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Sparse Principal Component Analysis (SPCA) is designed to enhance the interpretability of traditional
Principal Component Analysis (PCA) by optimally selecting a subset of features that comprise the first
principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate
solutions, typically achieved through tractable semidefinite programs (SDPs) or heuristic methods. To solve
SPCA to optimality, we propose two exact mixed-integer SDPs (MISDPs) and an arbitrarily equivalent
mixed-integer linear program (MILP). The MISDPs allow us to design an effective branch-and-cut algorithm
with closed-form cuts that do not need to solve dual problems. For the proposed mixed-integer formula-
tions, we further derive the theoretical optimality gaps of their continuous relaxations. Besides, we apply
the greedy and local search algorithms to solving SPCA and derive their first-known approximation ratios.
Our numerical experiments reveal that the exact methods we developed can efficiently find optimal solu-
tions for datasets containing hundreds of features. Furthermore, our approximation algorithms demonstrate
both scalability and near-optimal performance when benchmarked on larger datasets, specifically those with

thousands of features.
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1. Introduction

This paper studies the sparse principal component analysis (SPCA) problem:
(SPCA) w™:= néz]%é{scTAw: x|l =1,z <k}, (1)

where A is the sample covariance matrix out of a dataset with n features and thus is positive
semidefinite, the zero-norm |||/, denotes the number of non-zero entries in , and k < n is a positive
integer. When reducing the dimensionality of a dataset, traditional PCA typically relies on all
n features to calculate the first principal component. This approach, though comprehensive, may
lead to a low-dimensional representation that is difficult to interpret. In contrast, the zero-norm
constraint in SPCA (1) confines the first principal component to rely on at most k features, thereby
offering a more interpretable and concise dimensionality reduction. Hence, the SPCA problem (1)

is often capable of selecting the k& most relevant and important features from a high-dimensional
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dataset, which significantly improves the interpretability of the dimensionality reduction in machine
learning [33, 57] and is helpful for the exact recovery of sparse signals in information theory
[4]. Besides, SPCA (1) tends to exhibit greater robustness to noise compared to conventional
PCA [57]. These advantages of SPCA have benefited many application fields such as biology,
finance, cloud computing, and healthcare, which often deal with high-dimensional datasets (see,

e.g., [15, 34, 39, 44)).

1.1. Summary of Main Contributions and Organization

Given the support of variable @, we observe that SPCA (1) reduces to the PCA problem, i.e.,
finding the largest eigenvalue of a principal submatrix of A indexed by the support. Hence, the
objective of SPCA (1) can be recast as selecting a k x k principal submatrix from matrix A to
maximize the largest eigenvalue. This motivates us to derive two exact mixed-integer semidefinite
programs (MISDPs) and an almost equivalent mixed-integer linear program (MILP) of SPCA (1).
Below, we summarize the main contributions and an outline of this paper.

(i) Sections 2 and 3 develop the equivalent MISDP (6) and MISDP (15) for SPCA (1), respec-
tively and derive the worst-case optimality gaps of their continuous relaxations. We show
that the continuous relaxation of the MISDP (15) is stronger than the one proposed by
d’Aspremont et al. [21].

In Subsection 2.2, we develop a branch-and-cut algorithm for SPCA based on the MISDP
(6), which can efficiently solve small- or medium-sized instances (e.g., n < 100s) to optimality.

(ii) Section 4 derives the first-known MILP (22) for SPCA (1), which can be arbitrarily close to
SPCA (1). The MILP can solve small instances to optimality. We also prove the optimality
gap of its continuous relaxation.

(iii) Section 5 investigates the scalable greedy and local search algorithms for approximately solv-
ing SPCA (1). We derive their first-known approximation ratios and prove the tightness when
k <mn/2. The numerical study demonstrates that these two approximation algorithms are
superior to the existing ones in the literature.

(iv) Section 6 evaluates the computational efficiency and solution quality of our proposed methods
on various real datasets, where the dimension n ranges from 13 to 2,365.

Our contributions have both theoretical and practical relevance. Theoretically, we contribute three

exact mixed-integer convex programs to SPCA along with the optimality gaps of their continuous

relaxations and prove the first-known approximation ratios of the greedy and local search algo-

rithms. Table 1 displays our theoretical contributions and the comparison with existing results.

Practically, our branch-and-cut algorithm and MILP (22) can efficiently yield optimal solutions for

small and medium-size instances. Our approximation algorithms are scalable and successfully apply

to the large-scale data analytics problem, i.e., identifying critical factors for drug abuse analysis.
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Table1  Summary of theoretical guarantees for SPCA (1)
Convex relaxation Optimality gap
Continuous relaxation of MISDP (6) | min{k,n/k}
Continuous relaxation of MISDP (15) | min{k,n/k}
Continuous relaxation of MILP (22) | min{k(v/d/2+1/2),n/kvVd+ (n—k)(vVd/2+1/2)}
SDP relaxation in [16] expexp(2(y/loglog(n)))
Approximation algorithm Approximation ratio
Greedy Algorithm 1 1/k
Local Search Algorithm 2 1/k
Truncation algorithm [16] n~Y/3

Thresholding algorithm [17]

1/2— (3/2) tr(A)/w*

Randomized algorithm [17]

1/2 — /or(A) [ (kw")

SDP-based algorithm [17] -

1.2. Relevant Literature
In this subsection, we survey the relevant literature on SPCA (1) from three aspects: exact mixed-
integer convex programs, convex relaxations, and approximation algorithms.

Exact Mixed-Integer Programs. SPCA (1) is highly nonconvex as it maximizes a convex
function subject to two nonconvex constraints (i.e., a quadratic equality constraint and a zero-norm
constraint). Unlike traditional PCA, which admits closed-form solutions, SPCA (1) is notoriously
known to be NP-hard and inapproximable (see, e.g., [41]). As a result, the equivalent formulations
and exact algorithms for solving SPCA (1) to optimality are limited in the literature (see, e.g.,
[9, 27, 42]). Moghaddam et al. [42] introduced a branch-and-bound method to solve SPCA (1), and
they pruned redundant nodes using the eigenvalue of principal submatrices and a greedy algorithm.
Recently, Berk and Bertsimas [9] embedded various upper and lower bounds into a branch-and-
bound framework, which can efficiently prune nodes and guarantee optimality for quite a few
instances. It is worth mentioning that Gally and Pfetsch [27] proposed an equivalent MISDP for-
mulation for SPCA (1). Our MISDP (15) differs from [27] by deriving additional valid inequalities.
Another interesting work can be found in Dey et al. [23], where the authors developed approximate
convex integer programs for SPCA (1) with an optimality gap of (1+ \/m)2

Convex Relaxations. In addition to exact solutions of SPCA (1), researchers have actively
investigated tractable convex relaxations. A common approach in the literature is developing SDP
relaxations for SPCA with theoretical guarantees (e.g., [2, 20, 21, 25, 37, 56]). [2] proposed sufficient
conditions for when the SDP relaxation attains the same optimal value as SPCA under the well-
known spiked covariance model, in which the covariance matrix A is the identity matrix plus

a sparse rank-one matrix. [16] proved a 1/expexp(€(y/loglog(n))) optimality gap for the SDP
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relaxation proposed in [21]. For another SDP relaxation in [20], [25] derived its optimality gap using
randomization techniques. This paper derives the theoretical optimality gaps of the continuous
relaxations of both MISDPs. Albeit convex, solvers often have difficulty in solving large-scale
instances of SDP formulations (e.g., n = 100s). The computational challenge of these SDP problems
urgently calls for more effective methods to compute the relaxation values for SPCA. From a
different angle, this paper solves the continuous relaxations of the proposed MISDP formulations
as the maximin saddle point problem, where the subgradient method enjoys a O(1/T") convergence
rate [45] based on Euclidean projections.

Approximation Algorithms. Another early thread of work on SPCA is developing high-
quality heuristics for solving SPCA to near optimality, such as the greedy algorithm [20, 30],
the truncation algorithm [16], the power method [35], the truncated power method [55], and the
variable neighborhood search method [14]. In particular, the truncation algorithm in [16] provides

the best-known approximation ratio n~—/3

, which admits an efficient implementation to return a
feasible solution to SPCA. This paper investigates the greedy and local search algorithms and
proves their first-known approximation ratios 1/k.

We close this subsection by summarizing several recent works on SPCA (1) that have cited our
paper since it became available online. [12] reformulated SPCA (1) as a similar MISDP around
the same time as our MISDP (15); however, it is worth noting that our MISDP (15) is equipped
with a novel type of valid inequalities and may yield a stronger continuous relaxation. Using the
second-order cone relaxations and greedy rounding schemes, [12] focused on the computational
improvement of solving SPCA in practice and achieved an optimality gap of 1—2% on testing cases
with n=1,000s. [17] proposed three approximation algorithms based on thresholding, randomized
matrix multiplication, and SDP relaxation methods, respectively. By enforcing their algorithms to
satisfy the zero-norm constraint in SPCA (1), the resulting approximation ratios are presented in
Table 1 which depend on the data matrix A and optimal value w* of SPCA (1). We also compare
our approximation algorithms with theirs in the numerical study. A recent study by [6] explored the
underlying properties of SPCA under the spiked covariance model for statistical guarantees. Specif-
ically, they reformulated SPCA under the spiked covariance model as a mixed-integer second-order
cone program, which can be efficiently solved by their customized algorithm on large-scale instances
with n =20,000. Another recent work [24] studied two classical variants of the spiked covariance
model: the Wigner and Wishart models. In both cases, the authors proposed a subexponential-time
algorithm with a high-probability guarantee for the exact recovery of the support of « in SPCA
(1). In contrast to [6, 24], our results apply to any covariance matrix A in SPCA (1). Recently,

[37] introduced a novel permutation-invariant SDP relaxation for SPCA (1), providing remarkably
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tight upper bounds. Nevertheless, this approach may encounter computational difficulties when
applied to datasets comprising hundreds of features.

Notation. The following notation is used throughout the paper. We let §",S8 denote the set of
all the n x n symmetric real matrices and the set of all the n x n symmetric positive semidefinite
matrices, respectively. We use bold lower-case letters (e.g., ) and bold upper-case letters (e.g.,
X)) to denote vectors and matrices, respectively and use corresponding non-bold letters (e.g.,
x;,X;j) to denote their components. We let 0 denote the zero vector. We use [-] to denote the ceil
function. We let R™ denote the set of all the n dimensional vectors and let R? denote the set of
all the n-dimensional nonnegative vectors. Given a positive integer n and an integer s <n, we let
[n]:={1,2,---,n} and let [s,n]:={s,s+1,---,n}. We let I,, denote the n x n identity matrix and
let e; denote its i-th column vector. Given a set S and an integer k, we let |\S| denote its cardinality
and let (i) denote the collection of all the size-k subsets out of S. Given a m x n matrix A and
two sets S C [m], T'C [n], we let Agr denote a submatrix of A with rows and columns indexed by
sets S and T, respectively. Given a vector & € R”, we let Diag(x) denote a diagonal matrix with
diagonal elements x, let ||z|, denote the two norm, let ||| denote the infinity norm, and let
||z|lo denote the zero norm that counts the number of non-zero entries in . Given a symmetric
matrix A, let tr(A) denote the trace of matrix A and let A,..(A) denote the largest eigenvalue of

A. The additional notation will be introduced later as needed.

2. Exact MISDP Formulation (I)
This section derives an equivalent mixed-integer semidefinite programming (MISDP) formulation
for SPCA (1) based on spectral decomposition and disjunctive programming techniques. The pro-
posed MISDP formulation facilitates the development of a branch-and-cut algorithm, which allows
for exactly solving SPCA (1).

