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ABSTRACT ARTICLE HISTORY
Quantitative assessment of community resilience can provide sup- ~ Received 24 May 2023
port for hazard mitigation, disaster risk reduction, disaster relief, Accepted 17 October 2023

and long-term sustainable development. Traditional resilience KEYWORDS
assessment tools are mostly theory-driven and lack empirical vali- Community resilience;
dation, which impedes scientific understanding of community resi- quantitative measurement;
lience and practical decision-making of resilience improvement. In disaster risk reduction; Big
the advent of the Big Data Era, the increasing data availability and Earth Data

advances in computing and modeling techniques offer new oppor-

tunities to understand, measure, and promote community resili-

ence. This article provides a comprehensive review of the

definitions of community resilience, along with the traditional and

emerging data and methods of quantitative resilience measure-

ment. The theoretical bases, modeling principles, advantages, and

disadvantages of the methods are discussed. Finally, we point out

research avenues to overcome the existing challenges and develop

robust methods to measure and promote community resilience.

This article establishes guidance for scientists to further advance

disaster research and for planners and policymakers to design

actionable tools to develop sustainable and resilient communities.

1. Introduction

Due to climate change and rapid population growth in hazard-prone areas, human
communities are increasingly confronted with the escalating threats of natural disasters,
entailing significant socio-economic consequences. These disasters arise from both rapid-
moving large-scale disturbances such as hurricanes and storm surges, as well as slow-
moving processes such as coastal erosion, sea level rise (Nicholls et al., 1999), and the
decline of ecosystem services (Spalding et al,, 2014; Tebaldi et al., 2012). The devastating
impacts of Hurricane Katrina and Rita in the Central Gulf Coast in 2005 have spurred
heightened attention toward the resilience and long-term sustainability of human
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communities. Empirical evidence reveals that, even when exposed to the similar hazard
intensities, communities exhibit varying degrees of impacts and diverse recovery patterns
across socio-economic conditions (Finch et al., 2010; Fussell et al., 2010), public health
(Burton, 2006), and psychological well-being (Adeola, 2009). These observed disparities
can be attributed to the capacity of communities to “bounce back” from adverse condi-
tions, commonly known as community resilience.

The quantitative measurement of community resilience has gained considerable atten-
tion in recent years (e.g. Cutter et al,, 2010; Lam et al.,, 2016; Peacock, 2010) due to its
provision of a structured and standardized approach for assessing and comparing resi-
lience levels across different communities, regions, or time periods. Through rigorous
statistical modeling, quantitative resilience measurements allow researchers to identify
significant factors and relationships that shape community resilience, empowering evi-
dence-based decision-making for policymakers and practitioners regarding the effective-
ness of resilience-building interventions. Despite advancements in resilience research,
challenges persist in quantitative resilience measurements. First, no consensus exists on
the definition of resilience. Various definitions and conceptual frameworks adopted in
different disciplines lead to diverse assessment methods, which often produce inconsis-
tent or even contradictory outcomes. Second, existing resilience assessment tools are
predominantly theory-driven, lacking empirical validation and ground-truthing. Finally,
our understanding of the mechanisms underlying community resilience remains limited.
Without knowing the underlying factors and their interplay, it is difficult to develop
effective measures and actionable tools to promote community resilience.

In recent years, community resilience research has been revolutionized by the
advancements in data acquisition and computing techniques. The concept of Big
Earth Data (BED) emerges when the vision of Digital Earth entered into the era of Big
Data (Guo et al., 2017). BED is defined as big data about the earth system obtained
through earth observation means such as spaceborne, airborne, and ground sensors
(Guo et al., 2016). In the recent literature, BED is more broadly defined as data about
the Earth’s environment and human-environment interactions collected by cutting-
edge technologies, including but not limited to in-situ sensor network, Web 2.0,
mobile devices, citizen science, internet-of-things and social sensing contributed by
human beings (Guo et al., 2017; Sudmanns et al., 2020; Yang et al.,, 2019). The
convergence of BED and artificial intelligence (Al) has opened exciting new possibi-
lities for studying and building community resilience. These emerging data sources
and technologies offer real-time or near-real-time disaster monitoring capabilities,
social sensing capabilities, and data-driven decision-making tools. Leveraging these
tools and insights from BED has deepened our understanding of community resi-
lience and holds tremendous potential for developing robust resilience measure-
ments and decision-making tools.

