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Abstract—We introduce the Semantically Aware, Mission-
Oriented (SAMO) framework, which enables fine-grained, host-
application-to-network signaling. This signaling employs SAMO
metadata, carried in an existing network-layer header, to inform
the network of the application’s desires. These metadata can
invoke SAMO network-layer virtual network functions (VNFs)
to provide sophisticated services for the packet. The framework
could enable, for instance, a secure, application- and application-
protocol independent, network-layer, publish/subscribe or situa-
tional awareness service.

The SAMO framework is particularly beneficial in mobile
edge or wireless networks, where the state of the network
may change rapidly, and where quickly adapting to limited,
and often variable, network resources is more important than,
for example, maximizing router throughput. The framework is
equally applicable in enterprise networks, industrial verticals,
or other private networks, where the organization deploying or
using the network needs the network to adapt to the specific
semantics of the data being carried.

SAMO signaling creates a disciplined, cross-layer interface,
which can promote improved application/network integration or
support other in-network computing architectures. Furthermore,
the SAMO framework avoids embedding application knowledge
in network devices and it functions even when user data are
encrypted. Moreover, the framework permits new, sophisticated,
network-layer extensions and services to be easily tested or
deployed in exiting IPv4/IPv6 or 5G/NextG networks.

SAMO VNFs are ideally positioned to employ artificial in-
telligence and machine learning (AI/ML) technologies to enable
networks to modify their behaviors in response to the semantics
of the data streams. The SAMO framework ensures that AI/ML-
enhanced SAMO VNFs have available semantic information
about the data, via the application-generated SAMO metadata!

A proof-of-concept (PoC) SAMO-enabled host application and
a simple SAMO VNF were implemented and used to evaluate
the efficacy and performance of the framework.

Index Terms—Semantically Aware Networks, Semantically
Aware Mission-Oriented Networks, SAMO Networks, Network-
Layer Applications, 5G Networks, 6G Networks, NextG Net-
works, Virtual Network Functions, Network Programming

I. INTRODUCTION

The Semantically Aware, Mission-Oriented (SAMO) net-
work framework enables an application to signal a network,
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potentially per-packet, to request enhanced network-layer pro-
cessing for an individual packet. An application signals the
network by attaching semantic information, "SAMO meta-
data”, to certain packets. These metadata may describe the
semantics, the contents, the meaning or other attributes of the
application data. In other cases, these metadata may explicitly
invoke a specific, potentially complex, network-layer service,
(provided by a ”"SAMO Virtual Network Function”, or ’SAMO
VNF”), to process the packet. Because these metadata are
carried in an IP header, they are accessible to network-layer
software, including SAMO VNFs. These network-layer VNFs
operate principally on the packet’s SAMO metadata, other
information available to the network layer, and potentially
stored state maintained by the VNF itself. Most importantly,
the VNFs do not access and do not modify the application-
layer data and therefore have no awareness of applications,
application data formats, application-layer protocols, or ap-
plication data. SAMO VNFs are implemented as replaceable,
configurable, software components, which can be tailored to
the specific needs of particular host applications, classes of
host applications, or operational environments.

When might a host application benefit from requesting
specialized, network-layer processing for individual packets?
An application’s performance, or more specifically the per-
formance of the services that the application delivers to its
human or inanimate users, is often the most important measure
of a networked system (e.g., a system composed of hosts,
applications, and networks). After all, applications are the
raison d’étre for most computer networks, (well, that and
network research, of course). Application-specific Quality of
Experience (QoE) measures are often used to assess how
well an application meets the needs of its users, in contrast
to traditional network-focused metrics such as Quality of
Service (QoS), (which typically includes such measures as
delay, packet loss rate, bandwidth, latency and numerous
others). That is, QoE characterizes the services provided by the
application, as perceived by its users, while QoS characterizes
the services provided by the network to applications. The
framework focuses on enhancing the Quality-of-Experience
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delivered by an application.

A host application is likely to benefit from explicitly re-
questing special processing for individual packets when doing
so improves the QoE delivered by the application to its users,
particularly when compared to traditional, flow-based QoS
assurances. Additionally, per-packet metadata could enable
more efficient provision of existing network services, or even
enable new network-layer services that are difficult to provide
efficiently using traditional architectures.