To begin with, for each i € [n], we let the binary variable z; = 1 if the i-th feature is selected and
0 otherwise. Thus, SPCA (1) can be written as the following mixed-integer nonconvex program:

(SPCA) w*:= max {ax'Az:|x|,=1,|z;| <z, Vie[n]}, (2)

xER™ zeZ
where we let Z denote the feasible set of binary variables z throughout the paper, i.e.,
Z:= {ze {0,1}": Zzi gk}.
1€[n]

Based on the mixed-integer nonconvex formulation (2), we derive an equivalent mixed-integer

convex program for SPCA in the following subsection.
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2.1. An Equivalent MISDP Reformulation of SPCA

According to proposition 1 in [42], when the support of variable @ is known, SPCA (1) essentially
reduces to a conventional PCA problem, which is summarized in Part (i) of Lemma 1. Note that
Part (ii) is a simple extension of Part (i). Furthermore, Part (iii) of Lemma 1, as proposed by [20]
in their section 2, reformulates the largest eigenvalue function using the Cholesky factorization of

matrix A.

Lemma 1 [20, 42] For a symmetric matriz A € 8" and a subset S C [n], the following hold:
(i) maxgepn {@T Az : ||zl =1,2,=0,Vi ¢ S} = Anax(As.5),
(71) maxx {tr(AgssX) :tr(X) =1} = A\ax(As.s), and
(iii) If matriz A is positive semidefinite, then Amax(As,s) = Amax(D_ics cic) ), where A=C'C,
C c R¥" denotes the Cholesky factorization matriz of A, d is the rank of A, and ¢; € R¢

denotes the i-th column vector of C for each i € [n].

We make the following remarks about Lemma 1: Part (i) of Lemma 1 reduces SPCA (1) to
select an at most size-k X k principal submatrix of A with the maximum largest eigenvalue, which
leads to a combinatorial reformulation of SPCA (1) as shown below; Part (ii) of Lemma 1 suggests
that the SDP relaxation of the largest eigenvalue problem is exact, which paves the way for the
development of two exact MISDPs; and by leveraging Part (iii) in Lemma 1, we derive an exact
MILP for SPCA in Section 4.

According to Part (i) in Lemma 1, we introduce a subset variable S to represent the support of

variable  in SPCA (1) and rewrite it as
w* = mgx{)\max(AS,s) (S| <k,SCn]}. (3)

Suppose that matrix A has a rank of d. Then, by computing the Cholesky factorization A =CTC

with C € R Part (iii) of Lemma 1 allows us to recast the objective of SPCA (3) as below.
_— T .

w*: mgtx{)\ma)((;clci).]S|§k,5’§[n]}. (4)

Following the construction of SPCA (2), we let the binary variable z; represent whether to select the

i-th column vector ¢; or not for each i € [n], which reformulates SPCA (4) as an integer program:

. T

w*: r;rleazx{z\max<i€z[n]zlc,cz )} (5)

In the celebrated work on SPCA by d’Aspremont et al. [20], they derived an SDP relaxation

for SPCA (5) based on the Cholesky decomposition of A. By leveraging their SDP relaxation and

disjunctive programming techniques [5], we reduce SPCA (5) to an equivalent MISDP, as shown
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in the theorem below. It is worth noting that our Theorem 1 differs from [20][proposition 1] in two
aspects: (i) [20] studied the modified SPCA problem (1) that moves the zero-norm constraint to
the objective as a regularization term. In contrast, our Theorem 1 focuses on SPCA (1); and (ii)
Theorem 1 proposes an exact MISDP that relies on the disjunction of bilinear terms, rather than

the SDP relaxation in [20].

Theorem 1 SPCA (2) admits an equivalent MISDP formulation:

z€eZ,
X, Wy, WneSt

(SPCA) w*:= max { Z ci Wic;:tr(X)=1,X = W, tr(W,) = 2z;,Vi € [n]} (6)
i€[n]

Proof. By leveraging Part (ii) in Lemma 1 to reformulate the objective of SPCA (5) as an SDP,
we have that

v s S st xe w001, !
i€[n]

d
zEZ,XES+

where the objective function comes from the identity tr(c;c;] X) = ¢ X¢; for each i € [n].

In SPCA (7), the objective function contains bilinear terms {z; X };c(n. To convexify them, we
create two copies of the matrix variable X, denoting by W;;, W, for each i € [n], and one of them
is equal to X depending on the value of binary variable z;. As a result, SPCA (7) becomes

w* = max {chmlci:X:ml—i—VVig,Vie[n],tr(X)zl,

X . . d
z€Z, 7W7,17W12ES+ ZG[n]

tr(VVﬂ) = Zi,tr(Wig) =1- Zi,Vi S [n}}

Above, the matrix variables {VVig}ie[n] are redundant and can be replaced by inequality X > W;
for each i € [n]. Thus, we arrive at the equivalent reformulation (6) for SPCA. O

Theorem 1 presents a novel equivalent MISDP reformulation (6) for SPCA (1). We note that
the MISDP (6) has several interesting properties: (i) it can be directly solved via exact MISDP
solvers such as YALMIP; (ii) matrix variables X and {W,}c},) have a dimension of d x d, where d
is the rank of covariance matrix A. This finding suggests that we can further reduce the problem
size of the MISDP (6) when matrix A is low-rank; and (iii) in the MISDP (6), binary variables
are separable from the other matrix variables. This observation motivates us to employ Benders
decomposition [28] to solve the MISDP (6), as detailed in the subsequent subsection.

By relaxing binary variables, the continuous relaxation of the MISDP (6) provides an upper

bound for SPCA (1), which can help evaluate the solution quality of different heuristics. In the



Yongchun Li and Weijun Xie: Ezact and Approzimation Algorithms for Sparse PCA

following proposition, we provide the theoretical guarantee for the quality of this continuous relax-
ation. Formally, the continuous relaxation of the MISDP (6) is defined as follows:
wy = max Zc:VVici (X)) =1, X = W, tr(W;) =z, Vi € [n]}, (8)

zef,

X, Wy, Wnesd €l

where we let Z denote the continuous relaxation of binary feasible set Z, i.e.,
7= {ze 0,1]":> 2 gk}.

Proposition 1 The continuous relaxation (8) of the MISDP (6) achieves a min{k,n/k} optimality
gap of SPCA (1), i.e.,
w* <w; <m {k:, ﬁ} w
k

Proof. First, the inequality w* <w; stems from the fact that problem (8) serves as a convex
relaxation of MISDP (6). Thus, it remains to show that (i) w; < kw* and (ii) w; <n/kw*.

Part (i). For any feasible solution (2, X,{W,}cp)) to the continuous relaxation (8), we have
that

Zc WcZ<Zc c; tr(W, Zzlc cZ<Zzzw < kw™,
i€[n] i€[n]

where the first inequahty is because the trace of the product of two symmetric positive semidefinite
matrices is no larger than the product of the traces of these two matrices [18], the first equality is

from tr(W;) = z; for each i € [n], the second inequality is because

T T
C; C; = Amax (cici ) < max

Cln)i|S|=k ma"<z >

and the last inequality is due to Zie[n] zi < k.
Part (ii). In addition, given any feasible solution (z, X, {W,}ic},)) of the continuous relaxation

(8), we have

ZCTWC <ZCTXC (
k—

i€[n]

Z ZCTXCI_ ((_>) —%w*,
Se(["]) (=
where the first inequality is due to W; = X for all i € [n] and the second one is from Part (ii) in
Lemma 1. 0

Proposition 1 shows that the continuous relaxation (8) is at most min{k,n/k} away from the
optimal value of SPCA (6), implying that if k=1 or k =n, then the continuous relaxation value
w; exactly matches the optimal value w*. It is important to note that our analysis of the k-factor
optimality gap in Proposition 1 may not be tight. The continuous relaxation (8) nearly coincides
with the optimal value of SPCA (1) in our numerical study. We leave it as an interesting future

question to improve the worst-case guarantee of this upper bound.
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2.2. Solving SPCA (6) by the Benders Decomposition Method

It is well-established that solving large-scale SDPs can be challenging, and the same holds for the
MISDP (6). To solve the MISDP (6) efficiently, this subsection applies the Benders decomposition
scheme [8, 28] to develop a branch-and-cut method. Furthermore, a side product of the Benders
decomposition method is to transform the continuous relaxation (8) of the MISDP (6) into a
maximin problem, enabling the use of the efficient subgradient method.

The Benders decomposition method lies in separating binary variables from continuous variables.
That is, for any fixed binary variables z € Z in the MISDP (6), the resulting subproblem is a
convex program for which we can use the duality theory to develop Benders cuts. Therefore, by
separating binary variables, we rewrite SPCA (6) as

w* :=max H,(z) := max { Zc;—VVici:tr(X):1,XtWi,tr(Wi):zi,W€[n]}. (9)

zeZ X7W17~~',Wd€51 i

The Benders decomposition method is of particular interest when the dual of the above sub-
problem over (X,{W,};c[n)) is easy to compute for any z € Z, ensuring that the Benders cuts are
effective to generate. Using Part(ii) in Lemma 1, we show below that the strong duality of the
inner maximization problem in (9) holds, and the dual problem admits a closed-form solution for

any binary z € Z.

Proposition 2 For the function H,(z) defined in SPCA (9), we have that

(i) For any z € Z, function H,(2) is equivalent to

Hl(z): min {Amax<ZQi> Zﬂzzz- C:jQz‘f‘MzIdaOﬁﬂzS ||cz||§7vze [n]}7
BQ, ’Qnesi i€[n] i€[n]
(10)

which is concave in z.

(ii) For any binary z € Z, an optimal solution to the problem (10) is uf =0 if z; =1 and ||ci||3
otherwise, and Q; := (1 — pu;/||ei||?)eic] for each i€ [n].

