
OASIS: Collaborative Neural-Enhanced Mobile Video Streaming
Shuowei Jin

University of Michigan
jinsw@umich.edu

Ruiyang Zhu
University of Michigan
ryanzhu@umich.edu

Ahmad Hassan
University of Southern

California
ahmadhas@usc.edu

Xiao Zhu∗
University of Michigan
shawnzhu@umich.edu

Xumiao Zhang
University of Michigan
xumiao@umich.edu

Z. Morley Mao
University of Michigan

zmao@umich.edu

Feng Qian
University of Southern

California
fengqian@usc.edu

Zhi-Li Zhang
University of Minnesota
zhzhang@cs.umn.edu

Abstract
Neural-enhanced video streaming (e.g., super-resolution) is an on-
going revolution which can provide extremely high-quality video
streaming services breaking the restriction of bandwidth. How-
ever, such enhancements require intense computation power that
is not affordable for a single mobile device, which hinders their
real-world deployment. To address the limitation, we propose OA-
SIS, the first system that facilitates multiple users in close prox-
imity to execute intense neural-enhanced video streaming in real-
time. To this end, OASIS intelligently distributes computation tasks
among multiple mobile devices, selects appropriate video bitrates
and super-resolution models, and optimizes video chunk deliv-
ery. As a result, the expensive neural-enhanced streaming is done
through distributed collaboration, achieving optimal quality of ex-
perience (QoE). We implement and evaluate OASIS on commodity
smartphones from different vendors, under various network and
computation conditions. Extensive experiments demonstrate the
high efficiency of OASIS: it improves the video streaming QoE by
40%-200% and reduces each participant’s energy consumption by
60% when the system scales up from a single device to six devices.

CCS Concepts
• Information systems→Multimedia streaming; • Comput-
ing methodologies→ Computer vision; •Human-centered com-
puting→ Ubiquitous and mobile computing.

Keywords
Video streaming, mobile computing, super-resolution, deep neural
networks

ACM Reference Format:
Shuowei Jin, Ruiyang Zhu, Ahmad Hassan, Xiao Zhu, Xumiao Zhang, Z.
Morley Mao, Feng Qian, and Zhi-Li Zhang. 2024. OASIS: Collaborative
Neural-Enhanced Mobile Video Streaming. In ACM Multimedia Systems

∗Now at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’24, April 15–18, 2024, Bari, Italy
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0412-3/24/04. . . $15.00
https://doi.org/10.1145/3625468.3647610

Conference 2024 (MMSys ’24), April 15–18, 2024, Bari, Italy. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3625468.3647610

1 Introduction
Mobile video streaming has been prevalent for years, consuming
a predominant majority of mobile data [38, 39, 43]. For instance,
YouTube, one of the most popular video streaming services, reports
that 70% of its views come from mobile devices, and the average
mobile viewing session is over 40 minutes [3]. Users are craving for
increasingly higher resolution video content. However, streaming
high resolution video to mobile devices is challenging due to limited
and fast varying wireless bandwidths [30, 37, 38]. Despite advances
in adaptive bitrate (ABR) algorithms [12, 16, 17, 25, 36, 43], user-
perceived quality-of-experience (QoE) still largely depends on the
available network bandwidth [15, 26, 31, 32], which can be difficult
to predict.

Neural-enhanced video streaming leverages client-side computa-
tion to overcome the bandwidth limitation problem [21, 41]. Specif-
ically, super-resolution (SR) models are trained to learn a mapping
from low-quality to high-quality video content. The client can fetch
low-quality video content along with SRmodels from the server and
apply SR inference to generate high-quality video content, reducing
the impact of network bandwidth fluctuations while improving the
user-perceived QoE. However, due to the computation-intensive na-
ture of SR inference, current neural-enhanced video streaming sys-
tems are typically designed for powerful clients equipped with high-
end GPUs, making them unsuitable for mobile devices with limited
computation power [10, 41, 42]. Certain existing studies [40, 44]
apply SR to only a portion of the video on mobile devices. How-
ever, these approaches remain constrained by the computational
power of a single mobile device, thereby presenting opportunities
for enhancement.

In response to these limitations, we explore collaborative neural-
enhanced video streaming for mobile devices, a new design space
that exploits both the computation power and network resources
of multiple mobile devices in proximity to improve video streaming
QoE. While previous studies [20, 45] have explored collaborative
video streaming, they do not consider neural enhancement in their
designs and only target network-level collaboration, i.e., aggre-
gating the network bandwidth of multiple devices to download
video content. Along with network-level cooperation among de-
vices, collaborative neural-enhanced video streaming also requires
computation-level collaboration (leveraging multiple devices to run
computationally intensive neural enhancement models). However,

1

45

https://doi.org/10.1145/3625468.3647610
https://doi.org/10.1145/3625468.3647610
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625468.3647610&domain=pdf&date_stamp=2024-04-17

realizing a collaborative neural-enhanced mobile video streaming
system faces new challenges. (i) It demands complex coordination of
tasks, such as server-to-device video chunk downloading, device-to-
device chunk forwarding, SR inference, and post-SR video distribu-
tion. (ii) Utilizing the full potential of devices with diverse network
and computational resources is a complex yet essential undertak-
ing. Maximizing the overall system performance while accounting
for these differences remains an ongoing challenge. (iii) Achieving
near-optimal ABR performance in a collaborative neural enhance-
ment setting is also much harder than the single-device scenario or
collaborative streaming without neural enhancement.

To tackle these intriguing challenges, we proposeOASIS, a collab-
orative neural-enhancement system that enables users in proximity
to stream high-quality video content on their devices cooperatively.
OASIS is designed to handle two distinct use cases:
•Multi-user, multi-device scenario, is designed to enable a group of
individuals to aggregate their network and computational resources
for high-quality video streaming in locations with limited network
connectivity. The content can be displayed on their personal devices,
or on a larger screen with one phone connected to a TV.
• Single-user, multi-device scenario, caters to the growing trend
of individuals owning multiple phones, including older models
left unused at home. With our system, users can fully harness the
capabilities of these devices to facilitate video streaming.

In OASIS, each device downloads a set of chunks (i.e., part of the
entire video content) from the server. Upon receiving these chunks,
each device performs SR inference to upsample some of them to a
higher quality, and forwards the remaining of them to other devices
for SR, depending on their computation power and local wireless
links’ bandwidths. The upsampled chunks are then distributed to
other devices so everyone has high-resolution video content.

We design two principled algorithms for OASIS: OASIS-ABR,
which selects the optimal combination of resolution and SR model,
and OASIS-SCHED, which schedules chunk downloads and SR
inference tasks across devices. We decompose OASIS this way be-
cause we first need an ABR algorithm to decide the amount of total
data the entire system handles (i.e., the quality version hence data
size of each video chunk to download), and then determine how
much data each participating device handles (i.e., scheduling). We
focus on video-on-demand (VoD) in this work while OASIS can be
extended to live video streaming.

OASIS-ABR enhances traditional ABR video streaming algo-
rithms [23, 34, 43] by smartly selecting both video chunk reso-
lutions and super-resolution (SR) models. It uniquely addresses
multi-device collaboration, simplifying the system with a novel
throughput prediction model. We also redesign the multi-armed
contextual bandit framework, which enables the algorithm to deftly
balance exploration (evaluating new ABR decisions) with exploita-
tion (honing decisions based on existing knowledge), leading to
more intelligent QoE decisions. OASIS-SCHED manages the down-
loading, local processing, or forwarding of these chunks based on
each device’s capabilities. This includes optimizing data flows and
chunk assignments to minimize delays and enhance QoE.

Our experiments on up to sevenmobile devices reveal thatOASIS
significantly improves video streaming QoE (by 35% to 230% over
other systems), reduces energy consumption as more devices are
added (up to 60% less), and surpasses traditional bitrate selection

methods in QoE improvement (20% to 129%). Specifically, OASIS-
SCHED greatly reduces stall times (by 75% to 100%) across devices
with different computing and network resources.
2 Motivation and Use Cases
2.1 Incentives for Multi-device Collaboration
The rise of multi-device usage has led to innovative features for
seamless collaboration. Apple’s Continuity feature allows tasks to
transition smoothly across Apple devices like Mac, iPhone, and iPad
[8]. Similarly, Samsung, OPPO, and Huawei have developed fea-
tures enabling users to manage and share resources across multiple
devices, enhancing user experience [6, 7]. Prior research [20, 28, 45]
has focused on designing network-level collaboration schemes to
enhance throughput and reduce energy consumption.

OASIS draws inspiration from these mobile collaboration sys-
tems, but extends the concept further by leveraging deeper collab-
oration at both network and computation levels to facilitate high-
quality video streaming across different versions of mobile devices.