Despite the rapid development of data-driven resilience measurement, there is limited
discussion on the theoretical foundations, modeling principles, and the advantages and
disadvantages of various resilience measurement approaches. To this end, this article aims
to comprehensively review the definitions, conceptual frameworks, and quantitative
measurement approaches of community resilience. Differentiated from existing review
work on resilience measurements, this article sheds light on the recent progress of data-
driven approaches on resilience measurements. Special attention will be paid to the use
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of emerging BED to address the pressing challenges in resilience research. The goals of
the article are synthesizing existing research, identifying knowledge gaps, and providing
guidance for future research directions.

2. Definitions of resilience

The concept of resilience has been widely explored in the literature; however, there is still
a lack of consensus within the scientific community regarding its definition and concep-
tual framework. Holling (1973) initially introduced the concept of resilience, characterizing
it as the capacity of an ecological system to endure change amidst severe perturbations,
while still maintaining its continued existence. In social sciences, Timmerman (1981)
proposed resilience as inherent conditions of a system that enable it to absorb and
rebound from catastrophic events. Adger et al. (2005) adopted a holistic perspective on
resilience, defining it as the capacities of linked social-ecological systems for absorbing
recurrent disturbances, self-organization, learning and adaptation. Cutter et al. (2008)
further refined this concept, asserting that community resilience encompasses not only
the inherent conditions of a system to cope with threats, but also post-event, adaptive
processes that facilitate the system to re-organize, change, and learn in response to such
threats. Unlike engineered systems where resilience can be gauged using specific perfor-
mance metrics, community resilience is complex and multifaceted, making it challenging
to precisely quantify using observable indicators. Moreover, community resilience is
dependent on complex human-environment interactions (Janssen et al., 2006), and it is
a dynamic process involving adaptive learning and feedback loops. Unlike engineered
systems where resilience can be gauged using specific performance metrics, resilience of
human communities is inherently complex and multifaceted, and cannot be precisely
quantified from observable indicators. Moreover, community resilience intricately reflects
complex human-environment interactions in external stressors (Janssen et al., 2006) and is
a dynamic process involving adaptive learning and feedback loops in coupled natural and
human (CNH) systems (Lam et al., 2018, 2018).

Despite the extensive discussions in the literature, the scientific community has yet to
reach a consensus on the definition and components of community resilience. Different
disciplines adopt varying definitions and conceptual frameworks, shaping researchers’
understanding and interpretation of community resilience. An extensive literature synth-
esis conducted by Cai et al. (2018), which analyzed 174 scholarly articles on resilience,
reveals diverse attempts across disciplines, such as environmental science, geography,
health, and civil engineering, to define resilience in the context of different hazards like
floods, earthquakes, and climate change. More recently, the US National Institute of
Standards and Technology (NIST) has created an inventory that documents 56 community
resilience frameworks and assessment tools (Dillard, 2021; Walpole et al., 2021). These two
synthetic studies reveal that regardless of the disciplines, study areas, and disaster types,
the common words in defining resilience include anticipate, resist, absorb, response,
recovery, self-organization, learning, adaptive capacity, indicating a shared understanding
of resilience.

The interdisciplinary views of resilience also sparked the debate whether resilience
should be considered as an outcome or a process, resulting in diverse frameworks for
measuring resilience (Finch et al., 2010; McPhearson, 2014). From a process perspective,



1038 Y. QIANG ET AL.

resilience refers to the capacity of a system or entity to adapt, respond, and recover from
disturbances or shocks. This view focuses on the dynamic and ongoing process of
learning, adaptation, and transformation that occur to bounce back from adversity. Due
to its abstract nature and complex interrelationships, measuring the process of resilience
often involves a combination of theoretical or even hypothetical indicators that capture
various aspects of adaptive capacity, learning, social dynamics, and decision-making
processes. On the other hand, resilience can also be viewed as an outcome or a state
achieved after a disruption. In this view, resilience represents the ability to withstand and
recover from shocks, maintain essential functions, and return to a desired state. The
outcome of resilience can be measured by tangible indicators that demonstrate the
successful recovery and restoration of a system. These divergent views of resilience
further impede the standardization of the methods to measure and enhance community
resilience.