Proof. See Appendix A.1. O
According to Part (i) of Proposition 2, we provide an equivalent reformulation (10) of the function
H,(z) by dualizing the subproblem in (9). Plugging the closed-form solution to the dual problem
(10) in Part (ii) of Proposition 2, we have that
H(2) = (Ll )+ 3 el Al Ass) + T el
i€S i€[n]\S i€[n]\S

for any given solution z € Z with its support S. The result above reduces SPCA (9) to

w*=max H;(z)= max {w:ngl(z)g)\max (Ass)+ Z llcill32:, VS C [n], |S|§k:}. (11)

z€Z zeZ,weR S
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Therefore, for any solution (Z,w) € Z x R, the most violated constraint is

0 Az + Y el
i€[n]\S
where set S denotes the support of z. Based on the closed-form valid inequalities above, we can
solve MISDP (6) to optimality in a branch-and-cut framework to improve the computational per-
formance, as shown in Section 6.

Following the framework of SPCA (9), we can rewrite the SDP relaxation (8) with the form of
max, 5 H,(z). However, we note that for any continuous z € Z, the dual representation of function
H,(z) in problem (10) remains challenging to solve. Motivated by Part (ii) in Proposition 2, we
propose an efficient function H,(z) to approximate H,(z) by fixing Q, := (1 — u;/||ci||2)cic] for
each i € [n] in problem (10). As a result, we have H,(z) > H,(z) for any z € Z. In the following
theorem, we show that the relaxed function H,(2z) becomes exact for any binary solution z € Z,

and the resulting upper bound still achieves a min{k,n/k} optimality gap.

Theorem 2 The following hold for the relazed function H,(z):
(i) For any z € Z, function H,(2) is upper bounded by

Hi(z):= miRn {)\max < Z (1 - ||5Z||2> ciciT> + Z pizi 0 < p; < lleill3, Vi€ [n]}, (12)
e n .
H i€[n] ell2 i€[n]
(ii) If z€ Z, then Hy(2) = H1(2) = Anax (X icn zii€l ); and
(iii) The continuous relaxation of SPCA

Wy :=max H;(z) (13)

achieves a min{k,n/k} optimality gap, i.e., w* < W, < Wy < min{k,n/k}w*, where W, is

defined in (8).

Proof. See Appendix A.2. O
We remark that (i) Compared to H,(z), the function H,(z) is formulated by a simple convex pro-
gram (12) involving an n-dimensional variable p. Hence, the corresponding continuous relaxation
(13) can be efficiently solved by the subgradient method with a convergence rate of O(1/T) (see,
e.g., [45]); (ii) On the other hand, the SDP relaxation w; = max,. H;(2) tends to be stronger
than W, = max_ 5 H;(2). Thus, there is a trade-off between the computational efficiency and tight
upper bounds; (iii) It is worth mentioning that both upper bounds w; and w, achieve the same
optimality gap min{k,n/k}, which implies that there might be room to improve the analysis of
the optimality gap in Proposition 1. We leave this to interested readers; and (iv) when z € Z is

binary, both problems (10) and (12) are equivalent and admit a closed-form solution, as shown in

Proposition 2, which facilitates the implementation of the branch-and-cut method.



Yongchun Li and Weijun Xie: Ezact and Approzimation Algorithms for Sparse PCA 1

3. Exact MISDP Formulation (II)

In addition to the MISDP (6), this section proposes another exact MISDP reformulation (15) for
SPCA (1) based on the results in Part (i) and Part (ii) of Lemma 1. For the proposed MISDP
(15), we also guarantee the quality of its continuous relaxation and prove that it is stronger than

the existing SDP relaxation [21].

3.1. A Naive Exact MISDP Formulation
We first establish a naive exact MISDP formulation of SPCA (2) based on Part (ii) of Lemma 1.

Proposition 3 SPCA (2) admits the following MISDP formulation:

(SPCA) w":= max {tr(AX) tr(X)=1,X; <z,Vie [n]} (14)

zGZ,XESi

and its continuous relazation value is equal to Ayax(A).

Proof. See Appendix A.3. ([l
It should be noted that the work of [27] was the first to derive the equivalent MISDP formulation
(14) for SPCA, which relies on characterizing sophisticated extreme points. Our proof is based
on Part (ii) of Lemma 1, which is different from theirs. Although the MISDP (14) is equivalent
to SPCA (2), it might be a weak formulation, provided that its continuous relaxation is equal to
the trivial upper bound A.x(A). In [27], the authors proposed valid inequalities X;; < z;/2 for all
i,7 € [n] to strengthen the MISDP (14). Next, we use two different types of valid inequalities that
can significantly strengthen the MISDP (14).

3.2. A Stronger MISDP Reformulation with Valid Inequalities
This subsection presents valid inequalities to strengthen SPCA (14) and derives the optimality
gap of the resulting continuous relaxation. To be specific, Part (i) of Lemma 2 includes the valid
inequalities that are first proposed by [11] in their section 4. We derive another type of valid
inequalities for the MISDP (14), as summarized in Part (ii) of Lemma 2.

Lemma 2 The following two inequalities are valid to SPCA (14)
(i) 3 jem X < X;”zl for alli € [n]; and
(ii) (zje[n] \Xij\) < kX2 for all i€ [n).

Proof. See Appendix A .4. O
We make the following remarks about Lemma 2.
(a) The valid inequalities for SPCA (14) in Lemma 2 exhibit significant strength, potentially

dominating existing ones, such as

’Xij‘ < z“ij < XiiZj,Xsz < Zizj7Vi7j € [n]7
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(b) The constraints in Lemma 2 can be expressed by second-order cones as shown in [7], which
thus can be efficiently handled by SDP solvers like MOSEK and SDPT3; and

(c) Plugging the valid inequalities in Lemma 2 into the MISDP (14), we arrive at a stronger
MISDP of SPCA, which is summarized below. Besides, constraints X;; < z; for all i € [n] in the
MISDP (14) are implied by those in Part (i) of Lemma 2 and are thus removed.

Theorem 3 SPCA (2) is equivalent to the following MISDP formulation:

2
(SPCA)w*:= max {tr(AX =1, Z X2 < Xz, < > yXij\) <kXyzi,Vie [n]}.

zGZ,XGS:L_ .
J€[n]

(15)

Suppose that w3 denotes the continuous relaxation of SPCA (15), i.e.,

2

z€Z,XeSn :
* Je[n] J€ln]

We show that the continuous relaxation (16) is stronger than a known SDP relaxation for SPCA

introduced by d’Aspremont et al. [21], denoted by w, that admits the formulation below.

w4::§&%’§{ r(AX): )=1, > ]Xij|§k}. (17)

i€[n] j€[n

Proposition 4 For the SDP relazations of SPCA defined in (16) and (17), we have that w3 < w,.

Proof. See Appendix A.5. O
For the MISDP (15), analogous to Proposition 1, we also guarantee the theoretical gap of its
continuous relaxation (16). The upper bound (16) is quite close to the optimal value according to

our numerical study.

Proposition 5 The continuous relazation (16) of the MISDP (15) yields a min{k,n/k} optimality
gap for SPCA, i.e.,
_ . n
w* < Wy Smm{k,g}w

Proof. See Appendix A.6. O

Albeit attaining the same theoretical optimality gaps, the proposed MISDP (6) and MISDP
(15) are generally not comparable, as shown in our numerical study. Besides, we note that the
continuous relaxation (8) of the MISDP (6) can be more challenging to solve due to the existence
of multiple positive semidefinite matrix variables. Next, we close this section by applying Benders

decomposition to solve the MISDP (15).
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3.3. Solving SPCA (15) by the Benders Decomposition Method

The decomposition method developed for SPCA (15) in this subsection follows from Section 2.2.
Therefore, some details are omitted for brevity. First, we decompose the proposed MISDP (15) by
a master problem over binary variables z € Z and a subproblem over the matrix variable X € 87,
leading to the following two-stage optimization problem:

2
w* =max Hy(2z) := max { tr(AX): =1, Z X2 < Xz, ( Z ]Xij|> <kX;z,Vie [n]}

z€Z Xesh .
j€[n] j€[n]
(18)
It is desirable to derive an efficient dual formulation of H,(z) for any given z € Z such that its
subgradient can be easily computed. Indeed, by leveraging Part(ii) in Lemma 1 and dualizing the
second-order cone constraints, the strong duality holds for the inner maximization problem over

X in (18). The proof is similar to that of Proposition 2 and is thus omitted.

Proposition 6 For any z € Z, function Hy(z) is equivalent to

Hy(z):= min B)\max (A+A+1/2Diag(py + po + vy + o) — Wi + W)

p1,p2,v1,v2,A, W1 ,Wo,

+1/2(—py + o) 24+ k/2(—vy F ) 2,
s.t. B+ (W1)ij + (Wz)zj <0,Vien],j€[n],
Z AZ 4 (a)® < (pi2)?, Vi € [n], (19)

J€[n]

B2+ (vir)? < (vi2)?, Vi € [n],
(Wh)i; 2 0,(Ws)y; 2 0,¥i € [n], V] € [n],
“’17”17/6 € Rnau27'/2 €R17A7W17W2 ES”?

which is concave in z.

For the minimization problem (19) that defines the function Hy(z) in Proposition 6, we remark
that: (i) Note that for any given z € Z, function H,(2) can be solved as a second-order cone program
and escape from the SDP curse. It can be solved more effectively via the first-order methods (e.g.,
the subgradient method) since the subgradient is easy to obtain and the projection only involves
second-order cone constraints; (ii) On the other hand, the continuous relaxation (16) can be written
as

w3 = max Hy(2). (20)

z€Z
Plugging the minimization problem (19) into the relaxation above, the subgradient method can
be applicable to solve the entire maximin saddle problem (20) with O(1/T") rate of convergence
(see, e.g., [45]); and (iii) We can warm start the exact branch-and-cut algorithm by solving the

continuous relaxation (20) and adding all subgradient inequalities at the root relaxed node.
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4. An MILP Formulation for SPCA with Arbitrary Accuracy

In this section, inspired by the definition of eigenvalues, we derive an arbitrarily accurate mixed-
integer linear program (MILP) for SPCA (5), which enables us to directly leverage the computa-
tional power of commercial solvers such as Gurobi. In addition, we establish the optimality gap of

the corresponding relaxation.

4.1. An MILP Formulation for SPCA

This subsection provides a novel representation of the objective function of SPCA (5), i.e., the

T

largest eigenvalue of matrix Zie[n] z;c;c; , which leads to an MILP formulation. To be specific,

according to the definition of eigenvalues, we observe that

Amax ( Z zicicj> = max {w : ( Z zicz-ciT> T =wx, ||| = 1},
i€[n]

- w,z€R
1€[n]

where x represents an eigenvector, and the constraint of the infinity norm rules out the trivial
solution & = 0. We first replace the well-known constraint ||z|2 =1 with ||&|/. =1 for computing
eigenvalues, which lays the foundation for our MILP. Plugging the identity above into the objective,
SPCA (5) becomes

w* = max {w: Zzicicjm:w:c,Hme:l}. (21)

w,x€R z€Z 4
i€[n]

For any solution z € Z, we will show that the rest of SPCA (21) can be linearized using the
disjunctive programming and binary expansion techniques. Specifically, the nonlinearity of SPCA
(21) arises from three aspects:

(i) Bilinear terms in the expression Eie[n] z;xze;e; . They can be easily linearized using the dis-

junctive programming techniques, provided that variable z; is binary for each i € [n];
(ii) Constraint ||| = 1. The nonconvex constraint ||z|/o =1 can be equivalently represented as

a union with 2d sets as follows
Uje[d]{a: eRY: zj =1,z < 1} Ujelq {ar: eR?: zj=—1, |zl < 1}.