We next list a few concrete use cases of our proposed system.
• Bus Trip: Friends on a bus trip watch a movie together on their
phones, passing areas with poor cellular connectivity. They may
subscribe to different carriers. It has been shown that undermobility,
the performance of different carriers are not correlated [27]. The
collaboration can help smooth the overall Internet capacity.
• Group Tourism: Foreign tourists wish to learn about the local
culture and history through high-quality videos. They want to
reduce cellular data usage because they use roaming data plans.
• Rural School: Students there with limited Internet access watch
educational videos as part of their curriculum.
• Solo Travel: A traveler has a smartphone with cellular access
and a more powerful tablet without Internet access. Our system
allows the two devices to collaborate: the smartphone fetches the
content, which is then upsampled by both devices.
2.2 Mobile SR Performance Measurement
For smooth video streaming, mobile devices must super-resolution
(SR) exceeds the standard video frame rate of 24-30 FPS. Our analy-
sis across five flagship smartphones: Samsung Galaxy S10 5G (S10),
Google Pixel 5 (PX5), Samsung Galaxy S20 Ultra 5G (S20U), Sam-
sung Galaxy S21 Ultra 5G (S21U), and Samsung Galaxy S22+ 5G
(S22+), shows none meet such SR speeds threshold. We download
{180p, 360p} video chunks from a university-hosted CDN server, and
perform frame-by-frame SR to upscale the video to {720p, 1080p}.
We leverage the smartphone GPU for SR processing and utilized
the Diggers model [18], which is the fastest DNN model within
our exploration, for video super-resolution. The upscaled video
chunks are displayed using Google ExoPlayer. For performance
evaluation, we record the SR processing time of each video chunk
and present the results in Fig. 1. Furthermore, we measure the av-
erage performance of various SR models comparing with baseline
methods (Resize, Bi-linear interpolation), as summarized in Table 1.
An analysis of the figure and table reveals that higher input resolu-
tions yield improved SR outcomes for the same target resolution, at
the expense of increased inference latency. This is because a larger
input data size provides more information to the SR model, leading
to higher quality and a longer time for inference.

From Fig. 1, we can observe that, due to limited computational
capabilities, no single device can deliver SR processing at a speed

2

46

180p → 720p 180p → 1080p 360p → 720p 360p → 1080p
0

5

10

15

20

S
R
P
ro
ce
ss
in
g
S
p
ee
d

(F
P
S
)

Pixel 5 S10 S20U S21U S22+

Figure 1: SR processing speed of latest phones.

3○
DL

4○
DL

1○ →
3○

1○ →
4○

2○ →
3○

2○ →
4○

0

2

4

E
ne

rg
y

(K
J)

1○:180P, 2○:360P, 3○:720P, 4○:1080P

DL-only

DL+SR

Figure 2: Energy overhead of SR for S10.

Table 1: Performance on PSNR and SSIM.

Resolution Average PSNR/SSIM
Resize Bi-linear SR

180p-720p 27.19/0.79 28.27/0.83 30.67/0.88
180p-1080p 26.88/0.78 27.97/0.82 30.32/0.87
360p-720p 31.46/0.90 32.66/0.92 35.68/0.95
360p-1080p 30.58/0.87 32.07/0.90 34.73/0.94

exceeding 15 FPS on average. Even with significant advancements
in mobile chipsets in the future, the complexity and computational
demands of cutting-edge SR models are expected to rise concur-
rently. For example, the current leading Video SR model [24] can
only achieve 2.778 FPS on an NVIDIA TITAN RTX GPU [9], a GPU
that is 47 times more powerful than the one in a Pixel7 Pro [5].
This indicates that even with the advancement of mobile GPUs,
the necessity for a collaborative system will remain to ensure a
high-quality mobile video streaming experience.

The energy demands of deep neural network-based video super-
resolution (SR) are significant, especially for mobile devices with
limited battery capacity. To measure this, we hook an S10 phone
to an external Monsoon power monitor and measure the energy
overhead of the state-of-the-art mobile video SRmodel Diggers [18],
enhancing video resolutions from 180p and 360p to 720p and 1080p.
We also log energywhen simply downloading the video chunks (DL-
only). After subtracting the screen energy consumption, we plot the
energy overhead for all six settings in Fig. 2. The results indicate that
depending on the SR input-output combination, an S10 consumes
2.1-4.3kJ for a 5 minutes video. In other words, a 30-min SR video
will result in 920-1920 mAh energy consumption on S10, which
translates into a drastic 28-57% battery drain. Later results (§5.2.3)
will demonstrate that a device’s SR energy consumption can be
lowered up to 60% by facilitating collaboration among smartphones.
The collaboration will not only reduce the energy overhead for
mobile devices but also improve the video streaming experience.

3 System Design
In this section, we first provide an overview of OASIS, our proposed
collaborative mobile system for neural-enhanced video stream-
ing (§3.1). Next, we describe OASIS’s key design features: OASIS-
ABR algorithm for adaptive bitrate and SR model selection (§3.2),
andOASIS-SCHED algorithm for cross-device chunk scheduling (§3.3).

Given that displaying on a single device is a subset of the scenario
where each device displays the content, our subsequent design will
primarily focus on the system where each device needs to receive
the post-SR chunk for individual display.
3.1 System Overview

OASIS enables collaborative neural-enhanced video streaming by
effectively utilizing mobile devices’ available network and compute
resources. As shown in Fig. 3, OASIS systematically manages mul-
tiple modules to improve the video QoE. The adaptive, resource-
aware scheduler is responsible for (i) adaptively selecting a video
bitrate and SR model for all devices collectively and (ii) scheduling
chunk download and SR tasks across the devices. Next, mobile de-
vices execute the assigned tasks using the Processor module. Finally,
the Distributor module allows a device to share downloaded and/or
SR chunks with other devices. OASIS performs all the aforemen-
tioned tasks iteratively. The Scheduler acts as OASIS’s brain and

makes all the decisions in each iteration (e.g., device A downloads
chunk 1 at 180p, runs SR inference to upsample the chunk to 720p,
and broadcasts it to all devices for streaming). Then all devices
execute the assigned tasks, collect performance metrics (e.g., net-
work bandwidth and SR inference speed), and send the metrics back
to the Scheduler. Using this information, the Scheduler devises an
optimal execution plan for the next iteration.

The need for iterations in OASIS arises due to the constraints of
traditional single-device adaptive video streaming systems, which
determine the next chunk’s bitrate based on current buffer size and
predicted network bandwidth [23, 43]. This single-chunk approach
is not well-suited for multi-device neural-enhanced video stream-
ing, often leading to protracted chunk processing and idle periods
for devices. To mitigate this, OASIS integrates both bitrate and SR
model selections in each iteration, thereby allocating the processing
of multiple chunks across different devices. The number of chunks
to process in each iteration is determined based on the processing
speeds of devices. The goal is to ensure the processing on each
device finishes at roughly the same time. If the devices are homoge-
neous, we can just set the number of chunks in each iteration as the
number of devices, and assign one chunk to each device. However,
given the heterogeneity of devices, we determine the number of
chunks as the least common multiple of each device’s processing
speed(unit: chunks/second). For the first iteration where we don’t
have device processing speed information yet, we set the number
of chunks to process as 𝜆 × deviceNum, where 𝜆 is a predefined
factor and is optimally set to 5 based on our experiments. Once
all chunks in current iteration are downloaded, SR-enhanced, and
distributed, the system advances to a new iteration.

Fig. 3 illustrates the architecture of OASIS. There are three types
of components in OASIS: (i) a media server to store multi-bitrate
video chunks and SR models, (ii) agent devices that run the Proces-
sor and Distributor modules, and (iii) a controller device that runs
the Scheduler along with other OASIS modules. Although OASIS
uses the device with the most powerful chipset as the controller
by default, the choice of controller device is configurable 1. Upon
startup, the controller device establishes aWiFi hotspot (WLAN) for
communication with agents. Each device connected to the hotspot
uses Network Service Discovery (NSD) [4] to broadcast its pres-
ence and discover other devices. Through NSD, devices obtain the
IP addresses and port numbers of their peers, enabling them to
establish peer-to-peer direct socket connections for efficient data
transfer and communication. The devices with Internet access also
maintain a network connection (WWAN) with the media server.
OASIS framework is flexible and allows devices with no Internet
1In our current implementation, users choose the controller device. The user initiating
the collaborative streaming session can select his most powerful device as the controller.
We leave as future work the automated controller election mechanism which evaluates
the processing capacities of participating devices and select the most suitable one.

