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The escalating frequency, duration, and intensity of extreme heat events have posed a significant threat to human
society in recent decades. Understanding the dynamic patterns of human mobility under extreme heat will
contribute to accurately assessing the risk of extreme heat exposure. This study leverages an emerging geospatial
data source, anonymous cell phone location data, to investigate how people in different communities adapt
travel behaviors responding to extreme heat events. Taking the Greater Houston Metropolitan Area as an
example, we develop two indices, the Mobility Disruption Index (MDI) and the Activity Time Shift Index (ATSI),
to quantify diurnal mobility changes and activity time shift patterns at the city and intra-urban scales. The results
reveal that human mobility decreases significantly in the daytime of extreme heat events in Houston while the
proportion of activity after 8 p.m. is increased, accompanied with a delay in travel time in the evening. Moreover,
these mobility-decreasing and activity-delaying effects exhibited substantial spatial heterogeneity across census
block groups. Causality analysis using the Geographical Convergent Cross Mapping (GCCM) model combined
with correlation analyses indicates that people in areas with a high proportion of minorities and poverty are less
able to adopt heat adaptation strategies to avoid the risk of heat exposure. These findings highlight the fact that
besides the physical aspect of environmental justice on heat exposure, the inequity lies in the population’s ca-
pacity and knowledge to adapt to extreme heat. This research is the first of the kind that quantifies multi-level
mobility for extreme heat responses, and sheds light on a new facade to plan and implement heat mitigations and
adaptation strategies beyond the traditional approaches.

1. Introduction

Over the past decades, there has been an increase in the intensity and
frequency of extreme heat events globally, exerting far-reaching impacts
on the ecosystems and human health (Tuholske et al., 2021; Zhang et al.,
2023). Extreme heat exposure is a serious public health concern, leading
to increased morbidity and mortality from a wide range of
heat-stress-related diseases (Gasparrini et al., 2015; Deng et al., 2018;
Tian et al., 2021; Zhang et al., 2023) and a reduction in labor produc-
tivity and economic output (Burke et al., 2015; Day et al., 2019). In the
United States, extreme heat is also intensifying. Projections of future
climate imply that global temperature will continue to increase through
the rest of the century, posing a persistent risk of heat exposure
(Diffenbaugh and Moetasim, 2010).

To understand the impacts of heat extremes on human communities,
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researchers have developed different assessment frameworks to accu-
rately quantify heat exposure, risk, and impacts (Macintyre et al., 2018;
Kovach et al., 2015; Hu et al., 2017). For instance, risk assessment is
accomplished by integrally overlaying hazard, exposure, and vulnera-
bility layers. Temperature data is usually used as an input for the hazard
layer, socio-economic data for the vulnerability layer, and census data
for the exposure layer. A common limitation in existing studies is that
the assessment of human heat exposure is primarily based on static
census tract-level population survey data. Survey data represent the
residential distributions of urban populations, which does not fully
capture the daytime population as many urban populations commute for
work and schools during weekdays. In addition, census data reflect the
multiple average status, for short-term extreme events, the
commute-based population mobility is unable to reflect the travel
behavior changes (Hu et al., 2017). In a complex urban environment,
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sub-daily dynamic shifts in population distributions can significantly
impact individual exposure levels, especially during extreme events
(Yang et al., 2019). Some studies highlight that the estimated heat risk
and exposure could vary considerably from assumptions based on sta-
tionary household settings, and the dynamics of human mobility are not
considered (Beckx et al., 2009).

A critical aspect of assessing heat-related exposure effectively is to
capture detailed and accurate population distribution. Studies have
explored survey-data based human mobility and identified several basic
and universal patterns, including periodicity (Liang et al., 2012), high
uniformity (Brockmann et al., 2006), and high predictability (Schneider
et al., 2013). In recent years, the global spread of mobile devices has
enabled the collection of large-scale location data from phone users,
which substantially improved the volume, frequency, and representa-
tion of human mobility at very fine spatial and temporal scales (Wang
et al., 2020). Previous cellular-data-based mobility studies using mobile
phone location data revealed that the inherent pattern of mobility was
perturbed and usually exhibited significant variations during extreme
weather events (e.g., hurricanes, pandemics, and winter storms)
(Hatchett et al., 2021; Li et al., 2022; Deng et al., 2021; Xiong et al.,
2020; Qiang et al., 2023). For example, Deng et al. (2021) investigated
the differences in how different racial and wealth characteristics of
population responded to the Hurricane Harvey in the Houston metro-
politan area. Xiong et al. (2020) quantified the change of mobility in-
flows across the United States during COVID-19 and the relationship
with infection rates by analyzing location data of over 100 million
mobile devices. Li et al. (2022) examined the mobile phone location data
of over 90 million individuals in the U.S. during six major disaster
events, discovering a consistent hyperbolic decline in human mobility.
These variations in mobility patterns can be attributed to several factors,
such as reduced capacity of transport infrastructure, poor weather and
commuting conditions, disruptions in economic activity and distur-
bances in social dynamics. How people adapt their movement behaviors
in response to extreme heat can be very different from airborne disease
transmission, hurricane, and other extreme events. Heat-related human
mobility response is often driven more by individual’s immediate,
spontaneous strategies to cope with the heat, rather than by external
factors such as impassable roads and lockdown policy (Carman and Zint,
2020). Furthermore, despite that heat-related deaths and illnesses can
be greatly decreased through adaptation measures by reducing extreme
heat exposure, the extent to which people employ the behavioral
adaptation strategies remain largely unquantified (Fan et al., 2023).

