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ABSTRACT: Approaches to tackle the wide and growing variety of
highly persistent per- and polyfluoroalkyl substances (PFAS) are of
pressing global need because of their detrimental human health effects,
such as cancer, birth defects, and hormone imbalance. Sensitive,
selective, and easy-to-use real-time sensors to monitor and detect PFAS
and sorbents to extract them are critical to meeting government-
mandated environmental concentrations. In this work, we combine all-
atom molecular dynamics simulations, enhanced sampling, deep
representational learning, and Bayesian optimization to perform high-
throughput virtual screening for highly sensitive and selective molecular
probes. Our molecular design space consists of 3850 linear hydrocarbon
chains with varying degrees of halogenation with and without amine-
and phosphine-based headgroups. By employing a data-driven search
process, we efficiently explore the molecular design space to optimize the sensitivity to perfluorooctanesulfonic acid (PFOS) as a
prototypical PFAS analyte and selectivity relative to a sodium dodecyl sulfate (SDS) interferent. We calculate 504 Gibbs free
energies of probe-analyte and probe-interferent interactions and identify probes with PFOS association free energies of up to
(−ΔGPFOS) = 9.8 ± 0.2 kJ/mol and selectivities relative to SDS of (−ΔΔGPFOS−SDS) = 3.1 ± 1.5 kJ/mol. A C11Br23P(CH3)2 probe
containing 11 backbone brominated carbons and a tertiary phosphine headgroup possesses the most sensitive binding constant to
PFOS within the defined search space of Kb

PFOS = 177.4 ± 12.7, and a semibrominated probe C5H11C7Br14N(CH3)2 containing 12
backbone carbons and a tertiary amine headgroup possesses the highest selectivity relative to SDS of Kb

PFOS/Kb
SDS = 4.6 ± 1.7. A

retrospective analysis of our data to extract interpretable design rules reveals that the sensitivity of linear hydrogenated probes
increases by approximately 1 kJ/mol per C−C bond. The addition or removal of halogen atoms and amine or phosphine headgroups
produces nonmonotonic changes in both sensitivity and selectivity with changes to the sensitivity of up to 2.5 kJ/mol. This work
places empirical limitations on the performance of a wide range of linear probes for PFOS detection and offers a generic strategy for
high-throughput computational screening to promote selective and sensitive binding.

1. INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) represent a large
group of synthetic chemicals defined by the U.S. Environ-
mental Protection Agency (EPA) as compounds containing
R−(CF2)−C(F)(R′)R″ units, where CF2 and CF groups are
saturated carbons and the R groups (R, R′, or R″) are not
hydrogens.1,2 Owing to their excellent properties including
heat resistance, hydrophobicity, and oleophobicity, PFAS have
been extensively used in numerous commercial applications
such as nonstick cookware, firefighting foam and flame
retardants, stain-resistant fabrics, and fast food packaging.3−6

PFAS compounds enter the environment during the
production, use, or waste of these consumer products and,
due to the highly stable carbon−fluorine covalent bonds�one
of the strongest single bonds with a dissociation energy of
∼440 kJ/mol due to the high electronegativity of fluorine7�
are extremely persistent, resulting in PFAS accumulation in

both the environment and living organisms and leading to
them often being referred to as “forever chemicals.”8−11 PFAS
exposure can cause adverse health effects in humans, such as
increased cholesterol levels, birth defects, disruption in thyroid
hormone balance, and potentially a high risk of cancer.12

Owing to these detrimental properties, PFAS attracted broad
interest from various regulatory agencies worldwide.13 It is one
of the pressing global challenges to address the growing
quantities of PFAS in the environment, especially in water
resources from which these molecules are readily disseminated
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to living organisms.7,8,10 This requires an approach to
effectively and efficiently detect and eliminate the growing
number (>4700 as per the EPA14) of PFAS variants and to do
so at or below the very dilute concentrations of approximately
4 ng/L mandated by EPA guidelines for safe drinking water.15