Since SPCA (21) is invariant with & and — in, it suffices to use only d sets, i.e., Uje[d]{a: €
R?:z;=1,||z|. <1}. This can be expressed as an MILP using the techniques in [5]; and

(iii) Bilinear term wx. We can start by approximating the continuous variable w using binary
expansion and then linearize the resulting bilinear terms through disjunction.

Following the above analyses, we can reformulate SPCA (21) as an MILP formulation.
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Theorem 4 Given a threshold € > 0, the following MILP is O(e)-close to SPCA (2), i.e., € <

W(e) —w* < evd, where W(e) is defined by

w(e) = max w
w,z€EZ,y,o,x,,0,u,0

st. =10, 402, |01 |00 < 2, [|0i2]|00 <1 — 2, Vi€ [n],
e=> 00l <05 =y;Vield, Y y;=1,
jeld) jeld)
T = o+ oo, | o] o < s || pe2le <1 — g, VL € [m)],

w=wy — (wy —wL)< Z 2_i04i>7
i€[m]

Z cic; 64 —wyx + (wy —wy) Z 27 Ly

i€[n] Le[m]

ac{0,1}™ y€{0,1}7,

<e

o0

)

(22)

where wy, and wy denote the lower and upper bounds of SPCA, respectively and m := [log,((wy —

wr)e ).

Proof. See Appendix A.7.

We remark about Theorem 4 that

(i) Theorem 4 provides the first-known MILP formulation (22) with arbitrary accuracy of O(e)

for SPCA;

(ii) It is worth noting that the MILP (22) relies on binarizing a continuous variable w, which

can potentially result in poor performance (see, e.g., [49, 52]). Our numerical results also

demonstrate that the branch-and-cut algorithm based on MISDP (6) exhibits higher efficiency

compared to directly solving the MILP (22) on large-scale instances;

(iii) Strong lower and upper bounds of SPCA can speed up the solution process, as the number of

binary variables a in the MILP (22) decreases with the difference between w; and wy; and

(iv) One possible approach to enhance the computational efficiency is by decomposing the MILP

formulation (22) into d smaller-sized subproblems and then considering each set in the union

Ujelal {a: cxy =1, |z]x < 1}, respectively, as summarized below.
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Corollary 1 For any € > 0, the optimal value of MILP (22) is equal to W(e) = max, c(q W;(€),

where for each j € [d], w;(€) is defined as

wj(e) ::w zEZI.Igllac)t(méuw
st. =01+ 02, ||0i1]|oc < 2i, [|0i2]l00 <1 —2;,Vi € [n],
HwHoo < 17xj =1,

T = o1+ oo, [ || oo < 0y || pez]loo <1 — iy, V€ [,

(23)
w=wy — (wy —wL)< Z 2iai>,
i€[m]
Z cic] 8, —wyx + (wy —wr) Z 27 || <e
i€[n] 1€[m] 0
ac{0,1}™,

where wy, and wy denote the lower and upper bounds of SPCA, respectively and m := [log,((wy —

wr)e ).

While the MILP (23) has a smaller size, it may be infeasible in some cases. Since the optimal value

of an infeasible maximization problem is —oo by default, the result in Corollary 1 still holds.

4.2. Theoretical Optimality Gap

Analogous to the other two exact formulations, we are interested in deriving the theoretical guar-
antee when the binary z € Z of MILP (22) becomes continuous. Notably, our result suggests that
the upper bound obtained from the MILP (22) is generally worse than the previous ones in terms

of the optimaity gap.

Proposition 7 Given a threshold € > 0, by relaxing the binary variables z to be continuous, let

ws(€) denote the optimal value of the relazed MILP formulation (22). Then we have
Ws(e) < min {k(Vd/2+1/2), n/kVd+ (n—k)(Vd/2+1/2) bw* +eVd.
Proof. See Appendix A.8. O

5. Approximation Algorithms
In this section, motivated by the combinatorial formulation (4) of SPCA, we derive the approxi-
mation ratios of the well-known greedy and local search algorithms. We also construct worst-case

examples to show the tightness of both ratios when k <n/2.
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5.1. Greedy Algorithm

In this subsection, we guarantee the worst-case performance of the greedy algorithm, proposed by
[20] in section 3.2. Their greedy algorithm for SPCA proceeds as follows. Given a subset Se C [n]
denoting the selected vectors, the algorithm aims to find a new vector from the unchosen set
{ci} ien)\§, 1O maximize the largest eigenvalue until the subset §G attaining the size k. The detailed

implementation can be found in Algorithm 1.

Algorithm 1 Greedy algorithm for SPCA (4) proposed by [20]
1: Input: matrix A € S? of rank d, integer k € [n], and Sg =10
2: Compute the Cholesky factorization A =CTC of matrix A where C € R4*"

3: Let ¢; € R? denote the i-th column vector of matrix C for each i € [n]
4: for /=1,--- ,k do

5: Compute j* € argmax; .\ g )\max(zie§gu{j} cicl)

6: Add j* to the set Sg

7: end for

8: Output: §G

We prove a 1/k-approximation ratio for greedy Algorithm 1 in the below.

Theorem 5 The greedy Algorithm 1 yields a 1/k-approzimation ratio for SPCA (4), i.e., the
output §G of Algorithm 1 satisfies
N (B s
max (3 k
iESG
Proof. Suppose that S* C [n] is an optimal solution of SPCA (4) is S*. Then we have
)\mmx 0 T max \ &1 < max \CiC < max () T
] (chz> Z)\ (cic krfg{&xA (cic] ) < kA <Zc,cz>,
i€ S* 1€S* ieSqg
where the first inequality results from the convexity of the largest eigenvalue function and the last
one is because the greedy Algorithm 1 chooses the largest-length vector at the first iteration. [
The approximation ratio 1/k of greedy Algorithm 1 is tight when k& < n/2 since we construct an

example whose greedy optimum exactly attain this ratio. The worst-case example is presented

below.

Example 1 For any integer k, let d=k+1, n=2k, and we define the vectors {c;}ic(,) CR? to be

c=4 el g
err1, ifielk+1,n],
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Proposition 8 The approximation ratio 1/k of greedy Algorithm 1 is tight when k <n/2.

Proof. For Example 1, the greedy Algorithm 1 sequentially selects ¢y, ¢s,- - , ¢y, i.e., the output
set is §G = [k]. Thus, the output value of the greedy Algorithm 1 equals 1.

On the other hand, the true optimal value of Example 1 is equal to AmaX(Zie[k ] cl-c;'—> =
Amax (k‘ekﬂegﬂ) = k. This completes the proof. O

5.2. Local Search Algorithm
The local search algorithm has been widely used to solve various machine learning and data ana-
lytics problems, including experimental design [40] and the maximum entropy sampling problem
[38]. This subsection studies the local search algorithm for solving SPCA (4) and establishes its
approximation ratio.

Specifically, the local search algorithm for SPCA (4) proceeds as follows: (i) initialize a feasible
solution S; (ii) at each iteration, swap an element in S with an element in [n]\ S and we update
the chosen set S if the swapping strictly increases the objective value of SPCA (4); and (iii) the

algorithm terminates when there is no improvement. More details are presented in Algorithm 2.

Algorithm 2 Local search algorithm for SPCA (4)
1: Input: matrix A € S7, integer k € [n], and initialize a size-k subset 5. C[n]

2: Compute the Cholesky factorization A =CTC of matrix A where C € R¥*"

3: Let ¢; € R? denote the i-th column vector of matrix C for each i € [n]
4: do

5: for each pair (i,5) € S x ([n]\ S1) do

6: if A\nax <Z€€§Lu{j}\{i} cw}) > Amax (Z%?L cw}) then
7 Update Sy, := 8, U {j}\ {i}

8: end if

9: end for

10: while there is still an improvement

11: Output: §L

Theorem 6 The local search Algorithm 2 yields a 1/k-approzimation ratio of SPCA, i.e., the
output S 1 of the local search Algorithm 2 satisfies

)\max< Z cmj) > %w*.

7'.€§L
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Proof. First, for each j € [n], we show that

)\max< Z cecz> > )\max(cjc;). (24)
tesy,
To prove it, there are two cases to be discussed depending on whether j belongs to S 1, or not.
(i) je S .- The monotonicity of the largest eigenvalue of the sum of positive semidefinite matrices
results in the inequality (24).
(ii) j € [n]\ Si. Then, the local optimality condition implies that there exists some i € Sy such
that

Amax( Z CECZ> Z )\max< Z CZCZ> Z )\max(cjc;r)7

e85y, eeSL Ui}
where the second inequality follows the analysis of Part (i).

Second, suppose that S* is an optimal solution to SPCA (4). Then, by the inequality (24), we

have
’LU* = )\max ( Z cl_c;I') S Z )\max(cic;r) S k)\max( Z CZC;>7
i€S* ies* ¢edy
where the first inequality is because of the convexity of the largest eigenvalue function. O

We remark that Example 1 also confirms the tightness of our analysis for the local search

Algorithm 2 when k <n/2.

Proposition 9 The approximation ratio 1/k of local search Algorithm 2 is tight when k <n/2.

Proof. In Example 1, we show that the initial subset S 1. = [k] satisfies the local optimality condition.

For each pair (i,7) € 5, x ([n]\ Sy), we have

)\max < Z CZCZ> = )\max(Id - eie;r) =1= )\max(Id - ede(—jr) = )\max< Z CEC;> 9

eeSLu{\{¢} ¢eSy,

where the identities are from the definitions of vectors {¢; };c[,) in Example 1.

Therefore, the set S 1, achieves the local optimum with the largest eigenvalue of 1. Since the
optimal value of SPCA is w* =k, the approximation ratio of set S . is equal to k1. O

In practice, the local search Algorithm 2 may enhance the performance of the greedy Algo-
rithm 1 by using its output as an initial solution, and our numerical study demonstrates that this
integration works effectively. Nevertheless, the results in Theorem 6 and Proposition 9 indicate
that the integrated algorithm still achieves a 1/k-approximation ratio. In addition, we apply the
power iteration method to calculate the largest eigenvalue [3] for the efficient implementation of

the greedy Algorithm 1 and the local search Algorithm 2.
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We close this subsection by introducing an enhancement to the local search Algorithm 2. Specif-
ically, we consider increasing the number of swapping elements at Step 5 in Algorithm 2, which
we refer to as the s-swap local search for any s € [k]. This improved s-swap local search achieves a

better guarantee, as shown below.

