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SECONDARY LITERATURE REVIEW ARTICLE

Big Earth Data for quantitative measurement of community 
resilience: current challenges, progresses and future 
directions
Yi Qianga, Lei Zoub and Heng Caib

aSchool of Geosciences, University of South Florida, Tampa, USA; bDepartment of Geography, Texas A&M 
University, College Station, USA

ABSTRACT
Quantitative assessment of community resilience can provide sup
port for hazard mitigation, disaster risk reduction, disaster relief, 
and long-term sustainable development. Traditional resilience 
assessment tools are mostly theory-driven and lack empirical vali
dation, which impedes scientific understanding of community resi
lience and practical decision-making of resilience improvement. In 
the advent of the Big Data Era, the increasing data availability and 
advances in computing and modeling techniques offer new oppor
tunities to understand, measure, and promote community resili
ence. This article provides a comprehensive review of the 
definitions of community resilience, along with the traditional and 
emerging data and methods of quantitative resilience measure
ment. The theoretical bases, modeling principles, advantages, and 
disadvantages of the methods are discussed. Finally, we point out 
research avenues to overcome the existing challenges and develop 
robust methods to measure and promote community resilience. 
This article establishes guidance for scientists to further advance 
disaster research and for planners and policymakers to design 
actionable tools to develop sustainable and resilient communities.
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1. Introduction

Due to climate change and rapid population growth in hazard-prone areas, human 
communities are increasingly confronted with the escalating threats of natural disasters, 
entailing significant socio-economic consequences. These disasters arise from both rapid- 
moving large-scale disturbances such as hurricanes and storm surges, as well as slow- 
moving processes such as coastal erosion, sea level rise (Nicholls et al., 1999), and the 
decline of ecosystem services (Spalding et al., 2014; Tebaldi et al., 2012). The devastating 
impacts of Hurricane Katrina and Rita in the Central Gulf Coast in 2005 have spurred 
heightened attention toward the resilience and long-term sustainability of human 
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communities. Empirical evidence reveals that, even when exposed to the similar hazard 
intensities, communities exhibit varying degrees of impacts and diverse recovery patterns 
across socio-economic conditions (Finch et al., 2010; Fussell et al., 2010), public health 
(Burton, 2006), and psychological well-being (Adeola, 2009). These observed disparities 
can be attributed to the capacity of communities to “bounce back” from adverse condi
tions, commonly known as community resilience.

The quantitative measurement of community resilience has gained considerable atten
tion in recent years (e.g. Cutter et al., 2010; Lam et al., 2016; Peacock, 2010) due to its 
provision of a structured and standardized approach for assessing and comparing resi
lience levels across different communities, regions, or time periods. Through rigorous 
statistical modeling, quantitative resilience measurements allow researchers to identify 
significant factors and relationships that shape community resilience, empowering evi
dence-based decision-making for policymakers and practitioners regarding the effective
ness of resilience-building interventions. Despite advancements in resilience research, 
challenges persist in quantitative resilience measurements. First, no consensus exists on 
the definition of resilience. Various definitions and conceptual frameworks adopted in 
different disciplines lead to diverse assessment methods, which often produce inconsis
tent or even contradictory outcomes. Second, existing resilience assessment tools are 
predominantly theory-driven, lacking empirical validation and ground-truthing. Finally, 
our understanding of the mechanisms underlying community resilience remains limited. 
Without knowing the underlying factors and their interplay, it is difficult to develop 
effective measures and actionable tools to promote community resilience.

In recent years, community resilience research has been revolutionized by the 
advancements in data acquisition and computing techniques. The concept of Big 
Earth Data (BED) emerges when the vision of Digital Earth entered into the era of Big 
Data (Guo et al., 2017). BED is defined as big data about the earth system obtained 
through earth observation means such as spaceborne, airborne, and ground sensors 
(Guo et al., 2016). In the recent literature, BED is more broadly defined as data about 
the Earth’s environment and human-environment interactions collected by cutting- 
edge technologies, including but not limited to in-situ sensor network, Web 2.0, 
mobile devices, citizen science, internet-of-things and social sensing contributed by 
human beings (Guo et al., 2017; Sudmanns et al., 2020; Yang et al., 2019). The 
convergence of BED and artificial intelligence (AI) has opened exciting new possibi
lities for studying and building community resilience. These emerging data sources 
and technologies offer real-time or near-real-time disaster monitoring capabilities, 
social sensing capabilities, and data-driven decision-making tools. Leveraging these 
tools and insights from BED has deepened our understanding of community resi
lience and holds tremendous potential for developing robust resilience measure
ments and decision-making tools.