Current standard approaches available for regulatory or
guidance activities of PFAS in water sources by the EPA utilize
solid-phase extraction (SPE)- and liquid chromatography/
tandem mass spectrometry (LC-MS/MS)-based analytical
tools.7,16 These approaches�formally referred to as Method
537.1 and 533�can measure 18 and 25 types of PFAS,
respectively, with a common total of 29 PFAS molecules in
potable water sources.17,18 The lowest concentration minimum
reporting level (LCMR) for Method 537.1 and 533 ranges
from 0.53 to 6.3 ng/L and 1.4−16 ng/L, respectively,
depending on the PFAS variant.17,18 Both methods offer
LCMR well below the established health advisory levels −70
ng/L (70 ppt) for lifetime exposure set by the USEPA in 2016
for the most commonly used and studied PFAS�perfluor-
ooctanoic acid (PFOA) and perfluorooctanesulfonic acid
(PFOS). However, the proposed legal maximum contaminant
levels (MCL) and nonenforceable maximum contaminant level
goals (MCLG) of PFAS in drinking water by EPA in early
202315 for both PFOA and PFOS (MCL = 4 ng/L and MCLG
= 0 ng/L) are approaching or below the limits of LC-MS/MS.
In addition, LC-MS/MS requires expensive instruments
intended for skilled analysts with complex and time-consuming
procedures for sample preparation, data collection, and
interpretation.7 In contrast to LC-MS/MS-based tools,
portable sensors engineered with molecular probes for
detecting PFAS are a promising alternative to standard
methods with potential advantages such as lower cost, simpler

operation, and real-time analysis.7,19,20 However, given the vast
and growing number of PFAS variants, it is a challenge to
design molecular probes that can sensitively and selectively
detect PFAS molecules in water.7

In this work, we engage this challenge by developing a high-
throughput machine learning (ML)-guided computational
screening protocol to efficiently navigate the chemical design
space to find probes with optimal sensitivity and selectivity. We
target perfluorooctanesulfonic acid (PFOS) as one of the
major PFAS molecules of concern due to its wide initial
production and adverse effects such as low birth weight, tissue
damage, and cancer.21−23 PFOS is a linear surfactant molecule
with eight fluorinated carbon groups and a sulfonate
headgroup (Figure 1a) that remains in an anionic state at
the pH values in typical environmental water courses.7,22,24

While this work focuses on PFOS, our approach is equally
applicable to any PFAS variant. The particular choice of PFOS
is made because it is one of the earliest PFAS known for its
toxic properties.21 The fluorinated PFOS tail is hydrophobic
while the anionic sulfonate headgroup is hydrophilic and
elevates solubility in water.22 We search for optimal PFOS
probes over a design space consisting of 3850 linear
hydrogenated and halogenated molecules of length ranging
from 3 to 14 carbons with and without an amine- or
phosphine-based headgroup (Figure 1c). We are motivated to
define our design space as such based on the synthetic
accessibility of these molecules and their similar chemical
nature to PFOS, wherein we can exploit hydrophobic binding
to the aliphatic tail and potentially favorable electrostatic
interactions with a headgroup. For synthesizability reasons, we
consider only semihalogenated probes wherein the halogen-
ated groups form contiguous blocks of fluorinated/chlori-

Figure 1. Illustrations of the target PFAS analyte, interferent, and molecular search space over which the probes with optimal sensitivity and
selectivity are discovered. (a) Three-dimensional (3D) structure of the target PFAS variant (perfluorooctanesulfonic acid, PFOS), (b) 3D structure
of the template interferent (sodium dodecyl sulfate, SDS), and (c) search space comprising linear hydrogenated or halogenated chains of 3−14
carbons with and without amine- or phosphine-based headgroups. All semihalogenated probes considered contain contiguous blocks of
halogenated methylene groups for experimental characterizability. We explored primary, secondary, tertiary, and quaternary states for the amine-
based headgroup and the primary, secondary, and tertirary states of the phosphine headgroups. In total, our search space comprises 3850 molecules,
over which we employ our computational active learning and high-throughput screening approach to discover optimal molecular probes. The 3D
structures are rendered using VMD,25 where carbon, hydrogen, oxygen, nitrogen, sulfur, and fluorine are colored in cyan, white, red, blue, yellow,
and pink, respectively.
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nated/brominated methylenes. While some of these probe
molecules show a strong resemblance to PFAS, they are
designed to be tethered to surfaces and deployed at such small
scales as not to represent any significant threat to the PFAS
contamination challenge that they are designed to help solve in
their potential future uses within portable sensors.
Having specified PFOS as our target analyte, we can