Thermal inequity has drawn growing attention in climate justice and
equity. This highlights that, within the context of climate change, some
communities or population groups are more vulnerable and face greater
heat risks due to differences in socio-economic status, geographic loca-
tion, or other factors (Zhang et al., 2023; Deng et al., 2020). Research
indicates that specific social groups, such as low-income communities
and ethnic minorities, tend to be more frequently exposed to
high-temperature environments. This increased exposure contributes to
a higher risk of health problems within these groups (Yardley et al.,
2011). Additionally, individuals residing or working in areas with
insufficient green spaces and substandard housing conditions are at an
elevated risk of adverse effects from heat waves (Harlan et al., 2006).
People’s socio-economic backgrounds, combined with environmental
factors in their surroundings, lead to diverse coping strategies for
extreme heat, particularly in how they move or travel. For example,
individuals without air conditioning at home may be more exposed to
heat as they travel to places like cooling centers for relief (Widerynski
et al,, 2017). Thus, using time-sensitive and high-resolution cellu-
lar-based location data, we will be able to offer insight not only into the
collective adaptation of urban population in a given city but also into
intra-urban variations in the response that help to better understand the
causes from human perspectives, which are critical to improving the
climate justice and environmental equity.

In this study, we leverage anonymized cell phone location data to
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analyze human mobility behavior changes in the Houston Metropolitan
Area (HMA) during the 2022 heatwave. We developed two indices, the
Mobility Disruption Index (MDI) and the Activity Time Shift Index
(ATSI), to quantify the differences in human mobility during heatwaves
and non-heatwave periods and further examined the relationships be-
tween mobility behavior changes and socioeconomic and built envi-
ronment factors. Three research questions will be addressed: (1) In what
ways and to what extent do various urban communities adapt their
mobility behaviors in response to extreme heat events in the warm-
humid climate region? (2) Do these adaptive mobility behaviors vary
spatially and temporally? (3) What are the underlying factors leading to
census-block-scale mobility variations?

2. Materials and methods
2.1. Study area

We selected the Houston Metropolitan Area (HMA), Texas, USA as
the study area. The HMA is located on the Gulf Coastal Plain in southeast
Texas and is the fifth-most populous Metropolitan Statistical Area in the
United States. HMA spans nine counties and encompasses 3021 census
block groups (CBGs), with its division into urban and rural regions
(Fig. 1). In 2022, the HMA’s population reached 7.34 million, a 1.72%
increase from the previous year. This growth rate places it as the second
highest among U.S. metropolitan areas (U.S. Census Bureau, 2023). The
HMA in humid subtropic climate is well known for its hot, humid
summers with temperatures typically between 27 °C and 35 °C from
June to August, and mild winters. This climate pattern, along with the
HMA’s fast urban development and growing population, leads to critical
heat-related concerns, including the urban heat island effect, increased
population exposure to extreme heat, and adverse health effects
(Habeeb et al., 2015; Marsha et al., 2018; O’Lenick Cassandra et al.,
2020).

2.2. Data collection

2.2.1. Mobility data

The mobility data utilized in our study were derived from the
ADVAN neighborhood pattern dataset hosted on the DEWEY data plat-
form (https://app.deweydata.io/). This dataset was constructed through
algorithmic clustering of pings from over 45 million anonymized mobile
devices across the US. Clusters with durations below 1 min were
excluded, with each valid cluster labeled as a "visit" and subsequently
aggregated by census block group (CBG) to generate the hourly number
of visits. It is worth mentioning that the data provider undertook a
rigorous examination of potential sampling bias in the foundational
panel data by benchmarking it against US Census figures across di-
mensions like age, race, education, and income. The evaluation affirmed
that the sample rate of dataset was approximately 7.5% and provided a
representative snapshot of the population (Li et al., 2024). For this
specific analysis, to exclude COVID-19-induced human mobility dis-
ruptions in 2020, we collected the mobility data for the 3021 census
block groups in the HMA for the summers (June-August) of 2019, 2021,
and 2022. To ensure comparability across the different years and ac-
count for potential variations in the sample size, max-min normalization
method was employed to rescale the daily number of visits to a uniform
range of [0,1], as shown in Eq. (1):

X — min (x)
max(x) — min (x)

@

Xnormalized =

where x represents the daily number of visits for a given day, while
max(x) and min (x) are the minimum and maximum records within the
summer period of the respective year.

We extracted the data for the 2022 heatwave period (July 8, 2022 to
July 21, 2022, explained in Section 2.3.1) and the corresponding periods
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Fig. 1. Study area and boundaries of administrative districts and census block groups, with urban regions shown in gray and rural areas in white.

in 2019 (July 12, 2019 to July 25, 2019) and 2021 (July 9, 2021 to July
22, 2021). This time period selection for 2019 and 2021 was aligned
with the day of a week, ensuring that the comparative analysis mini-
mized any potential variances arising from day-specific patterns. In
addition, we further expanded the dataset to include data from three
weeks before and three weeks after the 2022 heat wave. This additional
comparison aims to emphasize the differences in mobility during heat-
waves versus non-heatwaves, enhancing the robustness of the results.

2.2.2. Socioeconomic data

Populations’ socioeconomic status plays an important role in shaping
their behaviors. To account for the relevant factors, we use data from
National Historical Geographic Information System (NHGIS) (Manson
et al., 2022), based on U.S. censuses and other nationwide surveys. We
derived 12 variables from the 5-year American Community Survey
database (from 2017 to 2021) within NHGIS. These variables account
for the intra-urban mobility variations at the census block group level,
including income, population density, ratio of individuals using public
transport, and ration of households below poverty level. See Table 1 for
detailed information.

2.2.3. Built environment data

To characterize the built environment within census block groups,
we derived three factors, including road density, percentage of imper-
viousness, and percentage of tree cover. Tree canopy cover and imper-
viousness data for 2021 with a spatial resolution of 30-m were obtained
from the Multi-Resolution Land Characteristics (MRLC) Consortium (htt
ps://www.mrlc.gov/). These data sets were subsequently aggregated at
the census block group level to facilitate the subsequent analyses. The
road density was calculated from the road network data obtained from
OpenStreetMap (OSP) (https://download.geofabrik.de/), a geographic
information platform designed to provide real-time updates and user-
generated content related to its freely available global maps.

