2024 |EEE 44th International Conference on Distributed Computing Systems (ICDCS) | 979-8-3503-8605-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/1CDCS60910.2024.00056

2024 1IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

Interleaved Function Stream Execution Model for
Cache-Aware High-Speed Stateful Packet Processing

Ziyan Wu, Yang Zhang, Feng Tian, Minjun Wu, Antonia Zhai, Zhi-Li Zhang*
University of Minnesota, Twin Cities
Minneapolis, USA
{wu000598, zhan3248, tianx399, wuxx1354, zhai} @umn.edu
*zhzhang @cs.umn.edu

Abstract—The evolving network infrastructure, particularly
the 5G core network, is increasingly adopting cloud technologies.
This shift brings to the forefront the challenge of meeting the
demanding per-packet processing requirements posed by multi-
hundred Gbps Ethernet NICs (network interface cards). While
traditional NFV (network function virtualization) platforms are
effective on older hardware, the per-packet run-to-completion
(RTC) execution model for per-packet processing suffers from
stalling on state access due to L1/L2 cache misses. Although
previous work applying software prefetching can mitigate the
issues, their applications are fundamentally limited by the nature
of a single execution stream, hence limiting them to batch
lookups, suffering from control-flow divergence, and requiring
manual tuning. To address the limitations, we introduce a
novel interleaved function stream execution model that exploits
the function-level parallelism through memory-level parallelism,
targeting feature-rich network functions such as 5G Core. To
provide the visibility into network functions, we introduce a
novel programming model based on the principle of Granular
Decomposition, which provides deep visibility into the state access
by decoupling the state in a more fine-grained manner compared
to traditional modular approaches. We integrate these two
innovative designs into a new open-source NF platform, which we
refer to as GuNFu. We have tested GuNFu on widely deployed
network functions such as 5G UPF (User Plane Function), 5G
AMF (Access Management Function), NAT (Network Address
Translator) and others. Extensive evaluations reveal that GuNFu
can achieve throughput ranging from 1.5 to 6 times over the
traditional modular approach.

Index Terms—NFYV, execution model, mobile core

I. INTRODUCTION

With growing demands for programmability and scalabil-
ity, networking infrastructure is increasingly virtualized or
“cloudified”. This is epitomized by emerging 5G networks.
For example, the 5G core is organized as a set of network
functions (NFs), such as User Plane function (UPF), access
and mobility management (AMF) function. All 5G core NFs
are examples of stateful NFs where packet processing logic
depends on a specific state (e.g., user or session contexts)
maintained per user device and/or user session. Many of the
NFs widely used in (backend) data centers [1, 2, 3] such as
load balancers (LBs), network address translators (NATS), and
firewalls (FWs) are also stateful as they maintain state per

flow.

Using the zero copy principle [4, 5] and sharing-nothing
principle [6], previous approaches achieve significant perfor-
mance improvements. They nonetheless face significant scal-
ing challenges with emerging workloads. Today, 100/200 Gbps
Ethernet NICs (network interface cards) are commonplace
and affordable, leading to exponentially decreasing per packet
processing budget. As will be further argued in §II-A, it is
crucial to ensure that the stateful NF operations on the packets
and states are L1/L2 cache-bound. Experiments in §II-C show
that the existing per-packet run-to-completion (RTC) execution
model employed in existing NF frameworks [7, 8] — and
feature-rich open source 5G projects [9, 10, 11, 12] under
active development that use the RTC model — cannot avoid the
cache miss penalty due to the increasing complexity of the per-
flow state of the network function and the ability to leverage
the increasing concurrency in network workloads. Despite
the fact that software prefetching is employed to minimize
cache misses, it is generally applied to a single stream of NF
execution within a limited set of data structures (e.g., table
lookups) [13, 14], and suffers from control-flow divergence
[15, 16].

We propose a novel interleaved function stream execution
model (Figure 1): a method that concurrently runs different
function streams to exploit function-level parallelism through
memory-level parallelism. In our work, a function stream
is defined as a sequence of functions (NFAction in §IV),
and each stream corresponds to the processing of a packet
belonging to a network flow, a sequence of packets matched
by a particular predicate, which might be a set of fields in the
packet headers or payload. In this model, the states (NFState
in §IV) of functions from independent execution streams can
be retrieved concurrently through software prefetching. The
interleaved function stream execution model takes advantage
of the inherent parallelism to be processed per core and takes
advantage of the fine-grained software prefetching technique
to optimize the utilization of the L1 / L2 cache.

However, the realization of the proposed interleaved func-
tion stream execution model effectively presents several chal-
lenges. To perform software prefetching efficiently, we need
insights into the operations of network functions to make in-
telligent decisions about what states are needed next and what
actions must be performed on a given NF function stream.

2575-8411/24/$31.00 ©2024 IEEE 531
DOI 10.1109/ICDCS60910.2024.00056
Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

Unfortunately, the information is not visible to the runtime in
current open-source network function platforms [7, 8] or open-
source network function implementations [9, 10, 11, 17] and
makes it hard to integrate software prefetching effectively. We
also need a light-weighted runtime system to support efficient
scheduling among different execution streams.

To address these challenges, we propose GuNFu (§III), a
granular, cache-aware network function platform for stateful
packet processing at line rate. We advocate for a Granular
Decomposition programming model to provide deep visibility
into fine-grained components defined by NFState, NFActions
in our NF Model (§1V), which is more fine-grained than
traditional modular network functions. To support flexible
scheduling in runtime, we develop an abstraction called NF-
Tasks to support flexible scheduling among different function
streams, which significantly outperforms the per-packet RTC
model [18] that is currently used in today’s NF platforms
and NF implementation [9, 12, 17, 19, 20]. We introduce
several additional compilation optimization techniques (§VI)
to further enhance performance by taking advantage of the
deep visibility. Evaluation (§VII) shows the effectiveness of
GuNFu in cache utilization and performance improvement
ranging from 1.5 to 6 times over the conventional per-packet
RTC model.

II. CHALLENGES IN ACCELERATING STATEFUL NFs

We argue why per-packet RTC cannot address the issues on
state accessing in network functions and the proposed inter-
leaved function stream execution model is a better candidate.

A. Growing Network, CPU and Memory Gaps

The network speed has grown tremendously in the last 20
years, evident from the growth of the Ethernet speed, which
has grown 200 times from 1 Gbps in 1997 to 200 Gbps in
2017 and is expected to reach 800 Gbps/1.6 Tbps in the near
future [21]. We have calculated the (average) per packet time
budget to process 64B packets with a processor clocked at
3.4 GHz, as the line speed increases from 10 Gbps to 400
Gbps. In particular, to keep up with 100 Gbps line rate, the
average per-packet processing time is only about 6.7 ns (about
23 clock cycles at 3.4 GHz). And the access latency of the
memory hierarchy is about 1.2 ns, 4.1 ns, 13-20 ns and 70-
125 ns respectively for L1-cache, L2-cache, Last-level cache,
and DRAM.