Consider a very simple example where a host application
uses per-packet requests for enhanced network-layer services
to improve the QoE delivered by the application, namely a
video streaming application. (This simple example illustrates
how the framework operates, and could be effected using ex-
isting facilities, such as the differentiated services code point,
DSCP; later examples build on this example to demonstrate
the framework’s power and flexibility. Note that the proof-
of-concept implementation described below includes over 30
bits of information in the metadata, much more than fits in the
six-bit DSCP field.) This example video streaming application
considers some packets more important to its QoE than others,
such as those that contain lower-resolution video information
or audio. The loss of these more-important packets adversely
affects the application’s QoE more than, for example, the
loss of less-important packets containing high-resolution video
information. Given this, the application’s QoE is likely be
better if the network makes a greater effort to successfully
deliver the packets that the application considers more im-
portant. How should the network determine which packets
the application considers most important? While the network
could try to guess which packets are the most important to the
application, perhaps using deep packet inspection to examine
the application-layer protocol and data, the framework offers
a mechanism that allows the application to explicitly fell
the network which packets it considers more important. The
application in this example explicitly informs the network of
the importance of each packet by attaching to each packet
SAMO metadata that contain the application’s priority for that
packet. The network uses this information to prefer to discard
packets that the application has signaled are less important.
This selective discard, enabled by the framework, helps the
application deliver an enhanced QoE.

In this example, the network layer can make decisions that
provide better service to this application (based on information
signaled by the application), but the network layer has no
understanding of the video streaming application, its protocols,
or its data formats. Rather, the network layer merely operates
on metadata inserted in the network-layer packet header to
prioritize packets. This signaling mechanism, SAMO meta-
data, isolates the network layer from the application layer by
providing a well-structured method of enabling the application
to signal the network. In short, the framework enables the
network to deliver services that are better matched to the needs
of the application, without embedding application knowledge
within the network layer.

Because this simple example avoids embedding any ap-

plication awareness or dependencies in the network layer,
other applications could easily use this new network-layer
service, simply by attaching the appropriate SAMO metadata
to packets. As we show in the remainder of this paper, this
per-packet signaling mechanism, coupled with sophisticated
network-layer services, can be used to improve applications’
QoE, without adversely affecting the flexibility, generality or
scalability of the network layer. It enables the network to better
match the services it provides to the needs of the application
by responding to explicit application requests.

The remainder of the paper is organized as follows: Section
IT details how the SAMO framework can be used to provide
enhanced network-layer services in IPv4 and IPv6 networks,
while Section III summarizes implementation experience us-
ing the framework. Finally, Section IV contains thoughts on
how the SAMO framework might be applied in and benefit
5G/NextG networks.

II. THE SAMO FRAMEWORK

The SAMO framework permits SAMO-enabled host ap-
plications to invoke customizable, potentially sophisticated,
network-layer functionality ("SAMO virtual network func-
tions”, "SAMO VNFs”, or simply "VNFs”) to influence how
a network device processes individual packets. The framework
can provide fine-grained, content-aware, network-layer func-
tionality and services that are powerful, flexible, configurable,
and scalable. This section describes the operation of the
SAMO framework in IPv4 and IPv6 networks.

The framework includes two principal components:

o A SAMO-enabled host application may signal a network,
by attaching SAMO metadata to a packet, of the applica-
tion’s desire that the packet receive special processing by
the network. SAMO metadata may describe the seman-
tics, the contents, meaning, priority, or other attributes
of the application data contained in the packet, or may
explicitly request the special processing desired for the
packet. SAMO metadata are transported in an IP header.
With IPv4 packets, SAMO metadata are carried as an
IP option, while with IPv6 packets, SAMO metadata are
carried in a hop-by-hop extension. The precise interpreta-
tion of the SAMO metadata is an agreement between the
SAMO-enabled application and SAMO VNFs executing
on network devices. As a result, networks operating in
different environments (e.g., different industrial verticals
or enterprises) may interpret metadata values differently.

e A SAMO-enabled network device may, upon detecting
SAMO metadata in an IP packet header, perform special
processing on the packet, perhaps invoking a SAMO VNF
to do the actual work. The network device generally
considers the contents of the SAMO metadata, as well as
other information accessible to the network layer, when
processing the packet.