Despite the rapid development of data-driven resilience measurement, there is limited 
discussion on the theoretical foundations, modeling principles, and the advantages and 
disadvantages of various resilience measurement approaches. To this end, this article aims 
to comprehensively review the definitions, conceptual frameworks, and quantitative 
measurement approaches of community resilience. Differentiated from existing review 
work on resilience measurements, this article sheds light on the recent progress of data- 
driven approaches on resilience measurements. Special attention will be paid to the use 
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of emerging BED to address the pressing challenges in resilience research. The goals of 
the article are synthesizing existing research, identifying knowledge gaps, and providing 
guidance for future research directions.

2. Definitions of resilience

The concept of resilience has been widely explored in the literature; however, there is still 
a lack of consensus within the scientific community regarding its definition and concep
tual framework. Holling (1973) initially introduced the concept of resilience, characterizing 
it as the capacity of an ecological system to endure change amidst severe perturbations, 
while still maintaining its continued existence. In social sciences, Timmerman (1981) 
proposed resilience as inherent conditions of a system that enable it to absorb and 
rebound from catastrophic events. Adger et al. (2005) adopted a holistic perspective on 
resilience, defining it as the capacities of linked social-ecological systems for absorbing 
recurrent disturbances, self-organization, learning and adaptation. Cutter et al. (2008) 
further refined this concept, asserting that community resilience encompasses not only 
the inherent conditions of a system to cope with threats, but also post-event, adaptive 
processes that facilitate the system to re-organize, change, and learn in response to such 
threats. Unlike engineered systems where resilience can be gauged using specific perfor
mance metrics, community resilience is complex and multifaceted, making it challenging 
to precisely quantify using observable indicators. Moreover, community resilience is 
dependent on complex human-environment interactions (Janssen et al., 2006), and it is 
a dynamic process involving adaptive learning and feedback loops. Unlike engineered 
systems where resilience can be gauged using specific performance metrics, resilience of 
human communities is inherently complex and multifaceted, and cannot be precisely 
quantified from observable indicators. Moreover, community resilience intricately reflects 
complex human-environment interactions in external stressors (Janssen et al., 2006) and is 
a dynamic process involving adaptive learning and feedback loops in coupled natural and 
human (CNH) systems (Lam et al., 2018, 2018).

Despite the extensive discussions in the literature, the scientific community has yet to 
reach a consensus on the definition and components of community resilience. Different 
disciplines adopt varying definitions and conceptual frameworks, shaping researchers’ 
understanding and interpretation of community resilience. An extensive literature synth
esis conducted by Cai et al. (2018), which analyzed 174 scholarly articles on resilience, 
reveals diverse attempts across disciplines, such as environmental science, geography, 
health, and civil engineering, to define resilience in the context of different hazards like 
floods, earthquakes, and climate change. More recently, the US National Institute of 
Standards and Technology (NIST) has created an inventory that documents 56 community 
resilience frameworks and assessment tools (Dillard, 2021; Walpole et al., 2021). These two 
synthetic studies reveal that regardless of the disciplines, study areas, and disaster types, 
the common words in defining resilience include anticipate, resist, absorb, response, 
recovery, self-organization, learning, adaptive capacity, indicating a shared understanding 
of resilience.

The interdisciplinary views of resilience also sparked the debate whether resilience 
should be considered as an outcome or a process, resulting in diverse frameworks for 
measuring resilience (Finch et al., 2010; McPhearson, 2014). From a process perspective, 
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resilience refers to the capacity of a system or entity to adapt, respond, and recover from 
disturbances or shocks. This view focuses on the dynamic and ongoing process of 
learning, adaptation, and transformation that occur to bounce back from adversity. Due 
to its abstract nature and complex interrelationships, measuring the process of resilience 
often involves a combination of theoretical or even hypothetical indicators that capture 
various aspects of adaptive capacity, learning, social dynamics, and decision-making 
processes. On the other hand, resilience can also be viewed as an outcome or a state 
achieved after a disruption. In this view, resilience represents the ability to withstand and 
recover from shocks, maintain essential functions, and return to a desired state. The 
outcome of resilience can be measured by tangible indicators that demonstrate the 
successful recovery and restoration of a system. These divergent views of resilience 
further impede the standardization of the methods to measure and enhance community 
resilience.

