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Abstract—The evolving network infrastructure, particularly
the 5G core network, is increasingly adopting cloud technologies.
This shift brings to the forefront the challenge of meeting the
demanding per-packet processing requirements posed by multi-
hundred Gbps Ethernet NICs (network interface cards). While
traditional NFV (network function virtualization) platforms are
effective on older hardware, the per-packet run-to-completion
(RTC) execution model for per-packet processing suffers from
stalling on state access due to L1/L2 cache misses. Although
previous work applying software prefetching can mitigate the
issues, their applications are fundamentally limited by the nature
of a single execution stream, hence limiting them to batch
lookups, suffering from control-flow divergence, and requiring
manual tuning. To address the limitations, we introduce a
novel interleaved function stream execution model that exploits
the function-level parallelism through memory-level parallelism,
targeting feature-rich network functions such as 5G Core. To
provide the visibility into network functions, we introduce a
novel programming model based on the principle of Granular
Decomposition, which provides deep visibility into the state access
by decoupling the state in a more fine-grained manner compared
to traditional modular approaches. We integrate these two
innovative designs into a new open-source NF platform, which we
refer to as GuNFu. We have tested GuNFu on widely deployed
network functions such as 5G UPF (User Plane Function), 5G
AMF (Access Management Function), NAT (Network Address
Translator) and others. Extensive evaluations reveal that GuNFu
can achieve throughput ranging from 1.5 to 6 times over the
traditional modular approach.

Index Terms—NFV, execution model, mobile core

I. INTRODUCTION

With growing demands for programmability and scalabil-

ity, networking infrastructure is increasingly virtualized or

“cloudified”. This is epitomized by emerging 5G networks.

For example, the 5G core is organized as a set of network

functions (NFs), such as User Plane function (UPF), access

and mobility management (AMF) function. All 5G core NFs

are examples of stateful NFs where packet processing logic

depends on a specific state (e.g., user or session contexts)

maintained per user device and/or user session. Many of the

NFs widely used in (backend) data centers [1, 2, 3] such as

load balancers (LBs), network address translators (NATs), and

firewalls (FWs) are also stateful as they maintain state per

flow.

Using the zero copy principle [4, 5] and sharing-nothing

principle [6], previous approaches achieve significant perfor-

mance improvements. They nonetheless face significant scal-

ing challenges with emerging workloads. Today, 100/200 Gbps

Ethernet NICs (network interface cards) are commonplace

and affordable, leading to exponentially decreasing per packet

processing budget. As will be further argued in §II-A, it is

crucial to ensure that the stateful NF operations on the packets

and states are L1/L2 cache-bound. Experiments in §II-C show

that the existing per-packet run-to-completion (RTC) execution

model employed in existing NF frameworks [7, 8] – and

feature-rich open source 5G projects [9, 10, 11, 12] under

active development that use the RTC model – cannot avoid the

cache miss penalty due to the increasing complexity of the per-

flow state of the network function and the ability to leverage

the increasing concurrency in network workloads. Despite

the fact that software prefetching is employed to minimize

cache misses, it is generally applied to a single stream of NF

execution within a limited set of data structures (e.g., table

lookups) [13, 14], and suffers from control-flow divergence

[15, 16].

We propose a novel interleaved function stream execution

model (Figure 1): a method that concurrently runs different

function streams to exploit function-level parallelism through

memory-level parallelism. In our work, a function stream

is defined as a sequence of functions (NFAction in §IV),

and each stream corresponds to the processing of a packet

belonging to a network flow, a sequence of packets matched

by a particular predicate, which might be a set of fields in the

packet headers or payload. In this model, the states (NFState

in §IV) of functions from independent execution streams can

be retrieved concurrently through software prefetching. The

interleaved function stream execution model takes advantage

of the inherent parallelism to be processed per core and takes

advantage of the fine-grained software prefetching technique

to optimize the utilization of the L1 / L2 cache.

However, the realization of the proposed interleaved func-

tion stream execution model effectively presents several chal-

lenges. To perform software prefetching efficiently, we need

insights into the operations of network functions to make in-

telligent decisions about what states are needed next and what

actions must be performed on a given NF function stream.

531

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00056

20
24

 IE
EE

 4
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g 

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DC
S6

09
10

.2
02

4.
00

05
6

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore.  Restrictions apply. 



Unfortunately, the information is not visible to the runtime in

current open-source network function platforms [7, 8] or open-

source network function implementations [9, 10, 11, 17] and

makes it hard to integrate software prefetching effectively. We

also need a light-weighted runtime system to support efficient

scheduling among different execution streams.

To address these challenges, we propose GuNFu (§III), a

granular, cache-aware network function platform for stateful

packet processing at line rate. We advocate for a Granular

Decomposition programming model to provide deep visibility

into fine-grained components defined by NFState, NFActions

in our NF Model (§IV), which is more fine-grained than

traditional modular network functions. To support flexible

scheduling in runtime, we develop an abstraction called NF-

Tasks to support flexible scheduling among different function

streams, which significantly outperforms the per-packet RTC

model [18] that is currently used in today’s NF platforms

and NF implementation [9, 12, 17, 19, 20]. We introduce

several additional compilation optimization techniques (§VI)

to further enhance performance by taking advantage of the

deep visibility. Evaluation (§VII) shows the effectiveness of

GuNFu in cache utilization and performance improvement

ranging from 1.5 to 6 times over the conventional per-packet

RTC model.