The relatively high cost of accessing the lower layers of
memory hierarchy shows the importance of cache utilization
in NF software design and implementation. Ideally, we want
the state needed for NF processing to reside within the L1/L.2
caches before it is accessed. Otherwise, if the core has to
wait for the NF state to be fetched from the LLC, or worse,
from the DRAM, precious CPU cycles are wasted. With the
increasing concurrency of network workloads that each core
must process, contention for L1 / L2 cache resources causes
a rise in cache misses, resulting in unavoidable LLC/DRAM

532

Per-flow
RTC

Legend
(® blocking

outstanding
@prefelching

Interleaved
Function
Stream
Execution
Model

time

(Different Colors represent different Execution Streams)

Fig. 1: An illustration of the comparison of per-flow RTC and the
interleaved function-stream execution model on a single core. Our
framework employs Granular Decomposition to explicitly decouple
states that may cause cache misses from functions, thereby enabling
efficient prefetching.

memory accesses. This is particularly the case when the NF
state required for packet processing is large/complex.

B. Empirical Study for Per-packet RTC Execution Model

The idea behind the per-packet RTC execution model is that
within one network function module, the underlying runtime
system processes the packet from one network flow without
yielding until it is done. The per-packet RTC model is ubiq-
uitously used in the open-source state-of-the-art modular net-
work function framework [8, 22, 23] and standalone network
function projects [9, 10, 11, 17] under active development.

The local state access becomes an obstacle for scaling of
stateful network functions under per-packet RTC execution
model. Take the NAT from BESS or FastClick [22, 24]
as example, they orchestrate the batched packet processing
computation in a loop and in each iteration they run the
packet processing to completion, including the matching for
individual packets, accessing the per-flow states which all
cause memory-access stalling during the high-concurrency
workload. For more intricate network functions such as AMF,
UPF from the open source implementations [9, 10, 11, 12],
the per-packet RTC execution model is also applied: for each
packet, they first match the user context information, then
based on the states, do a series of computations based on the
user context, without yielding until done.

To illustrate the issues for cache utilization for per-packet
RTC execution model empirically, we used two network
functions in the mobile core, 5G UPF and 5G AMF.

Testbed Setup: The testbed used for our experiments consists
of two 48-core servers (Intel(R) Xeon(R) Platinum 8168
CPU @ 2.70GHz), each equipped with a dual port Mellanox
ConnectX-6 EN 100Gbps DPDK capable NIC. One server acts
as the device under test (DUT) and the other as the traffic
generator.

Methodology: For both network functions, we examine the
implementation from L25GC [17]. To generate the workload,
we extend the Telco Pipeline Benchmarking System [15, 25]
of MGW (Mobile Gate Way) use cases and vary the number
of PFCP sessions and the number of PDRs (Packet Detection

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

Number of PDRs
w32 mu 64

16 mewe 128

ket State Access Time (ns) Throughput (mpps)

ket

L3C Mi:

o N & o

216 2

2 215
Number of PFCP Sessions

Fig. 2: Impact of concurrency on the performance on UPF.

Rule) to see its impact on state access. For AMF, we take
the test cases provided by Free5GC [9], vary the number
of UEs and examine the messages that require state access
involved in the initial registration. As we focus on the state
access performance, we extract related call flows and state
access involved in the process and port them to DPDK.
For both experiments, we tested single-core performance. For
microarchitecture metrics and state access time, we use the
perf utility from Linux to measure PMU events and CPU time
by the state accessing functions.

(EXP A) Impact of Growing Concurrency: Figure 2 il-
lustrates the impact of growing concurrency on the perfor-
mance. From the results of the experiment, we can see that
when the number of PFCP sessions and the number of PDR
increases, the performance of the 5G UPFs degrades. The
further profiling shows that the root cause of the performance
degradation is due to the increased per-packet process time
because of increased flow matching and state access overhead.
The increase in overhead is because with the increased size of
flow table, the matching process and the access to the per-flow
state (PFCP sessions) and sub-flow state (PDR) is more likely
leading to a cache miss as the corresponding entry in the flow
table and the per-flow state is unlikely in the cache when the
flow arrives.

(EXP B) Impact of State Complexity: Figure 3 shows the
impact of state complexity on performance. Compared to UPF,
the per-flow state is much larger for AMF, as the information
for keeping track of the UE states is richer. The size of the
per-flow state in AMF is greater than 20 cache lines. As
a result, state access takes up a large portion of the total
packet processing time of AMF. The cache profiling metrics

533

Number of UEs

mw 2 mm 2 mm 2% e 2V

o
o
o o
s o

o

i
~
a
o

u
o
=3

NI
a
o

o

ket State Access Time (ns) Throughput (kpps)

< 15

10

omplete rt 5GSM

jtial UE
\nitial Transpo!

X Sponse mplete
Aument'\canon Re: zecuf‘w Mode €O Registratio® C

Fig. 3: Impact of state complexity for state-intensive messages in
UE Initial Registration on performance.

reflect the impact of demanding per-flow state access with
much higher L1/L2 cache, LLC misses per-packet. It is worth
noting that, for some messages, the actual state accessed is
much smaller than the touched cache lines, resulting in the
program asking for more cache lines than it actually needs.
This inefficiency further degrades performance.

The empirical study shows that the per-packet RTC model
is not sufficient to tackle efficient cache utilization under the
emerging constraints of higher concurrency and complexity.

C. Case for the Interleaved Function-stream Execution Model

As illustrated by the Figure 1 and the empirical study, for
the per-packet RTC, within a network function module, it is
likely that the functions or groups of instructions will block
when accessing the states that cause cache misses. Although
previous work [13, 14] has shown that software prefetching
can improve instruction-level parallelism, the critical downside
is that they are subject to a single execution stream, resulting
in the limitation to homogeneous workloads and homogeneous
functionalities, i.e., batch lookup. The adaptive batching so-
lution [15] suffers from state access latency for the first few
packets when scheduling downstream modules, which can lead
to SLA violation for queueing delaying. Furthermore, none of
the works solves the problem of state access delay of the per-
packet processing within the module after the batch lookup.
Applying prefetching techniques naively suffers heavily from
control flow divergence and requires the programmers on
fine-tuning of the insertion of prefetching instruction [26],
instead of focusing on the application logic. These limitations
make it hard to integrate effective software prefetching beyond

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

Config Generator

Director

Compﬂeui Director
Agent
{ Legend |
e
| ' [Runtime |
| - 3 Runtlme
o J Worker Agent

Fig. 4: GuNFu System Architecture Overview

the batch lookup data structure into more intricate network
function projects.

The interleaved function stream execution model we pro-
pose does not suffer from this limitations. Instead of stalling
on the state access, the interleaved function streams can enable
the runtime system to prefetch the states that correspond to the
next function for function-level parallelism and switch to the
execution stream in which the corresponding state is available.
It enables more efficient consolidation of different modules,
since runtime has visibility on the function of the next module
to be executed. Compared to per-packet RTC, it also applies to
heterogeneous workloads/functionalities, which are common
in feature-rich network functions dealing with different user
behaviors, hence different state lookup methods, application
logic executed and states to be accessed. As a general cache
optimization solution, it not only applies to state lookup but
also improves general state access.