3. Traditional measurement methods

Considerable research has been conducted to develop quantitative metrics to measure
community resilience. Currently, the resilience measurements can be generally categor-
ized as “top-down” and “bottom-up” approaches. The top-down measurements are
constructed through established theories, predefined indicators, and expert opinions.
As a typical example of the top-down approach, resilience indices compose measurable
indicators that can represent intrinsic resilience characteristics. In contrast, the “bottom-
up” measurements are built on empirical observations of socio-economic consequences
in real disaster events. In other words, the resilience indices reflect the process view of
resilience, while the empirical approaches use resilience outcomes to measure resilience
and its relations with underlying processes. In this section, we categorize the resilience
measurement methods as the index approaches (top-down) and empirical approaches
(bottom-up).

3.1. The index approach

The development of indices for measuring and monitoring disaster resilience is the first
fundamental step toward enhancing resilience. Resilience indices provide easily accessi-
ble, practical, and timely information to aid decision-making in disaster preparedness,
response, and recovery. The synthesis analysis conducted by Cai et al. (2018) revealed that
45% of the reviewed 174 articled have attempted to create quantitative resilience indices.
Among the quantitative measurement methods employed, statistical and data mining
techniques were the most commonly used, including correlation analysis, principal com-
ponent analysis (PCA), multivariate regression, and clustering analysis. The primary data
sources include census data, questionnaire surveys, interviews, fieldwork observations,
and historical disaster records (Dillard, 2021; Walpole et al., 2021).

One widely used approach for resilience assessment is the creation of composite
indices that synthesize socio-economic and environmental indicators. As the earliest
and most cited resilience index, the Baseline Resilience Indicators for Communities
(BRIC) aggregates a number of baseline indicators in different dimensions into an overall
score (Cutter et al., 2010). As shown in Table 1, the BRIC index comprises a common set of
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variables in six different domains (i.e. social, economic, housing and infrastructure, institu-
tional, community, and environmental). Initially, a sub-index is constructed for each
capital by transforming the raw variables within the domain to a scale from 0 to 1 and
assigning their positive or negative contributions to resilience. The sub-index scores are
then aggregated using an equally weighted average method to calculate the final
composite resilience score. Similarly, the Community Disaster Resilience Index (CDRI)
categorizes resilience indicators into a 4 x4 matrix of capital domains (i.e. the social,
economic, physical, and human capital) and disaster phases (i.e. the mitigation, prepared-
ness, response and recovery phase). These indicators are then aggregated to an overall
index (Peacock, 2010). Other resilience indices, such as those proposed by Foster (2012),
Hung et al. (2016), and Sherrieb et al. (2010), employ various indicators, weighting
schemes, and aggregation methods. Socio-economic indicators used in resilience indices
are often derived from official data sources such as census data. A related method is
scorecard, which applies qualitative methods to assess resilience-related items, actions or
capacities (e.g. CARRI, 2013; Sempier et al.,, 2010). These resilience indices and scores
provide essential baseline information regarding community resilience and its geogra-
phical disparities and temporal evolution.

However, despite the multitude of efforts in creating resilience indices, a rigorous and
universally accepted index for monitoring resilience enhancement progress remains
elusive due to several limitations in existing methods. First, the weighting schemes
used to aggregate resilience indicators into a composite index lack empirical validation
and ground-truthing (Bakkensen et al., 2017; Cai et al., 2018). Second, there is an incon-
sistency in variable selection across different studies, and a lack of consensus on indicator
selection across regions and disaster types, resulting in inconsistent resilience quantifica-
tion outcomes (Beccari, 2016; Cutter, 2016). In addition, most existing measurement
methods have no inferential capacity to predict resilience in other regions or under future
scenarios. Table 1 provides a summary of the common resilience indices in terms of their
indicators, data sources, pros and cons.

3.2. Empirical approaches

Despite the wide use of indices and scorecards in resilience measurements, it remains
unclear how well these scores and indices can explain disaster outcomes (Rufat et al.,
2019). Recently, efforts have been made to validate the established resilience measure-
ments with empirical data. A common method to validate resilience is comparing the
resilience index with empirical data of disaster outcomes. Traditional methods of empiri-
cal data collection include questionnaire surveys, interviews, and observation of focus
groups. For instance, Burton (2015) used field surveys about the recovery process in
coastal Mississippi after Hurricane Katrina to validate common indicators in resilience
indices. This study identified 41 out of the 64 indicators being statistically associated with
the recovery process, thereby enabling empirical validated indicator selection and resi-
lience measurements. Additionally, Ji et al. (2021) validates nine common resilient indi-
cators with household surveys. Their results reveal that only a few of the indicators are
empirically valid for explaining households’ resilience capacities. Bakkensen et al. (2017)
compared several well-known resilience and vulnerability indices with disaster outcomes
such as fatalities, property damages and disaster declarations. Their study shows that the
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indices produce inconsistent results and are in different relations with the disaster out-
comes. Another widely used validation method is to compare the developed resilience
index with the established indices to prove the efficacy of the index. For example, Sherrieb
et al. (2010) and Scherzer et al. (2019) compared their resilience indices with established
vulnerability indices to evaluate the robustness of their indices. All these studies point out
that the validation of the resilience indices is an essential step before applications in real-
world decision-making processes.