3. Traditional measurement methods

Considerable research has been conducted to develop quantitative metrics to measure 
community resilience. Currently, the resilience measurements can be generally categor
ized as “top-down” and “bottom-up” approaches. The top-down measurements are 
constructed through established theories, predefined indicators, and expert opinions. 
As a typical example of the top-down approach, resilience indices compose measurable 
indicators that can represent intrinsic resilience characteristics. In contrast, the “bottom- 
up” measurements are built on empirical observations of socio-economic consequences 
in real disaster events. In other words, the resilience indices reflect the process view of 
resilience, while the empirical approaches use resilience outcomes to measure resilience 
and its relations with underlying processes. In this section, we categorize the resilience 
measurement methods as the index approaches (top-down) and empirical approaches 
(bottom-up).

3.1. The index approach

The development of indices for measuring and monitoring disaster resilience is the first 
fundamental step toward enhancing resilience. Resilience indices provide easily accessi
ble, practical, and timely information to aid decision-making in disaster preparedness, 
response, and recovery. The synthesis analysis conducted by Cai et al. (2018) revealed that 
45% of the reviewed 174 articled have attempted to create quantitative resilience indices. 
Among the quantitative measurement methods employed, statistical and data mining 
techniques were the most commonly used, including correlation analysis, principal com
ponent analysis (PCA), multivariate regression, and clustering analysis. The primary data 
sources include census data, questionnaire surveys, interviews, fieldwork observations, 
and historical disaster records (Dillard, 2021; Walpole et al., 2021).

One widely used approach for resilience assessment is the creation of composite 
indices that synthesize socio-economic and environmental indicators. As the earliest 
and most cited resilience index, the Baseline Resilience Indicators for Communities 
(BRIC) aggregates a number of baseline indicators in different dimensions into an overall 
score (Cutter et al., 2010). As shown in Table 1, the BRIC index comprises a common set of 
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variables in six different domains (i.e. social, economic, housing and infrastructure, institu
tional, community, and environmental). Initially, a sub-index is constructed for each 
capital by transforming the raw variables within the domain to a scale from 0 to 1 and 
assigning their positive or negative contributions to resilience. The sub-index scores are 
then aggregated using an equally weighted average method to calculate the final 
composite resilience score. Similarly, the Community Disaster Resilience Index (CDRI) 
categorizes resilience indicators into a 4 × 4 matrix of capital domains (i.e. the social, 
economic, physical, and human capital) and disaster phases (i.e. the mitigation, prepared
ness, response and recovery phase). These indicators are then aggregated to an overall 
index (Peacock, 2010). Other resilience indices, such as those proposed by Foster (2012), 
Hung et al. (2016), and Sherrieb et al. (2010), employ various indicators, weighting 
schemes, and aggregation methods. Socio-economic indicators used in resilience indices 
are often derived from official data sources such as census data. A related method is 
scorecard, which applies qualitative methods to assess resilience-related items, actions or 
capacities (e.g. CARRI, 2013; Sempier et al., 2010). These resilience indices and scores 
provide essential baseline information regarding community resilience and its geogra
phical disparities and temporal evolution.

However, despite the multitude of efforts in creating resilience indices, a rigorous and 
universally accepted index for monitoring resilience enhancement progress remains 
elusive due to several limitations in existing methods. First, the weighting schemes 
used to aggregate resilience indicators into a composite index lack empirical validation 
and ground-truthing (Bakkensen et al., 2017; Cai et al., 2018). Second, there is an incon
sistency in variable selection across different studies, and a lack of consensus on indicator 
selection across regions and disaster types, resulting in inconsistent resilience quantifica
tion outcomes (Beccari, 2016; Cutter, 2016). In addition, most existing measurement 
methods have no inferential capacity to predict resilience in other regions or under future 
scenarios. Table 1 provides a summary of the common resilience indices in terms of their 
indicators, data sources, pros and cons.