Two examples are used here for expository purposes. These
examples will assist in explaining how the SAMO framework
works, but don’t, in and of themselves, demonstrate its full
power and utility. Note that these potential applications are
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illustrative of the potential of the framework, but are not part
of the framework itself.

e An application, perhaps running on a small IoT device,
could benefit from the network providing an efficient,
intelligent, configurable, network-layer, publish/subscribe
dissemination service. This represents a broad class of
solutions enabled by the framework, namely solutions
in which the network provides potentially sophisticated,
per-packet services and maintains internal state, in effect
moving responsibilities, intelligence, and state from hosts
to the network.

o A network might provide a secure, resilient, situational
awareness system. This system could securely collect
and deliver situational awareness updates to participating
hosts. Because the framework only examines SAMO
metadata (and other network-layer information), the user
data could be encrypted. And, because the framework
doesn’t require applications to be aware of the network
configuration, an infrastructure-less situational awareness
system could be deployed in demanding environments
where connectivity to the global Internet isn’t assured or
where the network might become partitioned.

A. The SAMO Framework

First a bit of terminology. For the purposes of these discus-
sions, "SAMO network-layer service”, or simply "SAMO ser-
vice”, denotes the unique processing or service that a SAMO
network device performs on packets that contain SAMO
metadata. Likewise, "SAMO virtual network function”, or
simply "VNF”, identifies network-layer software that operates
on packets that contain SAMO metadata.

1) Extensible Metadata: The interpretation of SAMO meta-
data is an agreement between applications and a VNF. As
a result, different VNFs may interpret metadata values dif-
ferently, Therefore, networks must administratively configure
the mapping between metadata values and VNFs. Different
networks may employ different VNFs, depending on the op-
erational environment and application needs. Metadata values
are limited only by the size of the container within which
they are transported (e.g., IPv4 options, up to 38 bytes, or
IPv6 hop-by-hop extension header, up to 2310 bytes), although
practical considerations may dictate lower limits. In particular,
the SAMOnet designer must carefully weigh the additional
bandwidth consumed by SAMO metadata against the potential
benefit of employing the metadata.

The framework does not specify the meaning of the SAMO
metadata, how a SAMO VNF uses that metadata, or how
a VNF processes a packet. Rather, these decisions are left
to the application and network designers (or, perhaps ap-
plication/network co-designers). These VNFs are created as
part of the development and deployment of the SAMOnet
and SAMO-enabled host applications, rather than as part of
the development of the network device or by the SAMO
framework.

2) Network-Layer Operation and Services: The SAMO
framework operates at the network layer. SAMO metadata

are transported in the IPv4 header (as an IP option) or in
an IPv6 hop-by-hop extension header, and so are generally
accessible by software that operates at the network layer,
including SAMO VNFs. Because the framework operates at
the network layer, and uses information accessible to the
network layer, decisions made by a SAMO VNF can easily
reflect current local knowledge about the state of the network,
including the network topology, bandwidth, traffic, congestion,
delay, wireless channel state, and other conditions, to an extent
that is difficult with centralized, host-based, or application-
layer solutions.

3) Per-Packet Services: SAMO VNFs operate on individual
packets, rather than on flows: the appropriate VNF is invoked
when a network device recognizes SAMO metadata when
processing a packet. Even though VNFs operate on individual
packets, many of them will maintain internal state. As such,
some VNF may be aware of flows, and will treat the packet
being processed as part of a flow.

Because SAMO VNFs operate on individual packets, rather
than on flows, they are generally better suited for use use with
datagram transport protocols, such as UDP, SCTP, or datagram
QUIC, rather than stream transport protocols such as TCP.
Clearly, treating packets within a TCP session differently is
likely to result in less-than-desirable behaviors.