In addition to validation, a growing number of studies incorporate empirical data in
deriving or calibrating resilience measurements. As an example, Lam et al. (2009) used
repeated telephone and field surveys to study business recovery in New Orleans after
Hurricane Katrina. The disparate recovery rates are used to differentiate resilience among
communities. Analogously, Harte et al. (2009) used field surveys to analyze communities’
response and recovery to fire hazards in Cape Town, South Africa, which are used to imply
community resilience. Furthermore, the RIM model defines that resilience includes three
elements (exposure, damage, and recovery) and two relationships (vulnerability and
adaptability) (Figure 1), assuming that a resilient community can resist damage and
maintain a speedy population recovery after experiencing a high number of disasters
(Cai et al, 2016; Lam et al,, 2016). Using official databases (e.g. census data and hazard loss
data), the elements and relations can be measured in administrative units, resulting in
quantitative scores of community resilience.

In these empirical approaches, community resilience is evaluated from empirical data
observed in disasters, and thus overcome subjective indicator selection and weighting in
the index approach. Moreover, these methods use observed disaster outcomes (e.g.
recovery, fatalities, and damage) to validate or calibrate the indicators and models of
resilience measurements. Although these studies create valuable insights into community
resilience, some of data collection methods (e.g. surveys and interviews) are time-
consuming, and thus the resultant analyses only cover small geographic areas. Studies
relying on official data sources (e.g. census data) lack timeliness and cannot continuously
monitor various community functions during a disaster process. These challenges hamper
the development of comprehensive measurements to capture the dynamic and complex-
ity of resilience.

4, Resilience measurement using Big Earth Data

With the advent of the big data era, geospatial data capturing human behaviors, environ-
mental changes, and urban dynamics, are collected from various platforms at an unpre-
cedented speed and scale. During hazardous events, Big Earth Data collected before,
during, and after disasters creates empirical evidence for the theory-based assessments
and provides novel insights to community resilience. In addition to the increasing data
availability, advances in computing and machine learning techniques facilitate the transi-
tion from big data to actionable information and knowledge. As one of the four “Vs”
(velocity, volume, variety and veracity) that characterize Big Data (Gandomi & Haider,
2015), the velocity of BED enables real-time or near-real-time monitoring of human
dynamics at fine spatial and temporal resolutions. The velocity of BED proves particularly
valuable during the preparedness, response, and recovery phases of a disaster, where
situations rapidly evolve and data collection poses challenges. In the preparedness phase,
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Figure 1. The conceptual framework of the resilience inference model (RIM) (modified from Lam et al.
(2016)).

BED data has been used in identifying risks and communicating preparedness and
warning information (Anson et al,, 2017), estimating disaster-related public awareness
and sentiment in the preparedness phase (Zou et al., 2019). In response phase, BED is
applied to analyze situational awareness (Huang & Xiao, 2015; Vongkusolkit & Huang,
2021), assess damage (Guan & Chen, 2014), identify evacuation routes (Chae et al., 2014),
and rescue requests (Zhou et al., 2022; Zou et al., 2023). In the recovery phase, BED data
can be used to track recovery curves of various community functions (Hong et al., 2021;
Qiang et al., 2020; Yabe et al.,, 2022). Metrics derived from the recovery curves, such as
maximum loss, total loss, and recovery speed, can be associated with intrinsic community
characteristics (Figure 2), creating empirically-based models to measure and predict
resilience. Meanwhile, the social sensing capacities of volunteer geographic information
(VGI), crowdsourced data, and social media data allow us to better observe human
dynamics that cannot be observed by traditional data sources. This section will epitomize
the pathways to understanding and measuring community resilience through various
types of BED, including data from remote sensors (i.e., remote sensing and streetview
images), data from socialsensors (i.e., social media and citizen science data), and human
mobility data.

