
Towards an eBPF+XDP based Framework for
Open, Programmable and Scalable NextG RANs

Udhaya Kumar Dayalan, Ziyan Wu, Gaurav Gautam, Feng Tian, Zhi-Li Zhang
Department of Computer Science & Engineering, University of Minnesota – Twin Cities, U.S.A.

{dayal007, wu000598, gauta044, tianx399}@umn.edu, zhzhang@cs.umn.edu

Abstract—Starting with 5G, radio access networks (RANs) are
moving towards an disaggregated architecture, with most of its
functionality (except for the low-level PHY layer) implemented in
software. While software affords the benefits of programmability
and scale-out, it is also far slower than hardware. This is
further compounded by the needs for more complex, dynamic
and intelligent features in Next-Generation (NextG) RANs. In
this work, we advocate an eBPF (extended Berkeley Packet Fil-
ter)+XDP (eXpress Data Path) based framework for scaling and
accelerating software packet processing in (O-RAN compliant)
NextG RANs. Using 5G Central Unit User Plane (CU-UP) as
a key case study, we present an initial design of our proposed
framework, dubbed PRANAVAM, and it’s the key components.
We also discuss additional options for further improvements. Our
preliminary evaluation results shows that PRANAVAM improves
the 5G CU-UP throughput by 22-26%, compared with the
existing (open-source) 5G RAN implementation.

Index Terms—5G, RAN, 5G Throughput, O-RAN Central Unit,
eBPF, XDP

I. INTRODUCTION

With the needs for more flexibility, openness and pro-
grammability, not only cellular core networks but also radio
access networks (RANs) are moving towards virtualization and
cloudification. Both 3GPP and the Open-RAN (O-RAN) Al-
liance have introduced new disaggregated RAN architectures
that divide 5G RANs into, for example, Central Unit (CU)
and Distributed Unit (DU). CU is further split into CU-UP
(CU user plane) and CU-CP (CU control plane), see §II for
more details. In particular, the O-RAN Alliance has introduced
intelligent RAN controllers (RICs) and defined open interfaces
for communications among the disaggregated units and RICs.
Softwarization or “cloudification” of 5G and Next-Generation
(NextG) RANs and core networks are especially appealing
to many industrial use cases, as it makes it easier to support
industrial verticals and private 5G [1] and NextG networks For
example, RAN functionality can be tailored to the specific
bandwidth, latency and reliability requirements of these use
cases, and existing features may be upgraded or new features
can be readily rolled out as the requirements or use cases
change over time.
While software affords the benefits of programmability and

scale-out, software implementation of RAN is in generally
far slower than dedicated hardware appliances. This is further
compounded by the needs for more complex, dynamic and
intelligent features in NextG RANs. This is particular the case
for applications that that require a large number of simulta-
neous connections, high bandwidth, low latency and stringent

reliability such as many industrial IoT (Internet of Things)
and Industrial 4.0 Digital Twins use cases. Therefore, scaling
the NextG RAN software architecture while maintaining its
programmability and openness is a key challenge in future
RAN development.
In this work we advocate an eBPF+XDP-based framework

for scaling and accelerating software packet processing in
NextG RANs. As a concrete example, we focus on 5G CU-UP
as a key case study. On the one hand, CU-UP performs the
upper layers of the 5G RAN protocol stack – Service Data
Adaptation Protocol (SDAP) and Packet Data Convergence
Protocol (PDCP) – and does not require specialized radio
signal processing hardware (see §II). On the other hand, CU-
UP often connects with several UPFs (User Plane Functions)
in the 5G core as well as multiple DUs. As it lies on the
critical path between the users and service endpoints, it must
be capable of processing 10s or 100s millions of downlink
packets from the core network to user equipment (UE) and
uplink packets from UE to the core network per second in
order to meet the bandwidth demands and minimize latency.
Taking advantage that connections between CU-DU and CU-
UPF are Ethernet-based, we exploit exploit eBPF and XDP
for kernel extension, kernel bypassing and software packet
processing optimization. We summarize the key contributions
of our paper below.
• We present an eBPF+XDP-based framework, dubbed

PRANAVAM, for (O-RAN compliant) future RAN architec-
ture development. Using 5G CU-UP as a key case study, we
outline the initial design of our proposed PRANAVAM.
• Using eBPF+XDP for kernel extension/bypassing, our

preliminary evaluation shows that PRANAVAM improves the
throughput by 22-26% over existing 5G RAN implementa-
tions. We will make our code publicly available.
• We also discuss additional options to further accelerate

software packet processing to scale 5G RAN implementation
to meet bandwidth and latency demands.
While our initial design focuses on 5G RAN CU-UP, the

ultimate goal is to apply PRANAVAM as a general framework
for future RAN architecture development to meet the needs for
openness, programmability, scalability and evolvability.