3.2. Empirical approaches

Despite the wide use of indices and scorecards in resilience measurements, it remains 
unclear how well these scores and indices can explain disaster outcomes (Rufat et al.,  
2019). Recently, efforts have been made to validate the established resilience measure
ments with empirical data. A common method to validate resilience is comparing the 
resilience index with empirical data of disaster outcomes. Traditional methods of empiri
cal data collection include questionnaire surveys, interviews, and observation of focus 
groups. For instance, Burton (2015) used field surveys about the recovery process in 
coastal Mississippi after Hurricane Katrina to validate common indicators in resilience 
indices. This study identified 41 out of the 64 indicators being statistically associated with 
the recovery process, thereby enabling empirical validated indicator selection and resi
lience measurements. Additionally, Ji et al. (2021) validates nine common resilient indi
cators with household surveys. Their results reveal that only a few of the indicators are 
empirically valid for explaining households’ resilience capacities. Bakkensen et al. (2017) 
compared several well-known resilience and vulnerability indices with disaster outcomes 
such as fatalities, property damages and disaster declarations. Their study shows that the 
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indices produce inconsistent results and are in different relations with the disaster out
comes. Another widely used validation method is to compare the developed resilience 
index with the established indices to prove the efficacy of the index. For example, Sherrieb 
et al. (2010) and Scherzer et al. (2019) compared their resilience indices with established 
vulnerability indices to evaluate the robustness of their indices. All these studies point out 
that the validation of the resilience indices is an essential step before applications in real- 
world decision-making processes.

In addition to validation, a growing number of studies incorporate empirical data in 
deriving or calibrating resilience measurements. As an example, Lam et al. (2009) used 
repeated telephone and field surveys to study business recovery in New Orleans after 
Hurricane Katrina. The disparate recovery rates are used to differentiate resilience among 
communities. Analogously, Harte et al. (2009) used field surveys to analyze communities’ 
response and recovery to fire hazards in Cape Town, South Africa, which are used to imply 
community resilience. Furthermore, the RIM model defines that resilience includes three 
elements (exposure, damage, and recovery) and two relationships (vulnerability and 
adaptability) (Figure 1), assuming that a resilient community can resist damage and 
maintain a speedy population recovery after experiencing a high number of disasters 
(Cai et al., 2016; Lam et al., 2016). Using official databases (e.g. census data and hazard loss 
data), the elements and relations can be measured in administrative units, resulting in 
quantitative scores of community resilience.

In these empirical approaches, community resilience is evaluated from empirical data 
observed in disasters, and thus overcome subjective indicator selection and weighting in 
the index approach. Moreover, these methods use observed disaster outcomes (e.g. 
recovery, fatalities, and damage) to validate or calibrate the indicators and models of 
resilience measurements. Although these studies create valuable insights into community 
resilience, some of data collection methods (e.g. surveys and interviews) are time- 
consuming, and thus the resultant analyses only cover small geographic areas. Studies 
relying on official data sources (e.g. census data) lack timeliness and cannot continuously 
monitor various community functions during a disaster process. These challenges hamper 
the development of comprehensive measurements to capture the dynamic and complex
ity of resilience.

4. Resilience measurement using Big Earth Data

With the advent of the big data era, geospatial data capturing human behaviors, environ
mental changes, and urban dynamics, are collected from various platforms at an unpre
cedented speed and scale. During hazardous events, Big Earth Data collected before, 
during, and after disasters creates empirical evidence for the theory-based assessments 
and provides novel insights to community resilience. In addition to the increasing data 
availability, advances in computing and machine learning techniques facilitate the transi
tion from big data to actionable information and knowledge. As one of the four “Vs” 
(velocity, volume, variety and veracity) that characterize Big Data (Gandomi & Haider,  
2015), the velocity of BED enables real-time or near-real-time monitoring of human 
dynamics at fine spatial and temporal resolutions. The velocity of BED proves particularly 
valuable during the preparedness, response, and recovery phases of a disaster, where 
situations rapidly evolve and data collection poses challenges. In the preparedness phase, 
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BED data has been used in identifying risks and communicating preparedness and 
warning information (Anson et al., 2017), estimating disaster-related public awareness 
and sentiment in the preparedness phase (Zou et al., 2019). In response phase, BED is 
applied to analyze situational awareness (Huang & Xiao, 2015; Vongkusolkit & Huang,  
2021), assess damage (Guan & Chen, 2014), identify evacuation routes (Chae et al., 2014), 
and rescue requests (Zhou et al., 2022; Zou et al., 2023). In the recovery phase, BED data 
can be used to track recovery curves of various community functions (Hong et al., 2021; 
Qiang et al., 2020; Yabe et al., 2022). Metrics derived from the recovery curves, such as 
maximum loss, total loss, and recovery speed, can be associated with intrinsic community 
characteristics (Figure 2), creating empirically-based models to measure and predict 
resilience. Meanwhile, the social sensing capacities of volunteer geographic information 
(VGI), crowdsourced data, and social media data allow us to better observe human 
dynamics that cannot be observed by traditional data sources. This section will epitomize 
the pathways to understanding and measuring community resilience through various 
types of BED, including data from remote sensors (i.e., remote sensing and streetview 
images), data from socialsensors (i.e., social media and citizen science data), and human 
mobility data.