We also use the point densities of eight location categories to char-
acterize a community’s built environment which play an important role
in shaping human movement. The points of interest (POI) data were
obtained from SafeGraph Global Places dataset available on the DEWEY
data platform. POI data were classified into eight categories: trans-
portation, entertainment, social service, healthcare, restaurant, shop-
ping, manufacturing, and education. The classification is realized by a
comprehensive integration of the original POI's attributes. For instance,
the POI of social service includes personal and family services, child day
care services, nursing services, investigations and security services, and

Table 1
Descriptions of each potential driver used in this study.
Category Variable Abbreviation Description
Socio-economic Income INCOME Per capita income for the last 12 months
Population density POP_DENS Population per square kilometer

Female ratio
Elderly ratio
Minorities ratio

FEMALE _RATIO
ELDERLY_RATIO

Ratio of individuals commuting by car
Ratio of individuals using public transport
Ration of work from home

Ration of with high education

Ration of households without car

WFM
HIGHER_EDUC
WITHOUT_CAR

Ration of households below poverty level POV_RATIO
Built environment Road density RD_DENS
Percentage of tree cover TREE_COV
Percentage of imperviousness IMPERV
Density of transport POI POI_TRANSP
Density of social service POI POI_SOC_SERV
Density of restaurant POI POI_REST
Density of manufacturing POI POI_MANUF
Density of healthcare POI POI_HLTH
Density of shop POI POI_SHOP
Density of entertainment POI POI_ENTERTAIN
Density of education POI POI_EDUC

MINORITIES_RATIO
COMMUTE_BY_CAR
COMMUTE _BY_PUBLIC

Percentage of female in the total population

Percentage of people aged 65 and over in the total population

Percentage of people who are minorities in the total population
Percentage of workers aged 16 and over who commute by car

Percentage of workers aged 16 and over who commute by public transport
Percentage of workers aged 16 and over who work from home

Percentage of people with higher education in the total population
Percentage of households without a car in total households

Proportion of households below the poverty line to total households
Length of roads per square kilometer

The percentage of canopy cover (30 m)

The percentage of urban impervious surfaces in developed surfaces (30 m)
Number of POI per square kilometer
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other services related to buildings and residences. Each category takes
its density in its census block groups as a variable.

2.3. Methodologies

This study seeks to understand dynamic human mobility behavior
changes as an adaptation strategy to extreme heat events, and to identify
potential driving factors leading to such changes. Fig. 2 outlines the
entire process including three major steps: (1) Developing indices to
characterize mobility behavior changes; (2) Collecting and preprocess-
ing the potential drivers; (3) Uncovering potential drivers through
causal inference and statistical analysis.

2.3.1. Identification of heatwave

In this case study, daily maximum temperature (May to September)
from 1990 to 2022 observed at Houston International Airport from
Global Historical Climatology Network daily (GHCNd) database (Menne
et al., 2012) is used to identify heatwaves. We defined an episode of
heatwave as a period of at least three consecutive days with daily
maximum temperatures exceeding the 95th percentile threshold of 32yr
summers’ daily temperature. In addition, any consecutive days with at
least three days exceeding the 95% quantile threshold and the rest
period exceeding 90% quantile are also considered as one heatwave
episode. In the selected three years, only 1 event was identified as July
8-July 21, 2022 (14 days). For non-heatwave mobility reference, cor-
responding non-heatwave periods, i.e., July 12 to July 25 in 2019 and
July 9 to July 22 in 2021, along with the three weeks preceding and
following the 2022 heatwave (June 17, 2022 to July 7, 2022, and July
22,2022 to August 11, 2022) were used. Recognizing that holiday travel
may affect the reliability of the results, we excluded observations on two
U.S. public holidays, June 19th and July 4th. We also checked and
ensured that there were no synergistic disasters (e.g., floods, hurricanes)
that could seriously affect human mobility occurred during all selected
periods.

@ Mobile Phone
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i § ]
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2.3.2. Mobility change quantification

We followed the criteria proposed in Zhang et al. (2019), i.e.,
computable, comparable, and physically meaningful, to design the
metric for mobility change. The index requires being derivable from the
available human mobility data. The values should allow for bench-
marking in different scenarios, and it should be theoretically interpret-
able with practical relevance. Accordingly, we designed two indices, the
mobility disruption index and activity time shift index.

Mobility Disruption Index (MDI): Heatwaves can affect human
movement changes to various degrees at any moment of the day. In-
dividuals often adapt to the repercussions of heatwaves by dynamically
adjusting their travel preferences and behaviors (Zanni and Ryley,
2015). Consequently, during a heatwave, human mobility fluctuates
significantly throughout the entire day compared to normal conditions,
which can be quantified by the percentage change in the average
mobility value at a specific time during a heatwave, compared to the
average mobility value at the equivalent time in non-heatwave condi-
tions, termed as the Percentage Variation in Mobility (PVM). This is
mathematically represented as Eq. (2):

Mobyw: — Mobontw:

PVM, =
‘ MObnon.HWt

* 100% (2)

where Mobyy, is the average mobility value of a CBG at time t during a
heatwave, Mobyonzw: is the average mobility value of the same CBG at
the same time ¢ during normal conditions.