II. BACKGROUND

We provide a quick overview of the 5G RAN protocol stack
and 3GPP/O-RAN disaggregated RAN architecture. We end
by a brief discussion of eBPF/XDP.

20
23

 IE
EE

 F
ut

ur
e

N
et

w
or

ks
 W

or
ld

 F
or

um
 (F

N
W

F)
 |

 9
79

-8
-3

50
3-

24
58

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FN

W
F5

82
87

.2
02

3.
10

52
04

75

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:26:27 UTC from IEEE Xplore. Restrictions apply.

Figure 1: 5G Radio Access Network Protocol Stack.

A. 5G RAN Protocol Stack and O-RAN

Fig. 1 depicts the 5G RAN protocol stack specified by
3GPP, which resides below the OSI network layer (“IP layer”).
5G RAN functions are traditionally performed by dedicated
(and closed) physical appliances (5G “base stations”), i.e.,
5G nodeB (gNB) (see Fig. 3), that are supplied by cellular
equipment vendors. 3GPP also introduces a CU-DU split RAN
architecture which is adopted by O-RAN: under this split, CU
performs the upper layer functions of the RAN protocol stack,
namely, SDAP, PDCP and RRC (radio resource control) layers;
whereas DU performs the lower layer functions, namely, RLC
(reliable link control), MAC (media access control) and PHY
(physical) layers. While 3GPP also discussed multiple options
for possibly further splitting the lower layer functions of
DU, e.g., between MAC and PHY or upper and lower parts
of the PHY layer, they were not pursued further by 3GPP.
Instead, O-RAN adopts a version of the latter option and
standardizes it. Under the so-called 7.2x split specified by O-
RAN, DU performs the RLC, MAC and the upper part of the
PHY layer functions, whereas RU (radio unit) performs the
lower part of the PHY layer functions. O-RAN further split
CU along the control and user (data) plane separation, and
introduces two components: CU-CP which performs RRC and
PDCP control plane functions, and CU-UP which performs
SDAP and PDCP user plane functions. We refer the reader to
3GPP specifications [2], [3], [4] and O-RAN specifications [5]
for details. In this paper, we assume a disaggregated RAN
architecture that follows the O-RAN standard, and thus the
disaggregated units are O-CU (O-CU-CP/O-CU-UP), O-DU
and O-RU (see Fig. 4, where we indicate select standardized
interfaces between the key units of interest1). Subsequently, we
will drop the prefix “O-” for clarity.

1In the figure we have also included the additional O-RAN components
such as SMO (service and management orchestration), non-real-time RAN
intelligent controller (non-RT RIC), and near-real-time RIC (nRT RIC). Since
these components are irrelevant to this paper, so we will not elaborate here.

App (AF_XDP) App

XDP eBPF

Userspace

NIC

Kernelspace

Driver

Packets

XDP_
REDIRECT

XDP_
PASS

UDP

IP

Network Stack

Figure 2: eBPF/XDP Sockets

As depicted in Fig. 4, CU-UP typically connects to multiple
UPFs (via the NG interface) on the 5G core side, and may
connect to multiple DUs (via the F1 interface) on the RAN
side (the suffixes “-U” and “-C” in the interface names
distinguish the user plane and control plane versions of the
standardized interfaces). Hence it may become a bottleneck in
processing the downlink and uplink traffic between UPFs and
DUs. We note that both the 3GPP/O-RAN NG-U and F1-U
interfaces are implemented using the GTP (GPRS Tunnelling
Protocol [6]) tunnels, more specifically, GTP-U tunnels, which
run on top of UDP/IP over Ethernet. Hence CU-UP can be im-
plemented entirely using commodity servers with conventional
Ethernet-based network interfaces (NICs) (and possibly also
Ethernet-based smartNICs). In contrast, while DU connects to
CU via the F1 interface, the connection between DU and RU
requires a specialized radio fronthaul interface, the extended
Common Public Radio Interface (eCPRI) [7].
While we can incorporate eBPF+XDP to optimize the