4.1. Data from physical sensors

4.1.1. Remote sensing images
Remote sensing (RS) technologies play a crucial role in disaster management by 
providing valuable insights and aiding decision-making processes. RS images col
lected from a variety of sensors enable the rapid assessment of affected areas 
(Joyce et al., 2009), facilitating the identification of damaged infrastructures 
(Cooner et al., 2016; Dong & Shan, 2013), the extent of flooding (Bates, 2004; 
Peng et al., 2021), and providing support for the search and rescue of victims 
(Bevington et al., 2012). This information helps emergency responders prioritize 
their efforts, allocate resources efficiently, and plan evacuation routes. In resilience 
research, time series of RS images are often used to detect or assess the condition 
of objects that signalize disaster impacts and recovery of human communities and 
infrastructures. As an example, Brown et al. (2010) utilized time series of very high 
resolution (VHR) images to detect key features (e.g. functioning roads, shelters, and 
shrimp ponds) at different time points to infer community recovery. Similarly, 
Bevington et al. (2012) applies VHR images to monitor the temporal change of 

Figure 1. The conceptual framework of the resilience inference model (RIM) (modified from Lam et al. 
(2016)).
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temporary shelters at multiple time points in the affected areas to evaluate post- 
disaster community recovery. Recently, Qiang et al. (2020) utilized annual NTL 
images to analyze long-term economic disturbance and recovery before, during 
and after Hurricane Katrina in 2005 (Figure 3). This study builds a model to 
estimate county-level Gross Domestic Product (GDP) from NTL radiance observed 
in RS images, and then uses time-series of RS images to construct economic 
recovery curves. Specifically, three metrics were calculated from the economic 
recovery curves, including maximum disturbance, recovery rate, and accumulated 
loss (also known as Area Under the Curve or AUC). These metrics are then 
associated with environmental and socio-economic conditions to understand the 
underlying factors that cause the different recovery patterns. Later, Xu and Qiang 
(2021) used daily NTL images to detect short-term human dynamics in 2012 
Hurricane Sandy. These studies reveal the spatial variation of recovery curves of 
community functions, reflecting differential resilience between rural and urban 
communities and communities with various socio-economic conditions.

Figure 2. Conceptual framework of recovery curve.

Figure 3. GDP trajectories estimated from nighttime light in Hurricane Katrina (Qiang et al., 2020).
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4.1.2. Street view images
In parallel to remote sensing imagery, street view imageries (SVIs) have emerged as 
a potent instrument for resilience assessment. SVIs in resilience research are primarily 
derived from web map platforms such as Bing Maps and Google Maps. SVIs at a higher 
frequency can be collected via systematically organized field trips (Burton et al., 2011; 
Meyer & Hendricks, 2018). In contrast to the top-down view of remote sensing imageries, 
SVIs provide street-level, horizontal views of the environment at an extremely high 
resolution, thereby offering distinct viewpoints on building and infrastructure damages 
(Zhai & Peng, 2020; Zou et al., 2022). Moreover, time series of SVIs can be used to track the 
post-disaster recovery (Burton et al., 2011), rebuilding (Curtis & Mills, 2012), and commu
nities resettlement over time (Mabon, 2016).

4.2. Data from social sensors

4.2.1. Social media data
Most existing resilience indices are derived from sociodemographic data collected at 
regular time intervals, such as data from census and health agencies. However, these 
traditional data sources are only available at coarse spatial and temporal resolutions and 
do not provide detailed information about communities’ preparedness levels, actual 
impacts, responses, and recovery behaviors during a disaster management process, 
which reflects communities’ empirical resilience capacities. As a typical product in Web 
2.0, social media has started to play an imperative role in information communication 
during disasters, offering a novel pathway to observing community behaviors and 
impacts and, thus, evaluating community resilience. Specifically, an increasing number 
of people have turned to social media to receive the latest disaster information and 
communicate with friends and rescue teams to prepare for, respond to, and recover from 
disasters. Meanwhile, social media users can act as intelligent sensors that collect infor
mation about their local disaster situation and impacts and share it in their social net
works. Therefore, a growing number of studies have incorporated social media data in 
surveilling communities’ behaviors and damages during disasters to measure and 
enhance community resilience in recent years.