II. CHALLENGES IN ACCELERATING STATEFUL NFS

We argue why per-packet RTC cannot address the issues on

state accessing in network functions and the proposed inter-

leaved function stream execution model is a better candidate.

A. Growing Network, CPU and Memory Gaps

The network speed has grown tremendously in the last 20

years, evident from the growth of the Ethernet speed, which

has grown 200 times from 1 Gbps in 1997 to 200 Gbps in

2017 and is expected to reach 800 Gbps/1.6 Tbps in the near

future [21]. We have calculated the (average) per packet time

budget to process 64B packets with a processor clocked at

3.4 GHz, as the line speed increases from 10 Gbps to 400

Gbps. In particular, to keep up with 100 Gbps line rate, the

average per-packet processing time is only about 6.7 ns (about

23 clock cycles at 3.4 GHz). And the access latency of the

memory hierarchy is about 1.2 ns, 4.1 ns, 13-20 ns and 70-

125 ns respectively for L1-cache, L2-cache, Last-level cache,

and DRAM.

The relatively high cost of accessing the lower layers of

memory hierarchy shows the importance of cache utilization

in NF software design and implementation. Ideally, we want

the state needed for NF processing to reside within the L1/L2

caches before it is accessed. Otherwise, if the core has to

wait for the NF state to be fetched from the LLC, or worse,

from the DRAM, precious CPU cycles are wasted. With the

increasing concurrency of network workloads that each core

must process, contention for L1 / L2 cache resources causes

a rise in cache misses, resulting in unavoidable LLC/DRAM
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Fig. 1: An illustration of the comparison of per-flow RTC and the
interleaved function-stream execution model on a single core. Our
framework employs Granular Decomposition to explicitly decouple
states that may cause cache misses from functions, thereby enabling
efficient prefetching.

memory accesses. This is particularly the case when the NF

state required for packet processing is large/complex.

B. Empirical Study for Per-packet RTC Execution Model

The idea behind the per-packet RTC execution model is that

within one network function module, the underlying runtime

system processes the packet from one network flow without

yielding until it is done. The per-packet RTC model is ubiq-

uitously used in the open-source state-of-the-art modular net-

work function framework [8, 22, 23] and standalone network

function projects [9, 10, 11, 17] under active development.

The local state access becomes an obstacle for scaling of

stateful network functions under per-packet RTC execution

model. Take the NAT from BESS or FastClick [22, 24]

as example, they orchestrate the batched packet processing

computation in a loop and in each iteration they run the

packet processing to completion, including the matching for

individual packets, accessing the per-flow states which all

cause memory-access stalling during the high-concurrency

workload. For more intricate network functions such as AMF,

UPF from the open source implementations [9, 10, 11, 12],

the per-packet RTC execution model is also applied: for each

packet, they first match the user context information, then

based on the states, do a series of computations based on the

user context, without yielding until done.

To illustrate the issues for cache utilization for per-packet

RTC execution model empirically, we used two network

functions in the mobile core, 5G UPF and 5G AMF.

Testbed Setup: The testbed used for our experiments consists

of two 48-core servers (Intel(R) Xeon(R) Platinum 8168

CPU @ 2.70GHz), each equipped with a dual port Mellanox

ConnectX-6 EN 100Gbps DPDK capable NIC. One server acts

as the device under test (DUT) and the other as the traffic

generator.

Methodology: For both network functions, we examine the

implementation from L25GC [17]. To generate the workload,

we extend the Telco Pipeline Benchmarking System [15, 25]

of MGW (Mobile Gate Way) use cases and vary the number

of PFCP sessions and the number of PDRs (Packet Detection
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Fig. 2: Impact of concurrency on the performance on UPF.

Rule) to see its impact on state access. For AMF, we take

the test cases provided by Free5GC [9], vary the number

of UEs and examine the messages that require state access

involved in the initial registration. As we focus on the state

access performance, we extract related call flows and state

access involved in the process and port them to DPDK.

For both experiments, we tested single-core performance. For

microarchitecture metrics and state access time, we use the

perf utility from Linux to measure PMU events and CPU time

by the state accessing functions.

(EXP A) Impact of Growing Concurrency: Figure 2 il-

lustrates the impact of growing concurrency on the perfor-

mance. From the results of the experiment, we can see that

when the number of PFCP sessions and the number of PDR

increases, the performance of the 5G UPFs degrades. The

further profiling shows that the root cause of the performance

degradation is due to the increased per-packet process time

because of increased flow matching and state access overhead.

The increase in overhead is because with the increased size of

flow table, the matching process and the access to the per-flow

state (PFCP sessions) and sub-flow state (PDR) is more likely

leading to a cache miss as the corresponding entry in the flow

table and the per-flow state is unlikely in the cache when the

flow arrives.