packet processing in DU for its F1-U interface with CU-
UP, in this paper we will focus on CU-UP due to its critical
role in the user plane data path between DU and UPF. The
main SDAP function in CU-UP involves adding or removing
QFIs (quality-of-service flow identifiers) for downlink data
packets from UPF to DU or uplink data packets from DU
to UPF, based on (pre-defined) user data’s QCI (QoS class
identifier) profiles (QCI tables). The PDCP-U functions are
more involved: besides integrity protection and ciphering, the
PDCP-U layer is also responsible for reliable data transfer by
adding sequencing numbers, buffering data, and performing
retransmissions if needed. After adding/removing the SDAP
and PDCP headers, CU-UP routes the user data packets using
appropriate GTP-U tunnels to DUs/UPFs.

B. eBPF/XDP

Extended Berkeley Packet Filter (eBPF) [8] and eXpress
Data Path (XDP) [9] are (relatively) recent innovations in
the Linux kernel that allow safe kernel extension and kernel
bypassing for more efficient network processing, among other
usages. While eBPF can be used for both the transmit and
receive side operations, XDP operates only at the receive side,
residing within the NIC driver (see Fig. 2 for an illustration).
We assume the reader has some familiarity with eBPF & XDP,
thus will not elaborate further.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:26:27 UTC from IEEE Xplore. Restrictions apply.

RLC

MAC

PHY

PDCP

SDAP
RRC

gNB

5G/NextG RAN

Figure 3: Monolithic RAN

eBPF

CU-UP

Service Management &
Orchestration Framework

O-RAN

Non-Real Time RIC

Near-Real Time RIC
RICs

eBPF

eBPF
O-DU

eBPF

eBPF Our Current Implementation

eBPF Our Future Plan

CU-CP

CU-UP

eBPF
O-DU

eBPF
O-DU

5G/NextG Core

AMF SMF PCF

AF
UPF

Control Plane

User Plane
eBPF

SDAP
PDCP

RRC

RLC
MAC

PHY-HIGH

PHY-LOW

GTP-U
F1-U

A1

O-RU

Figure 4: O-RAN Disaggregated RAN Architecture and 5G Core

III. DESIGN

In this section, we present PRANAVAM’s architecture and
design for fast processing of user plane packets in CU-UP of
the RAN. The overall design of PRANAVAM is schematically
sketched in Fig. 5.
Features. The key feature of CU-UP is routing and forwarding
packets to respective DUs in downlink or UPFs in uplink. The
main features supported by PRANAVAM are listed below:

• Connect to the configured CU-CP through E1-C interface
in-order to get configuration information. The configuration
information includes the AMF and UPF information.

• Update the QFI to DRB (Data Radio Bearer) mapping table
and setup respective DRBs for each connected UEs.

• Maintain GTP-U tunnels as PDU (Packet Data Unit) Ses-
sions with UPFs for each connected UE.

• Fast packet processing of downlink user plane data to DUs
and fast packet processing of uplink data to UPFs.

eBPF Maps. There are several types of eBPF Maps [10]
available and each map is used for a particular purpose.
In our design, we use two types of eBPF Maps. First, the
”eBPF XSKMAP Map”, which is used to redirects raw XDP
frames to AF XDP sockets (XSKs) and it has two ring
buffers, ”RX Ring” and ”TX Ring”. Second, ”eBPF PER-
CPU ARRAY Map”, which is used to store and retrieve traffic
statistics between the kernel and user space. More details about
how these eBPF Maps are used are discussed in detail in the
below sections.
Design. As shown in Fig. 5, PRANAVAM is divided into
three layers: (i) Management Layer, (ii) Data Path Kernel
Layer (DPKL), and (iii) Data Path User Layer (DPUL).
During uplink or downlink, the user plane data passes through
both DPKL and DPUL. The packets are processed differently
during uplink and downlink. We will discuss the detailed
design of each of these layers below.