However, systematically integrating the novel interleaved
function stream execution model into the network function
platform is not without challenges. Current modular network
function implementation does not provide an explicit relation-
ship between the state (which may cause cache misses) and
functions with fine granularity, hence our need to redesign a
programming model that allows us to refactor the network
functions to provide that deep visibility into the network
functions in terms of the states accessing for each function.
As a result, the runtime can take advantage of the information
to perform prefetching effectively and transparently to the
developers. Besides, as the current network function platforms
only support per-packet RTC, we need a light-weight runtime
for efficient function stream scheduling. We lay out our
systematic solution in the next section.

III. SYSTEM OVERVIEW

GuNFu is the first to provide a systematic solution to
the challenges of applying interleaved function stream ex-

534

ecution model. To provide deep visibility for runtime, our
programming model is designed based on the paradigm of
granular decomposition — a collection of design principles
that effectively decompose the modules of network functions
into even more finer-grained components — to provide deep
visibility. This paradigm will be presented in detail in §IV.
With visibility into network functions, our novel interleaved
function stream execution model enables our NFV runtime
to timely prefetch the required data and dynamically switch
between multiple execution streams to mask the inevitable
and costly LLC/DRAM access overheads, thus significantly
enhancing per core CPU utilization. Our design is par-
tially motivated by the following key insights. /. Inherent
Parallelism in NF Flow Processing. We note that the most
frequent operations, processing of different NF flows in a
stateful network function, are independent. For example, for
the UPF, the process of encapsulation of a packet depends
only on its per-flow state and subflow state (PDR), which
is a private operation. This means that before the network
function begins expensive memory operations accessing its
PDR/packet header, it should issue a prefetching instruction
and switch to other execution streams for different flows for
useful work, instead of blocking on the L2 cache miss or
LLC miss. 2. Critical Per-Flow Operations. Cache misses
are frequently caused by per-flow state access, flow matching,
and packet header access in the context of network functions.
We therefore optimize these operations by intelligently and
systematically applying software prefetching.

High-level Workflow: In Figure 4, we present an overview
of the system data flow graph. The system consists of two
main parts: the director and the runtime. The director works
as the orchestration and control plane, and the runtime works
as the data plane of the NFV system. The architects provide
the program specification of modules using the principle
of Granular Decomposition (see §IV). Developers provide
implementation according to the specification. Architects or
operators can write an NF/SFC specification to specify the
network function, service function chain that must be deployed
in the infrastructure according to a functional or operational
requirement. The configuration generator will generate a con-
figuration template that needs to be filled out by operators
and be used to initiate/configure the network functions. The
director compiler will take the specifications and correspond-
ing NF implementations to generate the NF binary (see §VI).
The director will deploy and start the runtime (see §V) on
the hosting machine. During execution, the runtime agent will
receive configuration commands from the director through the
director agent for initialization and dynamic configuration, and
it will exchange operational statistics with the director.

IV. GRANULAR DECOMPOSITION

To give visibility to the network functions, we need to de-
sign a programming model to explicitly separate the code and
data with finer granularity than traditional modular network
functions and to describe how the data is consumed by the NF

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

NF Components

- System | NFState
[user | Memory
Hme
NFstate
Config Action T Access
i NFAction {
NFAction) '
Executor | ;™ l
fetched (NFEvent)
NFAction ~
Control State Match State Control Logic
Data State Per-flow State $Pa0ke?)
Fetching Timer
Sub-flow State)

(a) NF Components (b) NF Execution Model

Fig. 5: Detailed categories of NF components and an illustration of
logical view of NF Execution Model

modules. In addition, we propose the Granular Decomposition
Property for deciding the granularity of the decomposition.

A. NF Components and NF Execution Model

We present the key elements (Figure 5(a)) in our NF
computational model and present the Granular Decomposition
Principle and the execution model.

NFEvents: NFEvents are notifications of changes that the net-
work functions handle. These notifications can be categorized
into two main types: system events and user events. System
events are triggered by or sent to the outside environment of
NF, such as the arrival of a network packet or a request from
user-defined actions to the hardware. On the other hand, user
events are inner events triggered by user-defined actions and
can lead to subsequent actions within a module.

NFState: NFStates are the data that need to be stored and
accessed during the packet processing life cycle. We clas-
sify states into the following: data states, control states, and
temporary states. Data states include match state, per-flow
state, sub-flow state, and packet state. Match state are data
structure used for flow classifying that map the packet to its
per-flow state or sub-flow state, typically using a hash table or
tree searching structure. Control states are states that persist
during the lifetime of an instance of a network function and
are shared among the flows. Since the control state tends to
be small and shared among the flows (its space complexity
is not related to the number of flows), it is likely always
in the L1/L2 cache. Temporary states are states that need to
persist among the invocation of actions for a particular packet.
These states are used to store intermediate results and are
typically discarded after the packet has been processed. The
performance of accessing the NFStates depends on whether
they are in the L1/L2 cache. Motivational experiments show
that the access to the match state and per-flow state will lead
to L1/L2 cache misses with high concurrency workload.

NFAction: NFActions are NFEvent handlers. NFActions are
categorized into match action, data action, and config action
based on the states with which they interact. Match actions
interact with match states to locate the per-flow/sub-flow
states. Data actions are actions that interact with the data states.

535

Config actions interact with the control state. The performance
of each NFAction depends on the NFState they are interacted
with whether in the L1/L2 cache.

Granular Decomposition Property: Since a module can be
decomposed into NFActions with arbitrary granularity (as a
result, the granularity of the correspondence of the data and
code), deciding the granularity of the decomposition is impor-
tant, and we found any decomposition satisfying the following
property to be useful: whether or not the access of data state
in NFAction should not depend on the computation within
the NFAction. The implication is that the variables in the
data states (per-flow state, part of the packet, or match state)
needed should be decided before the execution of NFAction.
The rationale behind the principle is the following: Before the
execution of an NFAction, all the portions of the data state
related to it should already be in its NFState memory (where
we will map to L1/L2 cache later). If a part of the portion is not
actually accessed because of the dynamic behavior within the
action, then the portion wastes valuable L.1/L2 cache space as
it is not needed. We call the decomposition of an NF satisfying
this property ’Granular Decomposition”.

NF Execution Model: Figure 5(b) illustrates a “virtual ma-
chine” that runs an NF processing one packet based on the
notion of granular decomposition. The virtual machine consists
of an NFState memory, an NFAction executor, and NF Control
Logic. NFState Memory is the data storage area for different
states that the network function might need. It would store the
portion of data states, control states, and temporary states that
the packet needs to access. We need to ensure that all the data,
when mapped to the host environment, should be in the L.1/L.2
cache when executing the action. NFAction Executor is the
component responsible for the actual execution of NF actions.
It takes fetched NFActions and executes them, presumably
altering or utilizing the NFState as needed. Control logic
determines the selection of an action based on various types
of events (generated by the system or the user). Importantly,
it is also responsible for preparing the necessary NFState for
the actions to access. After the NFAction is executed, a new
NFEvent is generated, and the control logic may select further
action to process the packets.