Corollary 2 The approzimation ratio of the s-swap local search is s/k for any s € [k]. The ratio

is tight when k <n/2.

Proof. See Appendix A.9. O
We note that while theoretically performing well, the s-swap local search with s > 2 may not be
practical due to its exponential time complexity in s. Therefore, we use the original local search

Algorithm 2 in the numerical study.

6. Numerical Study

This section presents numerical experiments testing our proposed formulations and algorithms
with varying-scale instances, where the dimension n spans from 13 to 2365. All the methods are
implemented in Python 3.6 with calls to Gurobi 9.5.2 and MOSEK 10.0.29 on a PC equipped with
a 2.3 GHz Intel Core i5 processor and 8G of memory. The codes and data used in our experiments

are available at https://github.com/yongchunli-13/Sparse-PCA.

6.1. A comparison of exact methods for SPCA

In this subsection, we compare the computational efficiency of our exact methods, including the
MISDP (6), MISDP (15), and MILP (22) on various small- and medium-sized real datasets [33, 46].
We use the custom branch-and-cut method to solve the two MISDPs. In contrast, the MILP (22)
can be directly solved by the Gurobi solver. It is worth noting that the MISDP (6) admits the
closed-form cuts that do not require solving dual problems, as shown in Proposition 2, while the
MISDP (15) requires solving the SDP problem (19) to obtain a valid cut. This makes solving
the MISDP (6) more efficient than the MISDP (15). Throughout this section, we set the target
accuracy of the MILP (22) as e:=10"*. We also test Gurobi to solve the following nonconvex
SPCA formulation for comparison purposes.

w*:= max {:UTAa: lelle =1, 2]y < VE, || < 2, Vi€ [n]} . (25)

zeZ,xeR"

First, in Table 2, we benchmark the proposed methods on the commonly-used Pitprops dataset
with 13 features (i.e., n = 13) [33], testing seven cases with k chosen from {4,---,10}. We let

time(s) denote the running time in seconds and let SPCA (25) denote the performance of Gurobi
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Table 2 Computational results of exact methods on the Pitprops dataset

Case MISDP (6) MISDP (15) MILP (22) SPCA (25)

n k w*  time(s) | w*  time(s) | w(e) time(s) | w*  time(s)
13 4 | 2.9375 1129375 2129375 1] 2.9375 1
13 5 | 3.4062 11 3.4062 2 | 3.4062 11 3.4062 3
13 6 |3.7710 11{3.7710 2| 3.7710 21 3.7710 1
13 7 |3.9962 1| 3.9962 1{3.9962 1] 3.9962 3
13 8 | 4.0686 1| 4.0686 2| 4.0686 2| 4.0686 10
13 9 | 4.1386 11]4.1386 2| 4.1386 11]4.1387 10
13 10 | 4.1726 11]4.1726 11]4.1726 11]4.1726 )

9.5.2 when solving the nonconvex SPCA (25). It is seen in Table 2 that our proposed exact formu-
lations (6), (15), and (22) successfully solve all cases to optimality within seconds. Besides, they
demonstrate a higher efficiency compared to directly using Gurobi 9.5.2.

To obtain a comprehensive understanding of the overall performance of our exact methods, we
further conduct experiments on ten UCI datasets [46] with sizes ranging from 13 to 128. The

information on each dataset is summarized in Table 3.

Table 3 Description of UCI datasets used

Dataset Dimension n | Number of samples | Reference
housing 13 506 [29]
keggdirected 20 48827 [43]
pol 26 15000 26]
wdbe 30 569 [54]
dermatology 34 366 [32]
spambase 57 4601 [31]
digits 64 1797 1]
buzz 7 583250 [36]
song 90 515345 [10]
gas 128 2565 51]

Table 4 presents the computational results. For each UCI dataset, we consider two different
values of k. It is important to note that we let “-” denote the unsolved cases within one hour
throughout this section, as we set a one-hour time limit. According to the results in Table 4, it is
evident that when solving the UCI datasets in Table 3, the computational efficiency of the proposed
methods follows a descending pattern with the MISDP (6) being the most efficient, followed by
the MILP (22), and concluding with the MISDP (15). The observed efficiency sequence of exact
methods aligns with our theoretical analysis. As mentioned previously, the closed-form cuts for

MISDP (6) derived in Proposition 2 can significantly enhance the branch-and-cut performance
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compared to the MISDP (15). Besides, the last column in Table 4 implies that Gurobi 9.5.2 can
only solve a limited number of cases. Notably, there are only three testing cases in Table 4 where
the MILP (22) outperforms the branch-and-cut algorithm based on the MISDP (6). Therefore,
we recommend using the branch-and-cut algorithm to solve the MISDP (6) to optimality when
n = 100s. When implementing the branch-and-cut algorithm, we first compute continuous relax-
ations and lower bounds returned by approximation algorithms as the warm start. Hence, having
tight upper and lower bounds is desirable to expedite the branch-and-cut algorithm. We will eval-

uate the performance of our proposed relaxations and approximation algorithms in the following

subsections.
Table 4 Computational results of exact methods on UCI datasets

Dataset Case MISDP (6) MISDP (15) MILP (22) SPCA (25)
n k w* time(s)| w* time(s)| w(e) time(s) w* time(s)
housing 13 5 3.7239 113.7239 82| 3.7239 2| 3.7239 1
13 10 3.7342 113.7342 49| 3.7342 2| 3.7342 10
keggdi- | 20 5 | 451.5948 1 - 3600(451.5948 31451.5948 1
rected | 20 15| 451.9241 7 - 3600|451.9241 3 - 3600
vol 26 5 36.5574 30 - 3600| 36.5574 50| 36.5574 5
26 15| 38.8281 40 - 3600| 38.8281 907 | 38.8281 924
wdbe 30 5 5.4683 - 3600| 5.4683 100 5.4683 7
30 15 5.6588 - 3600 - 3600 - 3600
derma- | 34 5 3.3751 1 - 3600 3.3751 534 | 3.3751 13
tology | 34 15 3.4161 87 - 3600 - 3600 - 3600
spam- | 57 10| 41.8519 727 - 3600| 41.8519 21 - 3600
base 57 20 - 3600 —  3600| 41.8587 33 - 3600
digits 64 10 5.8801 439 - 3600 - 3600 - 3600
64 20 - 3600 - 3600 - 3600 - 3600
buzs 77 10|2472.3111 28 - 3600 - 3600 - 3600
77 20(3993.1748 146 - 3600 - 3600 - 3600
song 90 10(2112.4768 17 - 3600 - 3600 - 3600
90 20 - 3600 - 3600 - 3600 - 3600
128 10| 18.2092 1 - 3600| 18.2092 290 - 3600
991128 20| 18.6831 31 ~3600| 18.6831 291 — 3600

6.2. A comparison of continuous relaxations for SPCA

In this subsection, we benchmark the performance of the proposed continuous relaxations for SPCA

(1). In addition to the datasets used in Tables 2 and 4, we extend our evaluation to include four
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larger datasets: Fisen-1, Eisen-2, Colon, and Reddit, each with dimensions n =79, 118, 500, and
2000, respectively. These datasets have been studied in the SPCA literature [23].

We obtain the continuous relaxations by relaxing binary variables z € Z in our exact formula-
tions. These relaxations provide upper bounds for SPCA (1). Specifically, the two MISDP formu-
lations (6) and (15) lead to the SDP relaxations (8) and (16), respectively. We use MOSEK to
solve the SDP relaxations (8) and (16) directly. It is interesting to note that the SDP problem (8)
inspires us an additional continuous relaxation (13) for SPCA, as detailed in Theorem 2. The relax-
ation (13) is free of solving SDPs and greatly improves the scalability. The continuous relaxation
(13) allows for an efficient subgradient method to solve it. Although the theoretical guarantees of
our proposed relaxations (8), (13), and (16) remain consistent, their practical performance varies
significantly. Given the superior performance of both SDP relaxations compared to the continuous
relaxation of the MILP (22), we omit reporting computational results for the latter relaxation.
In addition, the SDP relaxation (17) proposed by d’Aspremont et al. [21] serves as a benchmark
upper bound for SPCA.

The numerical results for the small Pitprops dataset can be found in Table 5, where gap(%)
represents the optimality gap of the upper bound and is defined by 100 x (Upper Bound — w*) /w*.
We see that the SDP relaxation (16) achieves the smallest gaps in the first five cases. When k
is close to n, the SDP relaxation (8) tend to dominate the others. There is a trade-off between
efficiency and solution quality when comparing relaxations (8) and (13), as further demonstrated
in Table 6. Notably, the SDP relaxation (16) is consistently superior to the benchmark relaxation
(17), which aligns with the theoretical result in Proposition 4. However, the performance of our

SDP relaxation (8) is not comparable to the benchmark relaxation (17).

Table 5 Computational results of continuous relaxations on the Pitprops dataset

n=13| Relaxation (8) |Relaxation (13) | Relaxation (16) | Benchmark (17)
k |gap(%) time(s)|gap(%) time(s)|gap(%) time(s) |gap(%) time(s)
4 5.75 1| 43.61 2 0.41 1 2.71 1
) 2.37 1] 23.85 3 0.18 1 1.52 1
6 0.39 1) 11.87 3 0.15 1 1.13 1
7 0.00 1 5.57 3 0.00 1 0.89 1
8 0.29 1 3.69 3 0.26 1 1.87 1
9 0.00 1 1.93 3 0.03 1 1.64 1
10 0.09 1 1.10 2 0.12 1 1.10 1

Tables 6 and 7 provide a comprehensive comparison of the proposed relaxations across various
UCI datasets and large-scale datasets. When the optimal value is unavailable, we use the lower

bound returned by the local search Algorithm 2 to compute gap(%). For cases where n < 34,
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our SDP relaxation (8) can solve them to optimality within one hour. Compared to the SDP
relaxation (8), the SDP relaxation (16) extends the problem-solving capacity to cases with n <100
and achieves an optimality gap of at most 0.72%. Likewise, the benchmark SDP relaxation (17)
fails to return any upper bound for cases where n > 100, as shown in Table 7. In contrast, the
computational efficiency of our relaxation (13) stands out, as it can efficiently handle cases with
n >100. It is also seen in Table 7 that the benchmark relaxation (17) is not comparable with our
efficient relaxation (13). In summary, we recommend using the SDP relaxation (16) to obtain an
upper bound of SPCA (1) if n <100. For the large-scale SPCA problem, we recommend using the

relaxation (13).

