
)
, ui

iid∼ (0,�u), xiij
iid∼ N(0, σ 2).

In the form of (2), the latent position model contains latent random vector vi = [ai, ui]T ∈RK+1,
and fθ (vi, vj)= ai + aj − ||ui − uj||2. Hoff et al. (2002) show that the latent positionmodel is capa-
ble of representing transitivity, that is, when yij = 1 and yjk = 1, it is more likely that yik = 1.
Models that are transitive often display a pattern observed in social network data: a friend of
my friend is also my friend (Wasserman & Faust, 1994).

2.3 Latent eigenmodel
The latent eigenmodel also associates each actor with a latent position ui in a latent Euclidean
space; however, the inner product between latent positions (weighted by symmetric parameter
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matrix �) measures the propensity of actors i and j to form a relation, rather than the distance
between positions (Hoff, 2008):

P(yij = 1)= P

(
xTijβ + ai + aj + uTi �uj + xiij > 0

)
, (5)

ai
iid∼(0, σ 2

a
)
, ui

iid∼ (0,�u), xiij
iid∼ N(0, σ 2).

In the context of (2), the function fθ (vi, vj)= ai + aj + uTi �uj for the latent eigenmodel, where
the parameters θ are the entries in � and vi = [ai, ui]T ∈RK+1. Hoff (2008) shows that the latent
eigenmodel is capable of representing transitivity and that the latent eigenmodel generalizes the
latent position model given sufficiently large dimension of the latent vectors K.

In addition to transitivity, a second phenomenon observed in social networks is structural
equivalence, wherein different groups of actors in the network form relations in a similar manner
to others in their group. One form of structural equivalence is associative community structure,
where the social network may be divided into groups of nodes that share many relations within
group, but relatively few relations across groups. Such behavior is common when cliques are
formed in high school social networks or around subgroups in online social networks. A form of
structural equivalence is when actors in a given group are more likely to form relations with actors
in other groups than with actors in their own group, for example, in networks of high-functioning
brain regions when performing cognitively demanding tasks (Betzel et al., 2018). Twomodels that
are aimed at identifying subgroups of nodes that are structurally equivalent are the latent class
model of Nowicki & Snijders (2001) and the mixed membership stochastic blockmodel (Airoldi
et al., 2008). Hoff (2008) shows that the latent eigenmodel is capable of representing stochastic
equivalence in addition to transitivity and that the latent eigenmodel generalizes latent class mod-
els given sufficiently large dimension of the latent vectorsK. For this reason, we focus on the latent
eigenmodel, and the simpler social relations model, as reference models in this paper.

2.4 Drawbacks
The latent variable network models discussed in this section were developed based on the patterns
often observed in real-world social networks. Latent variable network models contain different
terms to represent the social phenomena underlying these patterns, and thus, different models
may lead to substantially different estimates of β . It may not be clear which model’s estimate of
β , or which model’s prediction of {yij}ij, is best. Generally, latent variable network models are
evaluated using goodness-of-fit checks (Hunter et al., 2008b), rather than rigorous tests, and it is
well-known that selecting informative statistics for the goodness-of-fit checks is challenging. The
latent variable network models described in this section are typically estimated using a Bayesian
Markov chain Monte Carlo (MCMC) approach, which may be slow, especially for large data sets.
Some recent advances do directly attempt to maximize the likelihood of network models with
latent spaces (Ma et al., 2020; Zhang et al., 2022); however, public software implementations of
these methods do not appear available, and they require certain covariate types (relation-level and
actor-level, respectively) and certain latent space structures, such as the Euclidean distance latent
space.

3. Exchangeable network models
To motivate the formulation of the proposed model, we briefly discuss the theory of exchangeable
random network models and their relationship to latent variable network models. A random net-
work model for {εij}ij is exchangeable if the distribution of {εij}ij is invariant to permutations of
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the actor labels, that is, if

P
({εij}ij)= P

({επ(i)π(j)}ij
)
, (6)

for any permutation π(.). There is a rich theory of exchangeable network models, dating back to
work on exchangeable random matrices (Hoover, 1979; Aldous, 1981), upon which we draw in
this section.

All the latent variable network models discussed in Section 2 have latent error networks {εij}ij
that are exchangeable, where we define εij = fθ (vi, vj)+ xiij from (2), the random portion of a
general latent variable network model. Further, under constant mean μij = μ, all the latent vari-
able network models for the observed network {yij}ij in Section 2 are exchangeable. In fact, any
exchangeable network model may be represented by a latent variable network model. Specifically,
the theory of exchangeable networkmodels states that every exchangeable random networkmodel
may be represented in the following form (see, for example, Lovász & Szegedy, 2006; Kallenberg,
2006):

P(εij = 1)= P
(
μ + h(ui, uj)+ xiij > 0

)
, (7)

ui
iid∼ Uniform(0, 1), xiij

iid∼ N(0, σ 2),

where the function h : [0, 1]× [0, 1]→R has finite integral
∫
[0,1]×[0,1] h(u, v)dudv< ∞ and serves

to distinguish the various exchangeable network models. It can be shown that (7) is equivalent
to the graphon representation of exchangeable random network models, where the graphon is
the canonical probabilistic object of exchangeable random network models (Lovász & Szegedy,
2006; Borgs et al., 2014). Noting that we may always map the random scalar ui to some random
vector vi, the expression in (7) illustrates how every exchangeable random network model may be
represented by a latent variable network model in the sense of (2).

3.1 Covariance matrices of exchangeable networkmodels
The expression in (7) shows that any exchangeable network model for binary network data must
correspond to a latent random network {εij}ij that is continuous and exchangeable. The covariance
matrix of any undirected exchangeable network model has the same form and contains at most
two unique nonzero values. (Marrs et al. (2017) show that directed exchangeable network models
with continuous values all have covariance matrices of the same form with at most five unique
nonzero terms). This fact can be seen by simply considering the ways that any pair of relations
can share an actor. In addition to a variance, the remaining covariances are between relations that
do and do not share an actor:

var[εij]= σ 2
ε , cov[εij, εik] := ρ, cov[εij, εkl]= 0, (8)

where the indices i, j, k, and l are unique. It is easy to see the second equality holds for any pair of
relations that share an actor by the exchangeability property, that is, by permuting the actor labels.
The third equality results from the fact that the only random elements in (7) are the actor random
variables ui, uj, and the random error xiij. When the random variables corresponding to two rela-
tions εij and εkl share no actor, the pair of relations are independent by the generating process.
Finally, we note that exchangeable network models have relations that are marginally identically
distributed, and thus, relations therein have the same expectation and variance. That said, in the
generalized linear regression case of (2), the means μij = xTijβ are non-constant, and thus, the
observations {yij}ij are not exchangeable; only the latent error network {εij}ij is exchangeable in
the generalized linear regression case. In the proposed model, rather than put forth a particular
parametric model for the latent network {εij}ij, we simply model the covariance structure outlined
in (8), which is sufficient to represent the covariance structure of any exchangeable networkmodel
for the errors.
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4. The probit exchangeable (PX) model
In this section, we propose the probit exchangeable network regression model, which we abbrevi-
ate as the “PX” model. In the PX model, the vectorized mean of the network is characterized by a
linear combination of covariates, Xβ , where β is a p-length vector of coefficients that are the sub-
ject of inference and X is a

(n
2
)× p matrix of covariates. The excess network dependence beyond

that captured in Xβ is represented by an unobservable mean-zero error vector ε, a vectorization
of {εij}ij, that is exchangeable in the sense of (6). The PX model is

P(yij = 1)= P

(
xTijβ + εij > 0

)
, (9)

ε ∼N(0,�),

where we note that the variance of εij is not identifiable, and thus, we choose var[εij]= 1 without
loss of generality. We focus on normally distributed unobserved errors ε in this paper; however,
other common distributions, such as the logistic distribution, could be used. We note that the
normal distribution assumption implies that (9) is a typical probit regression model, but with
correlation among the observations due to network structure.

As discussed in Section 3, under the exchangeability assumption, the covariance matrix of the
latent error network var[ε]= � has at most two unique nonzero parameters. Taking var[εij]= 1,
the covariance matrix of ε has a single parameter ρ = cov[εij, εik]. We may thus write

�(ρ)=S1 + ρS2, (10)

where we define the binary matrices {Si}3i=1 indicating unique entries in �. The matrix §1 is a
diagonal matrix indicating the locations of the variance in �, and §2 and §3 indicate the locations
in� corresponding to the covariances cov[εij, εik], and cov[εij, cov[εij, εkl], respectively, where the
indices i, j, k, and l are unique.

The PX model unifies many of the latent variable network models discussed in Sections 2
and 3. Similar to (7), the PX model may be seen as representing the covariance structure of the
latent variables {fθ (vi, vj)+ xiij}ij with {εij}ij, the unobservable error network of the PX model in
(9). As both networks {fθ (vi, vj)+ xiij}ij and {εij}ij are exchangeable, they have covariance matri-
ces of the same form (see discussion in Section 3). As every exchangeable random network model
may be represented by a latent variable network model, the PX model may represent the latent
correlation structure of any exchangeable network model, yet without specifying a particular
exchangeable model. Further, we now show that the PX model is equivalent to the social relations
model under certain conditions.

Proposition 4.1. Suppose that the random effects {ai}ni=1 for the social relations model in (3) are
normally distributed. Then, there exists ρ ∈ [0, 1/2] such that {yij}ij in the PX model in (9) is equal
in distribution to {yij}ij as specified by the social relations model in (3).