The PVM serves as an insightful measure to interpret momentary
perturbations in human movement caused by heatwaves. It gauges the
relative mobility shifts during any given hour of a heatwave compared to
identical hours in non-heatwave situations. To measure cumulative
mobility disruptions over time, inspired by Qiang and Xu (2020), we
developed the Mobility Disruption Index (MDI) to integrate the intensity
and duration of mobility changes, as defined in Eq. (3):

X: Cause

Correlation Analysis

Drivers of human mobility disruption and activity time shift effects during heat waves

Fig. 2. Flowchart for the assessment of human mobility dynamic changes due to heatwaves. The abbreviations and corresponding descriptions of each potential

driver are described in Table 1.
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2
MDI = / PVM, 3

t1

In this context, MDI represents the net area between the PVM curve and
the x-axis over a defined time frame. A positive MDI suggests an increase
in mobility during a given time period, while a negative value implies a
mobility decrease. The MDI thus captures the cumulative impact of a
heatwave event on human mobility dynamics.

Activity time shift index (ATSI): Adjusting or deferring activity
schedules is a widely adopted short-term adaptation strategy to reduce
extreme heat exposure (Carman and Zint, 2020). To measure the
adaptation levels, we developed the Activity Time Shift Index (ATSI)
inspired by Fan et al. (2023). The Activity Time Shift Index (ATSI)
measures the time adjustment, denoted as Ah, due to heatwave to ensure
that the total activity level after a specific hour (h 4+ Ah) is equivalent to
the activity after hour h on regular, non-heatwave days. Essentially, it
calculates the time shift necessary to align activity levels on heatwave
days with those on normal days.

To elaborate, the baseline data is derived from the computed average
hourly mobility spanning both heatwave and non-heatwave intervals.
The cumulative mobility activity over a designated time frame is
calculated through integration. The proportion of human mobility level
after a certain time h during a non-heatwave day, r (h | non-heatwaves), is
calculated by applying Eq. (4):

23
/ Mobonsz () dh

r (h | non_heatwaves) = "23— “4)

/ Mobyonsn () dh
0

where Mobnonuw(h) denotes the average mobility of a CBG at the h hour
on a non-heatwave day.

To determine the corresponding mobility level during heatwave days
that are equivalent to the mobility level at time h on a non-heatwave
day, we calculate the required shift, Ah, from Eq. (5):

r (8 p.m.+ Ah | heatwaves) =r (8 p.m. | non_heatwaves) 5)

We set the activity proportion after 8 p.m. local time during non-
heatwave days as the baseline. The time shift Ah ensures that the
mobility level after (8 + Ah) PM on heatwave days equals the mobility
level on baseline days (as depicted in Fig. S1). We chose 8 p.m. as the
baseline because it is generally the time of sunset during the summer
months in Texas and the secretion of melatonin, which is closely related
to human sleep, typically rises during this time (Grivas and Savvidou,
2007). Increased human activity after this time would decrease mela-
tonin production, thus potentially leading to negative effects on sleep.

2.3.3. Geographical convergent cross mapping

The relationships between human mobility, climate conditions, and
socioeconomic factors are always nonlinear and complex (Xu et al.,
2018). Commonly used traditional statistical methods, such as linear
correlation analysis, are unable to capture complex nonlinear relation-
ships, thus this research employed an advanced causality analysis
method, Geographical Convergent Cross Mapping (GCCM) model (Gao
etal., 2023). GCCM is an extension to a cross convergent mapping model
that can identify causal associations between spatial cross-sectional
variables and estimate the corresponding causal effects. The 23 poten-
tial drivers we selected in this study are divided into two categories:
socioeconomic variables and built environment variables (Table 1), and
the GCCM was utilized to infer their causal relationships with the two
indices, MDI and ATSI.

GCCM replaces the lags of time-series observations in traditional
cross convergent mapping model with spatial lags (measurements of a
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specific unit and its neighbors) to reconstruct a differentiable manifold
M in the state space and infer causality based on the cross-mapping
(xmap) predictions of the shadow manifolds Mx and My of two spatial
variables X and Y. The implementation of GCCM is performed in four
steps:

1. Reconstruct attractor manifolds of X and Y: With the embedding
dimension set to L, the observed values of variables X and Y for each
spatial unit at different orders of spatial lag are extracted and orga-
nized into vectors, y/(x,s) = [hs(X), hsa)(x), ..., hsg—1)(x)] and w(y,
s) = [hs(y), hsy(¥), - .-, Asg—1) (¥)]. s is the focal unit, s(i) is the i th
order of spatial lags, and hy;)(x) is the observation function. y(x,s1),
..., W(x,s;) are near neighbors of the focal point w(x, s), and by
combining these vectors one can construct the shaded manifold Mx.
My is constructed identically.

2. Determination of proximity: When determined (x, s) is focal point,
the states of its near neighbors (e.g., y/(x,s1); w(x,52); w(x,s3)) can be
used to identify w(y,s) in the corresponding My manifold. The dis-
tance function used for determining the proximity between two
states in the shadow manifold is defined in Eq. (6):

dis(y (x,s:),y(x,5)) :% <|h:(i) (x) = h(x)| + 2 abshsig (x), hsry (x)])
(6)

where abs|x, ] is the distance function. If the input data is raster, abs|x, x|
is defined the averaged absolute difference of each spatial unit; If the
input data is polygon, abs|x, ] is defined as the absolute difference of
spatial lags.

3. Conduct cross-mapping prediction: According to the dynamical sys-
tems theory, there is a one-to-one mapping relation between the
reconstructed Mx and My. For any given focus state x in Mx, the state
y in the corresponding My can be obtained based on the mutual
spatial location s and its close states, i.e., cross-mapping prediction,
as shown in Eq. (7):

L+1
YiMx =" (wyYq | Mx) %)

i=1

where s represents a spatial location in the shadow manifold; i is the
spatial lag; Yj; is the observation value at the location s with the lag of i.
wsi is the corresponding weight between two states in the shadow

manifold; Y, is the predicted result.