Inasmuch as SAMO metadata are in-band, they are easily
associated with specific packets. This contrasts with out-of-
band signaling protocols, such as RSVP, where the association
with specific packets is less clear.

4) Application Layer Independence: SAMO VNFs examine
SAMO metadata provided by host applications, but do not
access the application data itself: as such, VNFs have no
understanding of application-layer protocols or data formats.
Likewise, SAMO VNFs do not perform deep packet inspection
(DPI) or otherwise access higher level protocol headers or data
in any manner. This application-protocol-independence means
that application layer data may be encrypted, without affecting,
or even knowledge of, SAMO VNFs.

A SAMO service could be used by any application that
attaches the appropriate SAMO metadata to IP headers. Again,
VNFs are unaware of application-layer formats and protocols,
and so are unaware of which application is invoking a VNF.
Similarly, application-layer protocols may evolve, without
affecting or requiring modification of a SAMO service or VNF.

5) Mission-Oriented, Enterprise, and Industrial Vertical
Networks: The SAMO framework is motivated by mission-
oriented networks: networks that are deployed for a specific
purpose, that are usually administered by a single organization,
and that are generally edge, rather than transit, networks.
Because SAMO-enabled network devices are highly config-
urable, SAMO VNFs can provide services that are tailored to
the network’s specific mission. Examples of these networks
include large-scale wireless sensor networks, mobile tactical
networks, and mobile wireless networks, as well as enterprise
or industrial vertical networks that could benefit from se-
mantically aware, network-layer intelligence. The framework
is particularly beneficial in bandwidth-challenged networks,
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those in which bandwidth, rather than network device process-
ing capacity, is the scarce resource that should be conserved.
SAMO-enabled network devices can employ network-layer
processing in order to conserve network bandwidth or to adapt
to the currently available bandwidth. RFC 8799 [Carpenter and
Liu(2020)] describes these environments as “’limited domain”
networks.

6) Operation with Security Protocols: Because the SAMO
framework operates at the network layer, it can be deployed
seamlessly with transport-layer security protocols, such as the
Datagram Transport Layer Security (DTLS) protocol [Rescorla
et al.(2022)]. The framework can also be deployed with
network-layer security protocols, such as the IPsec protocols.

7) Incremental Deployment: SAMO VNFs can be deployed
incrementally: not all network devices in a network need to
support the SAMO framework. Rather, non-SAMO network
devices merely need to forward packets containing SAMO
metadata without examining or modifying the metadata. This
simplifies the deployment of these new services.

The framework also does not require changes to application-
layer protocols, such as extending the application-layer proto-
col to include new control messages. Rather, the host applica-
tion needs only to be modified to attach SAMO metadata to
the appropriate packets transmitted by the application.

8) A Framework, Not a Collection of Applications: The
SAMO framework offers an approach to closer collaboration
between applications and networks. But, the framework does
not specify what applications can or ought to take advantage
of this capability. The example applications included here are
not part of the framework; they are just a few of the countless
potential solutions that the framework enables.

9) A Framework, Not an Implementation Strategy: The
framework does not specify how, for example, SAMO VNFs
ought to be implemented. The proof-of-concept VNF de-
scribed in Section III was implemented as a user-space pro-
cess. Similar functionality could have been implemented, for
example, in the kernel, using a P4 switch (perhaps extended
with microservices or external functions), or employing a
kernel-bypass architecture such as DPDK.

10) Enhanced Application/Network Isolation: Applications
using the framework treat a network as an opaque service that
transports and processes packets. This contrasts with some
recent proposals, such as Application-Layer Traffic Optimiza-
tion (alto) [Kiesel et al.(2014)] or Segment Routing [Filsfils
et al.(2018)], which enable hosts to learn about state of the
network and change their behaviors accordingly.

11) Infrastructure-less Design and Operation.: The frame-
work does not rely on centralized servers, either to manage
SAMO VNFs or to respond to host or application queries. As
such, the framework is better suited to, for example, mobile
wireless networks, where the network topology and state could
change rapidly.