Proof. As the PX and social relations models are probit regression models with the same mean
structure, given by Xβ , it is sufficient to show that their latent covariance matrices are equivalent,
that is, that var[{ai + aj + xiij}ij]= var[{εij}ij]. By exchangeability, the latent covariance matrices
of the PX and social relations models have the same form and by assumption have variance 1. It
is easy to see that, given σ 2

a ≤ 1 (a necessary condition for var[εij]= 1), we may take ρ = σ 2
a /2 for

the PX model, which establishes equality in the model distributions.

Exact distributional equivalence between the PX model and latent variable models other than
the social relations model will typically not hold. For example, the latent eigenmodel in (5)
includes non-Gaussian random variables, so that exact distributional equivalence is impossible.
Similarly, it appears likely that the general latent variable model in (2) may generate non-Gaussian
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random variables through the function fθ (vi, vj). Importantly however, there does exist ρ such that
the covariance of the latent errors of every pair of relations, cov[εij, εkl], is equal to the covari-
ance of the latent errors in any exchangeable latent variable model, cov[fθ (vi, vj)+ xiij, fθ (vk, vl)+
xikl]. Hence, the PX model may be seen as a generalized exchangeable latent variable model that
focuses all modeling effort on the first two moments of the data.

Proposition 4.1 states that the PX model and social relations model are equivalent under nor-
mality of their latent error networks. In principle, the social relationsmodel is simply a generalized
linear mixed model; however, existing software packages, such as lme4 in R (Bates et al., 2015),
do not appear to accommodate the random effects specification of the social relations model in
(3) since the indices i and j pertain to random effects ai and aj from the same set (as opposed to
ai and bj in a random crossed design). Nevertheless, the estimation scheme proposed in Section 5
employs the same strategies as those commonly used to estimate generalized linear mixed mod-
els (Littell et al., 2006; Gelman & Hill, 2006). In the estimation algorithm in lme4, the marginal
likelihood of the data is approximated and then maximized using numerical approximations with
respect to β and random effects variance, for example σ 2

a in the social relations model. Rather
than an approximate likelihood, we propose maximizing the true likelihood with respect to β and
ρ, yet also use numerical approximations to accomplish this maximization.

It is important to note that, although the latent errors {εij}ij in the PXmodel form an exchange-
able random network, the random network yij represented by the PXmodel is almost certainly not
exchangeable. For example, each yij may have a different marginal expectation �

(
xTijβ

)
. Then, the

relations in the network are not marginally identically distributed, which is a necessary condition
for exchangeability. Further, the covariances between pairs of relations, say yij and yik, depend on
the marginal expectations:

cov
[
yij, yik

]= E
[
yijyik

]− E
[
yij
]
E
[
yik
]=

∫ ∞

−xTijβ

∫ ∞

−xTikβ
dFρ − �

(
xTijβ

)
�
(
xTikβ

)
.

Here, dFρ is the bivariate standard normal distribution with correlation ρ. Since the covariance
cov[yij, yik] depends on the latent means xTijβ and xTikβ , cov[yij, yik] is only equal to cov[yab, yac]
when the latent means are equal. As a result, although the covariance matrix of the unobserved
errors � is of a simple form with entries {1, ρ, 0}, the covariances between elements of the vec-
tor of observed relations y are heterogeneous (in general) and depend on ρ in a generally more
complicated way.

5. Estimation
In this section, we propose an estimator of {β , ρ} in the PX model that approximates the max-
imum likelihood estimator (MLE). The algorithm we propose is based on the EM algorithm
(Dempster et al., 1977). Although the covariance matrix for the PX model is highly struc-
tured, as in (10), a closed-form expression for the MLE does not appear available. While we
explored pseduo-likelihood pairwise approximations (also called “composite likelihoods” in some
literature) to the complete PX likelihood (Heagerty & Lele, 1998), we found no substantial
advantage—neither in performance nor runtime—over the proposed estimation scheme in this
paper.

The proposed estimation algorithm consists of alternating computation of the expected com-
plete likelihood with maximization with respect to ρ and β , iterating until convergence. Since the
algorithm iterates expectation and two maximization steps, we term it the EMM algorithm. To
improve algorithm efficiency, we initialize β at the ordinary probit regression estimator (assum-
ing independence of the latent errors), and initialize ρ with a mixture estimator based on possible
values of ρ such that � is positive definite, as detailed in Section A.1. The complete EMM algo-
rithm is presented in Algorithm 1. In the following text, we detail the EMM algorithm, beginning
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Algorithm 1. EMM estimation of the PX model

0. Initialization:
Initialize β̂

(0) using probit regression assuming independence and initialize ρ̂(0) as described in
Section A.1. Set positive convergence threshold τ , scaling δ ∈ [0, 1] and set iteration ν = 0.

1. Expectation step:
Given ρ̂(ν) and β̂

(ν), compute E
[
ε | y, ρ̂(ν), β̂ (ν)

]
using the procedure described in Section A.2, and

approximate {γi}3i=1 as described in Section A.3.
2. Maximization with respect to

ρ: Given s= 0 and ρ̂(ν, s) = ρ̂(ν), β̂ (ν), and {γi}3i=1, compute ρ̂(ν, s+1) by alternating (12) and (13) until
ρ changes by less than δτ . Set ρ(ν+1) equal to the final ρ value.

3. Maximization with respect to β:
Compute the updated estimate

β̂
(ν+1) = β̂

(ν) +
(
XT�−1X

)−1
XT�−1E

[
ε | y, ρ̂(ν), β̂ (ν)

]
.

4. If max
{∣∣∣β̂ (ν+1) − β̂

(ν)
∣∣∣ /β̂ (ν),

∣∣∣ρ̂(ν+1) − ρ̂(ν)
∣∣∣ /ρ̂(ν)

}
> τ , then increment ν by 1 and return to Step 1.

Otherwise, end.

with maximization with respect to ρ, and then proceeding to maximization with respect to β . We
define γi = E

[
εTSiε | y, ρ̂(ν), β̂(ν)]

/|
i|, where 
i is the set of relation pairs indicated by binary
matricesSi. By default, we typically set τ = 10−2 and δ = 10−1.

5.1 Expectation
Consider the log-likelihood, �z, of the latent continuous random vector z. Taking the expectation
of �z conditional on y, the expectation step for a given iteration ν of the EM algorithm is

E
[
�z | y, ρ = ρ̂(ν), β = β̂

(ν)]
= −1

2
log 2π |�| − 1

2
E
[
(z−Xβ)T�−1(z−Xβ) | y, ρ = ρ̂(ν), β = β̂

(ν)] , (11)

where ρ̂(ν) and β̂
(ν) are the estimators of ρ and β at iteration ν. In discussing the maximization

step for ρ, we will show that that the ρ update depends on the data through the expectations
denoted by γi for i ∈ {1, 2, 3}. In discussing the maximization step for β , we will show that that the
β update depends on the data only through the expectation E

[
ε | y, ρ̂(ν), β̂(ν)].

5.1.1 Approximations

The computation of E
[
ε | y, ρ̂(ν), β̂(ν)] in (14) is nontrivial, as it is a

(n
2
)
-dimensional trun-

cated multivariate normal integral. We exploit the structure of � to compute E
[
ε | y, ρ̂(ν), β̂(ν)]

using the law of total expectation. A Newton-Raphson algorithm, along with an approximate
matrix inverse, is employed to compute an approximation of E

[
ε | y, ρ̂(ν), β̂(ν)]. Details of the

implementation of the approximations are given in Section A.2.
The expectations {γi}3i=1 require the computation of

(n
2
)
-dimensional truncated multivariate

normal integrals, which are onerous for even small networks. Thus, we make two approximations
to {γi}3i=1 to reduce the runtime of the EMM algorithm. First, we compute the expectations con-
ditioning only on the entries in y that correspond to the entries in ε being integrated, for example,
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instead of computing E[εjkεlm | y], we compute E[εjkεlm | yjk, ylm]. This first approximation ismost
appropriate when ρ is small, since ylm is maximally informative for εjk when ρ is large (for l,m, j,
and k distinct). Second, we find empirically that γ2 = E

[
εTS2ε | y] /|
2| is approximately linear

in ρ, since this sample mean of conditional expectations concentrates around a linear function of
ρ. Thus, we compute γ2 for ρ = 0 and ρ = 1 and use a line connecting these two values to com-
pute γ2 for arbitrary values of ρ (see evidence of linearity of γ2 for the political books network in
Appendix E). The details of the approximations to {γi}3i=1 are given in Section A.3.