compute the sensitivity of candidate molecular probes in our
design space by measuring the PFOS-probe binding free
energy, ΔGPFOS. Additionally, we adopted sodium dodecyl
sulfate (SDS) as an interferent molecule representative of the
diversity of other potential absorbates that may be present in a
water sample (Figure 1b). This allows us to quantify the
selectivity of candidate probes via the relative PFOS-probe and
SDS-probe binding free energies, ΔΔGPFOS−SDS = ΔGPFOS −
ΔGSDS. It is computationally intractable to measure the
selectivity of a candidate probe against all possible competing
interferents, so we selected SDS as a representative interferent
that is often found in waterways with PFAS. The chemical
similarity of PFOS and SDS means that it is expected to be a
challenging task for a molecular probe to discriminate the
PFOS analyte from the SDS interferent based on differential
thermodynamic binding affinity.
It is the goal of our computational search to simultaneously

minimize ΔGPFOS and ΔΔGPFOS−SDS or, equivalently, simulta-
neously maximize (−ΔGPFOS) and (−ΔΔGPFOS−SDS) to
discover highly sensitive and selective probe candidates for
experimental testing. To achieve this, we employ a computa-
tional active learning approach involving deep representational
learning of the molecular probes, training of surrogate
Gaussian process regression models, and the application of a
multiobjective Bayesian optimization with random scalariza-
tions to identify Pareto optimal probes with respect to

sensitivity and selectivity. We train our active learning platform
over 10 rounds and ∼250 probe molecules (∼6% of the design
space) to identify probes on the sensitivity−selectivity Pareto
frontier with sensitivities as high as −ΔGPFOS = 9.8 ± 0.2 kJ/
mol, with a corresponding binding constant of Kb

PFOS = 177.4 ±
12.7, and selectivities as high as −ΔΔGPFOS−SDS = 3.1 ± 1.5 kJ/
mol, with a corresponding binding constant ratio of Kb

PFOS/
Kb
SDS = 4.6 ± 1.7. A retrospective analysis of our data reveals

that marginal increases in chain length provide a significant
increase in sensitivity, whereas the incorporation of amine
headgroups and halogenation can improve the sensitivity and
selectivity of probes. However, there is no clear trend as to
which headgroup and halogenation combination results in
better sensitivity and selectivity for a given length of
hydrogenated or fluorinated probe. A C11Br23P(CH3)2 probe
containing 11 backbone brominated carbons and a tertiary
phosphine headgroup possesses the highest computed
sensitivity to PFOS within the design space, and a semi-
brominated probe C5H11C7Br14N(CH3)2 containing 12 back-
bone carbons and a tertiary amine headgroup possesses the
highest selectivity.

2. METHODS
We employ a machine learning-guided approach to efficiently
navigate the molecular design space to discover probes with
high sensitivity and selectivity. This approach is similar to the
active learning frameworks we have employed in recent high-
throughput screening campaigns for self-assembling π-con-
jugated peptides,26 switchable nanostructured materials,27 and
small organic molecules to selectively permeate cardiolipin
membranes.28 Figure 2 illustrates our employed active learning
framework that involves four key components: (i) all-atom
molecular dynamics (MD) simulations and enhanced sampling