To compare the geographical disparities of social media usage and its applications in 
understanding and measuring disaster resilience, the first step is to geolocate social 
media data. Previous efforts commonly used three attributes to associate social media 
data with locations: geotags, user profiles, and message content (Lin et al., 2022). With the 
popularity of GPS-enabled mobile devices, social media users can geotag their messages 
with coordinates of points or places obtained from GPS. Those geotagged locations are 
considered the ground truth of where users sending social media messages are and, in 
specific scenarios, indicate where those messages are associated. Due to their high spatial 
accuracy and resolution, geotagged data are poised for fine-scale individual- or neighbor
hood-level analysis. An investigation calculated that around 1.5% of disaster-related 
messages are geotagged (Zou et al., 2019). In the absence of geo-tags, user locations 
can be predicted through addresses in user profiles. Many social media platforms allow 
users to fill in addresses when registering for their accounts. Those addresses can 
approximate user locations with their spatial scales ranging from a point to a country. 
User profile locations are suitable for large-scale, community-based (e.g. city or county 
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level) analysis of user behaviors, as around 55% of social media data can be correctly 
associated with a city based on addresses in user profiles (Graham et al., 2014). 
Alternatively, addresses mentioned in social media content can be used. When people 
request rescue, share local disaster impacts and conditions, or discuss disaster events on 
social media, they usually mention locations in their messages (Zou et al., 2023). Those 
message-mentioned locations can be extracted and converted to points or polygons 
through processes of toponym recognition and toponym resolution (Wang et al., 2020). 
Recent investigations have developed deep learning-based models to identify toponyms 
from social media texts and achieved state-of-the-art performance (Zhou et al., 2023).

The geolocated social media data allow us to uncover geographic disparities in 
people’s perceptions, opinions, experiences, and behaviors throughout disaster manage
ment cycles, which cannot be captured in traditional data sources. Such information can 
increase our understanding of community resilience and potentially provide real-time 
support for disaster management. For instance, analyzing social media data can uncover 
spatial and temporal patterns of situational awareness in disasters and their relationships 
with community resilience (Huang & Xiao, 2015; Yu et al., 2019). Zou et al. (2018, 2019) 
analyze the spatial-temporal patterns of Twitter activities during Hurricane Sandy and 
Harvey. As depicted in Figure 4, when Hurricane Sandy landed in the U.S., Twitter users’ 
situational awareness of Hurricane Sandy was the highest, while their sentiment toward 
this event was the lowest. Concurrently, communities displaying a high discussion inten
sity were clustered in the northeastern United States, which was in the vicinity of the track 
of Hurricane Sandy and suffered more damage (Figure 5). The analysis revealed significant 
social and geographical disparities in Twitter use in both events. Communities having 
better social and geographical conditions tend to use Twitter to communicate disaster 
information more often than socially and geographically disadvantaged groups. Also, 
studies show that Twitter data can estimate disaster damage, which is the outcome of 
community resilience. Drawing from examples such as Hurricanes Sandy in 2012, 
Matthew in 2016, and Harvey in 2017, several studies have found strong correlations 
between disaster-related Twitter activities, i.e. disaster-related discussion intensity and 

Figure 4. The ratio and average sentiment of tweets related to Hurricane Sandy in the U.S.
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sentiment, and economic losses across multiple spatial and temporal scales (Kryvasheyeu 
et al., 2016; Mihunov et al., 2022; Yuan & Liu, 2020). Besides, social media can reveal 
discrepancies in crisis responses among different social groups. Yuan et al. (2021) 
employed Twitter data to compare the crisis response in different demographic groups 
during Hurricane Florence. The results indicated that the Hispanic group was more likely 
to express negative sentiment than the Asian, African American, and white groups. 
Meanwhile, the male group revealed more negative sentiments than the female group. 
Using topic modeling, the prevalent topics in different population groups are identified. 
Most recently, a study examined if the social and geographical disparities in disaster- 
related social media use affect communities’ resilience to disasters (Wang et al., 2021). 
Through analyzing Twitter data during the 2012 Hurricane Isaac, the results imply that 
social media use during disasters could be improved to increase the resilience of affected 
communities.

4.2.2. VGI and citizen science data
Volunteered geographic information (VGI) and citizen science data also play an important 
role in disaster management. Arising with the advent of Web 2.0, these data types 
embody the concept of “citizen as sensors”, engaging public users to gather disaster- 
related information that proves vital for emergency response and relief efforts. Various 
web portals (Dixon et al., 2021; Ludwig et al., 2015; Naik, 2016; Pánek et al., 2017) and 
mobile apps (Hendricks et al., 2018; Wang et al., 2018; Yabut et al., 2017) have been 
designed to gather data from citizens regarding hazard extents, property or infrastructure 
damages, and recovery processes from citizen users in various disaster scenarios. 