5.2 Maximization with respect to ρ

To derive the maximization step for ρ, we use the method of Lagrange multipliers, since differ-
entiating (11) directly with respect to ρ gives complex nonlinear equations that are not easily
solvable. We first define the set of parameters {φi}3i=1, representing the variance and two possible
covariances in �,

var
[
εij
]= φ1, cov

[
εij, εik

]= φ2 = ρ, cov
[
εij, εkl

]= φ3,

where the indices i, j, k, and l are distinct. In addition, we let p= [p1, p2, p3] parametrize the pre-
cision matrix �−1 =∑3

i=1 piSi, which has the same form as the covariance matrix � (see Marrs
et al. (2017) for a similar result when {εij}ij forms a directed network). The objective function,
incorporating the restrictions that φ1 = 1 and φ3 = 0, is

Qy(φ) := E[�z | y]+ 1
2
λ1(φ1 − 1)+ 1

2
λ3φ3,

where φ = [φ1, φ2, φ3] and the “12” factors are included to simplify algebra. Then, differentiating
Qy with respect to p, λ1, and λ3, the estimators for ρ, {λ1, λ3} are

ρ̂ = γ2 − 1
|
2|

[
∂φ1
∂p2

∂φ3
∂p2

]T ⎡⎣λ1

λ3

⎤⎦ (12)

⎡⎣̂λ1

λ̂3

⎤⎦=
⎡⎣ ∂φ1

∂p1
∂φ3
∂p1

∂φ1
∂p3

∂φ3
∂p3

⎤⎦−1 ⎡⎣|
1| 0

0 |
3|

⎤⎦⎡⎣γ1 − 1

γ3

⎤⎦ , (13)

where again 
i is the set of pairs of relations (jk, lm) that share an actor in the ith manner, for
i ∈ {1, 2, 3}. For instance, 
2 consists of pairs of relations of the form (jk, jl), where j, k, and l are
distinct indices. In (12) and (13), the partial derivatives

{
∂φi/∂pj

}
are available in closed form and

are easily computable in O(1) time using the forms of � and �−1. See Appendix B for details.
Alternation of the estimators for ρ and {λ1, λ3} in (12) and (13) constitutes a block coordinate

descent for ρ = φ2 subject to the constraints φ1 = 1 and φ3 = 0. This block coordinate descent
makes up the maximization step of the EMM algorithm for ρ.

5.3 Maximization with respect to β

The maximization step with respect to β in the EMM algorithm can be obtained directly. Setting
the derivative of (11) with respect to β equal to zero, the maximization step for β is

β̂
(ν+1) = β̂

(ν) +
(
XT�−1X

)−1
XT�−1E

[
ε | y, ρ̂(ν), β̂(ν)] , (14)
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where we use the identity ε = z−Xβ . In Appendix B, we show that the leading terms of the
unique entries in �−1, p, depend only on ρ through a multiplicative factor,

p≈ f (ρ)[g1(n), g2(n), g3(n)]T .

Thus, we may factor f (ρ) out of (14), and the β maximization is asymptotically ρ-free (except for
the expectation term). Similarly, the maximization with respect to ρ in Section 5.2 is free from β

except for the expectation term. Hence, only a single maximization step with respect to each β

and ρ is required for each expectation.

5.4 Consistency of the EMM estimator
The complete multivariate normal likelihood for z is a non-curved, identifiable likelihood. Then,
it is known that each expectation andmaximization step in an EM algorithm increases the current
likelihood value (Wu, 1983).Whenever there is a unique, single local maximum, the EM algorithm
yields consistent, and efficient, estimators.Wemake a series of approximations to the expectations
in the EMM algorithm to reduce computational demands, so that the theory of EM estimator
convergence may not be directly applicable. Yet, we find that the EMM estimators, β̂EMM, ρ̂EMM},
maintain consistency. Taking the leading terms of ρ̂EMM,

ρ̂EMM = 1
2

+ 1
n3

∑
jk,lm∈
2

E
[
εjkεlm | yjk, ylm

]− 1
n2

∑
jk

E
[
ε2jk | yjk

]
. . .

. . . − 2
n4

∑
jk,lm∈
3

E
[
εjk | yjk

]
E
[
εlm | ylm

]+O(n−1).

which has expectation E[ρ̂EMM]= ρ +O(n−1). Then, consistency can be established by showing
that the variance of ρ̂EMM tends to zero.We provide details in Appendix C. The estimator β̂EMM is
particularly difficult to analyze, as E[εjk | y] depends on every entry in y, and because we approxi-
mate this expectation. We provide a sketch for a proof of consistency in Appendix C by bounding
the distance between the EMM estimator for β and the true MLE,

∣∣∣∣β̂EMM − β̂MLE
∣∣∣∣2
2, using an

easier-to-analyze estimator for β which replaces E[εjk | y] with E[εjk | yjk]. As in the argument for
consistency of ρ̂EMM, we establish consistency of the bounding estimator by showing the expecta-
tion is asymptotically equal to the true value of β and that the variance of the bounding estimator
tends to zero. We also discuss performance of β̂EMM under model misspecification, showing that
it maintains consistency even under violation of the normality and exchangeability assumptions.

6. Prediction
In this section, we describe how to use the PX model, and the approximations in service of
Algorithm 1, to make predictions for an unobserved network relation without undue compu-
tational cost. The predicted value we seek is the probability of observing yjk = 1 given all the
other values y−jk, where y−jk is the vector of observations y excluding the single relation jk. As in
estimation, the desired probability is again equal to a

(n
2
)
-dimensional multivariate truncated nor-

mal integral, which is computationally burdensome. Thus, we approximate the desired prediction
probability

P(yjk = 1 | y−jk)= E
[
E
[
1
[
εjk > −xTjkβ

]
| ε−jk

]
| y−jk

]
, (15)

≈ �

(
E[εjk | y]+ xTjkβ

σn

)
.
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The approximation in (15) is based on the fact that [εjk | ε−jk] is normally distributed:

εjk | ε−jk ∼N
(
mjk, σ 2

n
)
,

mjk = −σ 2
n1Tjk

(
p2S2 + p3S3

)
ε̃−jk, σ 2

n = 1
p1

, (16)

where 1jk is the vector of all zeros with a one in the position corresponding to relation jk and,
for notational simplicity, we define ε̃−jk is the vector ε with a zero in the entry corresponding to
relation jk. We note that the diagonal of the matrix p2S2 + p3S3 consists of all zeros so that mjk
is free of εjk. Then, the inner expectation in (15) is

E
[
1[εjk > −xTjkβ] | ε−jk

]
= �

(
mjk + xTjkβ

σn

)
. (17)

Of course, mjk depends on ε−jk which is unknown, and thus, we replace mjk with its conditional
expectation E[mjk | y−jk]= E[εjk | y−jk].

Computing E[εjk | y−jk] is extremely difficult; however, computing E[εjk | y] proves feasible if
we exploit the structure of �. Thus, we approximate the desired expectation by imputing yjk with
the mode of the observed data:

E
[
εjk | y−jk

]
≈ E

[
εjk | y−jk, yjk = y∗]= E

[
εjk | y] , (18)

where y∗ is the mode of y−jk. The error due to this approximation is small and shrinks as n grows.
Substituting (18) formjk in (17) gives the final expression in (15).

7. Simulation studies
In this section, we describe three simulation studies. The first verifies that the performance of
the EMM estimator in Algorithm 1 provides improvement over standard probit regression. The
second simulation study verifies consistency of the EMM estimators of β , and compares the per-
formance of these estimators to the estimators of β from the social relations model and the latent
eigenmodel. The third simulation study evaluates the robustness of the PX model, and EMM
algorithm, to the assumption that the latent random variables are normally distributed.

For both simulation studies, we generated data with mean consisting of three covariates and an
intercept:

yij = 1
[
β0 + β11[x1i ∈ C]1[x1j ∈ C]+ β2|x2i − x2j| + β3x3ij + εij > 0

]
. (19)

In the model in (19), β0 is an intercept; β1 is a coefficient on a binary indicator of whether individ-
uals i and j both belong to a pre-specified class C; β2 is a coefficient on the absolute difference of a
continuous, actor-specific covariate x2i; and β3 is that for a pair-specific continuous covariate x3ij.
We fixed β = [β0, β1, β2, β3]T at a single set of values. Since the accuracy of estimators of β may
depend on X, we generated 20 random design matrices X for each sample size of n ∈ {20, 40, 80}
actors. We emphasize that, although these may appear to be only moderately sized networks, each
consists of

(n
2
) ∈ {190, 780, 3160} observations. For each design matrix, we simulated 100 error

realizations of {εij}ij, with distribution that depended on the generating model. When generat-
ing from the PX model, half of the total variance in εij was due to correlation ρ = 1/4, and the
remaining half was due to the unit variance of εij. When generating from the latent eigenmodel in
(5), one-third of the variance in εij was due to each term ai + aj, uTi �uj, and xiij, respectively. For
additional details of the simulation study procedures, see Section D.1.
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Figure 1. The left panel depicts performance in estimating β: RMSE between the EMM estimator and the MLE (RMSE(β̂MLE −
β̂EMM)), between the MLE and the truth (RMSE(β̂MLE − β)), and between the MLE and the standard probit estimator
(RMSE(β̂MLE − β̂Std. probit)). The right panel depicts performance in estimating ρ: RMSE between the MLE and the EMM esti-
mator (RMSE(ρ̂MLE − ρ̂EMM)) and between the MLE and the truth (RMSE(ρ̂MLE − ρ)). The RMSEs are plotted as a function of
the true values of ρ, and solid vertical lines denote Monte Carlo error bars. Some points obscure their Monte Carlo error bars.

7.1 Evaluation of approximations in Algorithm 1
To evaluate the efficacy of the approximations described in the estimation procedure in
Algorithm 1, we simulated from (19) for a single X with n= 40 (larger n caused multivariate
normal integral failures in R). We simulated 100 networks from the PX model in (9) using this
X, for each value of ρ ∈ {0.1, 0.25, 0.4} (we note that we require ρ < 1/2 for the error covariance
matrix� to be positive definite). For each realization, we estimated β in the PXmodel using EMM
in Algorithm 1. To estimate β in the standard probit model, we used the function glm in R. To
compute the MLE, we numerically optimized the data log-likelihood using the Broyden-Fletcher-
Goldfarb-Shanno algorithm as implemented in the optim function in R, initializing at the true
values of {β , ρ}.