Table 6 Computational results of continuous relaxations on UCI datasets

Case | Relaxation (8) |Relaxation (13) | Relaxation (16) | Benchmark (17)

Dataset - - - :
n k |gap(%) time(s) |gap(%) time(s) |gap(%) time(s)|gap(%) time(s)
housing 13 5 0.00 1 0.28 7 0.00 1 0.28 1
13 10 0.00 1 0.00 7 0.00 1 0.00 1
keggdi- | 20 5 0.00 3 0.07 10 0.00 1 0.07 1
rected | 20 15 0.00 2 0.00 10 0.00 1 0.00 1
pol 26 5 0.00 26 6.36 15 0.00 1 4.96 1
26 15 0.00 29 0.14 15 0.00 1 0.14 1
wdbe 30 5 0.00 34 0.19 15 0.00 2 0.19 1
30 15 0.00 40 0.00 16 0.00 2 0.00 1
derma-| 34 5 0.00 201 1.50 17 0.00 1 1.50 1
tology | 34 15 0.00 226 0.28 17 0.00 4 0.28 1
spam- | 57 10 - 3600 0.02 30 0.00 74 0.02 9
base 57 20 - 3600 0.01 30 0.00 85 0.01 11
digits 64 10 - 3600| 88.51 36 0.38 84 2.82 26
64 20 - 3600| 31.31 36 0.72 91 4.07 24
bz 77 10 - 3600| 70.75 43 0.25 354 2.16 98
77 20 - 3600| 26.77 44 0.62 406 3.59 135
song 90 10 - 3600 5.92 60 0.00 925 1.91 249
90 20 - 3600 2.53 61 0.00 1095 0.40 229
gas 128 10 - 3600 2.60 86 - 3600 - 3600
128 20 - 3600 0.00 86 - 3600 - 3600

6.3. A comparison of approximation algorithms for SPCA

This subsection numerically demonstrates the scalability and high-quality outputs of our approxi-
mation algorithms using various real datasets. We compare the optimality gaps of Algorithms 1 and
2 with existing ones, including the truncation algorithm [16] and the randomized and SDP-based

algorithms proposed by [17]. Notably, the thresholding algorithm in [17] reduces to the truncation
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Table 7 Computational results of continuous relaxations on four large datasets

Case | Relaxation (8) |Relaxation (13)|Relaxation (16) | Benchmark (17)
Dataset - - - -

n  k|gap(%) time(s)|gap(%) time(s)|gap(%) time(s)|gap(%) time(s)

. 79 10 - 3600 4.38 50 0.00 461 2.10 124
Eisen-1

79 20 - 3600 2.27 50 0.00 376 2.27 110

. 118 10 - 3600| 48.88 74 - 3600 - 3600
Eisen-2

118 20 - 3600 30.19 74 - 3600 - 3600

Colon 500 10 - 3600| 43.49 278 - 3600 - 3600

500 20 - 3600| 43.29 279 - 3600 - 3600

., 12000 10 - 3600 - 3600 - 3600 - 3600
Reddit

2000 20 - 3600 - 3600 - 3600 - 3600

of the top eigenvector and is dominated by the truncation algorithm [16]. Hence, we exclude the
thresholding algorithm from our comparison.

First, Table 8 displays the computational results for the Pitprops dataset, where we compute
gap(%) as 100 x (w* — lower bound)/w* to evaluate the lower bounds. Note that we initialize
the local search Algorithm 2 using the output of the greedy Algorithm 1. To enhance the com-
putation, we employ the power iteration method to compute the largest eigenvalue [3]. We see in
Table 8 that the greedy Algorithm 1 and local search Algorithm 2 successfully find the optimal
solutions and outperform the others. Since both the randomized and SDP-based algorithms involve

randomization, and for them, we select the best output from 50 samples for each algorithm.

Table 8 Computational results of approximation algorithms on the Pitprops dataset

ne13 Truncation Randomized SDP-based Greedy Local Search
algorithm [16] | algorithm [17] | algorithm [17] | Algorithm 1 Algorithm 2
k |gap(%) time(s)|gap(%) time(s) |gap(%) time(s)|gap(%) time(s)|gap(%) time(s)
4 1.57 1 0.13 1 0.00 1 0.00 1 0.00 1
5) 0.32 1| 11.01 1 0.00 1 0.00 1 0.00 1
6 0.36 1| 16.33 1 0.00 1 0.00 1 0.00 1
7 0.08 1| 10.76 1 0.00 1 0.00 1 0.00 1
8 0.09 1 0.16 1| 14.40 1 0.00 1 0.00 1
9 0.18 1 0.89 1 2.59 1 0.00 1 0.00 1
10 3.91 1 0.08 1 1.34 1 0.00 1 0.00 1

Then, we evaluate the performance of various approximation algorithms on larger datasets, as
shown in Tables 9 and 10. For instances where the exact methods do not achieve optimality within
one hour, we replace the optimal value with the best lower bound to calculate the gap(%). We see
that for all testing cases, the local search Algorithm 2 achieves the smallest gap, offering the best

lower bound. The SDP-based algorithm relies on solving an SDP relaxation of SPCA and is less
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scalable. Our computational experiments show that the local search Algorithm 2 outperforms the

other methods. Therefore, we recommend using this algorithm to solve practical SPCA problems.

Table 9 Computational results of approximation algorithms on UCI datasets

Case Truncation Randomized SDP-based Greedy Local Search

Dataset algorithm [16] | algorithm [17] | algorithm [17] | Algorithm 1 | Algorithm 2

n k |gap(%) time(s)|gap(%) time(s) |gap(%) time(s)|gap(%) time(s)|gap(%) time(s)

. |13 5 5.67 1} 0.13 1} 0.00 1} 0.00 1l 0.00 1
housing

13 10| 5.94 1} 0.40 1} 0.00 1} 0.00 1l 0.00 1

keggdi- | 20 5 0.00 1} 0.06 1} 0.04 1} 0.00 1} 0.00 1

rected | 20 15|  0.00 1} 0.11 1} 0.00 1} 0.00 1| 0.00 1

pol 26 5 1.99 1 2.99 1 5.67 1 0.00 1 0.00 1

26 15| 15.58 1 1.78 1 0.56 1 0.00 1 0.00 1

wdbe 30 5 0.00 1 1.04 1 091 1 0.00 1 0.00 1

30 15 0.00 1 1.22 1 0.00 1 0.00 1 0.00 1

derma-| 34 5 0.00 1} 0.97 1} 0.73 1} 0.00 1} 0.00 1

tology | 34 15|  0.00 1 1.54 1| 0.57 1} 0.00 1l 0.00 1

spam- | 57 10 0.00 1 0.22 1 0.13 1 0.00 1 0.00 1

base | 57 20|  0.00 1} 0.08 1} 0.02 1} 0.00 1| 0.00 1

digits 64 10 0.01 1| 23.58 1 1.85 1 0.00 1 0.00 1

64 20 0.00 1 8.46 1 5.71 1 0.00 1 0.00 1

bz 77 10 0.01 1| 14.87 1 0.00 27 0.00 1 0.00 1

77 20 0.00 1 6.97 1 3.99 28 0.00 1 0.00 1

song 90 10| 0.00 1] 2.38 1|  5.65 40| 0.00 1l 0.00 1

90 20| 1.43 1 1.63 1 0.25 39| 0.00 1| 0.00 1

gas 128 10 0.01 1 2.62 1 1.13 80 0.00 1 0.00 1

128 20|  0.00 1 1.54 1} 0.00 66| 0.00 1| 0.00 1

6.4. Drugabuse Dataset

In this subsection, we apply the proposed local search Algorithm 2 to the Drugabuse dataset with
n = 2365 features, where the dataset comes from a questionnaire collected by the National Survey
on Drug Use and Health (NSDUH) in 2018. It has been reported [48] that with the growing illicit
online sale of controlled substances, deaths attributable to opioid-related drugs have quadrupled in
the U.S. since 1999. Thus, it is important to select a handful of features that domain experts can
further investigate. SPCA serves as an excellent tool for selecting the most representative features.
In Figure 1, we present the selected k = 10 features, where the vertical values correspond to the
selected features of the first PC scaled by 100. Among the ten selected features, there are three

categories: inhalants, drug injection, and drug treatment, which play a crucial role in the analysis
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Table 10 Computational results of approximation algorithms on four large datasets
Caso Truncation Randomized SDP-based Greedy Local Search
Dataset algorithm [16] | algorithm [17] | algorithm [17] | Algorithm 1 | Algorithm 2
n  k|gap(%) time(s)|gap(%) time(s)|gap(%) time(s)|gap(%) time(s)|gap(%) time(s)
. 79 10| 10.61 1| 4.28 1| 14.55 5/ 0.00 11 0.00 1
Eisen-1
79 20| 1547 1 1.83 1] 13.93 4/ 0.00 11 0.00 1
) 118 10 0.03 1| 31.23 1 2.06 41 2.62 1 0.00 1
Eisen-2
118 20| 40.41 1| 27.95 1 2.21 43 0.00 1 0.00 1
Colon 500 10| 2.87 1| 61.26 20 - 3600{ 0.00 11 0.00 1
500 20 29.14 1| 52.93 20 - 3600| 0.01 11 0.00 2
Reddit 2000 10|  2.56 3| 18.64 283 - 3600{ 0.00 11 0.00 1
2000 20|  1.08 2| 22.50 241 - 3600{ 0.83 4/ 0.00 1

of drug abuse. Specifically, SPCA selects six features related to drug treatment, which is consistent
with the literature [19, 53] that the treatment records of drug abuse are important. The three
drug injection features shed light on understanding the injection experiences of different drugs. It
is well known that drug injection users face a high risk of contracting HIV and other blood-borne
infections [47, 50]. Finally, the inhalants feature contributes to our understanding of the factors

contributing to drug abuse [13, 22].

71 INHAL: inhalants

701 ] DGINI1: drug injection

/~1 DGIN2: drug injection

¥ I DGIN3: drug injection

Fo3 DGTMI: treatment for drug abuse
[ DGTM2: treatment for drug abuse
011 DGTM3: treatment for drug abuse
[~ DGTM4: treatment for drug abuse
DGTM5: treatment for drug abuse
L= TMDAYS: treatment days

g

g

100 * Entries of First PC
&

[Nl
=

=
1=}

AL DSt = O feed ke

INHAL DGIN1 DGINZ DGIN3 DGTML DGTM2 DGTM3 DGTM4 DGTMS TMDAYS
Features

Figure 1 10 features selected by local search Algorithm 2 for Drugabuse dataset

7. Conclusion

This paper investigates the sparse PCA problem by deriving three equivalent mixed-integer exact
formulations and studying two approximation algorithms: greedy and local search. We theoretically
guarantee the continuous relaxations of exact formulations and the worst-case performance of

approximation algorithms. We further develop a branch-and-cut algorithm for solving sparse PCA
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to optimality. Our numerical study demonstrates the high solution quality and computational
efficiency of the proposed formulations and algorithms. The branch-and-cut algorithm manages
to solve small and medium instances, and the approximation algorithms consistently yield near-
optimal solutions for all the instances. The theoretical optimality gaps of the continuous relaxations
may not be sufficiently tight. As a potential avenue for future research, we aim to explore and

enhance these gaps.
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Appendix A. Proofs
A.1 Proof of Proposition 2

Proposition 2 For the function H,(z) defined in SPCA (9), we have that
(i) For any z € Z, function H,(z) is equivalent to

Hy(z)= min { max(ZQ) Zuzzz Cic;eri‘f'MiId,OﬁMiS||Ci||§7W€[n]}7

Q1 ,QneSY i) i)
(10)
which is concave in z.
(i) For any binary z € Z, an optimal solution to the problem (10) is uf =0 if z; =1 and ||¢;||3
otherwise, and Q; := (1 — pu;/||ei||2)eie] for each i€ [n].