3

47

Architecture

Scheduler
ABR (§3.2)

Chunk Scheduling (§3.3)

Workflow

 Processor (§3.4)
Chunk Downloading

Chunk SR Pre/Post-SR Video

WLAN Throughput

Bitrate/SR
Decisions

WWAN/SR
Throughput Distributor

Control
Data

Figure 3: OASIS system architecture and workflow.

connectivity to collaboratively stream videos out-of-the-box. Next,
we briefly discuss the overall workflow of OASIS.
Offline Video-content Preparation. Similar to DASH [1], af-
ter a video is uploaded, the media server first encodes the video
at multiple bitrates (i.e., tracks) and divides it into equally-sized
chunks. Additionally, the media server trains the SR models using
low-bitrate video tracks as inputs and high-bitrate tracks as ground
truth. Finally, it generates a manifest file describing the available
bitrate tracks and SR models for adaptive streaming. The file size
of each model is less than 300KB.
Task Scheduling. Recall that the Scheduler mainly handles two
major tasks: (i) It decides the bitrate to download from the me-
dia server and the SR model to employ for chunk SR based on
the performance metrics (WWAN/WLAN bandwidth, computation
speed) of all devices. The Scheduler achieves bitrate selection and SR
model selection through a multi-armed contextual bandit algorithm
OASIS-ABR (§3.2). It makes optimal bitrate and SR model decisions
by intelligently exploring unchosen bitrate and SR model, mak-
ing smart decisions. Due to its explainable and robust throughput
modeling method, it can accurately predict system performance,
thereby enabling optimal decision-making.

(ii) After OASIS-ABR comes up with a joint bitrate and SR model
choice, each chunk is assigned to device/s for downloading and SR
inference. For each downloaded chunk, the devices process it locally
or forward it to the responsible agent for its SR inference. After
the SR inference, each device broadcasts the upsampled chunks to
other devices for streaming. The Scheduler uses our chunk sched-
uling algorithm OASIS-SCHED to distribute the download and SR
inference tasks across all agent devices (§3.3). OASIS-SCHED min-
imizes stall time in video streaming by implementing a two-step
scheduling process: first, it optimizes data flow across devices to
enhance end-to-end throughput, and second, it allocates SR tasks
to devices in a way that prioritizes earlier chunk completion times,
consequently reducing system stall time. OASIS-SCHED reduces
the stall time during video streaming by first scheduling the data
flow across devices to improve the overall end-to-end throughput
of the system, and then scheduling SR tasks to devices to ensure
earlier have earlier finish time.
Task Processing. Once the Scheduler assigns download and SR
inference tasks to a device, it utilizes the Processor module to execute
these tasks. The Processor also collects performance metrics during
task execution and sends them to the Scheduler. The Scheduler
uses the collected metrics as inputs for OASIS-ABR and OASIS-
SCHED algorithms. While downloading the video chunks from the
media server, OASIS measures the WWAN network throughput.
Our system also measures the WLAN network throughput when

chunks are forwarded from one agent to another. Lastly,OASIS logs
the SR inference speed of each device to estimate the instantaneous
computation speed.
Chunk Distribution. The Distributor module enables sharing
of video chunks across devices in two ways: (i) Once a device
downloads a chunk from the server, the Distributor checks if the
chunk’s SR inference is assigned to other devices. If so, the Dis-
tributor forwards the chunk to the device responsible for its SR
inference. Otherwise, the chunk’s SR inference is conducted locally,
and (ii) once the Processor upsamples a chunk through SR inference,
the Distributor broadcasts the SR chunk to all devices for streaming.
3.2 Multi-armed Contextual Bandit Algorithm for Adaptive

Bitrate Control
3.2.1 Problem Formulation Given the parameters defined in
Table 2, our objective is to design an ABR algorithm 𝑓 . This algo-
rithm selects the optimal combination of download bitrate 𝑅 𝑗 and
SR model𝑀𝑗 to maximize the QoE based on several key parameters.
𝑇𝑊 and 𝑇𝐿 represent the available bandwidths for streaming over
WWAN networks and WLAN connections, respectively. 𝑆 signi-
fies the processing speed of each SR model, while 𝐵 denotes the
system’s buffer status. Formally, the problem can be expressed as:

𝑓 (𝑇𝑊 ,𝑇𝐿, 𝑆, 𝐵) = (𝑅∗𝑗 , 𝑀
∗
𝑗) = arg max

𝑅 𝑗 ,𝑀𝑗

𝑄𝑜𝐸 (𝑅 𝑗 , 𝑀𝑗) (1)

where 𝑄𝑜𝐸 is calculated for a given bitrate 𝑅 𝑗 and SR model𝑀𝑗 . 2
Traditional ABR algorithms [25, 43] are designed for single-

device streaming and select bitrates accordingly. OASIS, however,
deals with the added complexity of multi-device neural-enhanced
streaming, presenting two main challenges:
•Concurrent Selection of Bitrate and SRModel.Choosing both
the bitrate and SR model simultaneously adds complexity due to
their interdependence. Also, the variability in quality enhancements
offered by different SR models further complicates the decision.
•Multi-device Collaboration. Devices in a multi-device setup
have varying capabilities, introducing additional complexity through
the need for coordinated control and data sharing. The optimization
process must account for this heterogeneity and the intricacies of
collaboration to enhance the streaming experience.

In addressing these complexities, our first step is to better model
the multi-device system, aiming to distill its intricacies and enhance
2TheQoE, adopted from prior work [25, 40, 41, 43], combines video quality, smoothness,
and rebuffering impact. Defined as 1

𝑁

(∑
𝑞 (𝑅𝑛) − 𝜇

∑
𝑇𝑛 − 1

𝑁 −1
∑ |Δ𝑞 (𝑅𝑛) |) , it

reflects the utility of bitrate 𝑅𝑛 , rebuffering time𝑇𝑛 , and quality variation Δ𝑞 (𝑅𝑛)
across chunks. For adjustments due to super-resolution (SR), an inverse mapping from
quality to bitrate is employed, aligning the bitrate to the quality enhancement similar
to the approach in NAS and NEMO [40, 41].

4

48

Table 2: Common notations used in the algorithm.
Notation Definition

𝑇 ,𝑇 Predicted, actual system total throughput list for combinations.
𝑇𝑊 ,𝑇𝐿 WWAN and WLAN bandwidth list for devices.

𝑀 SR Model list.
𝑆 DNN inference speed nested list for models.

𝑆𝑀𝑗
DNN inference speed list of models𝑀𝑗 across devices.

𝐵,𝑅 System buffer occupancy and download bitrate decision.
𝑁𝑑 Number of participant devices in the system.
𝑁𝑖 Number of chunks to be processed in each iteration.
𝛼 Exploration parameter.

𝐶,𝑂 Counter list, overhead list for combinations.
𝐿 Network latency list for devices.

its predictability of throughput performance3. With a more accurate
understanding of the system’s performance, we can then make
informed decisions on the optimal bitrate and SR model. This two-
pronged approach, refining the system model and then utilizing it
for decision-making, serves as the cornerstone of our OASIS-ABR
to optimize user experience.
3.2.2 System total throughput performance modeling. This
section delves into the modeling of the system’s total through-
put performance, utilizing the predicted values of 𝑇𝑊 , 𝑇𝐿 , and 𝑆𝑀𝑗

when model 𝑀𝑗 is chosen for SR. Note while devising effective
throughput predictors for current 𝑇𝑊 , 𝑇𝐿 , and 𝑆𝑀𝑗

based on histor-
ical data is a compelling research direction in its own right [46],
our paper primarily focus on bitrate adaptation algorithms. We
employ a heuristic approach, using the average of the previous five
timestamps values to predict the current timestamp value.

Given various components of OASIS, a direct black-box model
prediction of system total throughput based on 𝑇𝑊 , 𝑇𝐿 , and 𝑆𝑀𝑗

might be deficient in terms of explainability and robustness. Real-
world deployments often diverge from training datasets. Variations
in the number of devices or their characteristics can significantly
influence system performance. Consequently, we dissect the sys-
tem’s total throughput into two segments: a theoretical throughput
upper bound and the overhead from multi-device interactions.
• Upper bound: bottleneck determines performance. Our sys-
tem workflow consists of raw chunk downloading, SR processing,
and post-SR chunk distribution in a pipelined manner. Overlooking
multi-device collaboration overhead, the system can be perceived
as a singular entity with aggregated WWAN, SR processing speed,
and WLAN metrics. In such a pipeline, the system’s efficiency is
inherently limited by its slowest segment. This insight allows us to
usemin{∑𝑁𝑑

𝑖=0𝑇𝑊𝑖
,
∑𝑁𝑑

𝑖=0𝑇𝐿𝑖 ,
∑𝑁𝑑

𝑖=0 𝑆𝑀𝑗 𝑖
} as theoretical upper bound.

• Overhead modeling. In practical scenarios, due to scheduling
algorithm imperfections, the system seldom achieves its theoretical
upper bound, and overhead invariably persists. We define this over-
head as the gap between the theoretical upper bound and the actual
throughput. An overhead list, 𝑂 , is constructed to track historical
overheads for all bitrate and SR model combinations: (𝑅 𝑗 , 𝑀𝑗). Each
combination’s overhead (𝑂 𝑗) is computed by averaging its overhead
values from previous iterations.

With both the overhead and throughput upper bound values at
hand, throughput can be estimated as shown in Equation 2. This
method mitigates errors stemming from discrepancies between
training and real-world datasets, ensuring swift real-world adapt-
ability. Additionally, it enhances system transparency and explain-
ability, with overhead values providing performance insights. To
3We define system throughput as the total amount of data processed by all devices in
the system over a specified period of time, divided by the processing time.