A. Management Layer

This is one of the user space layer which manages the
control plane part of PRANAVAM. The Management Layer
consists of three main components as listed below:
(i) E1 Session Manager. It actively manages the E1 Session

of CU-UP with CU-CP. During start-up, the CU-UP connects
to the configured CU-CP. The CU-UP can connect to only one
CU-CP. For each connected UE, the CU-CP instructs CU-UP
with necessary information about the UE which includes QFI
to DRB mapping and along with the ciphering and integrity
protection for each DRBs. The E1 Session Manager instructs
the eBPF Program Manager to dynamically load the eBPF
program into the kernel space.
(ii) eBPF Program Manager. It is responsible to manage

the lifecycle of the eBPF program. Based on the instruction
from the E1 Session Manager, it loads the eBPF bytecode in
the kernel space. There will be only one eBPF program per
NIC. If the CU-UP machine has multiple NIC, then the eBPF
Program Manager loads a eBPF program for each NIC.
(iii) Report Manager. It manages the status and statistical

information of the components of PRANAVAM. It interacts
with the ”eBPF PERCPU ARRAY Map” to get the sent and
received packets information in the DPKL periodically. It also
gets the sent and received packets information in the DPUL
as well using an API.

B. Data Path Kernel Layer

This is the kernel space layer which process the user plane
traffic inside the eBPF/XDP and is one of the Data Path layers.
The DPKL uses ”eBPF XSKMAP Map” to send (downlink)
and receive (uplink) packets directly to and from the DPUL.
Downlink During downlink, the CU-UP receives the user
plane data from the UPFs. Following are the key components
of DPKL for downlink:
(i) Parser. This is the first component which gets called

for each packet (from the UPF) received in the NIC. The
main functionality of the Parser is to parse each packet and

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:26:27 UTC from IEEE Xplore. Restrictions apply.

Data Path User Layer

SDAP

PDCP

NIC

Parser

User Space

Kernel Space

Hardware

C/C++ libbpf Library

Classifier

Rx Ring Data Path Kernel Layer (XDP/eBPF)

UPFs

DUs

Management Layer

eBPF Program
Manager

eBPF
Programs

CU-CP

CU-UP

N3

E1-C

E1 Session
Manager

F1-U

GTP-U Packets

XDP_REDIRECT

QFI

Mapped
to DRB

Integrity
Protection

Ciphering
Sequencing

XDP_PASS

eBPF
MapsNetwork Stack

IP

UDP

Tx Ring

Report
Manager

Downlink

Uplink

Both

Figure 5: PRANAVAM- eBPF/XDP Socket Based CU-UP

validate it for valid ”ethernet header” structure. If the packet
doesn’t have valid structure, then the packets are dropped
using ”XDP DROP”. The Parser component passes the valid
packets to the Classifier.
(ii) Classifier. It classifies and send downlink GTP-U

packets to DPUL using ”XDP REDIRECT” through ”eBPF
XSKMAP Map” and pass other packets to the network stack
using ”XDP PASS”. The classifier uses two fields each GTP-
U packet to classify downlink GTP-U packets. The first field
is ”Message Type” and the value should be ”255” for GTP-
U PDU Sessions. And the next field is ”PDU Type” in the
”PDU Session Container” extension header of the GTP-U
packet which should be ”0” for downlink. The value will be
”1” for uplink GTP-U packets. When a GTP-U packet contains
any other value in either of these fields, then the packet will be
sent to the network stack rather than ”eBPF XSKMAP Map”.
Uplink There is no work in kernel space for uplink because
the GTP-U packets are already parsed, classified and inserted
directly into the ”eBPF XSKMAP Map”s ”TX Ring” and
assigned to the kernel space in the user space itself, which
sends the packets to the UPF through the NIC.

C. Data Path User Layer

DPUL is the other user space layer and the other part of
the Data Path layer. This layer consists of the higher layers of
the RAN protocol stack such as PDCP and SDAP.
Downlink During downlink, the packets from the DPKL are
available in ”eBPF XSKMAP Map”s ”RX Ring”. DPUL polls
the ”eBPF XSKMAP Map”s ”RX Ring” for packets. First,
each packet is processed for SDAP function in which the QFI

value is retrieved and respective DRB is assigned in the PDCP
function based on the QFI to DRB mapping. Next, the data
undergoes the configured PDCP function processing such as
integrity protection and ciphering. Finally, the data is routed
to the respective DU based on the established PDU session.
Uplink In the current design, eBPF is not used for data
data traffic between CU-UP and DUs. During uplink, DPUL
receives the user plane data from the DUs using regular socket,
then process the PDCP function and assign the data to the
respective DRBs in which integrity protection and ciphering
are done. Next, the SDAP function is processed and the
respective DRB to QFI mapping is assigned. Finally, instead
of routing the packet to UPF using regular socket, the data is
inserted into the ”eBPF XSKMAP Map”s ”TX Ring”. In order
to send the data to the UPF, the kernel need to be explicitly
notified using the ”sendto()” call.