Figure 5. The county-level ratio of Sandy-related tweets in the contiguous U.S. (Zou et al., 2018).
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However, unlike social media which are primarily used for social networking and com
munication, the VGI and citizen science platforms are designed to collect data of specific 
phenomena. The collection of VGI and citizen science data involved substantial ground
work to engage or incentivize users to submit specialized data through the platforms. 
Consequently, the quality of the VGI and citizen data science is usually higher than social 
media data that needs to be mined from a massive amount of irrelevant data. In addition 
to providing data about disaster resilience, the VGI and citizen science platforms can 
facilitate community engagement, information sharing, and social cohesion – all integral 
components that fortify community resilience.

4.3. Human mobility data

Human mobility data refers to information about the movement of people captured 
through location tracking devices such as GPS signals, connections to WiFi networks, credit 
card transactions, and other means. In disaster events, human mobility patterns can reflect 
disaster impacts on and recovery of human behaviors, social activities, and infrastructure 
conditions, which are central indicators of urban systems’ functionality before, during, and 
after a disaster. Thus, the dynamics of human mobility in disasters are proxies for under
standing and assessing community resilience. With the popularity of mobile devices, 
anonymized human mobility data is becoming increasingly available. The most commonly 
used human mobility data are (1) mobile phone or GPS tracking data; (2) geotagged social 
media data (e.g. Twitter and Weibo); (3) and other digital footprints such as credit card 
transactions, bus rides, e-bike rentals, and rideshare (Haraguchi et al., 2022). The dynamics 
of human mobility detected from these data reflect hazard impacts to and the recovery of 
human communities. For example, Hong et al. (2021) utilized mobile phone tracking data 
to analyze neighborhood-level evacuation and recovery patterns during Hurricane Harvey. 
This study uses recovery curves of human mobility during the hurricane to measure 
community resilience, and then associates the resilience with socio-economic variables. 
Using a similar approach, several invetigations (Wang et al., 2014, 2016) leveraged geo
tagged tweets to compare population movement trajectories in different phases of natural 
disasters as proxies to evaluate human mobility resilience. Qiang and Xu (2020) used traffic 

Figure 6. Recovery of accessibility to critical facilities in Winter Storm Harper (Qiang & Xu, 2020): 
(a) recovery curves of accessibility in census tracts and (b) resilience scores of the road network 
in census tracts.
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data from Google Maps to monitor the dynamics of accessibility in a road network during 
a winter storm (Figure 6). By utilizing the recovery curves of accessibility, it becomes 
possible to evaluate the resilience of the road network across various locations. Yuan 
et al. (2022) applied credit card transactions to analyze disaster impacts on community 
residents, businesses, and infrastructure systems, as well as their recovery patterns. Deng 
et al. (2021) collected 30 million GPS records from around 150,000 unique, anonymous 
users to study the evacuation patterns of Houston residents during the 2017 Hurricane 
Harvey. By computing the evacuation rates and distances, the research uncovers the 
disparity in evacuation tendencies between disadvantaged minority populations and 
more affluent residents. The study also highlights the strong social cohesion exhibited in 
the destination selections of evacuees from more privileged neighborhoods. Moreover, 
Yabe et al. (2020) employed human mobility data from SafeGraph in a Bayesian causal 
inference framework to quantitatively assess the economic impact of disasters on busi
nesses. Finally, Table 2 summarizes the characteristics of various types of BED applied in 
disaster resilience research.

5. Challenges and future directions

Despite the great potential of BED in disaster resilience research, there are several 
challenges that warrant attention in future research.

First, the veracity of Big Data presents uncertainties for data-driven resilience analysis. 
BED data collected from diverse sources can be noisy, incomplete, or biased, which may 
result in flawed insights and erroneous conclusions in resilience analysis. As an example, 
social media data (e.g. Twitter data) is often criticized for the biased user demography and 
the existence of misinformation and fake news. To address these issues, numerous 
solutions have been proposed and tested. For example (Lin et al., 2023), utilized an AI- 
based M3 model to decipher the demographic information of social media users and 
revealed the demographic bias of social media data. Further, they applied the post- 
stratification method to mitigate the demographic biases when computing indices from 
social media data. Fake news can be detected through knowledge-based, style-based, 
stance-based, and propagation-based algorithms (Shu et al., 2017). Monti et al. (2019) 
proposed a geometric deep learning approach to detect fake news on social media. The 
recent breakthrough in large language models (e.g. ChatGPT) can improve the detection 
accuracy of disaster information from social media data and translate the detected 
information into meaningful resilience indicators (Hu et al., 2023). Moreover, promoting 
social media use in underrepresented population groups is critical for developing equi
table and inclusive resilience measurements for diverse communities (Mihunov et al.,  
2020; Wang et al., 2021).