Algorithm 1: OASIS-ABR algorithm.
Input :𝑂 , 𝑆 ,𝑇𝑊 ,𝑇𝐿 , 𝛼
Output :combination choice, (𝑅𝑗 ,𝑀𝑗)

1 for each combination choice 𝑖 do
/* Predict end-to-end system throughput. */

2 𝑇𝑖 ← PredictThroughput(𝑂𝑖 ,𝑆𝑀𝑖
,𝑇𝑊 ,𝑇𝐿) ;

/* Estimate QoE for 𝑖𝑡ℎ combination. */
3 ˆ𝑄𝑜𝐸𝑖 ← EstimateQoE(𝑇𝑖 , 𝐵) ;

/* Calculate UCB (upper confidence bound) value. */

4 𝑈𝐶𝐵𝑖 ←𝑄𝑜𝐸𝑖 + 𝛼
√︂

log(∑𝐶𝑖+1)
𝐶𝑖+1

;

5 end

/* Select combination with highest UCB score. */
6 Select combination ID: 𝑗 = argmax𝑖 𝑈𝐶𝐵𝑖 ;

/* Output 𝑗𝑡ℎ combination (𝑅 𝑗 , 𝑀𝑗), wait for runtime measured

system total throughput, SR inference speed to update. */
7 𝑇𝑗 , 𝑆

′
𝑀𝑗
← Runtime measurement results;

/* Update overhead, SR inference speed of 𝑗𝑡ℎ combination by

averaging newly measured and historical values. */

8 𝑂𝑗 ←𝑂𝑗 + 1
𝐶𝑗
((𝑇𝑗 −𝑇𝑗) −𝑂𝑗) , 𝑆𝑀𝑗

← 𝑆𝑀𝑗
+ 1
𝐶𝑗
(𝑆′
𝑀𝑗
− 𝑆𝑀𝑗

)

/* Update combination counter and total counter. */
9 𝐶𝑗 ←𝐶𝑗 + 1, C← C + 1;

ensure robustness, we can overestimate the overhead to fit potential
network or computational fluctuations.

𝑇𝑖 = min{
𝑁𝑑∑︁
𝑖=0

𝑇𝑊𝑖
,

𝑁𝑑∑︁
𝑖=0

𝑇𝐿𝑖 ,

𝑁𝑑∑︁
𝑖=0

𝑆𝑀𝑗 𝑖
} −𝑂𝑖 (2)

3.2.3 Algorithm details. With our throughput prediction mod-
ule in place, a straightforward approach for the ABR algorithm
would be to evaluate every combination of download bitrate and
SR model.

However, a challenge arises when trying to determine the SR
models’ inference speed on different phones. One method is profil-
ing each model’s speed at the start of streaming, but as indicated in
§2.2, this is time-consuming. A more practical approach is to mea-
sure the model’s inference speed during the streaming process. This
approach, however, presents a dilemma: without testing various SR
models, the complete SR model inference speed information is hard
to collect, making it difficult to identify the optimal choice. Sticking
to a single ABR decision (exploitation) could lead to suboptimal
QoE. On the other hand, continuously exploring new models might
strain the system’s computational resources. Thus, finding the right
balance between exploration and exploitation remains a challenge.

To adeptly address the exploration-exploitation dilemma, we
introduce OASIS-ABR, as detailed in Algorithm 1. The algorithm
begins by initializing the QoE, counter, and overhead for each
combination choice, followed by setting the exploration parameter,
𝛼 . The counter tracks the number of times each bitrate and SR
model combination is selected and will be used to calculate the
exploration factor (second term in Equation 3).

In each iteration, the algorithm predicts throughput, estimates
QoE for each combination, and calculates an upper confidence
bound (UCB) value for each option. The UCB, defined in Equation 3,
balances the known rewards’ reliability (exploitation) with the po-
tential of discovering more advantageous options (exploration).
The UCB value combines the expected QoE (first component) with
a exploration factor (second component). The exploration term
of a combination decreases as the frequency of its selection (𝐶𝑖)
increases, thus encouraging exploration of less chosen combina-
tions. The combination with the highest UCB is then selected for

5

49

Algorithm 2: OASIS-SCHED algorithm.
Input : 𝑇𝑊 ,𝑇𝐿 , 𝑆 ,𝑁𝑑 ;
Output : Sched_WWAN, Sched_WLAN, Sched_SR;
/* Start Data Flow Scheduling. */

/* Model the system as a graph. Generate adjacency matrix. */
1 𝐺𝑖𝑛𝑝𝑢𝑡 [0, 𝑖] = 𝑇𝑊𝑖

,𝐺𝑖𝑛𝑝𝑢𝑡 [𝑖, 1] = ... =𝐺𝑖𝑛𝑝𝑢𝑡 [𝑖, 𝑁] = 𝑇𝐿𝑖
,𝐺𝑖𝑛𝑝𝑢𝑡 [𝑁, 𝑖] = 𝑆𝑖 ;

/* Filter to directed graph’s adjacency matrix. */

2 𝐺𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 [𝑖, 𝑗] =
{ 0, 𝑖 𝑓 (𝑖 == 𝑗)𝑜𝑟 (𝐺𝑖𝑛𝑝𝑢𝑡 [0, 𝑖] < 𝐺𝑖𝑛𝑝𝑢𝑡 [0, 𝑗]),

𝐺𝑖𝑛𝑝𝑢𝑡 [𝑖, 𝑗], 𝑖 𝑓 (𝐺𝑖𝑛𝑝𝑢𝑡 [0, 𝑖] >=𝐺𝑖𝑛𝑝𝑢𝑡 [0, 𝑗])
;

/* Apply Ford–Fulkerson algorithm to find the maximum flow. */
3 𝐺𝑓 𝑙𝑜𝑤,𝑁𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐹𝑜𝑟𝑑𝐹𝑢𝑙𝑘𝑒𝑟𝑠𝑜𝑛 (𝐺𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑) ;
/* Start Chunk Scheduling */

/* Initialize devices’ WWAN Request/WLAN Request/SR Lists. */
4 Sched_WWAN𝑖 , Sched_WLAN𝑖 , Sched_SR𝑖 ← {}, {}, {};
/* Predict network latency of each device based on 𝐺𝑓 𝑙𝑜𝑤. */

5 𝐿 ← PredictNetworkLatency(𝐺𝑓 𝑙𝑜𝑤) ;
/* Create predicted completion time queue for each device */

6 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖 = {𝐿𝑖 + 1/𝑆𝑖 , 𝐿𝑖 + 2/𝑆𝑖 , .., 𝐿𝑖 +𝑁𝑖 /𝑆𝑖 }
7 for 𝑖 ∈ [1, ..., 𝑁𝑑] do
8 𝑗 = argmin𝑖 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖 [0];/* Find minimum completion time */

9 Sched_SR𝑗 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖) ; /* Assign 𝐶ℎ𝑢𝑛𝑘𝑖 to 𝐷𝑒𝑣𝑖𝑐𝑒 𝑗 */
10 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑗 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ;
11 end
12 Sched_WWAN, Sched_WLAN← PostProcess(𝑆𝑐ℎ𝑒𝑑_𝑆𝑅,𝐺𝑓 𝑙𝑜𝑤) ;

Figure 4: Illustrating an example of computation mismatch.

execution.
𝑈𝐶𝐵𝑖 = ˆ𝑄𝑜𝐸𝑖 + 𝛼

√︄
log(∑𝐶𝑖 + 1)

𝐶𝑖 + 1
(3)

After execution, the algorithm updates based on the actual total
throughput and SR inference speed collected in runtime. Unlike tra-
ditional multi-armed bandit algorithms that rely on direct rewards
(e.g., QoE), our approach updates the system’s internal through-
put predictor model by averaging the updated overhead (𝑂 𝑗) for
the jth combination and the SR inference speed (𝑆𝑀𝑗

) for the cho-
sen model (𝑀𝑗). The system dynamically updates each device’s
WWAN and WLAN bandwidths in every iteration, enabling precise
throughput predictions. This adaptability ensures accurate QoE
estimations in the UCB term, optimizing decision-making under
fluctuating network conditions. The evaluation utilizing real-world
variable network traces in § 5.2 demonstrates the robustness of our
approach.
3.3 Network and Computation Co-Scheduling
Once OASIS-ABR determines the best bitrate and SR model com-
bination per iteration, the controller device allocates chunk down-
loading tasks among all devices. It then sends the scheduling results
to the agents, detailing which video chunks to download, super-
resoluted, or forward to other devices for SR. Effective scheduling is
vital; naive methods can degrade system performance. For instance,
in Fig. 4, with two devices of differing processing speeds (20 FPS
and 10 FPS), a round-robin scheduling causes the faster device to
wait 6 seconds after processing chunk 3, highlighting the need to
consider device computation heterogeneity during scheduling.