4.1. Data from physical sensors

4.1.1. Remote sensing images

Remote sensing (RS) technologies play a crucial role in disaster management by
providing valuable insights and aiding decision-making processes. RS images col-
lected from a variety of sensors enable the rapid assessment of affected areas
(Joyce et al., 2009), facilitating the identification of damaged infrastructures
(Cooner et al., 2016; Dong & Shan, 2013), the extent of flooding (Bates, 2004;
Peng et al., 2021), and providing support for the search and rescue of victims
(Bevington et al., 2012). This information helps emergency responders prioritize
their efforts, allocate resources efficiently, and plan evacuation routes. In resilience
research, time series of RS images are often used to detect or assess the condition
of objects that signalize disaster impacts and recovery of human communities and
infrastructures. As an example, Brown et al. (2010) utilized time series of very high
resolution (VHR) images to detect key features (e.g. functioning roads, shelters, and
shrimp ponds) at different time points to infer community recovery. Similarly,
Bevington et al. (2012) applies VHR images to monitor the temporal change of
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Figure 3. GDP trajectories estimated from nighttime light in Hurricane Katrina (Qiang et al., 2020).

temporary shelters at multiple time points in the affected areas to evaluate post-
disaster community recovery. Recently, Qiang et al. (2020) utilized annual NTL
images to analyze long-term economic disturbance and recovery before, during
and after Hurricane Katrina in 2005 (Figure 3). This study builds a model to
estimate county-level Gross Domestic Product (GDP) from NTL radiance observed
in RS images, and then uses time-series of RS images to construct economic
recovery curves. Specifically, three metrics were calculated from the economic
recovery curves, including maximum disturbance, recovery rate, and accumulated
loss (also known as Area Under the Curve or AUC). These metrics are then
associated with environmental and socio-economic conditions to understand the
underlying factors that cause the different recovery patterns. Later, Xu and Qiang
(2021) used daily NTL images to detect short-term human dynamics in 2012
Hurricane Sandy. These studies reveal the spatial variation of recovery curves of
community functions, reflecting differential resilience between rural and urban
communities and communities with various socio-economic conditions.



1044 Y. QIANG ET AL.

4.1.2. Street view images

In parallel to remote sensing imagery, street view imageries (SVIs) have emerged as
a potent instrument for resilience assessment. SVIs in resilience research are primarily
derived from web map platforms such as Bing Maps and Google Maps. SVIs at a higher
frequency can be collected via systematically organized field trips (Burton et al., 2011;
Meyer & Hendricks, 2018). In contrast to the top-down view of remote sensing imageries,
SVIs provide street-level, horizontal views of the environment at an extremely high
resolution, thereby offering distinct viewpoints on building and infrastructure damages
(Zhai & Peng, 2020; Zou et al., 2022). Moreover, time series of SVIs can be used to track the
post-disaster recovery (Burton et al., 2011), rebuilding (Curtis & Mills, 2012), and commu-
nities resettlement over time (Mabon, 2016).

4.2. Data from social sensors

4.2.1. Social media data

Most existing resilience indices are derived from sociodemographic data collected at
regular time intervals, such as data from census and health agencies. However, these
traditional data sources are only available at coarse spatial and temporal resolutions and
do not provide detailed information about communities’ preparedness levels, actual
impacts, responses, and recovery behaviors during a disaster management process,
which reflects communities’ empirical resilience capacities. As a typical product in Web
2.0, social media has started to play an imperative role in information communication
during disasters, offering a novel pathway to observing community behaviors and
impacts and, thus, evaluating community resilience. Specifically, an increasing number
of people have turned to social media to receive the latest disaster information and
communicate with friends and rescue teams to prepare for, respond to, and recover from
disasters. Meanwhile, social media users can act as intelligent sensors that collect infor-
mation about their local disaster situation and impacts and share it in their social net-
works. Therefore, a growing number of studies have incorporated social media data in
surveilling communities’ behaviors and damages during disasters to measure and
enhance community resilience in recent years.