Figure 2. Illustration of the computational active learning approach employed to identify linear molecular probes with optimal sensitivity and
selectivity. (a) Set up of all-atom molecular dynamics simulations and enhanced sampling using parallel bias metadynamics to estimate sensitivity
(−ΔGPFOS) and selectivity (−ΔΔGPFOS−SDS), (b) embedding sensitivity and selectivity information generated through (b.i) the results of these
enhanced sampling simulations and (b.ii) an encoding of molecular probes into a smooth low-dimensional latent space using a pretrained
variational autoencoder, (c) construction of Gaussian process regression (GPR) surrogate models over the latent space to predict probe sensitivity
and selectivity, and (d) multiobjective Bayesian optimization (BO) using random scalarizations to guide selection of the next molecular probes
within the design space for molecular simulation.
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using parallel bias metadynamics to estimate sensitivity
(−ΔGPFOS) and selectivity (−ΔΔGPFOS−SDS), (ii) encoding
of probes in the search space using a pretrained variational
autoencoder employing a Self-Referencing Embedded Strings
(SELFIES)29 representation, (iii) construction of Gaussian
process regression (GPR) surrogate models over the collected
simulation data to predict sensitivity and selectivity for the
encoded probes in the search space, and (iv) multiobjective
Bayesian optimization (BO) using random scalarizations and
the trained GPR surrogate models to identify the next round of
probes in the search space with optimal sensitivity and
selectivity.
2.1. Estimation of Sensitivity (−ΔGPFOS) and Selectiv-

ity (−ΔΔGPFOS−SDS). 2.1.1. All-Atom Molecular Dynamics
Simulations of PFOS-Probe and SDS-Probe Systems. We
perform all-atom MD simulations of PFOS-probe and SDS-
probe interactions accelerated with parallel bias metadynam-
ics30 (Figure 2a). Although constant pH MD simulations31

could dynamically capture the protonation state of a molecule,
we fix the protonation state and perform standard MD
simulations because of their lower computational cost and
higher computational efficiency that are of paramount
importance for our high-throughput virtual screening. We
model PFOS in its anionic state32,33 because of its extremely
low pKa

34 (<1) and consider a target pH range of 6.5−8.5
corresponding to typical tap and drinking water sources.35−37

Similarly, we model SDS in the anionic state that has a low
pKa

38 of 3.3. Details on the generation of initial structures in
the PDB format of PFOS, SDS, and the probes are provided in
the Supporting Information. Calculations to determine partial
charges are performed using the restrained electrostatic
potential (RESP) method39 with Gaussian 16RevA.0340 and
force-field parameters are taken from General Amber Force
Field (GAFF)41 by antechamber.42 Specifically, we performed
geometry optimization and the partial charge calculations in
vacuum using density functional theory (DFT) at B3LYP/6-
31G(d) basis level following the conventional RESP
procedure.39 A more computationally burdensome but more
physically accurate scheme for partial charge assignments
would employ a solvation model in the charge calculation.43−45

System topology generation in GROMACS46 format is
facilitated by ACPYPE.47 Each simulation system comprises
a single probe and a single target analyte in water, which can be
interpreted as a system at an infinite dilution concentration
limit. This follows the primary objective of this work in
designing probes for detecting target PFAS at extremely low
target concentrations enforced by EPA. The number of water
molecules and length of the cubic simulation box used for each
probe-PFOS and probe-SDS system are provided in Tables
S2−S12 in the Supporting Information. Each system was first
energy minimized and then equilibrated for 1 ns in an NVT
ensemble at 300 K followed by a 1 ns equilibration in an NPT
ensemble at 300 K and 1 bar. MD simulation parameters
applied during energy minimization and the equilibration runs
are provided in the Supporting Information.
2.1.2. Enhanced Sampling Using Parallel Bias Well-

Tempered Metadynamics. Accelerated sampling of probe-
SDS and probe-PFOS interactions makes high-throughput
simulation of the targeted design space computationally
accessible by reducing simulation costs while ensuring good
sampling of the intermolecular free energy landscape. In this
work, we employ the parallel bias metadynamics (PBMetaD)
method30 to accelerate the sampling of probe-SDS and probe-

PFOS interactions and estimate their equilibrium-binding free
energies and binding constants. Details on the PBMetaD
procedure, the choice of collective variables (CVs), calculation
of the potential of mean force curves as a function of the center
of mass separation PMF(r), and binding free energies ΔG
between the probes and PFOS or SDS are provided in the
Supporting Information.
All the molecular simulations with parallel bias metady-

namics are performed using the GROMACS-2018.6 suite46

with PLUMED-2.5.248 library. These enhanced sampling
calculations took ∼3−5 days for each PFOS or SDS and
probe system depending on the system size on a shared
supercomputing node utilizing a 1 × V100 GPU and 20 × Intel
Skylake CPU cores.