Formalizing Execution Model as FSM: Under the execution
model, the control logic of an NF can be modeled as an FSM
(finite state machine). Let C'S = {CS1,CSs,...,CS,} be a
set of control logic states to represent the stages to process a
packet. The set A, is a collection of NFActions, and S, ¢
is a collection of NFStates. The set of NFEvent to which
the network function can respond is defined as E,;. The
CSFSM can be defined as (CS, A, F).

The transition function A : €S x E, ; — C'S describes how
the network function transitions between control logic states
in response to NFEvents.

Alesi,e) =csj, csj,es; €CS, e€ Eyy

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

Packet Sta

I YJI

(a) MDI Tree Module (b) Cuckoo Hash Module

Per-flow State

Per-flow State . Packet State . - .

Packet State

Rewrlte
Match Success. Header Mm ‘Success

(d) UPF Encapsulator Module

(c) Flow Mapper Module

(e) NAT (f) UPF Downlink Handler

Fig. 6: Module/NF Specification Diagrams

A fetching function F : CS — A, ; x 29+ is defined to
determine the appropriate action and subset of states that the
control logic should fetch, based on the current control state.

F(cs;) = (a;,S:), ¢s; € CS, a;€ Any, SiC Sy

Two network functions NF; and NFs with compatible
transition functions A; and A, can be composed to form
a more complex network function NFcopmposice. Let C'Sq and
C'S; be the control logic states of NF; and NF;, respec-
tively. A, 71 and A, o be their respective sets of actions,
and S,y1 and S,fo be their respective sets of states. The
control logic state set CScomposite 0 NFcomposie could be
defined as C'S; x CS,. The fetching function Fiomposite
C Scomposite = Anf1 U Anpa X 2(Sns1USnr2) gnd the transition
function Acomposite : C'Scomposite X Eng — CScomposite €an be
defined in terms of Ay, and As.

B. Programming Examples

Programming consists of three parts: module specification,
NF/SEC specification, and action implementation. We use
yaml as the language for the specification language due to its
readability. For the implementation of the action, we design a
C-like DSL, NF-C, to describe the NFAction logic, allowing
developers to describe the application logic in an SPMD
model.

We use a 5G UPF (downlink handler) and NAT as examples
to illustrate how to provide a specification. The UPF consists
of three modules, the Cuckoo-hash table (Figure 6(b)) to map

536

Listing 1: Flow Classifier Specification

Listing 2: Flow Mapper Specification

Flow Classifier Specification
category: StatefulClassifier
parameters: # for init, config
- entry_num

- header_type

transitions:
Start,packet—>get_key

get_key, get_key_done->hash_1
hash_1, hash_done->check_1

Flow pecification
category: StatefulNF
transitions:
Start, MATCH_SUCCESS->flow_mapper
flow_mapper, packet->End
NFAction_NFState:
- flow_mapper:

- ip # mapped ip

- port # mapped port

check_1, MATCH_SUCCESS->End
check_1, check_failure->hash_2
hash_2, sec_hash_done->test_2
check_2, MATCH_SUCCESS->End
check_2,MATCH_FAIL->End
NFAction_NFState:

Listing 3: NAT Specification

=

SFC Specification

- hash_1: 0:receive_packet,packet->1:
- {header_type} # packet state flow_classifier
- bucket_check_1: # name of declared modules omitted
- bucket # match state 1,packet->2:flow_mapper
- hash_2:
- {header_type} Listing 4: Flow Mapper Implementation in NF-C
- bucket_check_2:
- bucket // Implementation Using NF-C
- key_check_1: NFAction (flow_mapper) {
- key_store # match state Packet.src_ip=PerFlowState.ip;

Packet.dst_ip=PerFlowState.port;
Emit (Event_Packet);
}

- key_check_2:
- key_store # match state

Fig. 7: Example specification (YAML) and code (NF-C).

the teid to the PFCP session (per-flow state), multidimensional
interval tree (MDI tree, Figure 6(a)) to map the five-tuple
to the PDR (subflow state) and the UPF encapsulator (Fig-
ure 6(d)) to tunnel the packet to the RAN. In the stateful
matching operations in Cukcoo Hash table and the interval
tree, significant overheads are caused by the pointer chasing
operations associated with accessing the match state, which
include bucket accessing or accessing the next child node will
likely lead to cache misses. The UPF encapsulator utilizes the
FAR (Forwarding Action Rules) from PDR. Figure 6(f) shows
how to use the composability of each component to compose
the functionality of the UPF downlink handler. For the NAT,
we compose (Figure 6(e)) the Cuckoo Hash table and the flow
mapper (Figure 6(c)) that rewrites the header based on the
mapping rule.

To provide the specification, the designer needs to write
a YAML file for different modules and the composition of
modules. Listing 1,2 shows the example specification for the
Cuckoo hash table and the flow mapper. For the composition,
the designer needs to write the transition from one module
to the other. To provide the implementation for NFAction,
developers need to write a function in NF-C, our extension
for C. The NF-C provides newly introduced keywords such
as Packet, PerflowState, SubflowState, MatchState, and Temp-
State to have access to various states in NFState memory. The
example code for a flow mapper is provided in List 4.

V. RUNTIME ARCHITECTURE

Runtime provides the environment for the execution model
explained in the previous section. The key innovation in the
runtime is effectively applying the interleaved function stream
execution model for stateful network functions, an extension
of the NF execution model. Using the interleaved function
stream execution model, runtime can concurrently run multiple
execution streams for better parallelism. To enable efficient

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

~

Core

Core

L
NF
APP
’ e O/O_>O\‘
—~0—0—
NFTask O
N .-
—

Per-core]Schedule, Software
Runtime transition | fetching Prefetcher

NIC Core |t _ L te
Packet NFTasl| Action ontrol
' Buffer Table Table StateTable DataState st
'
...... . ——
' J
Core 1| Cache Hierarchy
o I @ Lic I L2c I LLC-(Slice) I

Fig. 8: Runtime Architecture

mam Pthread

Control State Ps2 NFTask

Per-flow State

ph
2

—— Speed-Up S

Sub-flow State

Match State

NFTask Packet

of Context Switching

Event

TempState H‘vl‘v2‘v3|v4|v5‘

"
2

O
<
<
72
0
<
<
O
<>
¢
%
0
<
X

16

p

}——» P
(a) NFTask Data Structure

INP| P

' ‘ P State

N[|

8
Concurrency
(b) Scalability of NFTask

Fig. 9: Evaluation of the maximum number of context switching
per second of NFTasks of one core. Compared to pthread by Linux
Kernel, our NFTask can take advantage of the parallelism.

scheduling, we leverage an abstraction called NFTask to keep
track of NFAction streams for the processing of different flows.

Runtime Overview: Figure 8 illustrates the runtime archi-
tecture. Our system has a per-core runtime, which we call
worker, and each worker has exclusive management of the
resources on its assigned core. The core runtime is responsible
for orchestrating the execution of NFs of different execution
streams with its scheduler. During scheduling, it automatically
executes the prefetching instruction to timely put the related
NFState to the L1/L2 cache for better performance.