In the left panel of Figure 1, we evaluate the performance of the EMM estimator by comparing
the root mean square error (RMSE) between the EMM coefficient estimate, β̂EMM, and the MLE
obtained by the optimization procedure β̂MLE. As a baseline, we compute the RMSE between β̂MLE
and the true value β . If the approximations in the EMM algorithm are small, we expect the RMSE
between β̂EMM and β̂MLE to be much smaller than the RMSE between β̂MLE and β . Generally,
the RMSE between β̂EMM and β̂MLE is smaller than the RMSE between β̂MLE and β . However,
the discrepancy between the two RMSEs decreases as the true ρ grows. As a reference, the MSE
between β̂Std. probit and β̂MLE is also shown in the left panel of Figure 1; the EMM estimator is
closer to β̂MLE than the standard probit estimator is to β̂MLE for all values of ρ. Raw RMSE values
between the estimators and the truth, shown in Figure 2, confirm that the EMM algorithm does
perform better than standard probit in RMSE with respect to estimation of β . The results of this
simulation study suggest that the EMM algorithm improves estimation of β over the standard
probit estimator for ρ > 0 and that the EMM estimator is reasonably close to the MLE, signifying
the approximations in the EMM algorithm are reasonable.

In the right panel of Figure 1, the EMM estimator of ρ is closer to theMLE, ρ̂MLE, than theMLE
is close to the true value of ρ for all values of ρ examined. This fact suggests that the approximation
error in estimating ρ in the EMM algorithm is small. Further, the raw RMSE values shown in
Figure 2 illustrate that ρ̂EMM may be as good an estimator of ρ as is ρ̂MLE. The approximations in
ρ̂EMM appear to be stable over the range of ρ values examined. Overall, since the degradation in
performance of the EMM algorithm is most pronounced in estimation of β , we postulate that the
degradation may be due to the approximations in computing E[εjk | y] (see Section A.2).
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Figure 2. The left panel depicts the RMSE in estimating β using the EMM algorithm, MLE, and standard probit regression.
The right panel depicts the same for ρ. The MSEs are plotted as a function of the true values of ρ, and solid vertical lines
denote Monte Carlo error bars.

7.2 Performance in estimation of β
To evaluate the performance of the PX estimator in estimating linear coefficients β , we compared
estimates of β by the EMM algorithm to estimators of the social relations and latent eigenmodels
on data generated from the PX model and data generated from the latent eigenmodel. We used
the amen package in R to estimate the social relations model and latent eigenmodel (Hoff et al.,
2017). We again compared these estimators to the standard probit regression model assuming
independence as a baseline, which we estimated using the function glm in R. We focused on the
value of ρ = 0.25, in the center of the range of possible ρ values.

In Figure 3, we plot the RMSE (scaled by n1/2) of the β coefficients estimated for the PXmodel,
standard probit model, social relations model, and latent eigenmodels. We see that the EMM esti-
mator for the PX model has a downward trend in n1/2RMSE with n, and a reducing spread of
n1/2RMSE with n, for both the PX and latent eigenmodel generating models. These facts sug-
gest that the PX estimator is consistent for β , at a rate n1/2 or better, for both the PX and latent
eigenmodel generating models, confirming the claims in Section 5.4. Further, the EMM estimator
has the lowest median n1/2RMSE of any of the estimators for all entries in β , where n1/2RMSE
is evaluated for each X realization (across the error realizations), and the median is computed
across the 20 X realizations. We observe similar patterns for the correlation parameter ρ; see
Section D.1. Interestingly, the superiority of the PX estimator holds whether we generate from
the PX or latent eigenmodel, which suggests that any benefit in correctly specifying the latent
eigenmodel is lost in the estimating routine. The larger n1/2RMSEs of the amen estimator of
the social relations and latent eigenmodels are a result of bias; see Section D.1 for bias-variance
decomposition of the MSEs.

7.3 Runtimes
We evaluated the average runtimes of the algorithms used to estimate the simulated data. The
average runtimes are plotted in Figure 4. The improvement in runtime offered by the EMM esti-
mation scheme over SRM and LEMCMC estimation is several orders of magnitude. Interestingly,
the runtime cost of EMM appears to grow faster than the MCMC routines and faster than stan-
dard probit regression. A contributing factor is the sum over O(n3) terms in the maximization of
ρ in the EMM algorithm. We have experimented with using only a random subset of O(n2) rela-
tion pairs in the maximization step, which results in gains in runtime with small cost in estimation
performance. Such a tradeoff may become attractive for networks of sufficient size n.
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Figure 3. Performance (n1/2 RMSE) of estimators of β, for a given X, when generating from the PXmodel (top row) and the latent eigenmodel (LE; bottom row). Variability captured
by the boxplots reflects variation in RMSE with X.
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Figure 4. Average runtimes of various algorithms used on simulated data.

Figure 5. The left panel depicts n1/2RMSE in estimating β1, using the EMM algorithm and standard probit regression, under t
distribution of the errors. The right panel depicts n1/4RMSE in estimating ρ using the EMM algorithm in the same simulation.
Variability captured by the boxplots reflects variation in RMSE with X.

7.4 Evaluation of latent normality assumption
To evaluate the performance of the PX model under violation of the normality assumption on the
latent errors {εij}ij, we repeated the simulation study with t-distributed latent random variables.
Specifically, we simulated from (19), but replaced the latent error vector ε with σ−1 �1/2u, where
u consists of independently and identically distributed t random variables with 5 degrees of free-
dom. The scaling factor σ = √

5/3 ensures that u has unit population variance, for consistency
with the Gaussian case, and �1/2 is the matrix square root of �, with ρ = 0.25. This model thus
has the same latent mean and covariance matrix as in the Gaussian case, but the latent errors have
substantially heavier tails.

The left panel of Figure 5 shows the performance of the EMM algorithm in estimating β1,
compared to the standard probit regression estimates. As in the Gaussian case, the EMM algo-
rithm produces estimates with n1/2RMSE tending to zero as n grows. Also as in the Gaussian case,
EMM estimation of the PX model improves estimation of β over standard probit regression. We
observed the same results in estimation of the remaining coefficients (see Section D.2). Unlike the
Gaussian case, n1/2RMSE in estimating ρ did not appear to tend towards zero. However, in the
right panel of Figure 5, the error in estimating ρ scaled by n1/4, n1/4 RMSE, does tend towards
zero. This study confirms the claim in Section 5.4 that the EMM algorithm produces consistent
estimators β̂ , ρ̂}, even under violation of the normality assumption of the PX model.
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Figure 6. Krebs’ political books network (left) and out-of-sample performance in 10-fold cross-validation, as measured by
area under the precision-recall curve (PRAUC, right), plotted against mean runtime in the cross-validation. The estimators
are standard probit assuming independent observations (Std. probit), the PXmodel as estimated by the EMM algorithm (PX),
the social relations model estimator (SRM), and the latent eigenmodel estimator (LE).

8. Analysis of a network of political books
We live in a time of political polarization. We investigate this phenomenon by analyzing a net-
work of n= 105 books on American politics published around the time of the 2004 presidential
election.2 These data were compiled by Dr. Valdis Krebs using the “customers who bought this
book also bought these books” list on Amazon.com. At the time, when browsing a particular
book, Amazon listed the books that were bought by individuals who also bought the book in
question. Thus, a relation between two books in the network indicates that they were frequently
purchased by the same buyer on Amazon. Political books on the best-seller list of The New York
Times were used as actors in the network. Finally, the books were labeled as conservative, liberal,
or neutral based on each book’s description (Figure 6). Work by Dr. Krebs on a similar network
was in a 2004New York Times article (Eakin, 2004), where it was shown that there were many rela-
tions between books with similar ideologies yet relatively few across ideologies. The work by Dr.
Krebs has inspired similar analyses of book purchasing networks in the fields of nanotechnology
(Schummer, 2005) and climate science (Shi et al., 2017).

To confirm previous work by Dr. Krebs, we develop a model that assigns a different probability
of edge formation between books i and j depending onwhether the books are ideologically aligned.
By examining the network in Figure 6, we observe that neutral books appear to have ties than
books that are labeled conservative or liberal. Thus, we add a nodal effect indicating whether
either book in a relation is labeled neutral. The regression model specified is

P(yij = 1)= P(β0 + β11[c(i)= c(j)]
+ β21

[{c(i)= neutral} ∪ {
c(j)= neutral

}]+ εij > 0), (20)
ε ∼ (0,�),

where c(i) represents the class of book i (neutral, conservative, or liberal), and the distribution and
covariance matrix of ε are determined by the particular model being estimated. In this section,
we estimate the PX model (PX), the equivalent social relations model (SRM), the latent eigen-
model (LE), and, as a baseline, the standard probit regression model assuming independence of
observations (which we label “std. probit”).

We used a 10-fold cross-validation to compare the out-of-sample predictive performance of the
estimators and the runtimes of the algorithms for the models in question. We used the proposed
EMM algorithm to estimate the PX model, the amen package in R to estimate the social relations
model and latent eigenmodel (Hoff et al., 2017), and the glm(.) command in the R package stats
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Table 1. Results of fitting the Krebs political books data using the EMM estimator for the PX
model and the amen estimator for the social relations and latent eigenmodels (SRM and LE,
respectively). Point estimates for the coefficients are given to the left of the vertical bar, and
runtimes (in seconds) and minimum effective sample sizes across the coefficient estimates
are given to the right

β̂0 β̂1 β̂2 Runtime (s) Min(ESS)

PX: EMM −1.87 1.21 1.12 68 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SRM: amen −2.70 0.98 1.55 7984 195
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LE: amen −3.90 1.63 2.06 62565 26

to estimate the standard probit model. We randomly divided the
(105

2
)
relations into 10 disjoint

sets, termed “folds,” of roughly the same size. Then, for each fold, we estimated the models on the
remaining nine folds andmade predictions for the data in the fold that was not used for estimation
(for details of estimation of the PX model with missing data, see Section A.4). Repeating this
operation for each complete data set of out-of-sample predictions for each estimating model. The
procedure to make marginal predictions from the PXmodel is described in Section 6. To compare
with the PX model, we make marginal predictions from the social relations model and the latent
eigenmodel, that is, by integrating over the random effect space. The predictions from the social
relations model and the latent eigenmodel are automatically output from amen in the presence of
missing data. The predictions from the standard probit model are marginal by default as there is
no correlation structure.