2.2. Encoding of Probe Molecules Using a Pretrained
Variational Autoencoder Using SELFIES Representa-
tions. 2.2.1. Molecular Design Space. In this work, we focus
our search for optimal probes by considering linear hydro-
genated and halogenated molecules with the number of
carbons ranging from 3 to 14 (Figure 1). We consider three
halogens, fluorine, chlorine, and bromine, for the halogenated
molecules with a constraint that the halogenated methyl and
methylene groups are contiguous along the backbone of the
probe molecule. The halogenated methylene and methyl
groups were primarily considered to take advantage of the
halogen-mediated interactions between the probe and the
target PFAS.49−51 For each of the hydrogenated or
halogenated molecules, we also include amine- and phos-
phine-based headgroups to utilize electrostatic interactions for
binding the headgroup of the probe with the anionic sulfonate
headgroup of PFOS. These headgroups replace terminal
hydrogenated or halogenated methyl groups in a probe. For
amine headgroups, we include primary (NH2), secondary
(NH(CH3)), tertiary (N(CH3)2), and quaternary (N(CH3)3+)
states. For phosphine headgroups, primary (PH2), secondary
(PH(CH3)), and tertiary (P(CH3)2) states are considered.
Collectively, the headgroup combinations together with the
linear hydrogenated and halogenated tails, there are 3850
molecules in our search space (Figure 1).

2.2.2. Molecular Featurization and Embedding Using a
Pretrained Small-Molecule Variational Autoencoder (VAE).
The variational autoencoder (VAE)52,53 model utilized in this
study was previously trained on more than 1.2 M small
molecules contained within the ZINC data set54−56 plus a
number of common chemical screening libraries.57 It was our
anticipation that this pretrained VAE over a large class of small
molecules would provide good representations of the 3850
linear probe molecules considered in this work as rich but
interpretable featurization appropriate for our active learning
search. The training process first requires a unique
representation of the molecules using SELFIES29 and
optimization of a loss function to learn a continuous
representation of these molecules within a low-dimensional
latent space constituting the information bottleneck layer
between the encoder and the decoder. This latent space
provides a smooth and low-dimensional representation of the
molecular design space that is well suited to the construction of
surrogate structure−property models and enables a Bayesian-
guided traversal and optimization of molecules within the
design space.26,28,53,57 We provide a brief description of the
VAE model construction and training in the Supporting
Information; full details are available in Tang et al.57
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The 3850 candidate probe molecules in the design space
were created and stored as SMILES strings using RDKit.58 We
use selfies 1.0.429 to encode each molecule into a SELFIES
representation using the generated SMILES strings. The
molecules in SELFIES representation are then projected into
the molecular latent space of the pretrained VAE model
(Figure 2b.ii). For this, we apply the same one-hot encoding
SELFIES representation used during the training process of the
VAE model. To reduce the 100-dimensional latent space
representation of each molecule, we then apply principal
component analysis (PCA).59 The top five principal
components (PC) capture more than 95% of the cumulative
variance, allowing us to further compress the latent space
representation for the purpose of GPR training and BO-active
learning with limited loss of information (Figure S1). We also
verify that the 3850 linear probe molecules are smoothly
embedded into the five leading PCs of the latent space,
exhibiting smooth transitions in key molecular properties such
as molecular weight and number of carbon or halogen atoms in
the probe (Figures S2−S6). This implies that the molecules in
a given neighborhood of latent space have similar properties
and might therefore also be expected to have similar
observables, such as binding affinity to a target analyte. The
present work considers a finite design space of 3850 candidate
molecules that we project into the VAE latent space to provide
a featurization of these molecules suitable for our active
learning search. As such, we do not exploit the generative
capacity of the VAE decoder to produce novel molecules
conditioned on a particular location in the latent space,
although we note that this capability could be useful for
expanding the search into new regions of molecular design
space.
2.3. Construction of Gaussian Process Regression