NFTask: NFTask is an abstraction of a lightweight (see Figure
9(b)) execution environment for an execution stream of NFAc-
tions for a packet. The key data structure used to manage it is
illustrated in figure 9(a). Each field in the NFTask corresponds
to the components described in the NF Model; thus, an NFTask
maintains all the context that needs to process the packet.
When the NFAction of the network function accesses the
NFState, it essentially utilizes the reference of the fields to
have access to the data. Although all the NFTask share the
same memory space, NFTask also provides isolation, as the
action cannot access a memory address other than the one
referenced in an NFTask through the compilation check.

Cache Management: To ensure efficient usage of prefetching,
we utilize a field in NFTask instruction called the P state to
keep track of whether the NFState corresponds to a control
logic state already prefetched, and hence it is likely in the
L1/L2 cache. When it does need prefetching, it will reference
the prefetching policy (generated by the correspondence of

537

Algorithm 1 Runtime Scheduler

1: NFTasks <~ NFTasks(max_interleaved)

2: while True do

3 PacketBuffer <— Receive packets

4 Initialize NFTasks, initial transition, and fetching for all

5: ne < 0 > Current NFTask number
6 while Packet processing is incomplete do

7 if not isPrefetched(NFTasks[n].p_state) then

8 Prefetch(NFTasks[n¢], prefetch_policy) > Prefetch NFState
9 Continue
10 end if
11 ActionExecutor(NFTasks[n¢]) > Execute the NFAction
12 if NFTasks[n¢] is complete then
13: Initialize NFTasks[7¢]
14: end if
15 Transition(NFTasks[r;]) > Execute Control Logic
16 Fetch(NFTasks[n¢]) > Prepare NFState and NFAction
17 n¢ < Next(NFTasks,n;) > Switch to the next NFTask
18 end while

19: end while

NFAction and NFState) to prefetch the specific cacheblocks
of the corresponding NFState.

NF Management: For NFAction management, we use an
action table to store all the NFActions deployed in the runtime,
each entry contains a function pointer to the function. When
the runtime executes an NFAction in an NFTask, it will use
the function pointer to call the function, with all the NFStates
referenced in the NFTask as parameters. NFState management
requires different ways to manage different kinds of state. For
the control state, we maintain a control state table that contains
the list of references to each control state of NFs in the SFC.
The control state and the match state will be allocated during
the initialization stage. For the packet state, as it arrives in the
packet buffer in the host, we store its reference into the NFTask
to achieve zero-copy during its lifetime. For the per-flow state
and sub-flow state, we pre-allocate datablocks, whose size is
the size of each entry times the maximum concurrency that
the core plans to support configured by the operators. When
the matching is done, the matching result, which is an offset
to the table, will be stored to the Per-flow state/sub-flow state
field in the NFTask data structure, which enables the NFAction
to access their per-flow/sub-flow state.

Scheduler: Our scheduler is responsible for achieving inter-
leaving between NFTask and inserting the prefetch instruction
in a timely manner. Our scheduler runs a round-robin policy
to switch among different NFTasks. The scheduler essentially
extends the control logic of the NF Model introduced in
the previous section as it is responsible for the transition
and fetching of control logic of multiple streams. After the
transition and fetching step is done, the NFStates of the
NFAction need are determined, and the software prefetcher can
use the visibility to prefetch them as needed. The Algorithm 1
illustrates the scheduler process. At the beginning of the loop,
it will receive a batch of packets. After the batch of packets
is ready, the worker will initialize a set of NFTask, loading
packets into the NFTask and setting up the initial transition and
fetching triggered by the “Packet” system event. Then it will

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

enter another loop, processing each NFTask and re-initializing
finished NFTask if they are done.

VI. COMPILATION AND OPTIMIZATION

In this section, we discuss the compilation process that maps
the program into the form that can be executed by the runtime.
We also apply several optimization techniques, including data-
packing and redundant matching removal.

A. Compilation

Our compiler takes two inputs: one is the specifications and
one is the NFActions involved from the NF Implementation
Library provided by the programmer. The output will be the
binary of the NF Application bundled with the runtime.

NF-C Compilation: Our compiler takes the implementation
of NFActions using NF-C and generates the C code. First, we
translate the function signatures into a C compatible one that
takes pointer to struct NFTask (Figure 9(a)) as a parameter.
Second, we replace the operations related to the extended
keywords of NFState with the pointer-reference operation
of NFTask because different NFStates are members of the
NFTask data structure. Third, the compiler collects all the
temporary variables used and will be used to allocate the
temporary variable fields of NFTask.

NF Binary Compilation: The compiler transforms the Mod-
ule/NF specification into a Finite State Machine (FSM) for
control logic, ensuring valid transitions. It generates action
and control state tables from the specification, links action
implementation libraries, and produces initialization functions
in C. During deployment, the director agent uses this con-
figuration file to initialize the network function through the
runtime agent.

B. Compilation Optimization

The Granular Decomposition not only provides visibility
for the scheduling in the runtime but also for the compilation
optimization in the compilation time.

Redundant Matching Removing for SFC: Removal of
redundant matching reduces the number of matchings required
for SFC. For multiple stateful network functions chained
together, naive consolidation will match multiple times and
manage their per-flow state separately. We remove redundant
matching to eliminate redundant operations that are full of
pointer-chasing operations, by simplifying the control logic,
and reuse the matching result of the first matching action for
consecutive network functions that use the same key to locate
the session states.

Redundant Prefetching Removing: For each action, the com-
piler will analyze the execution stream that leads to the NFAc-
tion and check whether the NFAction has already prefetched
the NFState before the execution of previous NFAction. If it

538

A | 25GC
52 1 NFTasks

Mo 2 NFTasks
""" 4 NFTasks

mEE 8 NFTasks
2292¢ 16 NFTasks

mam 32 NFTasks
64 NFTasks

o

ooa
5
s

e
25

5
o
s
5

o

N

throughput (Mpps)

o

o

64
number of PDRs

32

= S

(a) Improvement on (downlink) throughputs

. (25GC
@ 16 NFTasks

11

64 128
number of PDRs

M 125GC
S99 16 NFTasks

S
°

= 125GC
o 16 NFTasks

W w
s &

miss per packet
N
i

NN
v o

N
S

L2 miss per packet

L1

°
°

16 8 16 32 64 128

32 64 12
number of PDRs number of PDRs

(b) L1-C measurement (c) L2-C measurement (d) IPC measurement

Fig. 10: Single-core performance improvement of UPF.

w
o

o

0503¢

N
n
0

08030
0505030

N
=)
39,
0.
=
®

Throughput (mpps)
L1 Misses per Packet

=
0

0
4 8 16 32 64

RTC1 2 4 8 16 32 64
(BESS)
Number of NFTasks

RTC 1 2
(BESS)
Number of NFTasks

(a) Improvements on throughput
45
</ |
35 .

OOOGO

RTC1 2 4 8 16 32 64
(BESS)
Number of NFTasks

(b) L1C measurement

=

I
9
o

L2 Misses per Packe!