To compare the geographical disparities of social media usage and its applications in
understanding and measuring disaster resilience, the first step is to geolocate social
media data. Previous efforts commonly used three attributes to associate social media
data with locations: geotags, user profiles, and message content (Lin et al., 2022). With the
popularity of GPS-enabled mobile devices, social media users can geotag their messages
with coordinates of points or places obtained from GPS. Those geotagged locations are
considered the ground truth of where users sending social media messages are and, in
specific scenarios, indicate where those messages are associated. Due to their high spatial
accuracy and resolution, geotagged data are poised for fine-scale individual- or neighbor-
hood-level analysis. An investigation calculated that around 1.5% of disaster-related
messages are geotagged (Zou et al.,, 2019). In the absence of geo-tags, user locations
can be predicted through addresses in user profiles. Many social media platforms allow
users to fill in addresses when registering for their accounts. Those addresses can
approximate user locations with their spatial scales ranging from a point to a country.
User profile locations are suitable for large-scale, community-based (e.g. city or county
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level) analysis of user behaviors, as around 55% of social media data can be correctly
associated with a city based on addresses in user profiles (Graham et al.,, 2014).
Alternatively, addresses mentioned in social media content can be used. When people
request rescue, share local disaster impacts and conditions, or discuss disaster events on
social media, they usually mention locations in their messages (Zou et al., 2023). Those
message-mentioned locations can be extracted and converted to points or polygons
through processes of toponym recognition and toponym resolution (Wang et al., 2020).
Recent investigations have developed deep learning-based models to identify toponyms
from social media texts and achieved state-of-the-art performance (Zhou et al., 2023).
The geolocated social media data allow us to uncover geographic disparities in
people’s perceptions, opinions, experiences, and behaviors throughout disaster manage-
ment cycles, which cannot be captured in traditional data sources. Such information can
increase our understanding of community resilience and potentially provide real-time
support for disaster management. For instance, analyzing social media data can uncover
spatial and temporal patterns of situational awareness in disasters and their relationships
with community resilience (Huang & Xiao, 2015; Yu et al., 2019). Zou et al. (2018, 2019)
analyze the spatial-temporal patterns of Twitter activities during Hurricane Sandy and
Harvey. As depicted in Figure 4, when Hurricane Sandy landed in the U.S., Twitter users’
situational awareness of Hurricane Sandy was the highest, while their sentiment toward
this event was the lowest. Concurrently, communities displaying a high discussion inten-
sity were clustered in the northeastern United States, which was in the vicinity of the track
of Hurricane Sandy and suffered more damage (Figure 5). The analysis revealed significant
social and geographical disparities in Twitter use in both events. Communities having
better social and geographical conditions tend to use Twitter to communicate disaster
information more often than socially and geographically disadvantaged groups. Also,
studies show that Twitter data can estimate disaster damage, which is the outcome of
community resilience. Drawing from examples such as Hurricanes Sandy in 2012,
Matthew in 2016, and Harvey in 2017, several studies have found strong correlations
between disaster-related Twitter activities, i.e. disaster-related discussion intensity and
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Figure 5. The county-level ratio of Sandy-related tweets in the contiguous U.S. (Zou et al., 2018).

sentiment, and economic losses across multiple spatial and temporal scales (Kryvasheyeu
et al, 2016; Mihunov et al., 2022; Yuan & Liu, 2020). Besides, social media can reveal
discrepancies in crisis responses among different social groups. Yuan et al. (2021)
employed Twitter data to compare the crisis response in different demographic groups
during Hurricane Florence. The results indicated that the Hispanic group was more likely
to express negative sentiment than the Asian, African American, and white groups.
Meanwhile, the male group revealed more negative sentiments than the female group.
Using topic modeling, the prevalent topics in different population groups are identified.
Most recently, a study examined if the social and geographical disparities in disaster-
related social media use affect communities’ resilience to disasters (Wang et al.,, 2021).
Through analyzing Twitter data during the 2012 Hurricane Isaac, the results imply that
social media use during disasters could be improved to increase the resilience of affected
communities.

4.2.2. VGl and citizen science data

Volunteered geographic information (VGI) and citizen science data also play an important
role in disaster management. Arising with the advent of Web 2.0, these data types
embody the concept of “citizen as sensors”, engaging public users to gather disaster-
related information that proves vital for emergency response and relief efforts. Various
web portals (Dixon et al., 2021; Ludwig et al., 2015; Naik, 2016; Panek et al., 2017) and
mobile apps (Hendricks et al., 2018; Wang et al., 2018; Yabut et al., 2017) have been
designed to gather data from citizens regarding hazard extents, property or infrastructure
damages, and recovery processes from citizen users in various disaster scenarios.