(GPR) Surrogate Models. We train the GPR surrogate
models60 to predict (−ΔGPFOS) and (−ΔΔGPFOS−SDS) as a
function of the 5D vector x specifying the projection of each
candidate probe molecule into the leading five principal
components of the VAE latent space (Figure 2c). We construct
our GPR kernel using the widely used and infinitely
differentiable radial basis function (RBF) for the GPR
covariance function. The RBF length scale parameter l that
sets the distance for two points to be correlated is treated as
hyperparameter that is optimized separately for each of the five
dimensions of x during training by maximizing the log marginal
likelihood.61 The bounds of RBF length scale parameter l
during optimization were set to 0.001 and 200, which are close
to the minimum and maximum distances between the 3850
candidate molecules along the top five principal components.
The GPR models are trained using scikit-learn.62 The models
are trained over the (−ΔGPFOS) and (−ΔΔGPFOS−SDS) values
collected for all probes to date and return predictions of an
estimated mean μ and standard deviation σ for (−ΔGPFOS) and
(−ΔΔGPFOS−SDS) for any vector x. In this manner, GPR serves
as a surrogate model for the sensitivity and selectivity of new
probe molecules that have not yet been simulated.
2.4. Multiobjective Bayesian Optimization (BO). The

trained GPR surrogate models are passed to a multiobjective
Bayesian Optimization (BO) protocol using random scalariza-
tions63 (Figure 2d). The aim of the BO-guided search is to
prospectively identify probe molecules residing on the high-
sensitivity−high-selectivity Pareto frontier. A single acquisition
function for the sensitivity (i.e., maximize (−ΔGPFOS)) and
selectivity (i.e., maximize (−ΔΔGPFOS−SDS)) objectives is

constructed from a random scalarization of the two GPR
surrogate models.63,64 In this approach, two independent
acquisition functions are first employed for each of the
objectives and then merged to obtain a single scalarized
acquisition function.
As is standard practice when employing random scalariza-

tions, we employ upper confidence bound (UCB) acquisition
functions αUCB,sens(x) = μ(−ΔGPFOS(x)) − βσ(−ΔGPFOS(x))
and αUCB, s e l e c t(x) = μ(−ΔΔGPFOS−SDS(x)) − βσ-
(−ΔΔGPFOS−SDS(x))

65 for each of the two design objec-
tives,63,66 where the mean and standard deviations in the
sensitivity and selectivity at a particular x are extracted from
the most recently trained GPR models and β is a random
variable drawn from a log uniform distribution on the range
[log(10−4), log(104)] that controls the degree of exploitation
vs exploration.64 The two UCB acquisition functions are
merged via a randomly weighted linear combination into a
single scalarized acquisition function α(x) = γαUCB,sens(x) + (1
− γ)αUCB,select(x) (Figure 2d). Colloquially, α(x) provides a
measure of desirability for each potential candidate molecule
with embedding vector x under a random sample of the
relative weighting γ ∼ U(0, 1) between the two objectives,
where U(0, 1) is a uniform distribution over (0, 1). Under
sufficient number of trials, γ will explore various weightings of
the sensitivity−selectivity design objectives and guide sampling
to explore the entire Pareto frontier. We calculate α(x) for all
as-yet-unsampled candidate molecules in the design space and
employ the Kriging believer67 to perform a batched selection of
molecules for the enhanced sampling calculations.
We seed the active learning search process with 45 manually