4. Extract and evaluate causations: The causal associations can be
evaluated by the cross-mapping prediction skill p, which is measured
by the Pearson correlation coefficient between the observed and
predicted values, defined in Eq. (8):

P Cov(Y,Y) _ ®

Var(Y)Var(Y)

where Cov() represents covariance and Var() represents variance. The
value of p varies with the size of library (the number of spatial units used
to reconstruct the shadow) and the convergence of the GCCM implies
that p grows until the library reaches its maximum. The higher the value
of convergence p indicates stronger causality. In this process, the
embedding dimension starts from L = 1 and gradually increases, adding
more spatial lags to the state space reconstruction. The optimal L is
found when p reaches a plateau, indicating that adding more lags does
not significantly improve predictions. The p-value <0.05 indicates that
the results are statistically significant, and the confidence interval is
95%.

In this study, we employed the GCCM to explore the causation
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between the human mobility indices (i.e., MDI_daytime, MDI_nighttime,
and ATSI) and each of the potential impact factors. Since the analysis
was conducted at the census block group level, the spatial units were
census block group polygons. The study area contains a total of 3021
census block groups, which is the size of the library in the GCCM. Based
on the arithmetic process described above, we obtained the cross-
mapping prediction skill p between any mobility change index and po-
tential driver, as well as its variation with the size of the library. Then we
plot it for better understanding. For each plot, the x-axis is the size of the
library, the y-axis is the value of p, and the line "X xmap Y” denotes the
change in p with library growth if Y is set to be the cause and X is set to
be the effect. For example, the line “MDI xmap INCOME” is the basis to
determine whether INCOME is a cause of MDI (noted as INCOME —
MDI). Currently, we may be more focused on the causal strength from
potential drivers to human mobility indices.

3. Results
3.1. Temporal mobility pattern changes under heatwaves

Fig. 3 illustrates the temporal patterns of human mobility over the
entire HMA during the 2022 heatwave compared to the reference pe-
riods in 2019 and 2021 and the 2022 non-heatwave. Generally, human
mobility shows a consistent daily cyclical pattern during both heatwave
and normal conditions. The lowest mobility levels are observed during
the late night to early morning hours (0 a.m.-5 a.m.). Subsequently, the
mobility gradually increases until it reaches a distinct peak in the
midday hours (11 a.m.-2 p.m.). After a brief decline, mobility surges
again and peaks throughout the day in the late afternoon to early eve-
ning (4 p.m.—6 p.m.). The pattern of mobility on weekdays (Monday to
Friday) is relatively stable, whereas the pattern of mobility on weekends
(Saturday and Sunday) differs from that on weekdays, especially in the
absence of a significant morning peak. This variation is likely attributed
to the lack of work/school-related commuting on weekends, granting
individuals more flexibility in their outdoor schedules.

Comparing human mobility during the heatwave versus control
groups shows that the pattern of population movement during the
heatwave in 2022 was significantly different from the other two control
groups in 2019 and 2021. For weekdays, there is a significant decrease
in mobility during the heatwave, especially at the peak hours in the
morning and afternoon. This suggests that individuals potentially adjust
or minimize their travel behaviors such as commuting to circumvent
peak heat exposures. This trend is further corroborated by weekend
data, especially as late afternoon mobility during the heatwave was
reduced by about 10-15% compared to non-heatwave periods. Likely,
weekends afford people more discretion, hence they opt to remain in-
doors during heightened temperatures. It is noteworthy that human
mobility during the heatwave appeared to increase in part of the night
and early morning hours on some days, indicating people’s preference to
travel during cooler times to escape daytime heat. The comparison of
human mobility during the 2022 heatwave with the three-week periods

(a) Weekdays
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preceding and following the heatwave further strengthens the robust-
ness of our findings, i.e., the phenomenon of declining mobility during a
heatwave.

To understand the differential effects of daytime and nighttime
mobility change during heatwave more comprehensively, we defined
the period from 7 a.m. to 6:59 p.m. as daytime, and the period from 7 p.
m. to 6:59 a.m. the following day as nighttime. We calculated the dif-
ference in human mobility at the same moment during heatwave and
non-heatwave periods in different years shown in Fig. S2. It is clearly
observed that daytime mobility experienced a significant decrease
during the heatwave relative to both reference periods in 2019 and
2021. This downturn in mobility is plausibly linked to individuals
avoiding exposure to high temperatures during the day. As for nighttime
mobility, there is still a discernible decrease, although the decrease in
duration and intensity are diminished compared to the daytime.
Notably, in comparison to the non-heatwave period of 2021, there are
distinct periods during the nighttime when mobility increased signifi-
cantly. This also demonstrates that people tend to delay their activities
to relatively cooler hours.

3.2. Travel behavior changes as a heat adaptation strategy

First, the study examined the hourly changes in people’s movements
(mobility) during the 2022 heatwave and compared it with referenced
periods in 2019 and 2021 in the HMA region (Fig. S3). The red dashed
line in the graph indicates mobility during the heatwave event, while the
green and blue lines represent mobility in the non-heatwave years of
2019 and 2021, respectively. In general, there is a clear decrease in
human mobility during the heatwave, especially at rush hours of
commuting (e.g., 8 a.m.,12 p.m. and 5 p.m.). Specifically, compared to
2019, mobility during the heatwave begins to significantly decrease
earlier in the day, around 5 a.m. (which is about 8 a.m. when compared
to 2021). The time when mobility decreases the most within a day also
differs against 2019, the largest drop happened around 8 a.m. and 12 p.
m., while compared to 2021, it was between 2 p.m. and 3 p.m.