BIG EARTH DATA 1047

However, unlike social media which are primarily used for social networking and com-
munication, the VGI and citizen science platforms are designed to collect data of specific
phenomena. The collection of VGI and citizen science data involved substantial ground-
work to engage or incentivize users to submit specialized data through the platforms.
Consequently, the quality of the VGI and citizen data science is usually higher than social
media data that needs to be mined from a massive amount of irrelevant data. In addition
to providing data about disaster resilience, the VGI and citizen science platforms can
facilitate community engagement, information sharing, and social cohesion - all integral
components that fortify community resilience.

4.3. Human mobility data

Human mobility data refers to information about the movement of people captured
through location tracking devices such as GPS signals, connections to WiFi networks, credit
card transactions, and other means. In disaster events, human mobility patterns can reflect
disaster impacts on and recovery of human behaviors, social activities, and infrastructure
conditions, which are central indicators of urban systems’ functionality before, during, and
after a disaster. Thus, the dynamics of human mobility in disasters are proxies for under-
standing and assessing community resilience. With the popularity of mobile devices,
anonymized human mobility data is becoming increasingly available. The most commonly
used human mobility data are (1) mobile phone or GPS tracking data; (2) geotagged social
media data (e.g. Twitter and Weibo); (3) and other digital footprints such as credit card
transactions, bus rides, e-bike rentals, and rideshare (Haraguchi et al., 2022). The dynamics
of human mobility detected from these data reflect hazard impacts to and the recovery of
human communities. For example, Hong et al. (2021) utilized mobile phone tracking data
to analyze neighborhood-level evacuation and recovery patterns during Hurricane Harvey.
This study uses recovery curves of human mobility during the hurricane to measure
community resilience, and then associates the resilience with socio-economic variables.
Using a similar approach, several invetigations (Wang et al.,, 2014, 2016) leveraged geo-
tagged tweets to compare population movement trajectories in different phases of natural
disasters as proxies to evaluate human mobility resilience. Qiang and Xu (2020) used traffic

0.1 .
Resilience

I 00266

I 0.266 - 0.600
0.600 - 0.694
0.694-0.757
0.757-0.812
0.812-0.855

Accessibility reduction
=3

\ 4 y a/ 0.855-0.895
0.2 v / @ Sampled times 0.895 - 0.930
Ve R 4 @ Recovery time I 0.930 - 0.960
/S —— —— Average accessibility L X
ya—— reduction - [ 0.950-1.00
03 A Accessibility reduction .
prae 10 20 40 KM O CBD center
TNl T e

Primary road
Time

) " (b)
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data from Google Maps to monitor the dynamics of accessibility in a road network during
a winter storm (Figure 6). By utilizing the recovery curves of accessibility, it becomes
possible to evaluate the resilience of the road network across various locations. Yuan
et al. (2022) applied credit card transactions to analyze disaster impacts on community
residents, businesses, and infrastructure systems, as well as their recovery patterns. Deng
et al. (2021) collected 30 million GPS records from around 150,000 unique, anonymous
users to study the evacuation patterns of Houston residents during the 2017 Hurricane
Harvey. By computing the evacuation rates and distances, the research uncovers the
disparity in evacuation tendencies between disadvantaged minority populations and
more affluent residents. The study also highlights the strong social cohesion exhibited in
the destination selections of evacuees from more privileged neighborhoods. Moreover,
Yabe et al. (2020) employed human mobility data from SafeGraph in a Bayesian causal
inference framework to quantitatively assess the economic impact of disasters on busi-
nesses. Finally, Table 2 summarizes the characteristics of various types of BED applied in
disaster resilience research.

5. Challenges and future directions

Despite the great potential of BED in disaster resilience research, there are several
challenges that warrant attention in future research.

First, the veracity of Big Data presents uncertainties for data-driven resilience analysis.
BED data collected from diverse sources can be noisy, incomplete, or biased, which may
result in flawed insights and erroneous conclusions in resilience analysis. As an example,
social media data (e.g. Twitter data) is often criticized for the biased user demography and
the existence of misinformation and fake news. To address these issues, numerous
solutions have been proposed and tested. For example (Lin et al., 2023), utilized an Al-
based M3 model to decipher the demographic information of social media users and
revealed the demographic bias of social media data. Further, they applied the post-
stratification method to mitigate the demographic biases when computing indices from
social media data. Fake news can be detected through knowledge-based, style-based,
stance-based, and propagation-based algorithms (Shu et al., 2017). Monti et al. (2019)
proposed a geometric deep learning approach to detect fake news on social media. The
recent breakthrough in large language models (e.g. ChatGPT) can improve the detection
accuracy of disaster information from social media data and translate the detected
information into meaningful resilience indicators (Hu et al., 2023). Moreover, promoting
social media use in underrepresented population groups is critical for developing equi-
table and inclusive resilience measurements for diverse communities (Mihunov et al.,
2020; Wang et al., 2021).