The OASIS-SCHED is designed to optimize system performance
in two distinct but complementary ways. At a high level, it focuses
on optimizing the data flow across devices to address the hetero-
geneity in network and computation resources and to maximize the
system’s end-to-end throughput, thus reducing the average stall

time to improve QoE. On a detailed level, the algorithm performs
chunk scheduling by prioritizing the completion time of earlier
chunks to reduce stall time, taking into account each path’s net-
work delay and computation delay. By optimizing both the data
flow and chunk completion times, the algorithm ensures that the
system performs at its best and provides a high-quality user expe-
rience. We demonstrate the workflow of OASIS-SCHED in Fig. 5
and the pseudo-code in Algorithm 2.

3.3.1 Data Flow Scheduling In a heterogeneous system, achiev-
ing maximum end-to-end throughput necessitates a scheduling
approach that accounts for the diverse WLAN and WWAN band-
widths and computational capabilities of each device. Our solution
transforms this challenge into a graph optimization problem, offer-
ing a structured way to represent devices, network bandwidth, and
computational resources.

We model the system as a graph demonstrated in Fig. 5 from real-
world topology to data flow scheduling part, where each device
is a node. Two additional nodes are introduced: a source node
representing the server and a target node symbolizing the post-
SR broadcasting procedure. The edges in this graph have specific
real-world interpretations and capacities:
• The edge between the source node and a device node represents
usingWWAN to download from the server. Its capacity is defined by
the device’s WWAN bandwidth, indicating the maximum number
of chunks that can be downloaded in unit time.
• Edges between device nodes signify the chunk forwarding proce-
dure, where a device uses its WWAN bandwidth to assist another
device in downloading and then forwards the chunk for processing.
The capacity of these edges is determined by the WLAN bandwidth.
• The edge from a device node to the target node represents the SR
procedure. The SR speed, which dictates the maximum number of
chunks ready for broadcasting, determines its capacity.

Note, in our modeling, there is no edge to represent the post-SR
broadcasting procedure. Instead, the target node alone symbolizes
this phase. This design choice is rooted in practical considerations:
typically WLAN bandwidths set up by the hotspot far exceed the
bandwidth requirements for broadcasting. As a result, the through-
put limitations in the post-SR broadcasting phase become negligible.

To further optimize, we transform our flow graph into a directed
graph. We retain only edges from devices with higher WWAN
bandwidth to those with lower bandwidth, based on the fact that
devices with higher throughput are more capable of assisting the
lower-throughput devices. In this graph structure, maximizing sys-
tem throughput translates to maximizing the flow from the source
node to the target node. Once the directed graph is established,
we utilize the Ford-Fulkerson method [13] to find the maximum
flow from the source node to the target node. This method searches
for augmenting paths – paths where additional flow can be sent –
and increases the flow along these paths until no more augmenting
paths exist. In the context of our system, an augmenting path rep-
resents a sequence of data transfers from the server to the devices
for SR and ultimately broadcast to all devices for display. The algo-
rithm maximizes the use of available network and computational
resources and enhancing the video streaming experience..

3.3.2 Chunk Scheduling After data flow scheduling, the next
challenge is chunk scheduling, which assigns specific chunk IDs to

6

50

WWAN SR WLAN
Throughput

C A

B

3 cps 6 cps

2 cps

3 cps

1 cps

5 cps 5 cps

5 cps S T

A

B

C

5/6

1/3

2/2
3/3

1/1

3/5

Real-world Topology Data Flow Scheduling Schedule Result

WWAN/WLAN
{From Device: [Chunks]}

SR
[Chunks]

Chunk Scheduling

4

Time (1/30 secs)
50 10 15 20 25 30 35 40

A
B
C

1 2 5
30

Device

chunk id
Network Delay SR Delay

*cps: chunk per second
S

Figure 5: OASIS-SCHED Workflow.
each device for SR. The essence of video streaming is the sequential
display of chunks. Hence, ensuring earlier chunks are processed
before later ones is important. A simple example illustrates this: if
a video player awaits the display of the 5𝑡ℎ chunk, but the system
processes the 6𝑡ℎ chunk first, a stall ensues.

To address this, our algorithm predicts the completion time of
each chunk on every device, accounting for both network and com-
putation delays. Having the predicted completion time queue, we
assign the earlier chunk to the earlier finishing time slot judiciously
as demonstrated in the chunk scheduling part of Fig. 5.

After determining the SR tasks for each device and combining
this information with the data flow graph, we generate a compre-
hensive WWAN/WLAN request list for all devices. For example,
as demonstrated in the schedule result part of Fig. 5, if device B
need to do SR on chunks 1, 2, and 5, the data flow scheduling graph
suggests that device A should forward these chunks to device B
via WLAN. This results in generating both WLAN and WWAN
requests for the respective devices.

As the system operates, each device continuously measures its
WWAN throughput, WLAN throughput, and SR processing speed.
At the end of each iteration4, devices send these metrics to the
controller, which then updates the graph structure and parameter
list for the next iteration, ensuring a dynamic and responsive system.
This iteration process continues until all video chunks have been
processed and distributed, marking the completion of the streaming.

4 Implementation

We implement OASIS on commodity mobile devices supporting the
HLS streaming protocol with 12K lines of code (LOC). Conceptually,
OASIS’s design is not protocol-dependent and can be applied to
any adaptive streaming protocol. For offline SR model training, we
modify the source code of Diggers [18], which is trained using the
MegEngine framework. The trained SR model is converted to a
TensorFlow Lite Model using TensorFlow 2.4.1 for inference on
commodity Android devices.

We implement the mobile-side collaboration system using Ex-
oPlayer for video display, and OpenCV and FFmpeg for decoding
video chunks into images and encoding super-resolved images
back into video chunks. To achieve higher inference speed, we
execute the SR model in GPU delegate mode. OASIS’s design and
implementation offer flexibility, enabling it to support inference
for other neural-enhanced video editing models (e.g., video frame
interpolation), thereby increasing OASIS’s usability.
4Throughout this paper, the iteration concept remains consistent. It refers to the cycle
during which the system selects bitrates and SR models for the upcoming set of chunks,
assigns these chunks for processing, and then all devices execute their assigned tasks.

To optimize end-to-end throughput efficiently, we pipeline chunk
downloading, SR processing, and chunk distribution tasks. We also
pipeline decoding, SR, and encoding phases within the processing
stage. Once a device receives a chunk, it decodes the video chunk
into consecutive images, splits them into batches, and feeds them
into the SR deep neural network (DNN). The SR DNN processes the
images through its feature extraction block (FEB) module and gen-
erates high-resolution output images, which are then re-encoded
into video chunks for transmission towards the target(s).

We also offer users a configurable choice to balance initial stream-
ing quality and startup delay. Users can opt for either a longer
startup delay (10-20s) for immediate high-quality SR video stream-
ing or a shorter startup time (<1s) with initial non-SR video chunks
for the first 10-20 seconds and after sufficient buffering, the sys-
tem seamlessly transitions to SR video, accommodating the latency
challenges outlined in §5.2.4.

5 Evaluation
5.1 Experimental Setup and Methodology

Video Dataset and SR Models.We selected 4K videos from the
most popular categories on YouTube: How-to, Vlogs, and Games,
picking the top ten most viewed videos supporting 4K at 30fps,
limited to the first 5 minutes. These videos were transcoded into
multiple bitrate versions (300, 800, 1800, 2500, 4300 kbps) across res-
olutions (180p, 360p, 540p, 720p, 1080p) with a chunk duration of 1
second. For SR model training, each video track was converted into
an image dataset. We trained 5 four SR models for each video cate-
gory, {180p→ 720p, 180p→ 1080p, 360p→ 720p, 360p→ 1080p}.
Our SR model architecture follows Diggers [18], utilizing bidirec-
tional RNNs with efficient feature extractors to capture temporal
dependencies. The evaluation results suggest that our SR models
have similar performance in all video categories. We selected a
video from the Games category [2] for our experimental streaming.
System Parameters. For SR model training, we set the training
epochs to 40 and the learning rate to 2 × 10−3. We empirically set
the exploration parameter 𝛼 to 1.
Devices. We use seven smartphone devices in total: two Pixel5
(PX5) phones, one Samsung S10 (S10), three Samsung S20 Ultra
(S20U) phones, and one Samsung S21 Ultra (S21U). We employ
two Monsoon Power Monitors for energy experiments, which are
attached to S10 and S20U to measure accurate variations in power
consumption. During the energy consumptionmeasurement, screen
brightness is set to maximum. We host the videos on a university-
hosted CDN server that supports both HTTP and HTTPS protocols.
5The SR models were trained using frames from higher resolutions as ground truths,
for example, the 180p→ 720p model was trained with 180p inputs and 720p outputs
as the ground truth.

7

51

−2

0
1

A
ve

ra
ge

Q
oE

MPBond-high
MPBond-low

MicroCast-high
MicroCast-low

No-Collaboration
OASIS

3 devices 4 devices 5 devices 6 devices 7 devices
−13

−7

Figure 6: Average QoE across various device configurations.