We use area under the precision-recall curve (PRAUC) to measure performance of the predic-
tions relative to the observed data, although using area under the receiver operating characteristic
(ROC) yields the same conclusions (see Appendix E). In Figure 6, the proposed EMM estimator
produces an improvement in PRAUC over standard probit prediction that is roughly equiva-
lent to the improvement of the social relations model over standard probit, yet with an average
runtime that is 45 times faster (about a minute compared with an hour). The latent eigenmodel
produces an improvement in PRAUC over the proposed EMM algorithm and the social relations
model, however, at the expense of significant increase in average runtime, that of about 3,000 times
slower than EMM and taking almost three days to complete. Note that we selected the number of
MCMC iterations for the social relations and latent eigenmodels that resulted in sets of samples
from the posterior distributions (after burn-in) that had a effective sample sizes roughly equal to
100 independent samples of the β parameters. Increasing the number of iterations, which may
be desirable, would result in even longer runtimes for the estimators of the social relations and
latent eigenmodels. Taken together, the results of the cross-validation study suggest that the PX
model accounts for a large portion of the correlation in network data with estimation runtime
that, depending upon stopping criterion, is orders of magnitude faster the runtime than existing
approaches.

To estimate the complete data set under the mean model in (20), we used the EMM algo-
rithm for the PX model and the amen package for the social relations model (SRM) and latent
eigenmodel (LE), which we ran for 1× 106 iterations after a burn-in of 5× 104 iterations (with
runtimes of roughly two hours for SRM and 17 hours for LE). The coefficient estimates in Table 1
suggest that books that share the same ideology are more likely to be frequently purchased
together, as all β̂1 > 0. This positive coefficient estimate demonstrates political polarization in
the network: conservative books are more likely to be purchased with other conservative books
rather than with liberal books. The second coefficient estimate, β̂2 > 0, suggests that, relative to a
random pair of ideologically misaligned books, pairs of books where at least one of the books is
neutral are more likely to be purchased together. Neutral books are thus generally more likely to
be purchased with books of disparate ideologies and have a unifying effect in the book network.
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Returning briefly to Table 1, the runtimes highlight that EMM reduces computational burden by
order(s) of magnitude over existing approaches.

9. Discussion
In this paper, we present the PXmodel, a probit regressionmodel for undirected, binary networks.
The PX model adds a single parameter—latent correlation ρ—to the ordinary probit regression
model that assumes independence of observations. Our focus in this paper is estimation of the
effects of exogenous covariates on the observed network, β , and prediction of unobserved net-
work relations. Thus, we do not present uncertainty estimators for β̂ or ρ̂. However, practitioners
estimating the PX model may require uncertainty estimators to perform inference. Development
and evaluation of estimators of the uncertainty in estimators of network data is nontrivial; indeed,
entire papers are dedicated to this task for the simpler linear regression case (see, for example,
Aronow et al., 2015; Marrs et al., 2017). Future development of uncertainty estimators for the PX
model may draw upon existing literature for uncertainty in EM estimators (Louis, 1982) and the
numerical approximations in this paper.

A popular notion in the analysis of network data is the presence of higher-order dependen-
cies, meaning beyond second order (Hoff, 2005). The representation of triadic closure, a form of
transitivity—the friend of my friend is likely to also be my friend— is one motivation for the latent
eigenmodel (Hoff, 2008). The PX model does represent triadic closure to a degree. One can show
that, given two edges of a triangle relation exist, yij = yjk = 1, the probability that the third edge
exists, P(yik = 1), increases as ρ increases. However, the increase in probability describing triadic
closure under the PX model is fixed based on the estimated value of ρ, which is informed only by
the first two moments of the data when using the EMM estimator. It may be desirable to develop
a test for whether the PX model sufficiently represents the level of triadic closure as suggested by
the data. One such test might compute the empirical probability that P(yik = 1 | yij = yjk = 1) and
compare this statistic to its distribution under the null that the PX model is the true model with
correlation parameter ρ = ρ̂. Future work consists of theoretical development of the distributions
of the test statistic(s) of choice under the null. Statistics of interest will likely be related to vari-
ous clustering coefficients in the network literature (Wasserman & Faust, 1994; Watts & Strogatz,
1998).

We focus on the probit model in this paper. However, we find that this choice may limit the
degree of covariance in the observed network {yij}ij that the PXmodel can represent. For constant
mean xTijβ = μ, the maximum covariance the PX model can represent is bounded by

cov[yij, yik] ≤ lim
ρ→1/2

∫ ∞

−μ

∫ ∞

−μ

dFρ − �(μ)2, (21)

where dFρ is the bivariate standard normal distribution with correlation ρ. The use of different
latent distributions for ε other than normal may allow a model analogous to the PX model to
represent a larger range of observed covariances cov[yij, yik]. Future work may consider a logistic
distribution for ε, as some researchers prefer to make inference with logistic regression models for
binary data due to the ease of interpretation.
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Notes
1 We consider infinite exchangeability such that the exchangeable generating process is valid for arbitrarily large numbers of
actors n, as in Hoover (1979) and Aldous (1981).
2 These unpublished data were compiled by Dr. Valdis Krebs for his website http://www.orgnet.com/ and are hosted, with
permission, by Dr. Mark Newman at http://www-personal.umich.edu/mejn/netdata/polbooks.zip
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A. Details of estimation
In this section, we supply details of estimation in support of Algorithm 1, beginning with the
initialization of ρ. We then provide details of computing the expectations of �y need for β maxi-
mization and then details of computing the expectations of �y need for ρ maximization. We close
the section with the handling of missing data in the EMM algorithm.

A.1 Initialization of ρ estimator
An EM algorithm may take many iterations to converge, and selecting a starting point near the
optima may significantly reduce the number of iterations required. We present a method of ini-
tializing ρ̂(0) using a mixture estimator. By examining the eigenvalues of �, it can be shown that
ρ lies in the interval [0, 1/2) when � is positive definite for arbitrary n (Marrs et al., 2017). Thus,
ρ̂ = 0.25 is a natural naive initialization point as it is the midpoint of the range of possible values.
However, we also allow the data to influence the initialization point by taking a random subset
A of 
2 of size 2n2 and estimating ρ using the data corresponding to relations in A . Then, the
final initialization point is defined as a mixture between the naive estimate ρ̂ = 0.25 and the esti-
mate based on the data. We weight the naive value as if it arose from 100n samples, such that the
weights are even at n= 50, and for increasing n, the data estimate dominates:

ρ̂(0) = 100n
4(100n+ |A |) + |A |

(100n+ |A |)

⎛⎝ 1
|A |

∑
jk,lm∈A

E[εjkεlm | yjk, ylm]
⎞⎠ . (A1)

We compute the average 1
|A |

∑
jk,lm∈A E[εjkεlm | yjk, ylm] using the linearization approach

described in Section A.3.

A.2 Implementation of β expectation step
Under general correlation structure, computation of the expectation E[ε | y] (step 1 in
Algorithm 1, where we drop conditioning on ρ(ν) and β(ν) to lighten notation) for even small
networks is prohibitive, since this expectation is an

(n
2
)
-dimensional truncated multivariate nor-

mal integral. We exploit the structure of � to compute E[ε | y] using the law of total expectation
and a Newton-Raphson algorithm.

First, we take a single relation jk and use the law of total expectation to write

E[εjk | y]= E[E[εjk | ε−jk, yjk] | y], (A2)

where ε−jk is the vector of all entries in ε except relation jk. Beginning with the innermost condi-
tional expectation, the distribution of εjk given ε−jk and yjk is truncated univariate normal, where
the untruncated normal random variable has the mean and variance of εjk given ε−jk. Based on
the conditional multivarite normal distribution and the form of the inverse covariance matrix
�−1 =∑3

i=1 piSi, we may write the untruncated distribution directly as
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εjk | ε−jk ∼N
(
μjk, σ 2

n
)
,

μjk = −σ 2
n1Tjk

(
p2S2 + p3S3

)
ε̃−jk,

σ 2
n = 1

p1
, (A3)

where 1jk is the vector of all zeros with a one in the position corresponding to relation jk and, for
notational purposes, we define ε̃−jk as the vector ε except with a zero in the location corresponding
to relation jk. We note that the diagonal of the matrix p2S2 + p3S3 consists of all zeros so that
μjk is free of εjk.