(EXP B) Impact of State Complexity: Figure 3 shows the

impact of state complexity on performance. Compared to UPF,

the per-flow state is much larger for AMF, as the information

for keeping track of the UE states is richer. The size of the

per-flow state in AMF is greater than 20 cache lines. As

a result, state access takes up a large portion of the total

packet processing time of AMF. The cache profiling metrics
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Fig. 3: Impact of state complexity for state-intensive messages in
UE Initial Registration on performance.

reflect the impact of demanding per-flow state access with

much higher L1/L2 cache, LLC misses per-packet. It is worth

noting that, for some messages, the actual state accessed is

much smaller than the touched cache lines, resulting in the

program asking for more cache lines than it actually needs.

This inefficiency further degrades performance.

The empirical study shows that the per-packet RTC model

is not sufficient to tackle efficient cache utilization under the

emerging constraints of higher concurrency and complexity.

C. Case for the Interleaved Function-stream Execution Model

As illustrated by the Figure 1 and the empirical study, for

the per-packet RTC, within a network function module, it is

likely that the functions or groups of instructions will block

when accessing the states that cause cache misses. Although

previous work [13, 14] has shown that software prefetching

can improve instruction-level parallelism, the critical downside

is that they are subject to a single execution stream, resulting

in the limitation to homogeneous workloads and homogeneous

functionalities, i.e., batch lookup. The adaptive batching so-

lution [15] suffers from state access latency for the first few

packets when scheduling downstream modules, which can lead

to SLA violation for queueing delaying. Furthermore, none of

the works solves the problem of state access delay of the per-

packet processing within the module after the batch lookup.

Applying prefetching techniques naively suffers heavily from

control flow divergence and requires the programmers on

fine-tuning of the insertion of prefetching instruction [26],

instead of focusing on the application logic. These limitations

make it hard to integrate effective software prefetching beyond
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the batch lookup data structure into more intricate network

function projects.

The interleaved function stream execution model we pro-

pose does not suffer from this limitations. Instead of stalling

on the state access, the interleaved function streams can enable

the runtime system to prefetch the states that correspond to the

next function for function-level parallelism and switch to the

execution stream in which the corresponding state is available.

It enables more efficient consolidation of different modules,

since runtime has visibility on the function of the next module

to be executed. Compared to per-packet RTC, it also applies to

heterogeneous workloads/functionalities, which are common

in feature-rich network functions dealing with different user

behaviors, hence different state lookup methods, application

logic executed and states to be accessed. As a general cache

optimization solution, it not only applies to state lookup but

also improves general state access.

However, systematically integrating the novel interleaved

function stream execution model into the network function

platform is not without challenges. Current modular network

function implementation does not provide an explicit relation-

ship between the state (which may cause cache misses) and

functions with fine granularity, hence our need to redesign a

programming model that allows us to refactor the network

functions to provide that deep visibility into the network

functions in terms of the states accessing for each function.

As a result, the runtime can take advantage of the information

to perform prefetching effectively and transparently to the

developers. Besides, as the current network function platforms

only support per-packet RTC, we need a light-weight runtime

for efficient function stream scheduling. We lay out our

systematic solution in the next section.

III. SYSTEM OVERVIEW

GuNFu is the first to provide a systematic solution to

the challenges of applying interleaved function stream ex-

ecution model. To provide deep visibility for runtime, our

programming model is designed based on the paradigm of

granular decomposition – a collection of design principles

that effectively decompose the modules of network functions

into even more finer-grained components – to provide deep

visibility. This paradigm will be presented in detail in §IV.

With visibility into network functions, our novel interleaved

function stream execution model enables our NFV runtime

to timely prefetch the required data and dynamically switch

between multiple execution streams to mask the inevitable

and costly LLC/DRAM access overheads, thus significantly

enhancing per core CPU utilization. Our design is par-

tially motivated by the following key insights. 1. Inherent

Parallelism in NF Flow Processing. We note that the most

frequent operations, processing of different NF flows in a

stateful network function, are independent. For example, for

the UPF, the process of encapsulation of a packet depends

only on its per-flow state and subflow state (PDR), which

is a private operation. This means that before the network

function begins expensive memory operations accessing its

PDR/packet header, it should issue a prefetching instruction

and switch to other execution streams for different flows for

useful work, instead of blocking on the L2 cache miss or

LLC miss. 2. Critical Per-Flow Operations. Cache misses

are frequently caused by per-flow state access, flow matching,

and packet header access in the context of network functions.

We therefore optimize these operations by intelligently and

systematically applying software prefetching.

High-level Workflow: In Figure 4, we present an overview

of the system data flow graph. The system consists of two

main parts: the director and the runtime. The director works

as the orchestration and control plane, and the runtime works

as the data plane of the NFV system. The architects provide

the program specification of modules using the principle

of Granular Decomposition (see §IV). Developers provide

implementation according to the specification. Architects or

operators can write an NF/SFC specification to specify the

network function, service function chain that must be deployed

in the infrastructure according to a functional or operational

requirement. The configuration generator will generate a con-

figuration template that needs to be filled out by operators

and be used to initiate/configure the network functions. The

director compiler will take the specifications and correspond-

ing NF implementations to generate the NF binary (see §VI).