=
o
=}

RTC 1 2
(BESS)
Number of NFTasks

4 8 16 32 64

(¢) L2C measurement (d) IPC measurement

Fig. 11: Performance improvement of granular decomposition for
NAT on GuNFu

is prefetched before, it will remove the part of the NFState in
the prefetching policy.

Data Packing: To further minimize the cache footprint, we
apply a data packing algorithm [27] to group the states
most frequently accessed. We estimate how frequently two
state variables are contemporaneously accessed based on the
corresponding relationship between state variables and actions.
For state variables that are accessed contemporaneously to-
gether, we put them into a single cache line to maximize
the efficiency of prefetching. Considering SFC, because per-
flow states of the consecutive network functions are highly
correlated temporally, we put them in the same cache line if
possible.

VII. EVALUATION

GuNFu includes a programming model to provide Granu-
lar Decomposition that gives visibility on network function
modules to the runtime and compiler, and also a runtime

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

RTC (L25GC)
Interleaved Execution [
Interleaved + Data Packing

1l

\nitial UE lete

nse
. _+ion ResPOm e Comp
Authe“‘\cano gecurity Mod! Regis!

AMF Message Type

{ration ComP nsport 56N

L1 Misses Per Packet

mmz RTC (L25GC)
72 Interleaved Execution
N Interleaved + Data Packing

ode complete

\nitial VE
Reg\stra

nse
- ation ResPO™
puthentic@tOh e ity

AMF Message Type

Fig. 12: The effectiveness of interleaved execution

design supports flexible scheduling for interleaved execution
streams for timely and automatic software prefetching. In the
evaluation, our aim is to answer the following questions: (1)
What is the performance gained from the interleaved function-
stream execution model? (2) What is the performance gained
from applying the compilation optimization techniques? (3)
What is the scalability of GuNFu for the real-world workload?

Implementation: We have implemented a set of important
and representative proof-of-concept network functions in our
prototype system for evaluation purposes: User Plane Function
(UPF) and Access and Mobility Management Function (AMF),
Stateful Load Balancer (LB), Network Address Translation
(NAT), Stateful Firewall (FW), Network Monitor (NM). We
implement a prototype of UPF and AMF based on L25GC
[17] and Free5GC [9].

A. Impact of Execution Model

We use the same setup as the motivating experiments in $1I
to evaluate the improved performance on UPF and NAT of
GuNFu. Evaluation test cases are taken from the MGW and
NAT use cases from the Telco benchmarking System [25].

Evaluation on UPF: We evaluate the improvement in down-
link throughput of our granularly decomposed UPF compared
to the one that performs per-packet RTC from L25GC [17].
This evaluation measures the effects of the number of inter-
leaved NFTasks and the number of second-level rules (PDR)
on performance. The UPF achieves optimal performance with
16 or 32 interleaved NFTasks, but the performance degrades
because of the cache contention if the number is 64. Fig-
ure 10(b) and Figure 10(d) measures the micro-architecture
metrics for 16 interleaved NFTasks with a varying number
of rules. For per-packet RTC model, the utilization of L1-C
degrades (Figure 10(b)) when the number of second-level rules
increases, since there are on average more pointer-chasing
operations in tree structure lookups which are very likely

tion C°mp\e§$ansp°¢ e

LLC Misses Per Packet

539

WA RTC (L25GC)
@™ 16 NFTasks
N 16 NFTasks + Data Packing

\nitial UE

onse \ete \ete 5GSM
authenticatio? Reg,s:cur'\t\/ Mode Congzg\strat\or\ ComPe Cansport

AMF Message Type

2 RTC (L25GC)
7™ Interleaved Execution
N Interleaved + Data Packing

te

\nitial UE comple
Reg‘\sﬂ

M
, . Comp\ete ort 5GS!
Aut\'\ef‘“c ation TransP

se
ion Respon.
atio! Secu\’\W Mod!
AMF Message Type

on granularly decomposed AMF on GuNFu

leading to L1/L2 cache misses, hence worse performance.
With the granularly decomposed version, the utilization of
L1 cache is relatively stable even when the number of rules
increases. This is because instead of stalling on the slow
DRAM/LLC access, the NFTask immediately switches to
another for useful work, and when it switches back, the tree
node should already be in the L1/L2 cache.

Evaluation on NAT: We show NAT (Figure 11) because it
is representative in terms of performance for other network
functions such as LB, NM, FW, which perform a simple
operation based on the per-flow state, which is only a few
bytes. In GuNFu, similar to UPF, the optimal performance of
NAT can be achieved using 16 NFTasks. The performance of
using only one NFTask is worse than RTC due to the overhead
of the scheduler, but the benefits of interleaved execution
streams become apparent when the number is greater than
4. Similar to the one in UPF evaluation, the performance
degrades if the number is 64 because the prefetched data may
get pushed out from the cache if too many NFTasks contend
for the resources. Based on the microarchitecture profiling
metrics, L1 / L2 cache utilization of 16 NFTask is better than
other alternations, leading to its better performance.

B. Impact of Compiler Optimization

To illustrate the benefits of compiler optimization of com-
plex network functions with complex states and a longer
processing chain, we use AMF and the composition of stateful
network functions (LB, NAT, NM, FW) into an SFC as exam-
ples. We compare the performance of network functions with
various length (2-6) using granular decomposed version with
interleaved methods against those using the RTC model. For
lengths greater than 4, we add FW to the SFC with different
firewall policies. Additionally, we evaluate the performance
improvement of applying the data packing and redundant
matching elimination algorithms.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

mEm RTC BESS
M 1 NFTask
BN 2 NFTasks

@ees 4 NFTasks
8 NFTasks

20¢ 16 NFTasks
w32 NFTasks

16 NFTasks+DP
mE 16 NFTasks+DP+MR

Throughput (Mpps)

4
SFC length

(a) Throughput, SFC length and number of interleaved NFTasks

mam RTC BESS

E 40 @ RTC BESS
9 @z 16 NFTasks+DP+MR WX 16 NFTasks+DP+MR
230
o
g
» 20
u
€
S 10
-
0

3 4 5 3 4 5
SFC length SFC length

(b) L1-C measurement (c) Instructions per cycle (IPC)

Fig. 13: The impact of interleaved execution model, data packing, redundant matching removal on SFC.

SFClength mam 4 A 5 NN 6

100 -

801

60

404

20

1 2 1 2 3
Packet Size = 1512 bytes Packet Size = 1024 bytes

Throughput (Gbps)

3 4 5 6 2 3

Packet Size = 512 bytes
Number of Cores

Fig. 14: Performance of SFC on GuNFu with 130K flows

CAIDA

Evaluation on AMF: we compare our granularly decomposed
AMF with 16 NFTasks (which is optimal) against the L25GC
usign RTC model with the assumption of 27 flows. Our imple-
mentation can achieve an improvement of 60% improvement
of processing messages in initial registration (Figure 12(a)).
Our implementation can achieve better throughput because it
can have better utilization of the L1 / L2 cache by achieving
fewer L1 / L2 cache misses per packet. Prefetching also
significantly reduces the number of LLC cache misses per
packet. In addition to the benefits of prefetching, our data
packing techniques provide an additional 5% performance
improvement because fewer cache lines needed for the same
amount of state needed.