We now condition on yjk. For general z ∼N(μ, σ 2) and y= 1[z > −η], we have that

E[z | y]= μ + σ
φ(̃η)

�(̃η)(1− �(̃η))
(y− �(̃η)), (A4)

where η̃ := (η + μ)/σ . Now, taking z = (εjk | ε−jk), we have that

E[εjk | ε−jk, yjk]= μjk + σn

(
φ(μ̃jk)

(
yjk − �(μ̃jk)

)
�(μ̃jk)(1− �(μ̃jk))

)
, (A5)

where μ̃jk:= (μjk + xTjkβ)/σn.
We now turn to the outermost conditional expectation in (A2). Substituting the expression for

μjk into (A5), we have that

E[εjk | y]= −σ 2
n1Tjk

(
p2S2 + p3S3

)
E[ε | y]+ σnE

[
φ(μ̃jk)

(
yjk − �(μ̃jk)

)
�(μ̃jk)(1− �(μ̃jk))

∣∣∣ y] . (A6)

This last conditional expectation is difficult to compute in general. Thus, in place of μ̃lm, we sub-
stitute its conditional expectation E[μ̃lm | y]. Letting wlm := E[εlm | y] and w be the vector of the
expectations {wlm}lm, we define the following nonlinear equation for w:

0≈ g(w) := (− I+ B)w+ σn

(
φ(w̃)

(
y− �(w̃)

)
�(w̃)(1− �(w̃))

)
, (A7)

where we define B := −σ 2
n
(
p2S2 + p3S3

)
, w̃:= (Bw+Xβ)/σn, and the functions φ(.) and �(.)

are applied element-wise. The approximation in (A7) refers to the approximation made when
replacing μ̃jk with its conditional expectation E[μ̃jk|y]. We use a Newton-Raphson algorithm to
update w (Atkinson, 2008), initializing the algorithm using the expectation when ρ = 0,

w0 := φ(Xβ)
(
y− �(Xβ)

)
�(Xβ)(1− �(Xβ))

. (A8)

The Newton-Raphson algorithm re-estimates w based on the estimate at iteration ν, ŵ(ν), until
convergence:

ŵ(ν+1) = ŵ(ν) −
(

∂

∂wT g
(
ŵ(ν)

))−1
g
(
ŵ(ν)

)
. (A9)

The inverse in (A9) is of a matrix that is not of the form
∑3

i=1 aiSi. To reduce the com-
putational burden of the Newton method updates, we numerically approximate the inverse in
(A9). First, we define v(wjk)= σn

φ(wjk)(yjk−�(wjk))
�(wjk)(1−�(wjk))

, where we define the vector v(w)= {v(wjk)}jk,
and write the derivative

∂

∂wT g(w)= B− I+DB. (A10)
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where we define

D= diag

{−wjkφjk(yjk − �jk)− φ2
jk − φ2

jk(yjk − �jk)(1− 2φjk�jk)
�jk(1− �jk)

}
jk
.

where we let φjk = φ(wjk) and �jk = �(wjk). The term DB arises from differentiating v(w) with
respect to w. Using the expression in (A10), we are then able to write the second term in (A9) as(

∂

∂wT g(ŵ)
)−1

g(ŵ)= (B− I+DB)−1((B− I)w+ v(w)) ,

= B−1(I+D− B−1)−1
((B− I)w+ v(w)) . (A11)

We notice that the matrix I+D is diagonal, but not homogeneous (in which case we compute
(A11) directly, with limited computational burden, by exploiting the exchangeable structure).
Instead, defining Q= (1+ δ)I− B−1 and M=D− δI, which is diagonal, we make the approx-
imation that (

I+D− B−1)−1 = (Q+M)−1 ≈Q−1 −Q−1MQ−1,

which is based on a Neumann series of matrices and relies on the absolute eigenvalues ofM being
small (Petersen et al., 2008). We choose δ to be the mean of the minimum and maximum value of
D. This choice of δ minimizes the maximum absolute eigenvalue ofM and thus limits the approx-
imation error. Since the inverse ofQmay be computed using the exchangeable inversion formula
discussed in Appendix B (in O(1) time), the following approximation represents an improvement
in computation from O(n3) to O(n2) time:(

∂

∂wT g(ŵ)
)−1

g(ŵ)≈ B−1(Q−1 −Q−1MQ−1)((B− I)w+ v(w)) .

A.3 Approximation to ρ expectation step
The maximization of the expected likelihood with respect to ρ relies on the computation of
γi = E[εTSiε | y]/|
i|, for i ∈ {1, 2, 3} (step 2 in Algorithm 1). Under general correlation struc-
ture, computation of the expectation {γi}3i=1 for even small networks is prohibitive. To practically
compute {γi}3i=1, we make two approximations, which we detail in the following subsections: (1)
compute expectations conditioning only on the entries in y that correspond to the entries in ε

being integrated and (2) approximating these pairwise expectations as linear functions of ρ.

A.3.1 Pairwise expectation
Explicitly, the pairwise approximations to {γi}3i=1 we make are as follows:

γ1 = 1
|
1|

∑
jk

E
[
ε2jk | y

]
≈ 1

|
1|
∑
jk

E
[
ε2jk | yjk

]
,

γ2 = 1
|
2|

∑
jk,lm∈
2

E
[
εjkεlm | y]≈ 1

|
2|
∑

jk,lm∈
2

E
[
εjkεlm | yjk, ylm

]
,

γ3 = 1
|
3|

∑
jk,lm∈
3

E
[
εjkεlm | y]≈ 1

|
3|
∑

jk,lm∈
3

E
[
εjkεlm | yjk, ylm

]
, (A12)

where 
i is the set of ordered pairs of relations (jk, lm) which correspond entries in Si that is 1,
for i ∈ {1, 2, 3}. These approximations are natural first-order approximations: recalling that yjk =
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1
[
εjk > −xTjkβ

]
, the approximations in (A12) are based on the notion that knowing the domains

of εjk and εlm is significantly more informative for E[εjkεlm | y] than knowing the domain of, for
example, εab.

The approximations in (A12) are orders of magnitude faster to compute than the expectations
when conditioning on all observations E[εjkεlm | y]. In particular, when i ∈ {1, 3}, the expectations
are available in closed form:

E
[
ε2jk | yjk

]
= 1− ηjk

φ(ηjk)(yjk − �(ηjk))
�(ηjk)(1− �(ηjk))

,

E
[
εjkεlm | yjk, ylm

]= φ(ηjk)φ(ηlm)(yjk − �(ηjk))(ylm − �(ηlm))
�(ηjk)�(ηlm)(1− �(ηjk))(1− �(ηlm))

,

where we define ηjk = xTjkβ and the indices j, k, l and m are distinct. When i= 2, that is, |{j, k} ∩
{l,m}| = 1, the expectation depends on a two dimensional normal probability integral:

E[εjkεlm | yjk, ylm]

= ρ

(
1− η̄jkφ(ηjk)

Ljk,lm
�

(
η̄lm − ρ̄ η̄jk√

1− ρ2

)
− η̄lmφ(ηlm)

Ljk,lm
�

(
η̄jk − ρ̄ η̄lm√

1− ρ2

))

+ 1
Ljk,lm

√
1− ρ2

2π
φ

⎛⎝√η2jk + η2lm − 2ρ ηjkηlm

1− ρ2

⎞⎠ , |{j, k} ∩ {l,m}| = 1,

Ljk,lm = P
(
(2yjk − 1)εjk > −ηjk ∩ (2ylm − 1)εlm > −ηlm

)
, (A13)

where η̄jk = (2yjk − 1)ηjk, for example, and ρ̄ = (2yjk − 1)(2ylm − 1)ρ.

A.3.2 Linearization
The computation of E[εjkεlm | yjk, ylm] in (A13) requires the computation of O(n3) bivariate
truncated normal integrals Ljk,lm, which are not generally available in closed form. We observe
empirically, however, that the pairwise approximation to γ2 described in Section A.3.1 above,
γ2 ≈ 1

|
2|
∑

jk,lm∈
2 E[εjkεlm | yjk, ylm], is approximately linear in ρ. This linearity is somewhat
intuitive, as the sample mean 1

|
2|
∑

jk,lm∈
2 E[εjkεlm | yjk, ylm] has expectation equal to ρ, and is
thus an asymptotically linear function of ρ. As the sample mean 1

|
2|
∑

jk,lm∈
2 E[εjkεlm | yjk, ylm]
concentrates around its expectation, it concentrates around a linear function of ρ, and it is rea-
sonable to approximate the sample mean 1

|
2|
∑

jk,lm∈
2 E[εjkεlm | yjk, ylm] as a linear function of
ρ. To do so, we compute the approximate values of γ2 at ρ = 0 and if ρ = 1. In particular,

γ2 ≈ a2 + b2ρ,

a2 = 1
|
2|

∑
jk,lm∈
2

E
[
εjk | yjk

]
E[εlm | ylm],

= 1
|
2|

∑
jk,lm∈
2

φ(ηjk)φ(ηlm)(yjk − �(ηjk))(ylm − �(ηlm))
�(ηjk)�(ηlm)(1− �(ηjk))(1− �(ηlm))

,

c2 = 1
|
2|

∑
jk,lm∈
2

E
[
εjkεlm | yjk, ylm

] ∣∣∣
ρ=1

,

b2 = c2 − a2. (A14)
To compute c2, we must compute the value of E[εjkεlm | yjk, ylm] when ρ = 1. Computing
E[εjkεlm | yjk, ylm] is simple when the values yjk = ylm, as in this case E[εjkεlm | yjk, ylm]=
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E
[
ε2jk | yjk = ylm

]
since, when ρ = 1, εjk = εlm. Approximations must be made in the cases when

yjk �= ylm. There are two such cases. In the first, there is overlap between the domains of εjk
and εlm indicated by yjk = 1[εjk > −ηjk] and yjk = 1[εlm > −ηlm], respectively. We define the
domain for εjk indicated by yjk asUjk := {u ∈R:u> (1− 2yjk)ηjk}. As an example, there is overlap
between Ujk and Ulm when yjk = 1, ylm = 0 and ηlm < ηjk. Then, the desired expectation may be
approximated E[εjkεlm | yjk, ylm]≈ E

[
ε2jk | εjk ∈Ujk ∩Ulm

]
. In the second case, when yjk �= ylm and

Ujk ∩Ulm =∅, we make the approximation by integrating over the sets Ujk and Ulm. That is, by
taking

E
[
εjkεlm | yjk, ylm

]
≈ E

[
ε2jk | εjk ∈Ujk

]
P
(
εjk ∈Ujk

)+ E
[
ε2lm | εlm ∈Ulm

]
P(εlm ∈Ulm) .