The director will deploy and start the runtime (see §V) on

the hosting machine. During execution, the runtime agent will

receive configuration commands from the director through the

director agent for initialization and dynamic configuration, and

it will exchange operational statistics with the director.

IV. GRANULAR DECOMPOSITION

To give visibility to the network functions, we need to de-

sign a programming model to explicitly separate the code and

data with finer granularity than traditional modular network

functions and to describe how the data is consumed by the NF
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modules. In addition, we propose the Granular Decomposition

Property for deciding the granularity of the decomposition.

A. NF Components and NF Execution Model

We present the key elements (Figure 5(a)) in our NF

computational model and present the Granular Decomposition

Principle and the execution model.

NFEvents: NFEvents are notifications of changes that the net-

work functions handle. These notifications can be categorized

into two main types: system events and user events. System

events are triggered by or sent to the outside environment of

NF, such as the arrival of a network packet or a request from

user-defined actions to the hardware. On the other hand, user

events are inner events triggered by user-defined actions and

can lead to subsequent actions within a module.

NFState: NFStates are the data that need to be stored and

accessed during the packet processing life cycle. We clas-

sify states into the following: data states, control states, and

temporary states. Data states include match state, per-flow

state, sub-flow state, and packet state. Match state are data

structure used for flow classifying that map the packet to its

per-flow state or sub-flow state, typically using a hash table or

tree searching structure. Control states are states that persist

during the lifetime of an instance of a network function and

are shared among the flows. Since the control state tends to

be small and shared among the flows (its space complexity

is not related to the number of flows), it is likely always

in the L1/L2 cache. Temporary states are states that need to

persist among the invocation of actions for a particular packet.

These states are used to store intermediate results and are

typically discarded after the packet has been processed. The

performance of accessing the NFStates depends on whether

they are in the L1/L2 cache. Motivational experiments show

that the access to the match state and per-flow state will lead

to L1/L2 cache misses with high concurrency workload.

NFAction: NFActions are NFEvent handlers. NFActions are

categorized into match action, data action, and config action

based on the states with which they interact. Match actions

interact with match states to locate the per-flow/sub-flow

states. Data actions are actions that interact with the data states.

Config actions interact with the control state. The performance

of each NFAction depends on the NFState they are interacted

with whether in the L1/L2 cache.

Granular Decomposition Property: Since a module can be

decomposed into NFActions with arbitrary granularity (as a

result, the granularity of the correspondence of the data and

code), deciding the granularity of the decomposition is impor-

tant, and we found any decomposition satisfying the following

property to be useful: whether or not the access of data state

in NFAction should not depend on the computation within

the NFAction. The implication is that the variables in the

data states (per-flow state, part of the packet, or match state)

needed should be decided before the execution of NFAction.

The rationale behind the principle is the following: Before the

execution of an NFAction, all the portions of the data state

related to it should already be in its NFState memory (where

we will map to L1/L2 cache later). If a part of the portion is not

actually accessed because of the dynamic behavior within the

action, then the portion wastes valuable L1/L2 cache space as

it is not needed. We call the decomposition of an NF satisfying

this property ”Granular Decomposition”.

NF Execution Model: Figure 5(b) illustrates a ”virtual ma-

chine” that runs an NF processing one packet based on the

notion of granular decomposition. The virtual machine consists

of an NFState memory, an NFAction executor, and NF Control

Logic. NFState Memory is the data storage area for different

states that the network function might need. It would store the

portion of data states, control states, and temporary states that

the packet needs to access. We need to ensure that all the data,

when mapped to the host environment, should be in the L1/L2

cache when executing the action. NFAction Executor is the

component responsible for the actual execution of NF actions.

It takes fetched NFActions and executes them, presumably

altering or utilizing the NFState as needed. Control logic

determines the selection of an action based on various types

of events (generated by the system or the user). Importantly,

it is also responsible for preparing the necessary NFState for

the actions to access. After the NFAction is executed, a new

NFEvent is generated, and the control logic may select further

action to process the packets.

Formalizing Execution Model as FSM: Under the execution

model, the control logic of an NF can be modeled as an FSM

(finite state machine). Let CS = {CS1, CS2, . . . , CSn} be a

set of control logic states to represent the stages to process a

packet. The set Anf is a collection of NFActions, and Snf

is a collection of NFStates. The set of NFEvent to which

the network function can respond is defined as Enf . The

CSFSM can be defined as (CS,∆, F ).

The transition function ∆ : CS×Enf → CS describes how

the network function transitions between control logic states

in response to NFEvents.

∆(csi, e) = csj , csi, csj ∈ CS, e ∈ Enf
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A fetching function F : CS → Anf × 2Snf is defined to

determine the appropriate action and subset of states that the

control logic should fetch, based on the current control state.

F (csi) = (ai, Si), csi ∈ CS, ai ∈ Anf , Si ⊆ Snf

Two network functions NF1 and NF2 with compatible

transition functions ∆1 and ∆2 can be composed to form

a more complex network function NFcomposite. Let CS1 and

CS2 be the control logic states of NF1 and NF2, respec-

tively. Anf1 and Anf2 be their respective sets of actions,

and Snf1 and Snf2 be their respective sets of states. The

control logic state set CScomposite for NFcomposite could be

defined as CS1 × CS2. The fetching function Fcomposite :
CScomposite → Anf1 ∪Anf2 × 2(Snf1∪Snf2) and the transition

function ∆composite : CScomposite × Enf → CScomposite can be

defined in terms of ∆1, and ∆2.