Second, as a fundamental issue in geography, the effect of scale also exists in resilience 
research. Due to data availability, most resilience indices were derived at a single spatial 
scale (e.g. census tracts, counties, or states). The validity of these indices in guiding 
decision-making across different scales is uncertain. Moreover, resilience indicators that 
are validated at a specific scale might not be applicable at varying spatial levels (Song 
et al., 2020). In additional to the spatial scale, the appropriate time window to measure 
resilience raises several critical questions: (1) Does resilience implies rapid response and 
recovery from a single disaster or the sustainability over multiple or compound disasters 
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in a longer-term perspective? (2) How do short-term resilience and long-term resilience 
differ in their driving factors? (3) Do we need different strategies to enhance community 
resilience across spatial and temporal scales? Considering these scale-related issues, it is 
crucial for future resilience measurement frameworks to account for multi-scale variations 
of resilience indicators and mechanisms. This approach will enable effective decision- 
making across different administrative levels and timeframes.

Third, a majority of current studies depend on a single data source and measurement 
approach, restricting the analytical scale and breadth of insights into community resilience. In 
forthcoming research, advanced data fusion and artificial intelligence (AI) methods should be 
embraced to amplify and synergize the strengths of diverse data types. For example, the 
integration of multi-source remote sensing data can effectively improve disaster monitoring 
and impact assessment (Li et al., 2021). Furthermore, social media data and mobile phone 
tracking data can complement each other by combining semantic information with precise 
locational data of population movements (Xing et al., 2021). In light of the progress in AI 
algorithms and growing availability of data for the algorithm training, the fusion of multi- 
source BED offers promising prospects for the development of more robust and comprehen
sive resilience measures.

Finally, most resilience research focuses on correlations instead of causalities. 
However, the correlations detected in statistical analysis do not necessarily indicate 
actionable levers that can effectively promote community resilience. To develop 
useful planning and policy-making tools, advanced modeling techniques should be 
applied to quantify the dynamic interrelations and feedback loops among resili
ence factors. Recently, there is a growing interest in leveraging the power of 
citizen science and Community-Based Participatory Research (CBPR) to engage 
communities in the resilience assessment process. Local knowledge from commu
nities and stakeholders can contribute to the construction and validation of resi
lience assessment tools. Aided with VGI and data crowdsourcing tools, these 
bottom-up approaches can collect ground-truth data to quantify causal linkages 
between resilience indicators and disaster outcomes, offering practical support for 
resilience-related decision-making.

6. Conclusions

This article presents a comprehensive review of quantitative resilience measurement 
approaches, focusing particularly on the latest research leveraging Big Earth Data 
(BED). By synthesizing diverse studies using various types of BED, this article iden
tifies the fundamental issues in resilience measurements, highlights the opportu
nities and challenges of BED brought to resilience research, and outlines future 
research avenues to address the challenges. Overall, the synergy between BED and 
advanced modeling techniques holds the potential to bring about a paradigm shift 
in community resilience assessment. This synergy enables evidence-based decision- 
making and fosters the development of actionable tools and strategies to enhance 
community resilience. The BED’s capacity to observe human dynamics at unprece
dented spatio-temporal granularities establishes linkages between disaster outcomes 
with intrinsic resilience characteristics, providing evidence-based resilience measure
ments. On the one hand, the BED-based resilience assessments overcome the issues 
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of arbitrary indicator selection, weighting, and lack of empirical validation in the 
traditional resilience measurements. On the other hand, the timely and scalable data 
acquisition provide support for rapid impact assessment and real-time monitoring of 
socio-economic disturbances and recovery processes. Moreover, BED’s capacity for 
social sensing introduces novel perspectives into understanding socio-economic 
processes influencing community resilience, which are often unobservable through 
conventional data sources. Looking forward, the BED-based resilience measurements 
are poised to integrate AI and data fusion techniques to create multi-dimensional, 
empirically validated, scale-specific, and equitable measurements and strategies for 
promoting community resilience.
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