B. Example: Network-Layer Publish/Subscribe Dissemination
Service

The SAMO framework could enable a network-layer pub-
lish/subscribe dissemination service that would be useful for
constrained IoT devices. The SAMO metadata associated with
packets being published might include: a type parameter that
indicates that the pub/sub VNF should process this packet,
a pub/sub topic, a request (e.g., publish or subscribe), and
optionally attributes that further describe the contents of the
pub/sub message. In this example, the network, (specifically, a
SAMO VNEF, rather than application-layer software), maintains
a list of subscribers and forwards a message to the hosts
that have subscribed to a particular topic. Hosts wishing to
receive messages would subscribe to a topic, perhaps indi-
cating attributes on which messages should be filtered. The
SAMO publish/subscribe service may use this information to
optionally filter pub/sub messages, based on the attributes of
a published message and the attributes of the messages that a
subscriber wishes to receive.

An obvious question is: Why might it be beneficial to
implement a publish/subscribe dissemination service at the
network layer? Most readers will note that this example is a
stark departure from the traditional smart host / dumb network
model historically employed by the Internet and IP networks.
Beyond serving as an example of flexibility and expressiveness
of the framework, this network-layer publish/subscribe service
would:

« Enable messages to be routed efficiently, because the
network layer would have a better understanding of the
current topology of the network, compared to application-
layer solutions, (e.g., by avoiding the path expansion that
often results from the use of application-level overlay
networks).

o Simplify the implementation of IoT publishers. Many
IoT devices are severely constrained, with limited mem-
ory and computational power. Often, these devices are
battery-powered, and so their lifetime is determined by
the device’s total expenditure of electrical energy, partic-
ularly the total number of bits they transmit cumulatively.
Being able to push much of the complexity of a pub/sub
system off onto, for example the network, would save
these devices’ limited memory, CPU cycles and battery
energy. To publish messages, the IoT device would need
to do nothing more than attach SAMO metadata to a
single copy of the message message and transmit it.
Everything else is handled, in this example, by the
network, rather than by applications, perhaps hosted by
a geographically distant cloud service.

o Support multiple application-layer pub/sub applications
and protocols, since the pub/sub VNF would not examine
or be cognizant of application-layer formats and proto-
cols. For example, a SAMO pub/sub VNF could conceiv-
ably support both MQTT and CORE publish/subscribe
protocols with a common dissemination service.

o Offer Internet service providers (ISPs) or carriers op-
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portunities to offer new, general, useful, and potentially
revenue-generating [network-layer] services.

o Demonstrate the potential of a mechanism that permits
existing networks to provide new, novel services, without
modifying the basic Internet protocols.

C. Example: Secure, Robust, Situational-Awareness System

This network-layer publish/subscribe service could easily
be extended to create a secure, robust situational awareness
system.

o Secure Communications Pub/sub messages could be en-
crypted; again, this encryption would be invisible to the
SAMO VNFs. Some publishers might use multiple secu-
rity associations, to control the information that particular
subscribers are permitted to access.

o Authenticated Messages or Hosts Pub/sub messages could
be cryptographicaly signed, enabling receivers to authen-
ticate messages or hosts.

o Duplicate Message Suppression The publish/subscribe
dissemination service could filter duplicate messages
(e.g., messages that contain no new information, perhaps
beyond a timestamp) based on hashes of the packet’s user
data and timestamps that are inserted in the metadata.

e Digital Twin A SAMO VNF could create a digital twin by
retaining copies of the most recent messages published
by an IoT device. The VNF would consider messages
with similar SAMO metadata values to be equivalent and
retain only the most recent one. Of course, the VNF
wouldn’t examine, much less understand, the contents of
the messages, which might even be encrypted.

D. Semantically Aware, Network-Layer Intelligence

SAMO VNFs provide an ideal platform for employing
artificial intelligence or machine learning AI/ML techniques to
leverage semantic information. Application-provided semantic
information (contained in SAMO metadata) is available to
SAMO VNFs, and so could be easily accessed by AI/ML
functions. For example, AM/ML processing could generate
an enhanced understanding of the instantaneous state of the
physical wireless channels, and use that understanding, com-
bined with semantic information to, for example, select the
most appropriate wireless channel for a packet.