selected candidates from the design space designed to
comprise a diversity of molecules consisting of hydrogenated
and halogenated probes of different lengths with and without
amine or phosphine headgroups (Table S2). Rather than
distributing the initial probes over the search space using a
diversity maximizing strategy,68 we instead adopted a
hypothesis-driven approach motivated by experimental insights
in an attempt to inject this prior knowledge into the
initialization of the search. Specifically, we hypothesized that
the fluorophilic interactions can be critical in binding the probe
with the target PFOS containing a fluorinated backbone
relative to the interferent SDS that has a hydrogenated
backbone. For this reason, we initially selected probes of
different lengths ranging from 3 to 14 backbone carbons with
different degrees of contiguous blocks of fluorination. In
addition, we added amine headgroups to the probes to explore
the utility of electrostatic interactions with the head group in
PFOS and SDS. For a selected few probes that are found to be
optimal with respect to sensitivity and selectivity in the
fluorinated probes, we studied chlorinated variants of the
fluorinated probes. We performed a total of 10 rounds of active
learning over the course of which we simulated a total of 252
probe molecules (∼6% of the 3850 candidate design space) at
a cost of ∼25,000 GPU-h and ∼5000 CPU-h. Approximately N
= 20 molecules were sampled within each active learning cycle,
but this number varied in each round in order to make efficient
use of parallel computing resources. Specifically, molecules
whose 1 μs simulation completed within the ∼2 week time
horizon of a single active learning round participated in the
active learning cycle. The remaining molecules whose
simulations were incomplete at the beginning of the new
cycle were added to the next cycle. In addition, we added five
hand-selected probes with amine headgroup in active learning
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cycle 8 within a human-in-the-loop intervention into the
otherwise automated search protocol. Specifically, we were
interested in understanding the role of amine headgroups upon
probe performance and appreciated that such molecules had
heretofore been undersampled in the active learning screen.
Incorporating these molecules within our screen was valuable
for our retrospective analyses of the role of probe length,
degree of fluorination, and presence of amine headgroups upon
probe performance.
A notebook containing the computational active learning

process with multiobjective BO is available at https://github.
com/Ferg-Lab/activeLearningPFASLinear.git. Sensitivities
(−ΔGPFOS), selectivities (−ΔΔGPFOS−SDS), and equilibrium-
binding constants of the probes explored in each round of the
active learning search are reported in Tables S2−S12, along
with their two-dimensional (2D) structures, molecular weights,
and IUPAC names. In addition, the SMILES strings,
sensitivities, selectivities, and equilibrium-binding constants
(Kb

PFOS, Kb
SDS) of each cycle are available in machine-readable

f o r m a t a t h t t p s : / / g i t h u b . c o m / F e r g - L a b /
activeLearningPFASLinear.git along with helper notebooks
and scripts to help facilitate ready uptake and use by the
community.
2.5. Training of LASSO Regression Models to Infer

Important Chemical Substructures of Probes. We train
and analyze LASSO (Least Absolute Shrinkage and Selection

Operator) regression models to extract important chemical
substructures of probes that correlate with their sensitivity and
selectivity to PFOS. In contrast to the relatively opaque GPR
models, these simple and interpretable linear models are
commonly applied for feature selection and to understand
substructures or subgraphs that play an important role in
predicting observed molecular properties and responses.28,69

LASSO regression employs standard least-squares regressions
with an L1 regularization over the weights to minimize the cost
function = +l y wx w( )i

N
i j

K
j ij j

K
jtrue,

2
1, where

ytrue,i corresponds to the measured response, xij corresponds
to the value of the jth feature of sample i, wj is the linear
regression coefficient accorded to feature j within the LASSO
model, N is the number of samples, K is the number of
features, and λ is a hyperparameter controlling the strength of
the L1 regularization. The hyperparameter λ is typically tuned
by cross-validation. The effect of the regularization term is to
shrink the regression coefficients of the least important features
to zero, thereby inducing sparsity in the model to include only
those features with the greatest explanatory power. The
magnitude and sign of the weights wj lend themselves to simple
interpretability as to the strength and direction of the effect of
that feature on the response.
We train separate LASSO regression models to predict the