Furthermore, the percentage of hourly mobility changes during a
heatwave relative to non-heatwave days was calculated (Fig. 4).
Compared to 2019 and 2021, mobility during the 2022 heatwave event
exhibited an approximate 10% overall decline at the daytime hours. It is
noteworthy that mobility at the nighttime moments under the 2022 heat
event shows a significant increase by 10%-20% compared to the same
nighttime period in 2021. However, when compared to 2019, there’s a
noticeable mobility reduction during nighttime relative to the daytime.
Based on the percentage change curve of mobility and Eq. (3), the
calculated MDI values for daytime and nighttime, compared to the 2019
control group, are —69.78 and —117.07, respectively. When compared
to 2021, the MDI values are —52.08 during daytime and 82.25 during
the nighttime. For robust check, the daytime MDI is —35.84 and the
nighttime MDI is 27.72 when compared to non-heatwave period in
2022. The results all show a significant trend of decreased mobility
during the heatwave in daytime.

(b) Weekends
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Fig. 3. Mean hour-by-hour changes in human mobility during the 2019 control, 2021 control, 2022 non-heatwave, and 2022 heatwave periods: (a) weekdays;

(b) weekends.
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Fig. 4. Hourly percentage change in human mobility during 2022 heatwave compared to (a) 2019 control group, (b) 2021 control group, (c) 2022 non-heatwave.

Fig. 4 suggests that mobility during the 2022 heat wave experienced
a notable decrease during both daytime and nighttime when compared
to 2019, the pre-Covid-19 control group. This reduction could be
attributed to the effects of COVID-19, which had a significant impact on
people’s behavior, willingness to travel, and travel patterns, as indicated
by Abdullah et al. (2020). To isolate the impact of the heat wave and
reduce influences caused by COVID-19, we only studied the mobility
changes in 2021, the post-Covid 19 non-heat wave period, and 2022, the
heat wave event period, for the subsequent analysis.

To further analyze the impact of the heatwave on human mobility in
HMA, we examined the spatial disparities Mobility Disruption Index
(MDI) during daytime and nighttime at block group level. The results are
illustrated in Fig. 5 (a) and (b), in which blue denotes the block groups
with negative MDI values, indicating reduced mobility, whereas red
block groups with increased mobility with positive MDI values. During
the daytime, 88.5% of the total block groups have a negative MDI,
indicating that most communities decreased mobility in response to the
extreme heat event. A few block groups show an increase in mobility
(MDI >0), and these block groups are dispersed without clear clustering.
During nighttime, the percentage of block groups with MDI >0 rises
significantly from 11.4% during the daytime to about 40%. Notably, in
terms of spatial distribution, the block groups with increased mobility
are primarily in the central area of the HMA, while those with decreased

mobility are located in the peripheral suburbs.

Fig. S4 compares the Mobility Disruption Index (MDI) values in
urban and rural communities during the daytime and nighttime. The
average daytime MDIs are similar for both areas (—152.3 for urban and
—141.1 for rural), while the average nighttime MDIs rise to 2.7 in urban
communities, significantly higher than —75.0 in rural communities. This
underscores the different adaptation strategies used by residents in
urban versus rural areas during the heatwave event. Additionally, urban
communities have better access to air-conditioned entertainment and
shopping facilities, helping residents cope with extreme heat. Never-
theless, it is noteworthy that these factors may not be the only drivers of
differences in mobility changes between urban and rural communities.

3.3. Alteration in the rhythm of nighttime activity

Fig. 5 (c) shows the spatial disparities of the Activity Time Shift Index
(ATSI) at block group level. The majority of block groups demonstrated
a delay in activity time, thus confirming our hypothesis that people
adjust their activity schedules as an adaptation response to extreme
heat. Block groups colored green have positive values of ATSI, signifying
a delay in the timing of the activity. Conversely, block groups colored
red have negative ATSI values, indicating an overall advancement in
activity timing during heatwave days. The histogram on the left on Fig. 5
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Fig. 5. The spatial distribution of (a) daytime MDI, (b) nighttime MDI, and (c¢) ATSI, coupled with corresponding counts of census block groups with different levels.

(c) shows that 77.5% of the block groups have ATSI values greater than
0, with an average activity time lag of 17.4 min. Furthermore, the spatial
distribution of ATSI shows noteworthy variations, with the central block
groups of the HMA displaying a significant delay in activity time,
whereas suburban block groups exhibit a less pronounced delay and, in
some instances, even an advance in activity time. The comparison of
activity time shifts between urban and rural communities (Fig. S5) il-
lustrates that urban communities have an overall ATSI greater than 0,
whereas rural communities exhibit significantly lower ATSI values,
some even falling below 0. Combined with the findings from the spatial
distribution of the MDI (Fig. 5 (a) and (b)), these results reveal that
urban communities tend to delay activity to a later time on heatwave
days and thus avoid performing outdoor activities during the hottest
time during a day. Urban communities experienced exacerbated severity

of heat extremes relative to rural communities, due to the urban heat
island phenomena (Jiang et al., 2019). Our result reveals that urban
communities are more sensitive and proactive in adapting to heat ex-
tremes to mitigate the adverse impacts.

3.4. Drivers leading to mobility pattern disparities

In this section, we employed the Geographical Convergent Cross
Mapping (GCCM) method for the casual driver detection between the
mobility change indices and the potential socioeconomic and built-
environment drivers. The nonparametric nature of the GCCM method
allows us to investigate causal relationships in complex systems without
imposing prior assumptions of linearity or non-linearity. The causal
inference results between daytime MDI and the potential socioeconomic
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and built-environmental drivers are shown in Fig. 6. Due to page limit,
the results for the other two indices, the nighttime MDI and ATSI, are
included in Supplemental Figs. S6 and S7, respectively.