20 40

0.5

1.0

B
it

ra
te

(M
bp

s)

(a) 3 devices

0 1

Average Stall Percentage (%)

(b) 5 devices

0 1

Better

(c) 7 devices

MPBond-low MicroCast-low OASIS

Figure 7: QoE breakdown.

Evaluation Metrics. We use the QoE metric as in [40, 41] and
set the parameter 𝜇 = 4.3 as the highest bitrate track (4.3Mbps) of
the video dataset. This metric has been widely used in previous
work [25, 40, 41, 43]. To further analyze the system performance, we
break down the QoE into average bitrate and total stall time. During
the energy experiment, the total system energy consumption is
calculated by subtracting the device’s screen energy consumption
from the device’s total energy consumption.
Baselines.We employ MicroCast and MPBond as baselines. Micro-
Cast aggregates multiple devices’ network resources for enhanced
video download rates, while MPBond manages multipath trans-
port for improved streaming efficiency. We integrate our SR pro-
cessing pipeline into these baselines for fairness. Additionally, a
no-collaboration scheme is used as another baseline where each
device handles SR independently. Furthermore, in §5.2.2, OASIS’s
performance is evaluated against these baselines in download-only
scenarios (excluding SR processing).
5.2 End-to-end Evaluation
We first evaluate the end-to-end QoE results of OASIS as the system
scales up. Then, we evaluate how the energy consumption changes
in OASIS devices as the system scales up. Throughout this section’s
experiment, we use real network traces used in Pensieve [25].
5.2.1 End-to-end QoE Analysis. To evaluate the performance
of our proposed system, we compare it to two well-established
mobile collaboration systems, MicroCast and MPBond. As these
systems do not have their own ABR algorithms, we use two modes
for comparison purposes, namely low and high. In low mode, the
download bitrate is fixed at 180p and the SR model applied is 180p
→ 720p. In high mode, the download bitrate is set to 360p and the
SRmodel used is 360p→ 1080p. For the case where no collaboration
scheme is in place, the ABR is set to low as the system lacks sufficient
computational resources. In OASIS, the ABR algorithm selects from
the aforementioned four SR models to optimize performance.

To thoroughly examine the system’s performance as the number
of devices increases, we constructed five unique scenarios, ranging
from three to seven devices. As shown in Fig. 6, OASIS consistently
achieves the best performance across all scenarios, enhancing the
average QoE by 35% to 230% in comparison to the baselines. In
every scenario, the no-collaboration approach yields subpar results
since participants do not reap any benefits when the system ex-
pands. When fewer than 6 devices are present within the system,
both MPBond-high and MicroCast-high suffer from inferior QoE
performance due to insufficient computational resources. In a 7-
device scenario, MicroCast-high manages to attain a positive QoE,
albeit still 38% lower than OASIS.

In 3-5 device scenarios, both MPBond-low and MicroCast-low
outperform MicroCast-high, MPBond-high, and No Collaboration

baselines since the lower-quality models are more advantageous
when computational resources are limited. Nevertheless, the QoE of
MPBond-low andMicroCast-low does not improvewhen the system
includes more than 6 devices. This stagnation can be attributed to
the absence of an efficient ABR algorithm in the baseline systems.
When computational resources surpass the requirements of low-
quality SR, fixing the download bitrate and SR model offers no
additional advantages. However, thanks to ourOASIS-ABR, the QoE
of OASIS continues to rise as the system scales up. In a 7-device
setup, OASIS’s QoE is 378% higher than in a 4-device scenario.

We delve further into the two primary components of QoE, bi-
trate and average stall percentage, in Fig. 7. We illustrate only
MPBond-low and MicroCast-low, the two best-performing base-
lines, along with OASIS. In the 3-device configuration, due to the
lack of computational resources, OASIS-ABR consistently chooses
the low-quality bitrate (180p) and the SR model (180p→ 720p). De-
spite making the sameABR decision asMPBond-low andMicroCast-
low, OASIS achieves 37% and 63% less stall time than MPBond-low
and MicroCast-low, respectively, due to its scheduling algorithm
OASIS-SCHED, which results in a higher QoE.

We also observe that as the system scales up, OASIS-ABR priori-
tizes to SR higher bitrates, leading to an increased QoE for OASIS
while incurring zero stalls. MicroCast-low and MPBond-low can
also benefit from the system’s expansion. However, due to an inef-
ficient ABR algorithm, MicroCast-low and MPBond-low are unable
to adapt to a higher-quality SR model as computational power in-
creases. This limitation restricts their ability to fully capitalize on
the potential improvements in QoE as the system scales.
5.2.2 Download-Only Experiments. To push the boundaries of
OASIS, we compare it with MicroCast and MPBond in a download-
only scenario (no SR), for which they were originally designed.
We equip MicroCast and MPBond with the RobustMPC [43] ABR
algorithm, allowing them to select from video tracks with resolu-
tions of 180p, 360p, 540p, 720p, 1080p for downloading. In such a
download-only context, we set the SR speed in the algorithm to
the positive infinity values to remove the SR processing constraint
from the system. In this case, OASIS will focus on optimizing the
distribution of tasks and data flows solely based on network band-
width, without considering the SR processing time.The QoE results,
in Fig. 9, are derived through min-max normalization, applied to
each chunk’s QoE within the experiment. Across all configurations,
OASIS surpasses the baselines by 23.2% to 38.3%, attributable to the
more intelligent decisions made by OASIS-ABR and OASIS-SCHED.
The results demonstrate OASIS’s robustness and superiority in all
scenarios.
5.2.3 Energy Consumption. We next conduct experiments to
determine if the collaboration scheme in OASIS can effectively

8

52

1 2 3 4 5 6
of devices

1

2

to
ta

l
en

er
gy

(k
J)

Controller (S20)
Agent (S10)

Figure 8: Energy consumption of participant
devices when system scales up.

2 devices 3 devices 4 devices 5 devices
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

Q
oE

MPBond MicroCast OASIS

Figure 9: Average QoE in download-only mode at
various device configurations.

0 5 10 15
Latency (s)

180p → 720p

180p → 1080p

360p → 720p

360p → 1080p

WWAN-DL SR Encode Decode

Figure 10: Latency breakdown.

reduce per-device energy consumption. To ensure a fair comparison,
we modify the ABR selection result to consistently choose 180p
video content and the (180p → 720p) SR model. We initiate the
experiment with a single-device neural-enhanced video streaming
scenario and gradually scale up the system. Throughout the multi-
device experiment, we utilize an S10 linked to a power monitor as
an agent device and an S20 connected to another power monitor as
the controller to measure energy consumption. Fig. 8 displays the
total system energy consumption of S10 and S20U for each of the
six experimental settings. We observe that the energy consumption
of both the controller and agent decreases as the system scales up,
demonstrating that OASIS efficiently utilizes the computing power
of all devices. Scaling up from 1 to 6 devices reduces the total energy
consumption for S20 and S10 by 66.9% and 56.4%, respectively.

5.2.4 Latency breakdown Fig. 10 presents the breakdown of
latency in processing a chunk for the entire streaming pipeline. We
measure the latency for each component of the system: ABR, chunk
scheduling, WLAN Download, Decode, SR, Encode, and WLAN
Transfer. As ABR only takes 0.2ms, chunk scheduling requires a
mere 0.3ms, and WLAN transfer averages 20ms, these values are
relatively small compared to other components, and therefore, they
are not displayed on the plot. The minimal values achieved by ABR
and chunk scheduling indicate the efficiency of our algorithm and
suggest that the overhead of our scheduling algorithm is quite low.
The relatively lowWLAN transfer time can be attributed to the high
bandwidth provided by the controller’s hotspot (e.g., the hotspot
established by S20U offers approximately 860 Mbps bandwidth).

Besides, we observe that the primary sources of latency are the
SR and the encoding of post-SR images back into chunks. Com-
paring with the end-to-end processing latency derived from Fig. 1,
the pipelined design successfully reduces the average latency by
approximately 60%. This reduction demonstrates the effectiveness
of our approach in optimizing the system’s overall performance.
5.3 Ablation Study

We analyze the performance of each system component in OASIS
and compare it with the state-of-the-art algorithms. As it is hard to
control mobile devices’ inference speed to measure the performance
of each component under various computing power settings, we
simulate the SR procedure by setting up a delay to control the
inference speed throughout the ablation study experiments.
5.3.1 OASIS-ABR Evaluation. We perform experiments to un-
derstand the performance of OASIS-ABR under different computing
power settings. We compare OASIS-ABR with state-of-the-art ABR
algorithms: rate-based [23], buffer-based [17], RobustMPC [43]. As
these algorithms only determine the download bitrate, we divide
each algorithm into two baselines: high and low. High indicates that
when the ABR algorithm chooses the download bitrate, it always

chooses the highest SR model to use, while low indicates the con-
trary. For example, when RobustMPC algorithm decides to choose
180p video content to download, RobustMPC-High will upsample
it to 1080p, while RobustMPC-low will upsample it to 720p.