B. Programming Examples

Programming consists of three parts: module specification,

NF/SFC specification, and action implementation. We use

yaml as the language for the specification language due to its

readability. For the implementation of the action, we design a

C-like DSL, NF-C, to describe the NFAction logic, allowing

developers to describe the application logic in an SPMD

model.

We use a 5G UPF (downlink handler) and NAT as examples

to illustrate how to provide a specification. The UPF consists

of three modules, the Cuckoo-hash table (Figure 6(b)) to map

Listing 1: Flow Classifier Specification

# Flow Classifier Specification

category: StatefulClassifier

parameters: # for init, config

- entry_num

- header_type

transitions:

Start,packet->get_key

get_key,get_key_done->hash_1

hash_1,hash_done->check_1

check_1,MATCH_SUCCESS->End

check_1,check_failure->hash_2

hash_2,sec_hash_done->test_2

check_2,MATCH_SUCCESS->End

check_2,MATCH_FAIL->End

NFAction_NFState:

- hash_1:

- {header_type} # packet state

- bucket_check_1:

- bucket # match state

- hash_2:

- {header_type}

- bucket_check_2:

- bucket

- key_check_1:

- key_store # match state

- key_check_2:

- key_store # match state

Listing 2: Flow Mapper Specification

# Flow Mapper Specification

category: StatefulNF

transitions:

Start,MATCH_SUCCESS->flow_mapper

flow_mapper,packet->End

NFAction_NFState:

- flow_mapper:

- ip # mapped ip

- port # mapped port

Listing 3: NAT Specification

# SFC Specification

0:receive_packet,packet->1:

flow_classifier

# name of declared modules omitted

1,packet->2:flow_mapper

Listing 4: Flow Mapper Implementation in NF-C

// Implementation Using NF-C

NFAction(flow_mapper) {

Packet.src_ip=PerFlowState.ip;

Packet.dst_ip=PerFlowState.port;

Emit(Event_Packet);

}

Fig. 7: Example specification (YAML) and code (NF-C).

the teid to the PFCP session (per-flow state), multidimensional

interval tree (MDI tree, Figure 6(a)) to map the five-tuple

to the PDR (subflow state) and the UPF encapsulator (Fig-

ure 6(d)) to tunnel the packet to the RAN. In the stateful

matching operations in Cukcoo Hash table and the interval

tree, significant overheads are caused by the pointer chasing

operations associated with accessing the match state, which

include bucket accessing or accessing the next child node will

likely lead to cache misses. The UPF encapsulator utilizes the

FAR (Forwarding Action Rules) from PDR. Figure 6(f) shows

how to use the composability of each component to compose

the functionality of the UPF downlink handler. For the NAT,

we compose (Figure 6(e)) the Cuckoo Hash table and the flow

mapper (Figure 6(c)) that rewrites the header based on the

mapping rule.

To provide the specification, the designer needs to write

a YAML file for different modules and the composition of

modules. Listing 1,2 shows the example specification for the

Cuckoo hash table and the flow mapper. For the composition,

the designer needs to write the transition from one module

to the other. To provide the implementation for NFAction,

developers need to write a function in NF-C, our extension

for C. The NF-C provides newly introduced keywords such

as Packet, PerflowState, SubflowState, MatchState, and Temp-

State to have access to various states in NFState memory. The

example code for a flow mapper is provided in List 4.

V. RUNTIME ARCHITECTURE

Runtime provides the environment for the execution model

explained in the previous section. The key innovation in the

runtime is effectively applying the interleaved function stream

execution model for stateful network functions, an extension

of the NF execution model. Using the interleaved function

stream execution model, runtime can concurrently run multiple

execution streams for better parallelism. To enable efficient
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Fig. 9: Evaluation of the maximum number of context switching
per second of NFTasks of one core. Compared to pthread by Linux
Kernel, our NFTask can take advantage of the parallelism.

scheduling, we leverage an abstraction called NFTask to keep

track of NFAction streams for the processing of different flows.

Runtime Overview: Figure 8 illustrates the runtime archi-

tecture. Our system has a per-core runtime, which we call

worker, and each worker has exclusive management of the

resources on its assigned core. The core runtime is responsible

for orchestrating the execution of NFs of different execution

streams with its scheduler. During scheduling, it automatically

executes the prefetching instruction to timely put the related

NFState to the L1/L2 cache for better performance.

NFTask: NFTask is an abstraction of a lightweight (see Figure

9(b)) execution environment for an execution stream of NFAc-

tions for a packet. The key data structure used to manage it is

illustrated in figure 9(a). Each field in the NFTask corresponds

to the components described in the NF Model; thus, an NFTask

maintains all the context that needs to process the packet.