IV. IMPLEMENTATION

In this section, we briefly discuss the implementation of
PRANAVAM’s design discussed in §III. For CU-UP, we con-
sidered to leverage either srsRAN [11] or Open Air Interface
(OAI) RAN [12]. We decided to leverage OAI because OAI
supports the O-RAN split using multiple network interfaces.
Even though srsRAN claims that they support O-RAN support,
their CU-CP, CU-UP and DU are integrated with tightly-
coupled function calls and not network interfaces. The Man-
agement Layer and DPUL are developed in C and the DPKL
is developed using restrict C. As discussed in the design
section, we implemented two types of eBPF Maps and the
”eBPF XSKMAP Map” has two ring buffers. Not all network
interfaces support XDP (native mode), so we added support for
both generic and native mode. In generic mode, PRANAVAM
will work continue to work without any issues but there won’t
be any improved performance as seen in native mode. In
order to avoid packet loss during heavy traffic and for better
performance since we run the application and the driver on
the same core, PRANAVAM supports poll mode. Even if we
run the CU-UP and the kernel driver in different cores, poll
mode reduces the number of syscalls needed for TX path.

V. PRELIMINARY EVALUATION

A. Test Setup

The test setup for PRANAVAM’s performance evaluation is
shown in Fig. 6. We conducted the experiments in a 6 CPU
and 8GB RAM Ubuntu 20.04.6 OS virtual machine created
on top of 11th Gen Intel(R) Core(TM) i3, 4 Cores, 8 logical
processors machine. The end-to-end 5G system which consists
of 5G core, RAN and UE was emulated in a single machine.
We used OAIs 5G core, CU-CP, DU, UE along with our
modified CU-UP for our experiments. Each component (AMF,
SMF, NRF, UPF) of the OAIs 5G core were running in its
own docker container inside the virtual machine. The CU-CP,
CU-UP, DU and UE were ran as processes inside the virtual
machine. We didn’t isolate the system under test on purpose
because we want to show the end-to-end performance results
under close to realistic conditions.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:26:27 UTC from IEEE Xplore. Restrictions apply.

UPFDU CU-UP
eBPF BasedUE

CU-CP

F1-U N3

E2

iPerf3
Server

Figure 6: Test Setup

B. Data Traffic Generation

For evaluation, we used iperf3 [13] as a data generator.
Our focus was on comparing the performance between regular
socket and eBPF/XDP socket. We didn’t use high-speed traffic
generators because the other OAI components used in the end-
to-end tests don’t achieve higher throughput. We ran the iperf3
server in a server machine behind UPF and the client in the
OAI UE. In the client side, we used -P option to generate
multiple parallel flows for generating diverse traffic, -u for
UDP packets and -R option to conduct performance evaluation
in the downlink direction.

C. Results

Fig. 7 shows the throughput per number of parallel con-
nections from a single UE. The results shows a performance
improvement of around 22-26 percent in PRANAVAM in
the downlink direction from the 5G core to UE. There is
a linearity between the number of parallel connections and
the throughput. We also noticed that there is a performance
degrade in both regular socket and XDP as the number of
parallel connection increases. We have shown the results only
for the downlink direction as the results are clearly visible
when heavy traffic is going from 5G core to UE than the uplink
traffic from the UE to the 5G core. We would like to provide
additional clarification on the throughput shown in Fig. 7.
The downlink throughput for 1 connection from a single UE
was around 40 Mbps because of the throughput limitation of
several others components in the end-to-end system used for
evaluation. As mentioned in the §IV, we built our solution on
top of OAIs 5G core, RAN and UE reference implementation.