During the experiment, we employ two devices in the system
and set two computing power scenarios for evaluation.
• 25FPS. In this setting, we set the highest quality SR model (360p
→ 1080p) inference speed on device 0 as 15 FPS, and device 1
as 10FPS. Using the inference speed ratio of different SR models
obtained from earlier results (Fig. 1), we set each model’s inference
speed on each device accordingly.
• 30FPS. We set the inference speed of the highest quality SR model
on device 0 as 20 FPS and on device 1 to 10 FPS. Using the ratio of
each model’s inference speed from Fig. 1, we also set each model’s
inference speed accordingly.

We present the average QoE performance result in the left of
Figure 11. In the 25FPS setting, the system lacks computation power
to perform the highest quality SR. Consequently, bitrate selection
plays a crucial part in the system. OASIS-ABR surpasses the base-
line algorithms from 17% to 129%. From the middle of Figure 11,
Rate-High and RobustMPC-High have the longest stall time as both
baselines choose the highest quality bitrate and SR model without
taking computing power into account. In Fig. 12, the QoE cumula-
tive distribution function is presented. OASIS-ABR exceeds all the
baselines. In the 30FPS situation, the left of Figure 11 demonstrates
that OASIS-ABR still outperforms all the baseline algorithms by
5% to 69%. The system has enough computation power to perform
the highest quality SR in this scenario. Thus, baselines such as
RobustMPC-High and Rate-High which always choose the high-
est quality model achieve comparable performance to OASIS-ABR,
however, OASIS-ABR reaches a shorter stall time.

5.3.2 OASIS-SCHED Evaluation. We evaluate the performance
of OASIS-SCHED in the presence of heterogeneity in either compu-
tation or network bandwidth among devices. The performance of
OASIS-SCHED is compared to the scheduling algorithms of Micro-
Cast and MPBond using the video stall time metric. For the purpose
of the ablation study, the ABR algorithm is fixed to select a 180p
video content for download and SR to 720p.

Three devices are used, with a total computation speed of 33 FPS
and a total network bandwidth of 6Mbps. In the computation het-
erogeneity setting, the network bandwidth is evenly divided among
the devices, while the computation speed is divided in the ratios of
1:1:1, 2:1:1, 3:1:1, 4:1:1, and 5:1:1, gradually increasing the hetero-
geneity of computation speed across the devices. In the network
heterogeneity setting, the computation speed is evenly divided
among the devices, while the network bandwidth is divided in the

9

53

25FPS 30FPS
0

1
A

ve
ra

ge
Q

oE

25FPS 30FPS
0

25

50

T
ot

al
S

ta
ll

Buffer-High Buffer-Low Rate-High Rate-Low RobustMPC-High RobustMPC-Low OASIS

25FPS 30FPS
0

1

A
ve

ra
ge

B
it

ra
te ×106

Figure 11: Overall QoE (left) and its breakdown into stall time (middle) and bitrate (right).

0.5 1.0 1.5
0.0

0.5

1.0

C
D

F
(2

5F
P

S
)

Buffer-High
Buffer-Low
Rate-High
Rate-Low
RobustMPC-High
RobustMPC-Low
OASIS

−0.5 0.0 0.5 1.0 1.5

QoE

0.0

0.5

1.0

C
D

F
(3

0F
P

S
)

Figure 12: QoE CDF in 25FPS and 30 FPS setting.

1:1:1 2:1:1 3:1:1 4:1:1 5:1:1

device computation power heterogeneity

0

50

100

150

to
ta

l
st

al
l

ti
m

e
(s

)

System
MPBond
MicroCast
OASIS

Figure 13: Performance change as
computation heterogeneity increases.

1:1:1 2:1:1 3:1:1 4:1:1 5:1:1

device network bandwidth heterogeneity

0

20

40

to
ta

l
st

al
l

ti
m

e
(s

)

System
MPBond
MicroCast
OASIS

Figure 14: Performance change as
network heterogeneity increases.

ratios of 1:1:1, 2:1:1, 3:1:1, 4:1:1, and 5:1:1, progressively increasing
the heterogeneity of network bandwidth across the devices.

In the computation heterogeneity setting, as depicted in Fig. 13,
OASIS outperforms the baseline algorithms by achieving the short-
est stall time in all five scenarios. The results show that OASIS
results in a reduction of 90% to 100% in stall time compared to the
baseline algorithms. As the heterogeneity of computation increases,
the total stall time for both MicroCast and MPBond increases sig-
nificantly, while OASIS experiences only a slight increase. These
results demonstrate that OASIS is capable of handling computation
heterogeneity more effectively than the baseline algorithms.

In the network heterogeneity setting (Fig. 14), we can see that
OASIS outperforms the baseline algorithms by achieving the short-
est stall time in all five scenarios. The results show that OASIS
results in a reduction of 75% to 100% in stall time compared to the
baseline algorithms. As the heterogeneity of network increases,
the total stall time for both MicroCast and MPBond increases sig-
nificantly, while OASIS experiences only a slight increase. These
results demonstrate that OASIS is capable of handling network
heterogeneity more effectively than the baseline algorithms.

6 Related Work

Adaptive streaming. Adaptive streaming encodes video content
at varied bitrates and divides it into equal-length chunks. Some
ABR algorithms [17, 19, 34, 35] determine chunk bitrates based
on network bandwidth and playback buffer. Advanced methods
like MPC [43] and Pensieve [25] leverage control theory and rein-
forcement learning to optimize QoE, outperforming heuristic-based
algorithms. However, they mainly cater to single-device scenarios.

SR-based video streaming system. NAS [41] is an SR-based
video streaming system. It enables desktop SR streaming by replac-
ing the low-resolution buffer with high-resolution post-SR chunks
during video-on-demand (VoD) playback. Live-NAS [21] further ex-
tends NAS to support SR live streaming by performing SR after the
uploading phase of live broadcasts. NeuroScaler [42] reduces the
overhead of neural-enhanced live streaming by sharing SR DNNs
across similar videos. Hyunho et al. [40] developed NEMO, an SR-
integrated codec that accelerates SR execution on single devices,
reaching 30 FPS, which is orthogonal to our collaboration theme.

Multi-device collaboration. MicroCast [20] enhances video
streaming by pooling smartphone network resources, while MP-
Bond [45] extends collaboration for content retrieval across per-
sonal mobile devices. Both primarily address network-level collab-
oration, leaving computational collaboration unexplored, which
is crucial for our context. Kibbutz [28] shares links among nearby
users to save energy, but it’s limited to dual-device deployment.
Cool-Tether [33] proposes WLAN utilization for web access on mul-
tiple devices. However, neither directly addresses computational
resource sharing, which is central to our system. CloneCloud [11]
introduces an architecture for elastic execution between mobile
devices and the cloud, offloading computation to enhance perfor-
mance and energy efficiency without manual partitioning. Fur-
thermore, Femto Clouds [14] leverages mobile devices to provide
cloud services at the edge, reinforcing the feasibility and effec-
tiveness of utilizing ambient computation for mobile applications.
PRISM [22] improves TCP performance using WWAN and WLAN,
but its kernel-space solution isn’t mobile-friendly. Mobile Plus [29]
facilitates resource and functionality sharing across devices, but
neither directly tackles computation sharing, a central theme of
our work.
7 Conclusion
OASIS pioneers the realization of both network-level and computation-
level collaboration, offering a unique perspective on device collabo-
ration. It introduces a sophisticated end-to-end framework that effi-
ciently harnesses the collective network and computational power
of multiple devices. This collective power is leveraged to run neural-
enhanced video streaming, a computation-heavy task. In real-world
scenarios, OASIS’s bitrate selection algorithm (OASIS-ABR) and
scheduling algorithm (OASIS-SCHED) significantly outperform
the baselines, improving video QoE by up to 129% and completely
eliminating video stalls. Our work explores a new direction in multi-
device collaboration, setting a precedent for future research.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback.
This work was supported by the NSF under the National AI In-
stitute for Edge Computing Leveraging Next Generation Wire-
less Networks, Grant 2112562, in addition to NSF Grants CMMI-
2038215, CNS-1930041, CNS-2321532, CNS-2323174, CNS-2128489,
CNS-2321531, NSF Award 1915122, and NSF Award 2128489.

10

54

References

[1] 2012. MPEG-DASH. https://dashif .org/.
[2] 2019. Red Dead Redemption 2: Official Gameplay Video. https://www.youtube.

com/watch?v=Dw_oH5oiUSE/.
[3] 2020. 57 Fascinating and Incredible YouTube Statistics. https://www.brandwatch

.com/blog/youtube-stats/.
[4] 2022. NSD. https://developer.android.com/develop/connectivity/wifi.
[5] 2023. AI Benchmark Performance Ranking. https://ai-benchmark.com/ranking.ht

ml
[6] 2023. Expanding the Galaxy Ecosystem: Ultimate Connected Experiences Between

Galaxy Devices. https://news.samsung.com/us/samsung-expanding-galaxy-
ecosystem-ultimate-connected-experience-between-devices

[7] 2023. Huawei introduces a new era of cross-device collaboration with Super Device.
https://consumer.huawei.com/sg/press/news/2022/news-220223/

[8] 2023. Use Continuity to work across Apple devices. https://support.apple.com/gu
ide/mac-help/work-across-devices-using-continuity-mchl1d734309/mac

[9] 2023. Video Super-Resolution on MSU Video Super Resolution Benchmark: Detail
Restoration. https://paperswithcode.com/sota/video-super-resolution-on-msu-
vsr-benchmark

[10] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2021.
BasicVSR: The search for essential components in video super-resolution and
beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4947–4956.