When the NFAction of the network function accesses the

NFState, it essentially utilizes the reference of the fields to

have access to the data. Although all the NFTask share the

same memory space, NFTask also provides isolation, as the

action cannot access a memory address other than the one

referenced in an NFTask through the compilation check.

Cache Management: To ensure efficient usage of prefetching,

we utilize a field in NFTask instruction called the P state to

keep track of whether the NFState corresponds to a control

logic state already prefetched, and hence it is likely in the

L1/L2 cache. When it does need prefetching, it will reference

the prefetching policy (generated by the correspondence of

Algorithm 1 Runtime Scheduler

1: NFTasks ← NFTasks(max interleaved)
2: while True do

3: PacketBuffer ← Receive packets
4: Initialize NFTasks, initial transition, and fetching for all
5: nt ← 0 ▷ Current NFTask number
6: while Packet processing is incomplete do
7: if not isPrefetched(NFTasks[nt].p state) then
8: Prefetch(NFTasks[nt], prefetch policy) ▷ Prefetch NFState
9: Continue

10: end if

11: ActionExecutor(NFTasks[nt]) ▷ Execute the NFAction
12: if NFTasks[nt] is complete then
13: Initialize NFTasks[nt]
14: end if
15: Transition(NFTasks[nt]) ▷ Execute Control Logic
16: Fetch(NFTasks[nt]) ▷ Prepare NFState and NFAction
17: nt ← Next(NFTasks,nt) ▷ Switch to the next NFTask
18: end while

19: end while

NFAction and NFState) to prefetch the specific cacheblocks

of the corresponding NFState.

NF Management: For NFAction management, we use an

action table to store all the NFActions deployed in the runtime,

each entry contains a function pointer to the function. When

the runtime executes an NFAction in an NFTask, it will use

the function pointer to call the function, with all the NFStates

referenced in the NFTask as parameters. NFState management

requires different ways to manage different kinds of state. For

the control state, we maintain a control state table that contains

the list of references to each control state of NFs in the SFC.

The control state and the match state will be allocated during

the initialization stage. For the packet state, as it arrives in the

packet buffer in the host, we store its reference into the NFTask

to achieve zero-copy during its lifetime. For the per-flow state

and sub-flow state, we pre-allocate datablocks, whose size is

the size of each entry times the maximum concurrency that

the core plans to support configured by the operators. When

the matching is done, the matching result, which is an offset

to the table, will be stored to the Per-flow state/sub-flow state

field in the NFTask data structure, which enables the NFAction

to access their per-flow/sub-flow state.

Scheduler: Our scheduler is responsible for achieving inter-

leaving between NFTask and inserting the prefetch instruction

in a timely manner. Our scheduler runs a round-robin policy

to switch among different NFTasks. The scheduler essentially

extends the control logic of the NF Model introduced in

the previous section as it is responsible for the transition

and fetching of control logic of multiple streams. After the

transition and fetching step is done, the NFStates of the

NFAction need are determined, and the software prefetcher can

use the visibility to prefetch them as needed. The Algorithm 1

illustrates the scheduler process. At the beginning of the loop,

it will receive a batch of packets. After the batch of packets

is ready, the worker will initialize a set of NFTask, loading

packets into the NFTask and setting up the initial transition and

fetching triggered by the ”Packet” system event. Then it will
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enter another loop, processing each NFTask and re-initializing

finished NFTask if they are done.

VI. COMPILATION AND OPTIMIZATION

In this section, we discuss the compilation process that maps

the program into the form that can be executed by the runtime.

We also apply several optimization techniques, including data-

packing and redundant matching removal.

A. Compilation

Our compiler takes two inputs: one is the specifications and

one is the NFActions involved from the NF Implementation

Library provided by the programmer. The output will be the

binary of the NF Application bundled with the runtime.

NF-C Compilation: Our compiler takes the implementation

of NFActions using NF-C and generates the C code. First, we

translate the function signatures into a C compatible one that

takes pointer to struct NFTask (Figure 9(a)) as a parameter.

Second, we replace the operations related to the extended

keywords of NFState with the pointer-reference operation

of NFTask because different NFStates are members of the

NFTask data structure. Third, the compiler collects all the

temporary variables used and will be used to allocate the

temporary variable fields of NFTask.

NF Binary Compilation: The compiler transforms the Mod-

ule/NF specification into a Finite State Machine (FSM) for

control logic, ensuring valid transitions. It generates action

and control state tables from the specification, links action

implementation libraries, and produces initialization functions

in C. During deployment, the director agent uses this con-

figuration file to initialize the network function through the

runtime agent.

B. Compilation Optimization

The Granular Decomposition not only provides visibility

for the scheduling in the runtime but also for the compilation

optimization in the compilation time.

Redundant Matching Removing for SFC: Removal of

redundant matching reduces the number of matchings required

for SFC. For multiple stateful network functions chained

together, naive consolidation will match multiple times and

manage their per-flow state separately. We remove redundant

matching to eliminate redundant operations that are full of

pointer-chasing operations, by simplifying the control logic,

and reuse the matching result of the first matching action for

consecutive network functions that use the same key to locate

the session states.