To summarize, we compute c2 in (A14) when ρ = 1 by using the following approximation to
E[εjkεlm | y]

∣∣∣
ρ=1

:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
ε2jk | εjk >max(− ηjk,−ηlm)

]
, yjk = 1 and ylm = 1,

E
[
ε2jk | εjk <min(− ηjk,−ηlm)

]
, yjk = 0 and ylm = 0,

E
[
ε2jk | εjk ∈Ujk ∩Ulm

]
, Ujk ∩Ulm �= ∅,

E
[
ε2jk | εjk ∈Ujk

]
P(εjk ∈Ujk)+ E[ε2lm | εlm ∈Ulm] P(εlm ∈Ulm) Ujk ∩Ulm = ∅.

A.4 Missing data
In this subsection, we describe estimation of the PX model in the presence of missing data. We
present the maximization of �y with respect to β first. Second, we discuss maximization of �y with
respect to ρ. Finally, we give a note on prediction from the PX model when data are missing.

A.4.1 Update β

To maximize �y with respect to β (Step 1 of Algorithm 1) in the presence of missing data, we
impute the missing values of X and y. We make the decision to impute missing values since much
of the speed of estimation of the PX model relies on exploitation of the particular network struc-
ture, and, when data are missing, this structure is more difficult to leverage. We impute entries in
Xwith the mean value of the covariates. For example, if x(1)jk is missing, we replace it with the sam-

ple mean 1
|M c|

∑
lm∈M c x(1)lm , where the superscript (1) refers to the first entry in xjk andM is the

set of relations for which data are missing. If yjk is missing, we impute yjk with 1[wjk > −η̄], where
η̄ = 1

|M c|
∑

lm∈M c xTlmβ̂ and we compute w= E[ε | y] using the procedure in Section A.2. We ini-
tialize this procedure atw(0), where anymissing entries jk ∈M are initialized withw(0)

jk = 0. Given
the imputed X and y, the estimation routine may be accomplished as described in Algorithm 1.

A.4.2 Update ρ

To maximize �y with respect to ρ (Step 2 of Algorithm 1), we approximate {γi}3i=1 using only
observed values. Using the pairwise expressions in (A12), the expressions for the expectation step
under missing data are
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γ1 ≈ 1
|M c|

∑
jk∈M c

E
[
ε2jk | yjk

]
, (A15)

γ2 ≈ 1
|A (s)|

∑
jk,lm∈A (s)

E[εjkεlm | yjk, ylm].

γ3 ≈
∑

jk,lm∈
3 E[εjk | yjk]E[εlm | ylm]1[jk ∈M c]1[lm ∈M c]∑
jk,lm∈
3 1[jk ∈M c]1[lm ∈M c]

,

≈ 1
|
3|

⎛⎝( |
1|
|M c|

∑
jk∈M c

E[εjk | yjk]
⎞⎠2

− |
1|
|M c|

∑
jk∈M c

E[εjk | yjk]2

− |
2|
|A (s)|

∑
jk,lm∈A (s)

E[εjk | yjk]E[εlm | ylm]
)
,

where we only subsample pairs of relations that are observed such that A (s) ⊂ 
2 ∩M c. Then,
given the values of {γi}3i=1 in (A15), the maximization of �y with respect to ρ (Step 2 in
Algorithm 1) may proceed as usual.

A.4.3 Prediction
Joint prediction in the presence of missing data is required for out-of-sample evaluation of the
EMM estimator, for example, for cross-validation studies in Section 8. In this setting, model esti-
mation is accomplished by imputing values in X and y earlier in this section under the “Update
β” subheading. Then, prediction may be performed by proceeding as described in Section 6 with
the full observed Xmatrix and imputing the missing values in y (again as described above in this
section under the “Update β” subheading).

B. Parameters of undirected exchangeable network covariance matrices
In this section, we give a 3× 3 matrix equation to invert� rapidly. This equation also gives a basis
to compute the partial derivatives

{
∂φi
∂pj

}
, which we require for the EMM algorithm.

We define an undirected exchangeable network covariance matrix as those square, positive
definite matrices of the form

�(φ)=
3∑

i=1
φiSi.

We find empirically that the inverse matrix of any undirected exchangeable network covariance
matrix has the same form, that is �−1 =∑3

i=1 piSi. Using this fact and the particular forms of
the binary matrices {Si}3i=1, one can see that there are only three possible row-column inner
products in the matrix multiplication ��−1, those pertaining to row-column pairs of the form
(ij, ij), (ij, ik), and (ij, kl) for distinct indices i, j, k, and l. Examining the three products in terms of
the parameters in φ and p, and the fact that ��−1 = I, we get the following matrix equation for
the parameters p given φ

C(φ)p= [1, 0, 0]T , (B1)
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where the matrix C(φ) is given by⎡⎢⎢⎣
φ1 2(n− 2)φ2

1
2 (n− 2)(n− 3)φ3

φ2 φ1 + (n− 2)φ2 + (n− 3)φ3 (n− 3)φ2 + ( 1
2 (n− 2)(n− 3)− n+ 3

)
φ3

φ3 4φ2 + (2n− 8)φ3 φ1 + (2n− 8)φ2 + ( 1
2 (n− 2)(n− 3)− 2n+ 7

)
φ3

⎤⎥⎥⎦ .

Then, we may invert � with a 3× 3 inverse to find the parameters p of �−1. Explicitly solving
these linear equations, the expressions for p are given by

p1 = 1− (2n− 4)p2, (B2)

p2 = 1+ (n− 3)p3
(2n− 4)ρ − n+ 2− 1/ρ

,

p3 = −4ρ2

(n− 3)4ρ + (1+ (2n− 8)ρ)((2n− 4)ρ − n+ 2− 1/ρ)
.

Taking only the largest terms in n, one may approximate the values in p as follows, which will be
useful in following theoretical development:

p1 ≈ 1
1− 2ρ

+O(n−1), (B3)

p2 ≈ −1
n(1− 2ρ)

+O(n−2),

p3 ≈ 2
n2(1− 2ρ)

+O(n−3).

The equation (B1) allows one to compute the partial derivatives
{

∂φi
∂pj

}
. First, based on (B1), we

can write C(p)φ = [1, 0, 0]T . Then, we note that the matrix function C(φ) in (B1) is linear in the

terms φ, and thus, we may write C(p)=∑3
j=1 pjA

(n)
j for some matrices

{
A(n)
j

}3
j=1

that depend on

n. Differentiating both sides of C(p)φ = [1, 0, 0]T with respect to pj and solving gives
∂φ

∂pj
= −C(p)−1A(n)

j C(p)−1[1, 0, 0]T ,

which holds for all j ∈ {1, 2, 3}.

C. Theoretical support
In this section, we outline proofs suggesting that the estimators resulting from the EMMalgorithm
are consistent.

C.1 Consistency of ̂βEMM

The estimator of β resulting from the EMM algorithm, β̂EMM, depends on the estimated value of
ρ, ρ̂EMM, through the covariance matrix �. Explicitly, given �, the EMM estimator

β̂EMM = (XT�−1X)−1XT�−1Ê[z | y], (C1)

where Ê[z | y] represents the estimation and approximation of E[z | y] described in the EMM
algorithm. This estimator is difficult to analyze in general, because, in principle, ̂E[zjk | y] depends
on every entry in y, and the effects of the approximations are difficult to evaluate. Instead of
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direct analysis, to evaluate consistency of β̂EMM, we define a bounding estimator that is easier to
analyze,

β̂bound = (XT�−1X)−1XT�−1u, ujk = E[zjk | yjk]. (C2)

It is immediately clear that β̂bound is unbiased, since E[ujk]= xTjkβ . Further, the approximations

made in the EMM algorithm are meant to bound
∣∣∣∣β̂EMM − β∗

MLE
∣∣∣∣2
2 ≤∣∣∣∣β̂bound − β∗

MLE
∣∣∣∣2
2, where

β∗
MLE is the true maximum likelihood estimator. That is, the expectation estimator we compute

Ê[z | y] takes into account correlation information through � and is thus closer to the true expec-
tation, E[z | y], than u. Then, we also have that β̂EMM is closer to β∗

MLE than β̂bound. Then, consis-
tency of β̂bound implies consistency of β̂EMM, since we assume that the true MLE is consistent.

We now establish consistency of β̂bound. We make the following assumptions:

1. The true model follows a latent variable model,

P(yij = 1)= P

(
xTijβ + εij > 0

)
, (C3)

E[εjk]= 0.
where ε is not necessarily normally distributed.

2. The design matrix X is such that the expressions n−(1+i)XTSiX, for i ∈ {1, 2, 3}, converge
in probability to constant matrices.

3. The fourth moments of X and ε are bounded, ||xjk||4 ≤ C1 < ∞ and E
[
ε4jk

]
≤ C2 < ∞.

4. The estimator of ρ is such that �(ρ̂) converges in probability to some positive definite
matrix.

5. The independence assumption for relations that do not share an actor holds, such that εjk
is independent εlm whenever actors j, k, l, andm are distinct.