E. Related Work

The SAMO framework is consistent with a long tradition
of embedding greater intelligence in the network layer.

1) Future Internet Architectures: McCauley, et al. [Mc-
Cauley et al.(2019)] suggest a future Internet architecture
in which new Internet functionality is implemented in a
new “layer 3.5 protocol that is inserted between between
the IPv6 header and the higher-level protocols. This layer
3.5 protocol is carried as a newly defined protocol header.
Our work suggests that reusing the existing [Pv6 hop-by-hop
options header ( [Hinden and Deering(1998)], [Carpenter and
Jiang(2013)]), rather than creating a new protocol header, may
simplify the deployment of this and similar future Internet

architectures, in part by using existing host API code to
create this header [Jinmei et al.(2003)]. This use of the
hop-by-hop options header appears to be consistent with its
somewhat vaguely defined purpose, although the use of this
header is frowned upon, by at least some, in the Internet core
[Carpenter and Jiang(2013)], [Gont et al.(2016)], [Hinden and
Fairhurst(2023)], [Peng et al.(2023)].

2) Software-Defined Networks: The framework shares
some similarities with software-defined networking (SDN),
in that they both assume that network devices are highly
programmable. Beyond that, the SAMO framework differs
from software-defined networks (SDNs) in several key aspects.
First, a SAMO network is fully distributed: it does not rely
on a central controller, although a central controller might
be useful in initially configuring the network. This decen-
tralized approach may be beneficial in environments such as
wireless tactical networks or first responder networks, where
communications with a central controller might be costly or
unreliable. Second, the SAMO framework operates only on
network-layer packets: it does not need to understand or access
higher-layer protocols. In fact, a SAMO might not even be
able to access to these data or protocols, if they are encrypted.
This contrasts with SDN’s potential to examine higher-layer
protocols. Third, the framework operates on individual packets
(VNFs are invoked when SAMO metadata are encountered),
while SDNs operate on flows (e.g., by matching packets with
flow table entries). Finally, SDNs invoke pre-defined functions
to process packets, while the framework assumes that new
VNFs will be designed to meet the needs of new applications
or operational environments.

3) Application-Layer Traffic Optimization: The
Application-Layer Traffic Optimization (ALTO) system
uses a server-based approach to improve coherence between
the operations of applications and the network. The ALTO
system uses a series of servers to “enable P2P applications
to obtain information regarding network topology” [Seedorf
et al.(2009)]. The SAMO framework offers an alternate
approach, namely SAMO VNFs (which can directly access
information about the network that is maintained by the
underlying network device) and the SAMO host applications
with which they cooperate. Unlike with the ALTO framework,
SAMO-enabled applications signal the network about their
desires, rather than try to discern and respond to the current
state of the network.

4) Application-Aware Networking: The Application-aware
Networking (APN) Framework is being developed to help net-
works better meet the needs of applications [Li et al.(2022)].
The APN framework signals an application’s network perfor-
mance requirements, rather than the more general signaling
mechanism used by the SAMO framework.

A new IPv6 header has been defined for APN [Quinn
et al.(2018)]. Again, our work has shown the benefits of
reusing the loosely defined IPv6 hop-by-hop options header.

5) Segment Routing: Segment Routing in an application of
the source routing model [Filsfils et al.(2018)]. While Segment
Routing can invoke processing along the path, the principal
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difference with the SAMO framework is that the framework
is largely driven by the end applications. Additionally, segment
routing requires the application to be aware of the configura-
tion of the network, while for SAMO applications, the network
is largely opaque.

6) Service Function Chaining: The Service Function
Chaining (SFC) architecture is designed “for the creation and
ongoing maintenance of Service Function Chains (SFCs) in
a network” [Halpern and Pignataro(2015)]. Service Functions
are roughly analogous to SAMO VNFs. This work was driven
by a desire to “’steer” traffic through several Service Functions,
such as firewalls, load balancers, or functions that manipulate
HTTP headers [Quinn and Nadeau(2015)]. There is nothing
inherent in the SAMO framework that motivates a similar
mechanism to “steer” packets through a collection of VNFs,
although conceivably VNFs could be created that might benefit
from such a scheme.