Second, as a fundamental issue in geography, the effect of scale also exists in resilience
research. Due to data availability, most resilience indices were derived at a single spatial
scale (e.g. census tracts, counties, or states). The validity of these indices in guiding
decision-making across different scales is uncertain. Moreover, resilience indicators that
are validated at a specific scale might not be applicable at varying spatial levels (Song
et al., 2020). In additional to the spatial scale, the appropriate time window to measure
resilience raises several critical questions: (1) Does resilience implies rapid response and
recovery from a single disaster or the sustainability over multiple or compound disasters
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in a longer-term perspective? (2) How do short-term resilience and long-term resilience
differ in their driving factors? (3) Do we need different strategies to enhance community
resilience across spatial and temporal scales? Considering these scale-related issues, it is
crucial for future resilience measurement frameworks to account for multi-scale variations
of resilience indicators and mechanisms. This approach will enable effective decision-
making across different administrative levels and timeframes.

Third, a majority of current studies depend on a single data source and measurement
approach, restricting the analytical scale and breadth of insights into community resilience. In
forthcoming research, advanced data fusion and artificial intelligence (Al) methods should be
embraced to amplify and synergize the strengths of diverse data types. For example, the
integration of multi-source remote sensing data can effectively improve disaster monitoring
and impact assessment (Li et al., 2021). Furthermore, social media data and mobile phone
tracking data can complement each other by combining semantic information with precise
locational data of population movements (Xing et al., 2021). In light of the progress in Al
algorithms and growing availability of data for the algorithm training, the fusion of multi-
source BED offers promising prospects for the development of more robust and comprehen-
sive resilience measures.

Finally, most resilience research focuses on correlations instead of causalities.
However, the correlations detected in statistical analysis do not necessarily indicate
actionable levers that can effectively promote community resilience. To develop
useful planning and policy-making tools, advanced modeling techniques should be
applied to quantify the dynamic interrelations and feedback loops among resili-
ence factors. Recently, there is a growing interest in leveraging the power of
citizen science and Community-Based Participatory Research (CBPR) to engage
communities in the resilience assessment process. Local knowledge from commu-
nities and stakeholders can contribute to the construction and validation of resi-
lience assessment tools. Aided with VGl and data crowdsourcing tools, these
bottom-up approaches can collect ground-truth data to quantify causal linkages
between resilience indicators and disaster outcomes, offering practical support for
resilience-related decision-making.

6. Conclusions

This article presents a comprehensive review of quantitative resilience measurement
approaches, focusing particularly on the latest research leveraging Big Earth Data
(BED). By synthesizing diverse studies using various types of BED, this article iden-
tifies the fundamental issues in resilience measurements, highlights the opportu-
nities and challenges of BED brought to resilience research, and outlines future
research avenues to address the challenges. Overall, the synergy between BED and
advanced modeling techniques holds the potential to bring about a paradigm shift
in community resilience assessment. This synergy enables evidence-based decision-
making and fosters the development of actionable tools and strategies to enhance
community resilience. The BED’s capacity to observe human dynamics at unprece-
dented spatio-temporal granularities establishes linkages between disaster outcomes
with intrinsic resilience characteristics, providing evidence-based resilience measure-
ments. On the one hand, the BED-based resilience assessments overcome the issues
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of arbitrary indicator selection, weighting, and lack of empirical validation in the
traditional resilience measurements. On the other hand, the timely and scalable data
acquisition provide support for rapid impact assessment and real-time monitoring of
socio-economic disturbances and recovery processes. Moreover, BED’s capacity for
social sensing introduces novel perspectives into understanding socio-economic
processes influencing community resilience, which are often unobservable through
conventional data sources. Looking forward, the BED-based resilience measurements
are poised to integrate Al and data fusion techniques to create multi-dimensional,
empirically validated, scale-specific, and equitable measurements and strategies for
promoting community resilience.
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