Proof. Part (i). We split the proof of strong duality into two cases depending on whether z is a

relative interior of set Z or not.

Case a. Suppose that z is in the relative interior of set Z, i.e., 0 < z; < 1 for each i € [n]. For the
inner maximization problem in (9), we dualize the constraint X > W;, tr(W,) = z; with
Lagrangian multiplier Q; € 8¢ and p; for each i € [n]. Note that the constraints X >
W, tr(W;) = z; for each i € [n] and X, Wy,--- ,W,, € §{ can be always strictly satisfied
since 0 < z; < 1. Thus, according to the strong duality of the conic optimization problem
(see, e.g., Theorem 1.4.4 in [7]), function H;(z) can be rewrite as

min max {ZCTW6+ZU‘ Q:(X-W)) +Z,uz (z; —tr(W))) :

u,Ql,--~,Qn€Si X,W1,~-,Wn€Si i€[n] i€[n]
tr(X) = 1}. (26)
Then the inner maximization problem (26) over W; for each i € [n] and X yields

0, CiCZT < Q;+ pily,

w;esd oo, otherwise.

&1’;@((%@))‘) :“<X>:1}:Am(i€%@>’

where the second identity is due to Part(ii) of Lemma 1.

max tr ((CZ‘C;— — Q,’ — ,U,,Id)Wz) = {

Thus, problem (26) can be simplified as

H/(z)=  min { mdx<z Q. > + ) iz eie] Qi+ pdy, Vi€ [n]}- (27)

d
»,Q1, ;Qnes+ i€n] i€n]

We show that for the minimization problem (27), any optimal solution (x,Q1,---, Q)
must satisfy 0 < p; <||¢;]|3 for each i € [n]. We prove it by contradiction. Suppose that
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Case b.

there exits an optimal solution (@, Q1,---,@Q,) to the problem (27) such that p; <0 for
some j € [n]. Then, we can construct a new feasible solution (&,Q,, - ,Q,,), which is

exactly equal to (p, Q1, -+ ,Q.,) except
o= 07§j =Q; + p;l,.
The new solution yields the objective value
Hiy(2) + pj — pjz = Hi(2) + (1 — 2;) <Hi(2),

which is a contradiction to the optimality of (@, Q1,-- -, Q). Similarly, suppose that there
exits an optimal solution (u,Q1, -+ ,Q,) to the problem (27) such that p; > ||¢;||3 for
some j € [n]. Similarly, we can arrive at a contradiction by defining a new feasible solution
(,Q,,---,Q,), which is exactly equal to (¢, Q1,---,Q,,) except i, = lleill3.

Therefore, (27) can be reduced to (10).
Now we consider the case that z is not in the relative interior of Z and define two sets
To:={i€[n]:z =0} and Ty :={i € [n] : z; = 1}. Thus, at least one of the two sets is not

empty. In this case, we first observe that H;(z) in (9) is equivalent to

Hi(z):= max { Z ciTVVicmLZciTXci:tr(X)zl,
X, W WaeS] i€[n]\(ToUTy) i€Ty
XtVVi,tr(VVi):zi,Vie[n]\(TOUTl)}. (28)

Next, applying the same procedure as Case a., we have

H(z)= min {/\max< Z Q.+ Z CiCiT> + Z Wiz

#AQiYic)\ (Tour; ) S5¢ i€[n)\(ToUT1) €Ty i€[n)\(ToUTy)
CiCiT 2Qi+pily,0< p; < ||Ci||§7w € [n]\ (Ty UTl)}' (29)

To show the equivalence between (29) and (10), it remains to prove that

ﬁl(Z): min {Amax<ZQz>+ZMzzzCzc;erz+MzIda0S/Lz§||C'L||§7V/L€[n]}
i€[n]

N’{Qi}ie[n]gsi i€[n]

(30)
First, given any feasible solution (g, {Q; }icin)\ (roury)) to the problem (29), let us augment
it by setting Q; =0, u; = ||c;||3 for each i € Ty and Q; = ¢;¢; , u; =0 for each i € T}. Then
(1, {Q:}icpn)) is feasible to the problem (30) with the same objective value. Thus, we have

H,(z) < Hy(2).
On the other hand, given any feasible solution (g, {Q;}icjn) to the problem (30), then
(1, {Q: }icn\(Toury)) is feasible to the problem (29) a smaller objective value since ¢;¢; <

Q; + p; for each ¢ € Ty. Thus, we have ﬁl(z) > H,(z). This completes the proof.
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Part (ii). For any z € Z, let set S denote its support. We then construct a pair of the primal and

dual solutions to the maximization problem in (9) and its dual (10) as

X*=qq ,W;=X"Yic S, W =0,Vic[n]\S,
Qf :cic;raMiZO)Viest: :O7Mi: ”ci”g’ViE [n]\57

where q; denote the eigenvector for the largest eigenvalue of matrix ), cic .

According to the results in Lemma 1, the above solutions return the same objective value for

primal and dual problems, which is Anax(D s c;c; ). This proves the optimality of the proposed

dual solution. O

A.2

Proof of Theorem 2

Theorem 2 The following hold for the relazed function H,(2):

(i) For any z € Z, function H,(z) is upper bounded by

(ii) If z€ Z, then H\(2z) = H(2) = Amax (>

- . i .
Hy(2) = min {)\max < > <1 — IIC-II2) cicj> + ) iz 0< i < leil]3, Vi€ [n]}; (12)
2 (12

1€[n] i€[n]

T.
i) 2iCiC; ); and

(i1i) The continuous relazation of SPCA

Wy :=max H;(z) (13)

*

achieves a min{k,n/k} optimality gap, i.e., w* < W, < Wy < min{k,n/k}w*, where w, is

defined in (8).

Proof.

(i)

(i)

(iii)

The conclusion follows by choosing a feasible Q; := (1 — u;/||ci||2)eie] for each i € [n] in the
representation (10).
For any z € Z, we derive from Part (ii) in Proposition 2 that H,(z) > Amax (D ic ) €€ )-
Thus, it is sufficient to show that H;(2) < Apax (Y, e[ #i€i€; )- Indeed, this can be done simply
by letting p; =0 if z; =0, and ||¢;||3, otherwise in (12).
By the proof of Proposition 1, to obtain the same optimality gap for w, in (13) as SDP (8),
we need to show that H,(z) < Zie[n] zic] ¢; and H(2) < Apax(A) = )‘maX(Zie[n] c;c}) for any
z€Z.

We must have H,(z) <37, zi¢/ ¢ by by letting 1, = ¢ ¢; for all i € [n] in (12).

We also have H;(2) < Apax(A) = Amax (D iein] c;c]) by letting p; =0 for all 4 € [n] in (12).

Then the rest of the proof follows directly from that of Proposition 1 and is thus omitted. [J
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A.3 Proof of Proposition 3
Proposition 3 SPCA (2) admits the following MISDP formulation:
* L . — < .
(SPCA) w™: zegl)%}e{Sf; { tr(AX) :tr(X)=1,X;; < z,Vi€ [n]} (14)

and its continuous relazation value is equal to Ay (A).

Proof.
(i) To show the equivalence of problem (14) and SPCA (2), we only need to show that for any
feasible z € Z with its cardinality k& and support S = {i:z; = 1}, we must have

max {tr(AX) (X)) =1,X,; <z,Vie [n]} = Amax(As.s)- (31)

n
Xesh

Indeed, since X is a positive semidefinite matrix, thus X,;; =0 for each i € [n]\ S implies
Xij = O,V(Z,j) ¢ S X S
The left-hand side of the equation (31) is equivalent to

max {tr(AX) (X)) =1,X; <z,Vie [n]} = max {tr(AssX) tr(X) =1} = A\ax(Ass),

Xest Xeshk
where the second equality is due to Part (ii) in Lemma 1.
(ii) The continuous relaxation value of problem (14) is

Ws = max {tr(AX) tr(X)=1,X;, <z,Vie [”]}

zef,XESi

Since tr(X) =1, thus the linking constraint X,; < z; is redundant for each ¢ € [n]. Hence,

W3 = max {tr(AX) tr(X) = 1} = Amax(A),

Xesh
where the equality is due to Part (ii) in Lemma 1. O

A.4 Proof of Lemma 2

Lemma 2 The following two inequalities are valid to SPCA (14)
(i) 3 jem X5 < quzz for all i € [n]; and
(ii) (Zje[n] \Xij|) < kX2 for all i € [n).

Proof. From the proof of Proposition 3, there must exists an optimal solution (z*, X*) of SPCA
(14) such that X* must be rank-one. Thus, without loss of generality, for any feasible solution
(z,X) of SPCA (14), we can assume that X =zx ", where (z, z) is also feasible to SPCA (2).

Next, we split the proof into two parts.
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(i) Since X =za', thus

ZX ZI * =7 <2, Xy, Vi€ [n],

j€[n] j€[n]
where the last inequality follows from the facts that X;; = 2? < 2; and z; is binary for each
i€n].
(ii) It is known (see, e.g., [23]) that ||z, < VE. Thus,

SOIX = lalley] < Vi) < VEV Xz,
J€[n] J€[n]
where the second inequality is because X;; = x? < z; and z; is binary for each i € [n]. O

A.5 Proof of Proposition 4
Proposition 4 For the SDP relazations of SPCA defined in (16) and (17), we have that W3 < W,.

Proof. To show that w, > ws, it is sufficient to prove that any feasible solution (z,X) of the
continuous relaxation problem (16), must satisfy the constraints in the SDP formulation (17).

Clearly, we have X € S} and tr(X) = 1. It remains that >, ;1> .cp [Xij| < k. Indeed, we have

Z Z’Xzﬂﬁz\/%\/mé\/% ZX“- Zzigk,
i€[n] j€[n] i€[n] i€[n] i€[n]

where the first inequality results from type (ii) inequalities in Lemma 2, the second one is due to

Cauchy—Schwartz inequality, and the last one is due to tr(X)=1and }_, .,z <k. O

i€[n]

A.6 Proof of Proposition 5
Proposition 5 The continuous relazation (16) of the MISDP (15) yields a min{k,n/k} optimality
gap for SPCA, i.e.,

Proof. The proof is separated into two parts: (i) w3 < kw* and (ii) w3 < n/kw*.