7) Network/Application Integration: The framework offers
one approach to network/application integration. A very early
version of these ideas were presented as a two-page poster
at an ACM SIGCOMM Workshop on Network Application
Integration/CoDesign [Salo and Zhang(2020)].

E. Contributions

The framework contributes to the evolving views on how
and how much intelligence ought to be implemented in the net-
work, rather than in the end systems. Of course, the framework
is intended to address special use cases (e.g., edge networks,
rather than transit networks). Nonetheless, the authors argue
that the framework and some of its potential applications
demonstrate that there are cases where network systems can
perform better, when applications, and networks are designed
together to meet the needs of particular applications and
environments. The framework offers:

« A disciplined approach to adding intelligence to networks
through the use of cross-layer signaling to enable appli-
cations to request advanced network services

« An effective approach to network/application integration
by permitting the services networks provide to be tailored
to the specific requirements of the limited domains within
which they operate.

III. IMPLEMENTATION EXPERIENCE

A proof-of-concept (PoC) SAMO system was developed to
evaluate the technical feasibility, performance, and efficacy of
the SAMO framework. This PoC system was intended to better
understand:

o The feasibility of creating SAMO-enabled applications,
specifically whether user-space applications hosted on
modern Linux systems could set SAMO metadata without
requiring modifications to the kernel or other parts of the
operating system.

o The performance implications of creating SAMO meta-
data, specifically the cost of having the kernel insert
metadata in the IPv4 header or creating an IPv6 hop-
by-hop extension header.

Experiment Mode IPv4 IPv6
. 33,177 pps 34,329 pps
Builtin transmit | 30" sec/pkt | 29usec/pkt
Ethernet
. 25,350 pps 23,802 pps
recerve 39 psec/pkt | 42 psec/pkt
loss 10,179 pps 8,986 pps
o S 46,499 pps 34,632 pps
ggﬂtln transmit |5 psec/pkt | 29 psec/pkt
Metadata rece 26,904 pps 21,955 pps
ccerve 37 psec/pkt | 46 usec/pkt
. 29,305 pps 29,305 pps
transmit
USB 34 psec/pkt | 34 psec/pkt
. 19,165 pps 19,165 pps
recetve 52 psec/pkt | 52 psec/pkt
loss 10,037 pps 10,037 pps
TABLE T

samoapp IPv4 AND IPV6 PERFORMANCE.

Experiment Mode 1Pv4 IPv6
Kernel transmit 30,503 pps | 35,081 pps
Forwarding receive 18,915 pps | 27,670 pps

loss 11,787 pps 7,314 pps
sampvnf transmit | 51,651 pps | 29,421 pps
No receive 32,728 pps | 18,022 pps
Metadata loss 11,787 pps 7,314 pps

TABLE I

samoapp PERFORMANCE (PACKETS PER SECOND).

o The feasibility of implementing a SAMO VNF, executing
in user space and using a modern Linux kernel, with no
modifications to the kernel.

o The performance implications of implementing a SAMO
VNF as a user-space application.

A. Proof-of-Concept Software

A PoC system that employed the SAMO framework was
implemented and evaluated. This system included a priority-
drop VNEF, similar to that described in the first example above.
Two SAMO applications were implemented:

o samoapp, a SAMO-enabled, user-space, host application
that generates and receives a simulated layer-coded data
stream

o samovnf, a user-space SAMO VNF that, when congestion
is experienced, discards packets that are identified by
SAMO metadata as lower-priority.

B. Testbed Configurations

The testbed on which these experiments were conducted
included Raspberry Pi 4 Model Bs connected either through a
gigabit Ethernet switch or through direct Ethernet cables. The
hosts run Ubuntu 22.04. The following results were generated
with a three-node configuration, shown in Figure 1 in which
a router running the samovnf software selectively forwarded
packets between two nodes running samoapp.
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C. Experimental Results

Experiments were conducted to explore the feasibility,
efficacy, and performance of the SAMO applications and
framework.

1) samoapp performance: The performance of the samoapp
software was characterized.