Evaluation on SFC: From Figure 13(a), the configuration
of 16 interleaved NFTasks will lead to optimal performance.
In addition, that data packing (DP) can improve performance
significantly if we pack the temporally correlated per-flow
states into a minimum number of cache lines. The redundant
matching removal (MR) has a significant improvement (~6x
for SFC of length 6) in the performance on top of the
interleaved methods and the data packing algorithm, since it
eliminates all cache misses in pointer-chasing-heavy matching
operations. The IPC measurement (Figure 13(c)) shows that
with 16 interleaved NFTasks, data packing, and removal of
redundant matching have superior efficiency because it is less
influenced by memory stalling issues caused by cache misses.
The evaluation shows that, thanks to the fine-grained data-

540

Number of PDRs ~ WEBE 16 97 32 @B 64 ®¥0 128

100 { 100

80 804
60
401

20

o4
1 2 3 4 3 4 5 6
Packet Size = 1512 bytes Packet Size = 1024 bytes

100

80+

60

Throughput (Gbps)

404

201

04

7 8 9

10 4 5

Packet Size = 512 bytes CAIDA

Number of Cores

Fig. 15: Performance of UPF on GuNFu with 130K PFCP sessions

code decoupling of the granular decomposition, the platform
can leverage visibility into the network functions for efficient
composition that improves cache utilization.

C. Scalability

To understand the scalability of our system, we study the
performance of our system in a diverse traffic environment. In
addition, we use CAIDA traffic as real-world traces to test our
system.

Evaluation on SFC: in Figure 14, for all packet sizes, GuNFu
scales linearly with the core number. It reduces the number of
cores needed to reach the line rate or near line rate due to
the effectiveness of prefetching, redundant matching removal,
and data packing. In comparison, for the SFC of length 6, the
implementation used by BESS can only achieve 18, 18, 17,
20 Gbps respectively.

Evaluation on UPF: in Figure 15, for all packet sizes, GuNFu
can scale linearly with the number of cores until it reaches
the line rate. For packet size with 1512 bytes, the UPF can
achieve line-rate or near line rate with 4 cores, 1024 bytes with
6 cores, 512 bytes with 10 cores, and CAIDA traffic with 6
cores. In comparison, for the case of 16 PDRs, the per-packet
RTC model of UPF used by L25GC can only achieve 65, 64,
52, 41 Gbps, respectively, with the same number of cores.
It shows that granularly decomposed NFs of GuNFu can be

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

effective when scaled to multiple cores and have better core
utilization than monolithic implementations.

VIII. RELATED WORKS

More on Execution Model: Besides the works discussed in
§$1I that use per-packet RTC model. There are execution models
proposed to tackle inefficiency in higher abstraction layers
than ours: the pipeline model that place different modules on
different cores[28, 29, 30], the interleaved processing among
networking modules and application modules [31], the adap-
tive batching technique for scheduling among modules[15],
network function parallelism through module-level parallelism
[32, 33, 34]. Within the module execution, they still apply
per-packet RTC. In comparison, our method exploits the
parallelism of the processing of different networking flows
[35]. Their methods can be combined with ours to further
improve the performance.

NF Programming Abstraction: The development of pro-
gramming abstractions for network functions is crucial to
enhancing their visibility within the hosting platform. For
previous network function platforms, modularization based on
functionality [8, 23, 29, 36, 37] yields significant benefits in
terms of programmability, manageability, and scheduling when
interfaced with traditional hardware. For the stand-alone net-
work function implementations, the idea of modularization is
also applied [9, 10, 11, 12]. Inheriting modular design, GuNFu
further breaks down the module employing the principle of
Granular Decomposition into a collection of NFAction and
NFState with fine-grained decoupling.

Cache Optimization Applied in NF: Leveraging program-
ming abstraction for transparent cache optimization is the key
motivation for the design of interleaved function stream exe-
cution model. [13, 14, 26, 38] apply the software prefetching
to accelerate the lookup data structure. This approach is also
applied to network-intensive functionalities such as key value
stores and databases [16, 39]. Another cache optimization is
data packing [27, 40] to increase the utilization of cache lines
by adjusting the placement of state variables. Through the
programming model that we propose, both cache optimization
methods are performed transparently.

Separation of Data and Code: The principle of separating
data and code is a widely adopted design strategy on NF
platforms [41, 42, 43, 44], improving fault tolerance and offer-
ing flexibility during scaling-in/out events. Within the mobile
core, network functions such as 5G UDSF [45] have been
developed to decouple data storage from computation, fortify
fault tolerance, and enable adaptability in scaling scenarios
[46]. Our NF model delineates the correspondence between
every NFState and every NFAction with finer granularity, as
opposed to the general per-flow state and NF. Our strategy
overcomes the conventional trade-off between performance
and reliability by improving L1 / L2 cache utilization, thereby
improving performance without compromising reliability.

541

IX. CONCLUSION

The rapid expansion of virtualized network infrastructure,
exemplified by the emerging 5G core network, necessitates
innovative approaches to optimize per-core network function
processing performance. This paper addresses the limitations
of the prevalent per-packet RTC execution model using a
novel interleaved function stream execution model to achieve
more efficient state access. To address challenges on lack of
visibility and inflexibility of scheduling of traditional modular
network function implementations and platforms, we advocate
a new programming model with the principle of Granular
Decomposition for deep visibility. We design a lightweight
runtime that leverages visibility to prefetch timely and pre-
cisely, and compilation optimizations that can further improve
cache utilization. The evaluation results reveal significant
performance gains, with an improvement ranging from 1.5 to 6
times per core throughput compared to traditional monolithic
network functions with the per-packet RTC execution model.
Our prototype of GuNFu is available at [47].

ACKNOWLEDGEMENT

We appreciate the feedback by the anonymous reviewers.
The research was supported in part by NSF under Grants CNS-
2106771, CCF-2123987 and CNS-2321531.

REFERENCES

[1] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable
software network load balancer. 1In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 523—
535, Santa Clara, CA, 2016.

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshu-
man Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno,
Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson,
Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil
Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata,
Yossi Richter, Uday Naik, and Amin Vahdat. Andromeda: Performance,
isolation, and velocity at scale in cloud network virtualization. In /5th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 373-387, Renton, WA, April 2018. USENIX Associ-
ation.

Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani,
Rob Sherwood, Ying Zhang, and Hongyi Zeng. Fboss: building switch
software at scale. pages 342-356, 08 2018.

DPDK. http://dpdk.org/, 2017.

Luigi Rizzo. netmap: a novel framework for fast packet i/o. In 217st
USENIX Security Symposium (USENIX Security 12), pages 101-112,
2012.

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Thm, Dongsu Han, and KyoungSoo Park. {mTCP}: a highly
scalable user-level {TCP} stack for multicore systems. In /1th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pages 489-502, 2014.