In Fig. 6, the red line represents the p (cross-mapping prediction
skill) of the daytime MDI xmap potential drivers varying with the size of
the L (library), which measures the causal effect intensity of potential
drivers on the daytime MDI (noted as potential drivers — daytime MDI,
daytime MDI xmap potential drivers). The blue line illustrates the causal
impact of daytime MDI on potential drivers. The observed upward trend
in p with the expanding library size is justifiable, as larger datasets are
utilized in cross-validation during the evaluation of cross-map perfor-
mance. In this research, we mainly focus on exploring which potential
drivers have a strong unidirectional causal effect on the daytime MDI, i.
e., the red line exhibits a relatively high cross-mapping ability, and it
suffices for another line to maintain a significant gap above it. Notably,
the p values of daytime MDI xmap minorities ratio, population density,
higher education, poverty ratio and POI of transportation (minorities
ratio — daytime MDI, population density — daytime MDI, higher edu-
cation — daytime MDI, poverty ratio — daytime MDI, and POI of
transportation — daytime MDI, respectively) are substantial and statis-
tically significant, as 0.32 (p = 0.00), 0.19 (p = 0.00), 0.30 (p = 0.00),
0.26 (p = 0.00), and 0.19 (p = 0.00). These results underscore the
presence of a significant unidirectional causal relationship between
these variables and daytime MDI. Conversely, the p values of daytime
MDI xmap female ratio, commute by car, and other POI related drivers
are much smaller and somewhat nonsignificant, suggesting that these
variables have a weaker causal influence or no causation on daytime
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MDI. The detailed results of the GCCM tests are summarized in the
Supplemental Table S1.

By comparing p values of different potential drivers on the mobility
change indices (i.e., daytime MDI, nighttime MDI, and ATSI), we iden-
tified the primary drivers leading to mobility change disparities during
heatwaves, and the results are shown in Fig. S8. Socioeconomic vari-
ables, colored in red in Fig. S8, emerged as the dominant drivers influ-
encing daytime MDI, with minorities ratio, higher education, poverty
ratio, commute by public and transportation POI density, ranking
among the top five variables in terms of causality. In contrast, nighttime
MDI was primarily influenced by the percentage of imperviousness,
followed by factors such as the minorities ratio, transportation POI
density, population density and road density. Similarly, percentage of
imperviousness is also the dominant variable for the ATSI, and subse-
quently percentage of tree cover, minorities ratio, POI of transportation
and road density. Notably, the significant influence of minorities ratio
on all mobility change indices underscores a critical issue of climate
equity and justice. Furthermore, the percentage with higher education,
and poverty ratio significantly influenced the unequal daytime mobility
disruptions across communities. This finding highlights the disparities of
mobility behaviors across different demographic groups during heat-
waves. Built environment factors, including percentage of impervious-
ness, percentage of tree cover and road density contribute substantially
to nighttime MDI and ATSI, which is consistent with our finding that
human mobility changes the shifts in activity time vary considerably
between urban and rural areas in the nighttime.

One potential driver can either negatively or positively influence
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mobility behavior changes through different mechanisms (Xu et al.,
2018). Given the limitations of the GCCM in determining the direction of
causal influences, correlation analysis was then employed as a comple-
mentary methodology to further determine the qualitative direction of
influence (positive or negative) of the top five ranked potential drivers
on the three mobility change indices (Fig. S9). For daytime MDI (Fig. SO.
(a)), the minorities ratio and the poverty ratio positively influenced it,
indicating that these subgroups of population are less able to reduce
their mobility in response to heat extremes, and thus may be subject to
greater heat exposure. This finding was consistent with previous studies
(Xu et al., 2020; Mitchell and Chakraborty, 2015), suggesting lower
socioeconomic and minority status are expected to undertake a higher
risk of heat exposure. Results also reveal that factors such as % commute
by car and transportation POI density are positively correlated with
daytime MDI. Percentage of higher education is negatively correlated
with daytime MDI, with a Spearman correlation coefficient of —0.2783
(p-value less than 10~%). Individuals with higher educational attainment
often have a better socio-economic standing, providing them the flexi-
bility to plan their schedules and thus avoid traveling during the peak
heat hours.

The results also show that all the top five potential drivers ranked by
causality strength have a statistically significant positive influence on
nighttime MDI (Fig. S9. (b)). The block groups with higher impervi-
ousness ratio as well as higher roads and population density exhibit a
less noticeable adaptation response in reduced nighttime mobility dur-
ing heatwaves. In addition, built environment factors such as impervi-
ousness ratio and road density are statistically significantly positively
correlated with ATSI, while tree cover had a Spearman correlation co-
efficient of —0.1737 (p-value less than 10~*) with the ATSI, suggesting
that the lag in activity time is greater in urban areas than rural areas.
Urban regions offer a greater variety of shopping and leisure venues that
operate during nighttime, facilitating human activities. In contrast,
suburban areas predominantly feature daytime attractions such as parks
and scenic spots, resulting in less nighttime activity in these regions.
Notably, the minority ratio shows statistically significant positive cor-
relations with both daytime and nighttime MDI and ATSI, suggesting
that minority groups are less capable of implementing effective adap-
tation strategies to reduce mobility during periods of high-temperature
heat waves. Consequently, compared to other demographic groups, they
bear a greater burden of heat exposure during daytime hours and rely on
strategies such as shifting activity time to a cooler time to reduce overall
heat exposure. This highlights the need for targeted adaptation strate-
gies to support minority groups in the face of heatwave events.

4. Discussion and conclusions

Understanding and accurately quantifying the dynamic patterns of
human mobility during extreme heat events is critical to revealing the
changes in population exposure under high temperature and to
informing policy aimed at minimizing negative health outcomes. Ano-
nymized and privacy-enhanced mobile phone location data provided the
timely and fine-scale resources for both local and city-scale response to
heat in a humid-hot city. MDI and ATSI indices proposed in the study
were proven effectively to capture human mobility perturbations and
the time shift of activities using the 2022 heatwave in the HMA as an
example. More importantly, these indices are scalable and can be used to
analyze human mobility behavior under other hazards such as hurri-
canes and winter storms. This research not only fills the research gap in
existing studies on the assessment of community adaptation strategies
under extreme heat events from a human mobility perspective (Carman
and Zint, 2020), but also disentangles the potential drivers affecting
mobility changes using state-of-art causal inference analysis, which of-
fers insights for heat managements and heat resilience planning and
supports the development of actionable measures to mitigate adverse
heat impacts.