The objective of these experiments is to understand the
transmission and reception performance, and bottlenecks, of
the samoapp application. Two hosts, each running samoapp,
were connected directly (i.e., with no intervening network-
layer device). The transmitting application transmitted packets
continuously, limited only by the resources available on the
transmitting host. Likewise, the receiving node attempted to
receive packets continuously. In these experiments, the length
of the data was reduced by 100 bytes every 10 seconds,
starting at 1400 bytes. These experiments affirm that sampapp
performs no per-byte processing. Each of these experiments
were conducted using both IPv4 an IPv6. These experiments
used three configurations:

o Direct connection through an Ethernet cable using the
higher-performance builtin Ethernet interface. These tests
illustrated the maximum network performance of the
Raspberry Pis.

e A similar experiment, but with no metadata being at-
tached to the packets. This experiment shows the cost
of attaching metadata to packets.

o Direction connection using gigiabit Ethernet dongles
and the higher-performance USB ports. This experiment
provides a baseline for evaluating the performance of
later experiments using a SAMO-enabled network device
(router).

Table I summarizes these results. In these experiments, the
transmit and receive threads consumed nearly 100 per cent of
the CPU on which they were running. Several results are worth
noting. First, receiving packets required more CPU resources
than transmitting packets (approximately 30 per cent more for
IPv4 and 45 per cent more for IPv6). The cost of adding
metadata to the transmitted packets was small (27 percent of
the time required to transmit a packet for [Pv4 and zero percent
for IPv6).

2) samovnf performance.: The three-node testbed configu-
ration was used to simulate nodes connected to wireless links,
the bandwidth of which varied over time. The link from the
host running samoapp was throttled to avoid overrunning the
network devices. The bandwidth of the simulated, variable-
bandwidth wireless link was reduced every ten seconds. The
results of three configurations are shown in Table II: 1) kernel
forwarding, where packets were forwarded in the kernel, with
no processing of SAMO metadata or by the application-
level samovnf software, 2) forwarding through the samovnf
software, but with not SAMO metadata processing, and 3) for-
warding through the samovnf software with SAMO metadata
examined.

Figures 2, 3, and 4 show that the samovnf software behaved
as expected. Figure 2 shows that the sending node transmitted

roughly equal amounts of data for each layer. When samovnf
ignored the SAMO metadata when dropping packets (i.e.,
performed tail drop), each layer experienced similar packet
loss. On the other hand, when samovnf considered the SAMO
metadata when dropping packets (i.e., dropped the lowest
priority packets), the highest-priority packets were received
when congestion was experienced.

D. Discussion

These experiments using a proof-of-concept SAMO app and
SAMO VNF demonstrate that the systems using the SAMO
framework can effectively be implemented on modern Linux
system. Moreover, the framework did not appear to introduce
any significant performance penalties.

IV. FUTURE WORK

The framework was originally developed for IPv4 and
IPv6 networks; future work will extend it for use in 5G
and beyond networks. 5G networks are, in several important
aspects, fundamentally different than traditional IP networks.
Most notably, 5G networks are aware of the identity of most
of their users (’subscribers”) and maintain information about
those users, in sharp contrast to IP networks, where users,
hosts, and applications are anonymous to the network. Because
users generally authenticate with a 5G network before using
it, these networks could, for example, permit specific SAMO
VNFs to be available to a particular user.

The framework could simplify the provision of new or
experimental 5G (or 6G) network-layer services in an architec-
turally clean fashion. SAMO VNFs could potentially reside in
several locations within 5G networks. They could operate on
ingress to the User Plane Function (UPF), (e.g., on entry from
a Data Network (DN), such as the Internet), on egress from the
UPF (e.g., prior to be handed to the Radio Access Network),
or somewhere along the UPF (e.g., in an edge computing
configuration). Likewise, SAMO VNFs could be hosted on
the gNodeB (5G base station) or the UE (5G user equipment
or end device). The SAMO metadata will be carried as an
extension to the encapsulating protocol, rather that expecting
the various 5G services to extract the SAMO metadata from
the encapsulated IP packet.
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