Berkeley Extensible Software Switch. http://span.cs.berkeley.edu/bess.
html, 2017.

Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace
packet processing. In 2015 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pages 5-16. IEEE,
2015.

free5gc/free5ge: Open source 5g core network base on 3gpp rl5. https:
//github.com/freeSgc/free5Sgc.

a c-language open source implementation of 5g core and epc. https:
//github.com/open5gs.

2

—

3
2

[10]

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

(11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Openairinterface software alliance. https://github.com/openairinterface.
srsran project open source ran. https://www.srslte.com/.

Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G
Andersen. Scalable, high performance ethernet forwarding with cuck-
ooswitch. In Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies, pages 97-108, 2013.

Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G. Andersen.
Raising the bar for using GPUs in software packet processing. In /2th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), pages 409—423, Oakland, CA, May 2015. USENIX Associ-
ation.

Tamds Lévai, Felicidn Németh, Barath Raghavan, and Gabor Retvari.
Batchy: batch-scheduling data flow graphs with service-level objectives.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 633-649, 2020.

Onur Kocberber Ecocloud, Babak Falsafi Ecocloud, and Boris Grot.
Asynchronous memory access chaining. Proceedings of the VLDB
Endowment, 9, 2150.

Vivek Jain, Hao-Tse Chu, Shixiong Qi, Chia-An Lee, Hung-Cheng
Chang, Cheng-Ying Hsieh, KK Ramakrishnan, and Jyh-Cheng Chen.
L25gc: a low latency 5g core network based on high-performance nfv
platforms. In Proceedings of the ACM SIGCOMM 2022 Conference,
pages 143-157, 2022.

Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A closer look at nfv
execution models. In Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, APNet °19, page 85-91, New York, NY, USA, 2019.
Association for Computing Machinery.

Georgios P. Katsikas, Tom Barbette, Dejan Kosti¢, JR. Gerald Q.
Maguire, and Rebecca Steinert. Metron: High-performance nfv service
chaining even in the presence of blackboxes. ACM Trans. Comput. Syst.,
38(1-2), jul 2021.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In
Proc. OSDI, GA, 2016.

Terabit ethernet. https://en.wikipedia.org/wiki/Terabit_Ethernet, 2023.
Bess nat example. https://github.com/NetSys/bess/blob/master/core/
modules/nat.cc, 2023.

Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato,
Gregoire Todeschi, K.K. Ramakrishnan, and Timothy Wood. Open-
NetVM: A Platform for High Performance Network Service Chains. In
Proc. of HotMIddlebox, 2016.

Fastclick nat example. https://github.com/tbarbette/fastclick/blob/main/
elements/flow/flowipnat.cc, 2023.

Tamds Lévai, Gergely Pongricz, Péter Megyesi, Péter Voros, Sandor
Laki, Felician Németh, and Gabor Rétvari. The price for programma-
bility in the software data plane: The vendor perspective. IEEE Journal
on Selected Areas in Communications, 36(12):2621-2630, 2018.
Hyunseok Chang, Fang Hao, TV Lakshman, Sarit Mukherjee, and Limin
Wang. Cache-friendly ip reassembly network function. In Proceedings
of the Symposium on SDN Research, pages 69-75, 2020.

Trishul M Chilimbi, Bob Davidson, and James R Larus. Cache-
conscious structure definition. In Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation,
pages 13-24, 1999.

Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan,
and Timothy Wood. Flurries: Countless Fine-Grained NFs for Flexible
Per-Flow Customization. In Proc. CoNEXT, 2016.

Guyue Liu, Yuxin Ren, Mykola Yurchenko, KK Ramakrishnan, and
Timothy Wood. Microboxes: High performance nfv with customizable,
asynchronous tcp stacks and dynamic subscriptions. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 504-517, 2018.

Ziyan Wu, Tianming Cui, Arvind Narayanan, Yang Zhang, Kangjie Lu,
Antonia Zhai, and Zhi-Li Zhang. Granularnf: Granular decomposition
of stateful nfv at 100 gbps line speed and beyond. ACM SIGMETRICS
Performance Evaluation Review, 50(2):46-51, 2022.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. {IX}: a protected dataplane operating
system for high throughput and low latency. In 71th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages 49—
65, 2014.

Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. Nfp:
Enabling network function parallelism in nfv. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

pages 43-56, 2017.

Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,
Aman Shaikh, and Zhi-Li Zhang. Parabox: Exploiting parallelism for
virtual network functions in service chaining. In Proceedings of the
Symposium on SDN Research, pages 143-149, 2017.

Sihao Xie, Junte Ma, and Jin Zhao. Flexchain: Bridging parallelism and
placement for service function chains. IEEE Transactions on Network
and Service Management, 18(1):195-208, 2020.

Ziyan Wu, Yang Zhang, Wendi Feng, and Zhi-Li Zhang. Nflow and mvt
abstractions for nfv scaling. In JEEE INFOCOM 2022-IEEE Conference
on Computer Communications, pages 180-189. IEEE, 2022.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The click modular router. ACM Transactions on Computer
Systems (TOCS), 18(3):263-297, 2000.

Shihabur Rahman Chowdhury, Haibo Bian, Tim Bai, Raouf Boutaba,
et al. A disaggregated packet processing architecture for network func-
tion virtualization. IEEE Journal on Selected Areas in Communications,
38(6):1075-1088, 2020.

Junji Takemasa, Yuki Koizumi, and Toru Hasegawa. Data prefetch for
fast ndn software routers based on hash table-based forwarding tables.
Computer Networks, 173:107188, 2020.

Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. Mica: A holistic approach to fast in-memory key-value storage. In
11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 14), pages 429-444, 2014.

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati,
and Andreas Pavlogiannis. Efficient parameterized algorithms for
data packing. Proceedings of the ACM on Programming Languages,
3(POPL):1-28, 2019.

Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and Eric
Keller. Stateless network functions. In Proceedings of the 2015 ACM
SIGCOMM workshop on hot topics in middleboxes and network function
virtualization, pages 49-54, 2015.

Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. Elastic scaling of stateful network functions. In 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 299-312, 2018.

Fabricio B. Carvalho, Ronaldo A. Ferreira, Italo Cunha, Marcos A.M.
Vieira, and Murali K. Ramanathan. Dyssect: Dynamic scaling of stateful
network functions. Proceedings - IEEE INFOCOM, 2022-May:1529—
1538, 2022.

Jingpu Duan, Xiaodong Yi, Shixiong Zhao, Chuan Wu, Heming Cui, and
Franck Le. Nfvactor: A resilient nfv system using the distributed actor
model. IEEE Journal on Selected Areas in Communications, 37(3):586—
599, 2019.

Unstructured data storage services, 2023.
2023].

Umakant Kulkarni, Amit Sheoran, and Sonia Fahmy. Towards a low-
cost stateless 5g core. In 2022 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN), pages 1-2. IEEE, 2022.
Gunfu prototype. https://github.com/GuNFuNFV, 2024.

[Online; accessed 17-Aug-

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:25:19 UTC from IEEE Xplore. Restrictions apply.