(i) w3 < kw*. For any feasible solution X to problem (16), we have

ESY ZA”X” <3SN A XS <w YT ST X < kot

i€[n] j€n i€[n] j€[n] i€[n] j€[n]

where the first inequality is due to taking the absolute values, the second one is based on the
fact that max;ep {4} <w* and |A; ;| < /A ;A;; <w* for each pair 4, j € [n], and the third
one can be obtained from the proof of Proposition 4.

(ii) w3 <n/kw*. The proof is similar to the one of Proposition 1 since W3 < A\pax(A) <n/kw*. O
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A.7 Proof of Theorem 4
Theorem 4 Given a threshold € > 0, the following MILP is O(e)-close to SPCA (2), i.e., € <
W(e) —w* < ev/d, where W(e) is defined by

w(e):= max w
w,zE€2,y,a,®,,6,14,0

s.t. = 61'1 +5i2; ||5zl||oc S Zis ||612||00 é 1-— Zi,Vi € [n],
= Z o, llojllec < yj,055 =1y;,Vj € [d], Z y; =1,
JEld] JE€ld]

T = o+ oo, [ o] o < 0y || ezl <1 — g, VE € [m)],

w=wy — (wU—wL)( Z 2_iai>,
i€[m)]

D eie] bn—wpz+ (wy —wy) > 27 pa

i€[n] Lem]

ac{0,1}",y € {0,1}9,

(22)

<e

Y

o0

where wy, and wy denote the lower and upper bounds of SPCA, respectively and m := [log,((wy —

wr)e ).

Proof. Throughout the proof, we use indices i € [n], j € [d], and ¢ € [m] to denote the elements of
three different dimensional vectors, respectively. To construct the MILP by SPCA (21) and show
the approximation accuracy, we split the proof into four steps.

Step 1. Linearize the bilinear terms {z;x};c[, in (21). This can be done by introducing two copies

d;1,0;2 of vector x for each i € [n] such that
=20, + 02,0100 <2, [|0i2]lc <1 —2,Vi€ [n], Z ZiCz'CiTw = Z 010:511-
i€[n] i€[n]

Step 2. Linearize the nonconvex constraint ||x||., = 1. We first observe that due to symmetry,

lz|loc =1 can be equivalently written as a disjunction with d sets as below
Uje[d]{m € Rd : l‘j = 1, ||m||oo S ].}

Next, for each j € d, we introduce a binary variable y; =1 indicating the j-th set is active
and 0, otherwise, and then create a copy o; € R? of variable x such that
z=)_0pllojlle <ypoy =y vi€ld, Yy =1y {01}
Jjeld] JEld]
Step 3. Approximate and linearize bilinear term wx. We first approximate variable w using m

binary variables a € R™ with m := [log,((wy —wy)/€)]. Thus, we have

W~ wp — (uy —wL>( 3 2-%@)
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with approximation accuracy at most (wy —wr)/2™ < e. The bilinear term wx is now
approximated by
wx R wyx — (wy —wy,) ( Z 2” agw) (32)
With binary variables a, the resulting bilinear terms {O[gw}ge[m] can be further linearized
following the same arguments as Step 2, i.e.,
T = por + Pz, | e[| oo < ae, [[ el oo £ 1=y, VL€ [m],
Wyx — U}U — Wy, ( Z 2- O[gl') =Wy — (’UJU —’UJL) Z 2_2[.14@1.
Le[m)] L€[m)]
Step 4. Finally, following the approximation and linearization results in Step 3, the equality con-

straint Z |Ci ¢! 0,1 = wx in (21) might not hold exactly. Thus, we replace the equality
by the followmg inequality

D eie]dn—wpz+ (wy —wr) Y 27

i€[n] 1€[m] oo
Z cic] 2 —wyx + (wy —wg) Z 27
i€[n) i€[m] ©

me wyx + (wy —wr) 22 azl| < (wy—wp)/2™ <k,

1€[m]

which holds for any feasible solution of formulation (21).
First, we have w(e) > w* — € since w := w* — € is feasible to the MILP (22).

Moreover, given an optimal solution (Z, z,w(e€)) to the MILP (22), we must have

Y Zieie] T - ()| <e
i€[n] o0
(=) oS0 Zzlcc z—w(e)x|| <e
i€[n] o
(=) d'? min ZZcic;w—@(e)w <e
z:||z| =1 e 9
=) d'? min Zicic; T —w(e)x|| <e
) || Ssera-stoa] <
() d? min ||> Ziee/z—d(e)z|| <e
wilela=1 || £ )

where the first implication is due to ||Z||o. = 1, the second one is due to ||Z||o > d~/2||z]|
since & € R?, the third one is because ||| =1 implies ||z|» > 1, and the equivalence is
because of monotonicity and positive homogeneity of the objective function. According to
the last inequality, there exists an eigenvalue w of matrix

i) ziciciT such that |w(e) —

w| < ev/d, which further implies that @(e) — w* < ev/d since w < w*. O
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A.8 Proof of Proposition 7
Proposition 7 Given a threshold € > 0, by relaxing the binary variables z to be continuous, let

ws(€) denote the optimal value of the relazed MILP formulation (22). Then we have
€) <min {k(Vd/2+1/2), n/kVd+ (n—k)(Vd/2+1/2) }w" +eVd.

Proof. From the proof of Theorem 4, we know that @s(¢) < ws5(0) + ev/d. Thus, it is sufficient to
show that

w5(0) < k(Vd/2+1/2)w

We observe that when € = 0, the resulting formulation by relaxing binary variables z to be

continuous becomes:

W5(0) = max w: Y eief 61 =wa, @] =1
{8i1Yie ] {0i2 Yie ] i€ln]
T =20;1+ 02, ||0i1]| 0 < 2iy ||0i2]]cc <1 —2;, Vi€ [n]}u (33)

Next, we split the proof into three steps.
Step 1. For any feasible solution to problem (33), we have

||Z C'CT(S‘lH
= TR =Y el <Y lleie Tazlum—Zchuw\cTaur

”wHOO i€[n] i€[n]

< lleillslledlldinlloe < > lleilloclleillizs < kmachzuochHl,

i€[n] i€l
where the first inequality is due to triangle inequality, the second one is because of Holder’s
inequality, the third one is because ||d;1]/s < z;, and the last one is due to ||¢;||o||ci|1 <
maxX;epn ||¢jlllc;ll1 for each i € [n] and Zie[n] z; < k.

Step 2. Now it remains to show that for each i € [n]

Vd+1
9 w .

leillsolleills <

Let ¢ be a permutation of index set [d] such that c¢; 1), - ,¢ic@) are sorted in an

ascending order. Then we have
zg(1)+ ( Z |Cl C(J)’) — z§(1)+ +Cz <(d) — Hcnggw*’
j€[2,d]

where the first inequality is from the arithmetic and quadratic mean inequality and the

second inequality follows from ||¢;||? = Anax(cic] ) <w™.



Yongchun Li and Weijun Xie: Ezact and Approzimation Algorithms for Sparse PCA

40
For ease of exposition, let us introduce vy = [¢; ;)| and v2 =371, 4 lcic(y]- Next, let
us consider an optimization problem
V:ma%c{vl(v1+vg):vf+1/(d—1)v§§w*}, (34)
veERY
whose optimal value clearly provides an upper bound of ||¢;||«||c:||1-
To solve (34), we first rewrite vy, v, as
vy =7rsin(f)r,ve =rvd—1cos(d),0 € [0,7/2],r < Vw*.
In this way, the objective function (34) is equal to
1— 20 20
vy (V1 4 V) = V2 + Vv, = r?sin®(0) 4+ r*v/d — 1sin(6) cos(6) = C;S( ) r?vVd — 181][1(2 )
2 2 1 1 d d+1
= % — %COS(Q@) + 5" 2\/d —1sin(20) < 3" 2+ \grz < f;_ w*,
where the first inequality is due to Cauchy-Schwartz inequality and the second one is
because r? < w*. Thus, we must have ||c¢;||o]|cill1 < ‘f“w This proves the first bound
k(v/d/241/2) together with Step 1.
Step 3. We now prove the second bound. Plugging the equations d;; = ¢ — 8,2 for all i € [n], we

rewrite the continuous relaxation value as

H Z'Le[n cici (x — 8| < | Zie[n] cici T " | Zie[n] cic! 0ol

1 [E1P9 ][ o
Niepmeer @l Vd+1 f+1
— < *
||33Hoo +(n—k) 5 w* rlré%ix E ]C’Z]H- n—k) :

where C :=CC" Z c;c] and the first inequality is from the triangle inequality, the

i€[n]
second one follows from the derivations in Steps 1 and 2, and the third one is due to z; <1
for each i € [d].

Next, the first term of the right-hand side above can be upper bounded by
rl%axz |CU| - HCHI < \[”CH2 - \[Ade( ) <7 \[w
J€Eld]

where the equations are from the definition of £;-norm and £;-norm of a matrix and the

second inequality is due t0 Apax(C) = Amax(A) < n/kw*. O

A.9 Proof of Corollary 2

Corollary 2 The approximation ratio of the s-swap local search is s/k for any s € [k]. The ratio

is tight when k <n/2.
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Proof. First, let set S 1 denote the indices of selected vectors by s-swap local search algorithm.

Then following the same proof as that in Theorem 6, for any size-s set T'C [n], we have
)\max( Z CiciT> Z Amax(ZCic;r> . (35)
i€§L €T
Let S* denote an optimal solution to SPCA (4). Using the result in (35), the optimal value of
SPCA w* is upper bounded by

o r(Ceel ) (g ¥ Sed )< g el ) - L),

i€S* s—1) TCS*,|T|=s i€T s—1 €Sy, €8,

Second, to show the tightness, let us consider the following example.

Example 2 For any integer k€ [d], let d=k+1, n=(s+ 1)k, and the vectors {c;};c(,) CR? be

€e;, ifie [k],

¢ ={" Vi € [n].
€i_(s—1)k> ifi e [(S*l)k"‘l,Sk]’
€11, 1fZ€[Sk+1,7’L],

In Example 2, we show that the subset Sy = [k — s + 1] U {¢k + 1}oefs—1) satisfies the s-swap local
optimality condition.

Indeed, for each pair (Ty,T5) such that Ty € Sy, Ty C ([n]\ Sp) with [T} = |T3| = s, we have

)\max< Z CzCZT) <s.

ZG:S'\L UTo\Ty

Therefore, the set S 1, achieves s-swap local optimum with largest eigenvalue of s. Since the optimal

value of SPCA is w* =k, the approximation ratio of set §L is equal to sk~! for SPCA. g
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