41

25

30

35

40

Parallel Connections (P)

Th
ro
ug

hp
ut

(M
bi
ts
/S
ec
on

ds
)

Regular
XDP

Figure 7: Performance Comparison Between Regular and XDP
Socket - Downlink

VI. ADDITIONAL DESIGN OPTIONS

DPU

eBPF

Ciph/Deciph

Host

VFVF

128-EEA3
CU-UP

UPF
Traffic

Classifier

 eBPF

VF

DispatcherPF

2

3

1 No Cipher ing 23 Cipher ing

1

Per-flow
Ciph
Policy

Figure 8: Ciphering Offloading Design

To improve performance and better utilize computational
resources, we explore dynamically offloading operations to
the DPU, particularly ciphering. As it needs to perform
operations on every bit of the packet payload, ciphering is
CPU intensive [14] and can pollute the cache (which is
crucial for the performance of stateful packet processing on
the host [15], [16], [17], and mitigate interference on other
cores [18]). To improve CPU utilization, cache efficiency,
and leverage cost-efficiency cores on DPU, we design a
ciphering operations offloading policy and dynamically offload
the ciphering/deciphering operations to the SmartNIC. The
dynamically offloading policy can be based on, but not limited
to, the following factors: the high-level policy associated with
the QoS flows on the types of traffic (whether it is sensitive
information), the movement of the users (whether user move
from a secure environment to an insecure environment), and
the load current hardware infrastructure can handle.

Fig. 8 illustrates the design of the offloading of ciphering
operations of the downlink traffic path on 5G CU-UP. When
traffic arrives at the DPU, the hardware can provide coarse-
grained classification based on whether the traffic needs ci-
phering based on the installed rules (such as OVS rules on
Bluefield SmartNIC). If it does not, the traffic will be sent
to the host directly for further processing. And if not sure,
the traffic will be processed by the eBPF/DPDK based ci-
phering/deciphering network functions running in the general-
purpose processing unit (core) on the SmartNIC. The network
function consists of a stateful classifier that classifies packets
based on the per-flow ciphering policy, which is dynamically
changed based on the high-level policy and current environ-

Figure 9: Preliminary Evaluation on Offloading Ciphering.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:26:27 UTC from IEEE Xplore. Restrictions apply.

ment. Based on the policy, the packet will be sent directly
to the host or ciphered by the ciphering module. Using this
design, we allow for a fine-grained policy to improve both the
security and efficiency of the RAN system.
We have performed a preliminary evaluation (Fig. 9) of

the potential benefits on a server to show its effectiveness. We
play a synthetic traffic of 1024-byte packets with 50% of the
traffic that requires ciphering operations. With the offloading
feature on, traffic is instead sent to the ciphering component
in SmartNIC for ciphering as designed. From the result we
show that offloading can improve the performance of the data
plane and improve the utilization of the host cache.

VII. RELATED WORK

While eBPF and eBPF/XDP have been widely used in
various (wired) networking and cloud computing systems, for
example, to optimize service mesh/serverless computing [19],
their application to 5G networks are rather limited. We are
aware of only two recent papers, both apply eBPF/XDP to 5G
core networks. In [20], eBPF/XDP based 5G UPF is imple-
mented and they deploy it in a restrictive environment such as
MEC (multi-access edge computing). In another paper [21],
the focus is again on eBPF/XDP kernel-based 5G UPF with
fallback on user-space for more complex packet handling.
In [22], the authors proposed a 5G Mobile Gateway based on
eBPF/XDP, but the solution is completely implemented in the
5G core. None of these works consider applying eBPF/XDP
to 5G RAN. In a two-page poster paper [23], we outlined an
initial design of a purely kernel-based CU-UP design. Building
on this, in this paper we advance, implement and evaluate the
combination of user-space+kernel-based CU-UP framework.

VIII. CONCLUSION & FUTURE WORK

In this paper, we designed, and evaluated PRANAVAM,
an eBPF+XDP based framework for open, programmable and
scalable NextG RANs. Our evaluation shows that there is more
than 22% improvement in PRANAVAM when compared to
using regular sockets. We also discuss the design of offloading
the ciphering operations to the SmartNIC using fine-grained,
dynamic per-flow ciphering policy to improve the efficiency of
the host and the security of the 5G RAN. As a future work, we
are planning to implement the entire data plane layers of each
components in the NextG system using eBPF and evaluate our
system using real-world workload.

IX. ACKNOWLEDGEMENT

This research was supported in part by the NSF under
Grants CNS-1814322, CNS-1836772, CNS-1831140, CNS-
1901103, CNS-2106771 and CNS-2128489, and Seed Grants
from University of Minnesota MnRI, CTS and CSE and an
unrestricted gift from InterDigital.

REFERENCES

[1] Cisco. (2023) Cisco private 5g solution overview. [Online].
Available: https://www.cisco.com/c/en/us/products/collateral/wireless/
private-5g/private-5g-service-so.html

[2] 3rd Generation Partnership Project. (2020, April) Release 15. https://
www.3gpp.org/release-15.