Redundant Prefetching Removing: For each action, the com-

piler will analyze the execution stream that leads to the NFAc-

tion and check whether the NFAction has already prefetched

the NFState before the execution of previous NFAction. If it
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Fig. 11: Performance improvement of granular decomposition for
NAT on GuNFu

is prefetched before, it will remove the part of the NFState in

the prefetching policy.

Data Packing: To further minimize the cache footprint, we

apply a data packing algorithm [27] to group the states

most frequently accessed. We estimate how frequently two

state variables are contemporaneously accessed based on the

corresponding relationship between state variables and actions.

For state variables that are accessed contemporaneously to-

gether, we put them into a single cache line to maximize

the efficiency of prefetching. Considering SFC, because per-

flow states of the consecutive network functions are highly

correlated temporally, we put them in the same cache line if

possible.

VII. EVALUATION

GuNFu includes a programming model to provide Granu-

lar Decomposition that gives visibility on network function

modules to the runtime and compiler, and also a runtime
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Fig. 12: The effectiveness of interleaved execution on granularly decomposed AMF on GuNFu

design supports flexible scheduling for interleaved execution

streams for timely and automatic software prefetching. In the

evaluation, our aim is to answer the following questions: (1)

What is the performance gained from the interleaved function-

stream execution model? (2) What is the performance gained

from applying the compilation optimization techniques? (3)

What is the scalability of GuNFu for the real-world workload?

Implementation: We have implemented a set of important

and representative proof-of-concept network functions in our

prototype system for evaluation purposes: User Plane Function

(UPF) and Access and Mobility Management Function (AMF),

Stateful Load Balancer (LB), Network Address Translation

(NAT), Stateful Firewall (FW), Network Monitor (NM). We

implement a prototype of UPF and AMF based on L25GC

[17] and Free5GC [9].

A. Impact of Execution Model

We use the same setup as the motivating experiments in §II

to evaluate the improved performance on UPF and NAT of

GuNFu. Evaluation test cases are taken from the MGW and

NAT use cases from the Telco benchmarking System [25].

Evaluation on UPF: We evaluate the improvement in down-

link throughput of our granularly decomposed UPF compared

to the one that performs per-packet RTC from L25GC [17].

This evaluation measures the effects of the number of inter-

leaved NFTasks and the number of second-level rules (PDR)

on performance. The UPF achieves optimal performance with

16 or 32 interleaved NFTasks, but the performance degrades

because of the cache contention if the number is 64. Fig-

ure 10(b) and Figure 10(d) measures the micro-architecture

metrics for 16 interleaved NFTasks with a varying number

of rules. For per-packet RTC model, the utilization of L1-C

degrades (Figure 10(b)) when the number of second-level rules

increases, since there are on average more pointer-chasing

operations in tree structure lookups which are very likely

leading to L1/L2 cache misses, hence worse performance.

With the granularly decomposed version, the utilization of

L1 cache is relatively stable even when the number of rules

increases. This is because instead of stalling on the slow

DRAM/LLC access, the NFTask immediately switches to

another for useful work, and when it switches back, the tree

node should already be in the L1/L2 cache.

Evaluation on NAT: We show NAT (Figure 11) because it

is representative in terms of performance for other network

functions such as LB, NM, FW, which perform a simple

operation based on the per-flow state, which is only a few

bytes. In GuNFu, similar to UPF, the optimal performance of

NAT can be achieved using 16 NFTasks. The performance of

using only one NFTask is worse than RTC due to the overhead

of the scheduler, but the benefits of interleaved execution

streams become apparent when the number is greater than

4. Similar to the one in UPF evaluation, the performance

degrades if the number is 64 because the prefetched data may

get pushed out from the cache if too many NFTasks contend

for the resources. Based on the microarchitecture profiling

metrics, L1 / L2 cache utilization of 16 NFTask is better than

other alternations, leading to its better performance.

B. Impact of Compiler Optimization

To illustrate the benefits of compiler optimization of com-

plex network functions with complex states and a longer

processing chain, we use AMF and the composition of stateful

network functions (LB, NAT, NM, FW) into an SFC as exam-

ples. We compare the performance of network functions with

various length (2-6) using granular decomposed version with

interleaved methods against those using the RTC model. For

lengths greater than 4, we add FW to the SFC with different

firewall policies. Additionally, we evaluate the performance

improvement of applying the data packing and redundant

matching elimination algorithms.
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Fig. 14: Performance of SFC on GuNFu with 130K flows

Evaluation on AMF: we compare our granularly decomposed

AMF with 16 NFTasks (which is optimal) against the L25GC

usign RTC model with the assumption of 217 flows. Our imple-

mentation can achieve an improvement of 60% improvement

of processing messages in initial registration (Figure 12(a)).

Our implementation can achieve better throughput because it

can have better utilization of the L1 / L2 cache by achieving

fewer L1 / L2 cache misses per packet. Prefetching also

significantly reduces the number of LLC cache misses per

packet. In addition to the benefits of prefetching, our data

packing techniques provide an additional 5% performance

improvement because fewer cache lines needed for the same

amount of state needed.

Evaluation on SFC: From Figure 13(a), the configuration

of 16 interleaved NFTasks will lead to optimal performance.