The first assumption defines the meaning of the true coefficient β . The second assumption is a
standard condition required for most regression problems; a similar condition is required for con-
sistency of any estimator which accounts for correlation in generalized linear model. We evaluate
the second assumption in the following section, when we analyze ρ̂EMM. The fourth assumption
defines the minimal independence structure.

We start by noticing that u=Xβ + ε, such that

β̂bound = β +
(
n−2

3∑
i=1

piXTSiX
)−1(

n−2
3∑

i=1
piXTSiv

)
, vjk = E[εjk | yjk]. (C4)

Then, as noted in the previous paragraph, the bounding estimator is unbiased, E
[
β̂bound

]= β . It
remains to establish sufficient conditions for which β̂bound converges to its expectation in prob-
ability. Noting the orders of {pi}i in (B3), we immediately have that n−2XT�−1X converges in
probability to a constant. A sufficient condition to establish that

(
n−2∑3

i=1 piXTSiv
)
converges

in probability to its expectation (zero) is that its variance tends to zero. Expanding this variance
expression,

var

(
n−2

3∑
i=1

piXTSiv
)

= n−4
3∑

i=1

3∑
j=1

pipjXTSiE[vvT]SjX, (C5)

= n−4
3∑

i=1

3∑
j=1

pipj
∑

jk,lm∈
i

∑
rs,tu∈
j

xjkxTrsE[vlmvtu].
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By assumption, every term in the sum expression in (C5) is bounded. Also by assumption, the
expectation E[vlmvtu] is zero whenever the relations lm and tu do not share an actor. Using the
expressions in (B3) (pi ∝ n2|
i|−1) and counting terms,

var

(
n−2

3∑
i=1

piXTSiv
)

∝ n−4
3∑

i=1

3∑
j=1

n2

|
i|
n2

|
j|
|
i||
j|

n
=O(n−1).

Thus, the variance of β̂bound converges to zero, so that β̂bound converges in probability to the true
β , as does β̂EMM.

C.2 Consistency of ρ̂EMM

Using the expressions in (B3) and differentiating the expected log-likelihood with respect to ρ, the
maximum likelihood estimator is

ρ̂MLE = 1
2

+ 1
n3

E
[
εTS2ε | y

]
− 1

n2
E
[
εTε | y

]
− 2

n4
E
[
εTS3ε | y

]
+O(n−1). (C6)

In the EMM algorithm, we approximate the expectations in (C6) using pairwise conditioning.
Then, we have that

ρ̂EMM = 1
2

+ 1
n3

∑
jk,lm∈
2

E[εjkεlm | yjk, ylm]− 1
n2

∑
jk

E
[
ε2jk | yjk

]
. . . (C7)

. . . − 2
n4

∑
jk,lm∈
3

E[εjk | yjk]E[εlm | ylm]+O(n−1).

According to the exchangeability assumption of the errors, the pairwise expectations are known,
and the EMM estimator of ρ is unbiased, E[ρ̂EMM]= E[εjkεlm]= ρ. The EMM estimator ρ̂EMM
converges to its expectation when the sums of conditional expectations in (C7) converge to
their expectations. This occurs when the variances of these sums tend to zero. This fact can be
established by similar counting arguments as in the previous subsection. For example,

var

⎛⎝ 1
n3

∑
jk,lm∈
2

E[εjkεlm | yjk, ylm]
⎞⎠

= n−6
∑

jk,lm∈
2

∑
jk,lm∈
2

(E[E[εjkεlm | yjk, ylm]E[εrsεtu | yrs, ytu]]− ρ2),

= n−6 |
2||
2|
n

=O(n−1),

since E[εjkεlm | yjk, ylm] is independent E[εrsεtu | yrs, ytu] whenever all the indices
{j, k, l,m, r, s, t, u} are distinct. Thus, each of the sums of expectations in (C7) has variance
that tends to zero, so that they converge to their marginal expectations, and ρ̂EMM is consistent.

C.3 Consistency under misspecification
In the discussion of consistency of the EMM estimator, we did not require the assumption of latent
normality, nor of exchangeability of the latent errors (we do require a small assumption that the
sequence of constants n−3E[εTS2εlm] converges to some constant on [0, 1/2)). Hence, when the
data-generating mechanism is non-Gaussian and non-exchangeable, we expect ρ̂EMM to converge
to the pseudo-true ρ. The pseudo-true ρ is the value which minimizes the Kullback-Leibler diver-
gence from the modeled (Gaussian, exchangeable) distribution to the true distribution (Huber,
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1967; Dhaene, 1997). In the discussion of consistency of β̂EMM, we only require that ρ̂EMM con-
verges to a fixed value on the interval [0, 1/2), such that �(ρ) is positive definite. Again, when the
data-generating mechanism is non-Gaussian and non-exchangeable, we expect β̂EMM to converge
to the pseudo-true β . When the true data-generating mechanism is Gaussian (but not necessarily
exchangeable), the limiting pseudo-true value for β̂EMM should be the true value.

D. Simulation studies
In this section, we present details pertaining to the second simulation study in Section 7.

D.1 Evaluation of estimation of β
See Section 7.2 for a description of the simulation study to evaluate performance in estimat-
ing β . We provide further details in the rest of this paragraph. We generated each {x1i}ni=1
as iid Bernoulli(1/2) random variables, such that the second covariate is an indicator of both
x1i = x1j = 1. Each of {x2i}ni=1 and {x3ij}ij were generated from iid standard normal random vari-
ables. We fixed β = [β0, β1, β2, β3]T = [− 1, 1/2, 1/2, 1/2]T throughout the simulation study.
When generating from the latent eigenmodel in (5), we set � = I, σ 2

a = 1/6, σ 2
u = 1/

√
6, and

σ 2
x i= 1/3.
To further investigate the source of poor performance of the amen estimators of the social

relations and latent eigenmodels, we computed the bias and the variance of estimators when
generating from the PX model and the latent eigenmodel in Figures D1 and D2, respectively.
Figures D1 and D2 show that the variances of the amen estimators of the social relations and
latent eigenmodels are similar to the PX model, however, that the bias of the amen estimators is
substantially larger.

Both the EMM estimator of the PX model and amen estimator of the social relations model
provide estimates of ρ. We computed the RMSE for each estimator, for each X realization, when

Figure D1. PX model: Scaled bias and variance of estimators of β for a given X when generating from the PX model.
Variability captured by the boxplots reflects variation with X.
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Figure D2. LEmodel: Scaled bias and variance of estimators of β for a given Xwhen generating from the latent eigenmodel.
Variability captured by the boxplots reflects variation with X.

FigureD3. RMSE, scaled by n1/2, of the EMMestimator andamen estimator of the social relationsmodel ofρ whengenerating
from the PXmodel. Variability captured by the boxplots reflects variation in n1/2RMSE with X.

generating from the PX model. In Figure D3, the RMSE plot for ρ̂ shows that the MSE, and the
spread of theMSE, decreases with n for the EMM estimator, suggesting that the EMM estimator of
ρ is consistent. As with the β parameters, the amen estimator displays substantially larger RMSE
than the EMM estimator of ρ.

D.2 Remaining coefficients in t simulation
We simulated from the PXmodel, modified to have heavier-tailed t5 error distribution. The scaled
RMSE when estimating all entries in β is given in Figure D4. All coefficient estimators, for both
PX: EMM and standard probit regression, appear consistent, but the PX: EMM has lower RSME.
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Figure D4. tmodel: Scaled RMSE, for PX: EMMand standard probit regression, when generating from the PXmodelmodified
to have latent errors with heavier-tailed distribution.

E. Analysis of political books network
In this section, we present additional predictive results and verify the efficacy of an approximation
made by the EMM algorithm when analyzing the political books network data set.

E.1 Prediction performance using ROC AUC
In Section 8, we use area under the precision-recall curve to evaluation predictive performance on
the political books network data set. Figure E1 shows the results of the cross-validation study,
described in Section 8, as measured by area under the receiver operating characteristic (ROC
AUC). The conclusions are the same as those given in Section 8: the PX model appears to account
for the inherent correlation in the data with estimation runtimes that are orders of magnitude
faster than existing approaches.

E.2 Linear approximation in ρ in EMM algorithm
In Section 5.2, we discuss a series of approximations to the E-step of an EM algorithm to
maximize �y with respect to ρ. One approximation is a linearization of the sample aver-
age 1

|
2|
∑

jk,lm∈
2 E[εjkεlm | yjk, ylm] with respect to ρ. In Figure E2, we confirm that this

Figure E1. Out-of-sample performance in 10-fold cross-validation, as measured by area under the precision-recall curve
(ROC AUC), plotted against mean runtime in the cross-validation for Krebs’ political books network. The estimators are stan-
dard probit assuming independent observations (Std. probit), the proposed PX estimator as estimated by EMM (PX: EMM),
the social relations model as estimated by amen (SRM: amen), and the latent eigenmodel as estimated by amen (LE: amen).
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Figure E2. The average of all pairwise expectations 1
|
2 |

∑
jk,lm∈
2

E[εjkεlm | yjk , ylm] is shown in orange, and the linear
approximation to this average, described in Section 5, is shown indashedblue. In addition, pairwise conditional expectations
E[εjkεlm | yjk , ylm] are shown in light gray, for a random subset of 500 relation pairs (jk, lm) ∈ 
2.

approximation is reasonable for the political books network data set. Figure E2 shows that the
linear approximation to 1

|
2|
∑

jk,lm∈
2 E[εjkεlm | yjk, ylm] (dashed blue line), as described in detail
in Section A.3, agrees well with the true average of the pairwise expectations (solid orange
line).
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