[11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. 301–314.

[12] Mallesham Dasari, Kumara Kahatapitiya, Samir R Das, Aruna Balasubramanian,
and Dimitris Samaras. 2022. Swift: Adaptive video streaming with layered neural
codecs. In 19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22). 103–118.

[13] Lester Randolph Ford and Delbert R Fulkerson. 1956. Maximal flow through a
network. Canadian journal of Mathematics 8 (1956), 399–404.

[14] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. 2015. Femto
clouds: Leveraging mobile devices to provide cloud service at the edge. In 2015
IEEE 8th international conference on cloud computing. IEEE, 9–16.

[15] Ahmad Hassan, Arvind Narayanan, Anlan Zhang, Wei Ye, Ruiyang Zhu, Shuowei
Jin, Jason Carpenter, Z Morley Mao, Feng Qian, and Zhi-Li Zhang. 2022. Vivi-
secting mobility management in 5G cellular networks. In Proceedings of the ACM
SIGCOMM 2022 Conference. 86–100.

[16] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. 2018. Fa-
vor: Fine-grained video rate adaptation. In Proceedings of the 9th ACMMultimedia
Systems Conference. 64–75.

[17] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM.
187–198.

[18] Andrey Ignatov, Andres Romero, Heewon Kim, and Radu Timofte. 2021. Real-
time video super-resolution on smartphones with deep learning, mobile ai 2021
challenge: Report. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2535–2544.

[19] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive. In Proceed-
ings of the 8th international conference on Emerging networking experiments and
technologies. 97–108.

[20] Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and
Athina Markopoulou. 2012. Microcast: Cooperative video streaming on smart-
phones. In Proceedings of the 10th international conference on Mobile systems,
applications, and services. 57–70.

[21] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han. 2020.
Neural-enhanced live streaming: Improving live video ingest via online learning.
In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 107–125.

[22] Kyu-Han Kim and Kang G Shin. 2005. Improving TCP performance over wireless
networks with collaborative multi-homed mobile hosts. In Proceedings of the 3rd
international conference on Mobile systems, applications, and services. 107–120.

[23] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David
Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale.
IEEE Journal on Selected Areas in Communications 32, 4 (2014), 719–733.

[24] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li,
Radu Timofte, and Luc Van Gool. 2022. Vrt: A video restoration transformer.
arXiv preprint arXiv:2201.12288 (2022).

[25] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 197–210.

[26] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley

Mao, et al. 2021. A variegated look at 5G in the wild: performance, power, and
QoE implications. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
610–625.

[27] Yunzhe Ni, Feng Qian, Taide Liu, Yihua Cheng, ZhiyaoMa, JingWang, Zhongfeng
Wang, Gang Huang, Xuanzhe Liu, and Chenren Xu. 2023. {POLYCORN}: Data-
driven Cross-layer Multipath Networking for High-speed Railway through Com-
posable Schedulerlets. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). 1325–1340.

[28] Cătălin Nicutar, Dragoş Niculescu, and Costin Raiciu. 2014. Using cooperation
for low power low latency cellular connectivity. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
337–348.

[29] Sangeun Oh, Hyuck Yoo, Dae R Jeong, Duc Hoang Bui, and Insik Shin. 2017.
Mobile plus: Multi-device mobile platform for cross-device functionality sharing.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. 332–344.

[30] Devdeep Ray, Jack Kosaian, KV Rashmi, and Srinivasan Seshan. 2019. Vantage:
optimizing video upload for time-shifted viewing of social live streams. In
Proceedings of the ACM Special Interest Group on Data Communication. 380–393.

[31] Susanna Schwarzmann, Clarissa Cassales Marquezan, Marcin Bosk, Huiran Liu,
Riccardo Trivisonno, and Thomas Zinner. 2019. Estimating video streaming QoE
in the 5G architecture using machine learning. In Proceedings of the 4th Internet-
QoE Workshop on QoE-based Analysis and Management of Data Communication
Networks. 7–12.

[32] Susanna Schwarzmann, Clarissa Cassales Marquezan, Riccardo Trivisonno,
Shinichi Nakajima, Vincent Barriac, and Thomas Zinner. 2022. Ml-based qoe es-
timation in 5g networks using different regression techniques. IEEE Transactions
on Network and Service Management 19, 3 (2022), 3516–3532.

[33] Ashish Sharma, Vishnu Navda, Ramachandran Ramjee, Venkata N Padmanabhan,
and Elizabeth M Belding. 2009. Cool-tether: energy efficient on-the-fly wifi hot-
spots using mobile phones. In Proceedings of the 5th international conference on
Emerging networking experiments and technologies. 109–120.

[34] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA: Near-
optimal bitrate adaptation for online videos. IEEE/ACM Transactions on Network-
ing 28, 4 (2020), 1698–1711.

[35] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao
Liu, and Bruno Sinopoli. 2016. CS2P: Improving video bitrate selection and
adaptation with data-driven throughput prediction. In Proceedings of the 2016
ACM SIGCOMM Conference. 272–285.

[36] Xuedou Xiao, Wei Wang, Taobin Chen, Yang Cao, Tao Jiang, and Qian Zhang.
2019. Sensor-augmented neural adaptive bitrate video streaming on UAVs. IEEE
Transactions on Multimedia 22, 6 (2019), 1567–1576.

[37] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2015. piStream:
Physical layer informed adaptive video streaming over LTE. In Proceedings of
the 21st Annual International Conference on Mobile Computing and Networking.
413–425.

[38] Shichang Xu, Subhabrata Sen, Z Morley Mao, and Yunhan Jia. 2017. Dissect-
ing VOD services for cellular: performance, root causes and best practices. In
Proceedings of the 2017 Internet Measurement Conference. 220–234.

[39] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Alexander Levis, and Keith Winstein. 2020. Learning in situ: a
randomized experiment in video streaming.. In NSDI, Vol. 20. 495–511.

[40] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.
2020. NEMO: enabling neural-enhanced video streaming on commodity mobile
devices. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. 1–14.

[41] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han.
2018. Neural adaptive content-aware internet video delivery. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 645–661.

[42] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and
Dongsu Han. 2022. NeuroScaler: neural video enhancement at scale. In Proceed-
ings of the ACM SIGCOMM 2022 Conference. 795–811.

[43] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication.
325–338.

[44] Zhengdong Zhang and Vivienne Sze. 2017. FAST: A framework to accelerate
super-resolution processing on compressed videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 19–28.

[45] Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y Ethan Guo, Feng Qian, and Z Morley
Mao. 2020. MPBond: efficient network-level collaboration among personal mobile
devices. In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services. 364–376.

[46] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik
Jana, Xin Jin, Jennifer Rexford, and Rakesh K Sinha. 2015. Can accurate predic-
tions improve video streaming in cellular networks?. In Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications. 57–62.

11

55

https://dashif.org/
https://www.youtube.com/watch?v=Dw_oH5oiUSE/
https://www.youtube.com/watch?v=Dw_oH5oiUSE/
https://www.brandwatch.com/blog/youtube-stats/
https://www.brandwatch.com/blog/youtube-stats/
https://developer.android.com/develop/connectivity/wifi
https://ai-benchmark.com/ranking.html
https://ai-benchmark.com/ranking.html
https://news.samsung.com/us/samsung-expanding-galaxy-ecosystem-ultimate-connected-experience-between-devices
https://news.samsung.com/us/samsung-expanding-galaxy-ecosystem-ultimate-connected-experience-between-devices
https://consumer.huawei.com/sg/press/news/2022/news-220223/
https://support.apple.com/guide/mac-help/work-across-devices-using-continuity-mchl1d734309/mac
https://support.apple.com/guide/mac-help/work-across-devices-using-continuity-mchl1d734309/mac
https://paperswithcode.com/sota/video-super-resolution-on-msu-vsr-benchmark
https://paperswithcode.com/sota/video-super-resolution-on-msu-vsr-benchmark

	Abstract
	1 Introduction
	2 Motivation and Use Cases
	2.1 Incentives for Multi-device Collaboration
	2.2 Mobile SR Performance Measurement

	3 System Design
	3.1 System Overview
	3.2 Multi-armed Contextual Bandit Algorithm for Adaptive Bitrate Control
	3.3 Network and Computation Co-Scheduling

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup and Methodology
	5.2 End-to-end Evaluation
	5.3 Ablation Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