Existing research has established that human mobility follows
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inherent patterns largely based on historical behaviors and frequent
visits (Brockmann et al., 2006; Schlapfer et al., 2021). Our study con-
firms this, finding that human movement is distinctly cyclical and varies
between weekdays and weekends. However, extreme events like floods,
winter storms, and epidemics can substantially disrupt routine travel
behaviors, such as the choice of travel mode, travel time, and travel
destinations, thus altering these established mobility patterns (Li et al.,
2022). This study discovers that extreme heat events decrease human
mobility during daytime hours. Notably, this reduction is not attribut-
able to infrastructure or transportation disruptions from inclement
weather (e.g., flooding, earthquake), but rather results from human
movement responses to avoid extreme heat exposure during peak tem-
peratures. Concurrently, these adaptation measures lead to behavioral
shifts in movement activity, evidenced by heightened nocturnal
mobility during heatwaves, suggesting a preference for adjusting
movements to a cooler period of the day. Such adaptation responses
have significant health implications by reducing exposure to intense
heat extremes (Fan et al., 2023).

Additionally, it is important to acknowledge that while the temporal
shift in activities as an adaptive response effectively mitigates the
adverse impacts of heat exposure, it potentially influences rest-activity
cycles. Our research indicates that during heatwaves, most commu-
nities in the Houston Metropolitan Area had increased nighttime activ-
ities, delaying movement activities for up to 105 min past 8 p.m.
Physiological studies have noted that such a delay in nightly activities
can chronically disrupt normal circadian rhythms, leading to immediate
sleep disturbances and potential psychological consequences
(Youngstedt et al., 2019; Pandi-Perumal et al., 2022). These observa-
tions underscore the concept of maladaptation and the persisting risks in
adapting to climate change (Schipper, 2020). They also highlight the
critical importance of considering these behavioral adjustments in
future research on heat-related health impacts.

In terms of the analysis of potential drivers of mobility change, to the
best of our knowledge, this study is the first to reveal the causation
between human mobility and factors like socioeconomic, built envi-
ronment and POI through causal inference modeling. Previous studies
have shown that there is an intertwined and complex relationship be-
tween human mobility patterns and socioeconomic indicators (Xu et al.,
2018). Therefore, instead of constructing a complex model based on a
regression model by combining many possible influencing variables, this
case study employed a GCCM that is not constrained by the assumption
of linearity or nonlinearity of correlation (Gao et al., 2023). Our causal
inference suggested that socioeconomic factors such as the proportion of
vulnerable groups (e.g., minorities and poverty) and commuting pat-
terns significantly influence mobility changes during heat waves. This is
consistent with previous findings on the relationship between mobility
and socioeconomic status, whereby lower socioeconomic populations
are more vulnerable to heatwaves, whereas higher-income populations
tend to have sufficient capacity to take a variety of adaptive measures to
minimize their exposure risks (Xu et al. 2018, 2020; Mitchell and
Chakraborty, 2015; Liu et al., 2020). We also observed that built envi-
ronment factors make an important contribution to mobility changes
and delayed activity times at night, and that mobility decreased not
significantly in urban areas compared to rural areas during heatwaves.
Several studies have inferred that individual heat exposure in urban
areas is greater than in rural areas due to factors such as the population
structure, cultural differences, and the urban heat island effects
(Lopez-Bueno et al., 2022; Hsu et al., 2021; Bernhard et al., 2015). The
findings of this study can be supplemented to explain the greater indi-
vidual heat exposure in urban areas in terms of differences in human
adaptive strategies.

Several limitations should be fully acknowledged in this research.
First, the mobile phone location dataset is aggregated by census block
groups, representing collective behaviors rather than -capturing
individual-level activities. This aggregation limits the ability to discern
specific behavioral adaptations to heatwaves at the personal level.
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Furthermore, it is important to recognize that data aggregated to this
scale fail to account for intra-block-group movements. Consequently,
this would lead to overlooked short-range adaptive behaviors, such as
visits to local cooling centers or neighborhood pools located within the
same block group. Secondly, the official report states that the dataset has
a 7.5% sampling rate of total population (Li et al., 2024). It is inevitable
that there are still children, elderly and low-income people who may
have been overlooked in this study due to their inability to use mobile
devices. Finally, the present study only considered the adaptation be-
haviors of mobility during heatwaves and did not consider the conse-
quences of possible compound effects such as air pollution and heat. The
GCCM has limitations in explaining compounding effects between var-
iables, and further enhancements to the model algorithms need to be
explored in the future to improve the explanatory ability. We also not
account the urban temperature’s spatial variation in mobility analysis.
For example, typically stronger nocturnal urban heat islands further
influence the urban-rural nighttime mobility differences. Future
research could further illustrate those details by focusing on mobility at
the point-of-interest level and even at the individual level, incorporating
contextual information by combining multisource data (e.g., social
media, surveys) to mitigate the bias caused by sample selection. Extreme
heat may trigger droughts, wildfires, and air pollution, resulting in
compound disaster events that pose a more serious threat to the human
community. Therefore, a crucial area of future research is understanding
human mobility responses to these complex compound disasters. There
are significant differences in the perception of extreme heat by people
from different climatic backgrounds, leading to disparities in adaptive
behavior, and future research will also focus on comparative analysis of
changes in human mobility under extreme heat in multiple cities.
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