[3] ——. (2020, July) Release 16. https://www.3gpp.org/release-16.
[4] ——. (2021, March) Release 17. https://www.3gpp.org/release-17.
[5] O-RAN Alliance. (2023) O-ran alliance. [Online]. Available: https:

//www.o-ran.org/
[6] Wikipedia. (2022) Gprs tunnelling protocol. [Online]. Available:

https://en.wikipedia.org/wiki/GPRS Tunnelling Protocol
[7] C. P. R. Interface. (2023) Specification overview. [Online]. Available:

http://www.cpri.info/spec.html
[8] (2023) ebpf - introduction, tutorials community resources. [Online].

Available: https://ebpf.io/
[9] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,

T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
54–66. [Online]. Available: https://doi.org/10.1145/3281411.3281443

[10] P. Kernel. (2023) ebpf maps. [Online]. Available: https:
//prototype-kernel.readthedocs.io/en/latest/bpf/ebpf maps.html

[11] srsRAN Project. (2023) srsRAN. [Online]. Available: https://www.
srslte.com/

[12] Open Air Interface. (2022) Open air interface. [Online]. Available:
https://openairinterface.org/

[13] iPerf3. (2023, June) iperf3. https://iperf.fr/.
[14] R. Avanzi and B. B. Brumley, “Faster 128-eea3 and 128-eia3 software,”

in Information Security: 16th International Conference, ISC 2013,
Dallas, Texas, November 13-15, 2013, Proceedings. Springer, 2015,
pp. 199–208.

[15] P. Zheng, W. Feng, A. Narayanan, and Z.-L. Zhang, “Nfv performance
profiling on multi-core servers,” in 2020 IFIP Networking Conference
(Networking). IEEE, 2020, pp. 91–99.

[16] Z. Wu, T. Cui, A. Narayanan, Y. Zhang, K. Lu, A. Zhai, and Z.-L.
Zhang, “Granularnf: Granular decomposition of stateful nfv at 100 gbps
line speed and beyond,” ACM SIGMETRICS Performance Evaluation
Review, vol. 50, no. 2, pp. 46–51, 2022.

[17] H. Ghasemirahni, T. Barbette, G. P. Katsikas, A. Farshin, A. Roozbeh,
M. Girondi, M. Chiesa, G. Q. Maguire Jr, and D. Kostić, “Packet order
matters! improving application performance by deliberately delaying
packets,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 807–827.

[18] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Rat-
nasamy, and S. Shenker, “{ResQ}: Enabling {SLOs} in network func-
tion virtualization,” in 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), 2018, pp. 283–297.

[19] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright:
Extracting the server from serverless computing! high-performance
ebpf-based event-driven, shared-memory processing,” in Proceedings
of the ACM SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
780–794. [Online]. Available: https://doi.org/10.1145/3544216.3544259

[20] T. A. N. do Amaral, R. V. Rosa, D. F. C. Moura, and C. E. Rothenberg,
“An in-kernel solution based on xdp for 5g upf: Design, prototype
and performance evaluation,” in 2021 17th International Conference on
Network and Service Management (CNSM), 2021, pp. 146–152.

[21] C. Scheich, M. Corici, H. Buhr, and T. Magedanz, “Express data path
extensions for high-capacity 5g user plane functions,” in Proceedings
of the 1st Workshop on EBPF and Kernel Extensions, ser. eBPF ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
86–88. [Online]. Available: https://doi.org/10.1145/3609021.3609298

[22] F. Parola, S. Miano, and F. Risso, “A proof-of-concept 5g mobile
gateway with ebpf,” in Proceedings of the SIGCOMM ’20 Poster
and Demo Sessions, ser. SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2021, p. 68–69. [Online].
Available: https://doi.org/10.1145/3405837.3411395

[23] U. K. Dayalan, Z. Wu, G. Gautam, F. Tian, and Z.-L. Zhang, “Pravega:
Scaling private 5g ran via ebpf/xdp,” in Proceedings of the 1st
Workshop on EBPF and Kernel Extensions, ser. eBPF ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 89–91.
[Online]. Available: https://doi.org/10.1145/3609021.3609303

Authorized licensed use limited to: University of Minnesota. Downloaded on August 27,2024 at 21:26:27 UTC from IEEE Xplore. Restrictions apply.