In addition, that data packing (DP) can improve performance

significantly if we pack the temporally correlated per-flow

states into a minimum number of cache lines. The redundant

matching removal (MR) has a significant improvement (∼6x

for SFC of length 6) in the performance on top of the

interleaved methods and the data packing algorithm, since it

eliminates all cache misses in pointer-chasing-heavy matching

operations. The IPC measurement (Figure 13(c)) shows that

with 16 interleaved NFTasks, data packing, and removal of

redundant matching have superior efficiency because it is less

influenced by memory stalling issues caused by cache misses.

The evaluation shows that, thanks to the fine-grained data-
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Fig. 15: Performance of UPF on GuNFu with 130K PFCP sessions

code decoupling of the granular decomposition, the platform

can leverage visibility into the network functions for efficient

composition that improves cache utilization.

C. Scalability

To understand the scalability of our system, we study the

performance of our system in a diverse traffic environment. In

addition, we use CAIDA traffic as real-world traces to test our

system.

Evaluation on SFC: in Figure 14, for all packet sizes, GuNFu

scales linearly with the core number. It reduces the number of

cores needed to reach the line rate or near line rate due to

the effectiveness of prefetching, redundant matching removal,

and data packing. In comparison, for the SFC of length 6, the

implementation used by BESS can only achieve 18, 18, 17 ,

20 Gbps respectively.

Evaluation on UPF: in Figure 15, for all packet sizes, GuNFu

can scale linearly with the number of cores until it reaches

the line rate. For packet size with 1512 bytes, the UPF can

achieve line-rate or near line rate with 4 cores, 1024 bytes with

6 cores, 512 bytes with 10 cores, and CAIDA traffic with 6

cores. In comparison, for the case of 16 PDRs, the per-packet

RTC model of UPF used by L25GC can only achieve 65, 64,

52, 41 Gbps, respectively, with the same number of cores.

It shows that granularly decomposed NFs of GuNFu can be
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effective when scaled to multiple cores and have better core

utilization than monolithic implementations.

VIII. RELATED WORKS

More on Execution Model: Besides the works discussed in

§II that use per-packet RTC model. There are execution models

proposed to tackle inefficiency in higher abstraction layers

than ours: the pipeline model that place different modules on

different cores[28, 29, 30], the interleaved processing among

networking modules and application modules [31], the adap-

tive batching technique for scheduling among modules[15],

network function parallelism through module-level parallelism

[32, 33, 34]. Within the module execution, they still apply

per-packet RTC. In comparison, our method exploits the

parallelism of the processing of different networking flows

[35]. Their methods can be combined with ours to further

improve the performance.

NF Programming Abstraction: The development of pro-

gramming abstractions for network functions is crucial to

enhancing their visibility within the hosting platform. For

previous network function platforms, modularization based on

functionality [8, 23, 29, 36, 37] yields significant benefits in

terms of programmability, manageability, and scheduling when

interfaced with traditional hardware. For the stand-alone net-

work function implementations, the idea of modularization is

also applied [9, 10, 11, 12]. Inheriting modular design, GuNFu

further breaks down the module employing the principle of

Granular Decomposition into a collection of NFAction and

NFState with fine-grained decoupling.

Cache Optimization Applied in NF: Leveraging program-

ming abstraction for transparent cache optimization is the key

motivation for the design of interleaved function stream exe-

cution model. [13, 14, 26, 38] apply the software prefetching

to accelerate the lookup data structure. This approach is also

applied to network-intensive functionalities such as key value

stores and databases [16, 39]. Another cache optimization is

data packing [27, 40] to increase the utilization of cache lines

by adjusting the placement of state variables. Through the

programming model that we propose, both cache optimization

methods are performed transparently.

Separation of Data and Code: The principle of separating

data and code is a widely adopted design strategy on NF

platforms [41, 42, 43, 44], improving fault tolerance and offer-

ing flexibility during scaling-in/out events. Within the mobile

core, network functions such as 5G UDSF [45] have been

developed to decouple data storage from computation, fortify

fault tolerance, and enable adaptability in scaling scenarios

[46]. Our NF model delineates the correspondence between

every NFState and every NFAction with finer granularity, as

opposed to the general per-flow state and NF. Our strategy

overcomes the conventional trade-off between performance

and reliability by improving L1 / L2 cache utilization, thereby

improving performance without compromising reliability.

IX. CONCLUSION

The rapid expansion of virtualized network infrastructure,

exemplified by the emerging 5G core network, necessitates

innovative approaches to optimize per-core network function

processing performance. This paper addresses the limitations

of the prevalent per-packet RTC execution model using a

novel interleaved function stream execution model to achieve

more efficient state access. To address challenges on lack of

visibility and inflexibility of scheduling of traditional modular

network function implementations and platforms, we advocate

a new programming model with the principle of Granular

Decomposition for deep visibility. We design a lightweight

runtime that leverages visibility to prefetch timely and pre-

cisely, and compilation optimizations that can further improve

cache utilization. The evaluation results reveal significant

performance gains, with an improvement ranging from 1.5 to 6

times per core throughput compared to traditional monolithic

network functions with the per-packet RTC execution model.

Our prototype of GuNFu is available at [47].
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