measured negative sensitivity (ytrue,i = ΔGPFOS
i ) or negative

selectivity (ytrue,i = ΔΔGPFOS−SDS
i ) of the 252 simulated probe

Figure 3. Progress of the active learning campaign in advancing the sensitivity−selectivity frontier of PFOS probes within each active learning cycle.
(a) Mean distance dall(j) reporting the cumulative average over the di values of all n probes sampled so far up to and including cycle j. (b) Pareto
distance dPareto(j) reporting an average over the di values of those probes constituting the Pareto frontier at the end of round j, including contributions
to the frontier from all prior rounds. (c) Scatter plots of the sampled probes within the sensitivity−selectivity design space over the course of the
active learning campaign. The sensitivity and selectivity increase in the positive x- and y-directions, respectively. The probes sampled in the present
round are indicated by red markers and those accumulated from all previous rounds by gray markers. The Pareto frontier is indicated by a black
line. The green-shaded region highlights the shift in the Pareto frontier relative to cycle 0. Cycle 0 comprises the 45 molecules used to train the
initial GPR model.
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molecules using an input featurization enumerating the
presence or absence of particular chemical substructures (i.e.,
molecular subgraphs) within each molecular probe. We follow
the procedure described by Bhattacharjee and Vlachos69 to
extract the substructures of the molecular probes explored in
the active learning process using RDKit58 by setting the
minimum and maximum edge lengths as 1 and 8, respectively.
Hydrogen atoms are not considered to be part of the
substructures. We note that the substructures mined consider
only edge connectivity between atoms but not the atom
properties, such as their charge state. A matrix with each
molecule and the count of each unique substructure mined
from RDKit58 as rows and columns, respectively, are used as
features for training the LASSO regression models. Standard
scalers in scikit-learn62 are applied to normalize the features or
matrix representing substructure count in each molecule prior
to training. The hyperparameter λ in the LASSO regression
model is tuned by 10-fold cross-validation to minimize the
validation prediction error on the validation set (Figure S7).
The trained models are evaluated on a randomly selected 20%
hold-out test set that was not exposed to the model during any
part of training (Figure S8).

3. RESULTS AND DISCUSSION
3.1. Discovery of Optimal Linear Molecular Probes

Using Computational Active Learning. Our goal is to
discover probes in the design space of 3850 linear molecules
possessing optimal sensitivity and selectivity to PFOS (Figure
1). We efficiently traverse the design space using our
computational active learning pipeline (Figure 2) that we
seed with an initial batch of 45 probes and execute 10 cycles of
active learning sampling with N = 13−29 molecules per round

(Tables S2−S12). To assess the convergence of the active
learning campaign, we calculate

= +

= +

d

G G

(sensitivity) (selectivity)

( ) ( )

i i i

i i

2 2

PFOS
2

PFOS SDS
2

(1)

as the distance of each probe i from the origin in the 2D
sensitivity−selectivity design space. Recalling that it is our
objective to simultaneously maximize sensitivity (−ΔGPFOS)
and selectivity (−ΔΔGPFOS−SDS), this presents a quantitative
measure of the advancement of the active learning screen in
discovering desirable molecular probes. We further compute

= { }d d i j, (0), ..., ( )j
iall

( )
(2)

= { }d d i, Paretoj
i jPareto

( )
(0),...,( ) (3)

where dall(j) reports a cumulative average over the di values of all
probes sampled in the campaign so far up to and including
cycle j, and dPareto(j) reports an average over the di values of those
probes constituting the Pareto frontier at the end of round j.
We present in Figure 3c scatter plots showing the location of
the sampled probes in each cycle of the campaign within the
sensitivity−selectivity design space and the advancement of the
Pareto frontier. The trends in Figure 3 indicate a convergence
of our active learning search by approximately cycle 6, beyond
which we do not observe any further improvements in dall(j) or
dPareto(j) , or further advancement of the Pareto frontier. This
suggests that the search has identified the top-performing
molecules within the molecular design space and that we may
not expect the discovery of significantly superior candidates
with additional cycles of the search.

Figure 4. Change in the distribution of sensitivity and selectivity of probes to PFOS with each active learning cycle. Violin plots of the (a)
sensitivity (−ΔGPFOS) and (b) selectivity (−ΔΔGPFOS−SDS) as functions of the active learning cycle. Chemical structures of molecules with
maximum sensitivity and selectivity among all of the probes studied up to a given cycle are shown at the cycles in which they were discovered. The
black solid line shows the change in the maximum sensitivity or selectivity of probes to PFOS with each active learning cycle. Both sensitivity and
selectivity increase with an increase in the positive direction of the y-axis.
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We present in Figure 4 violin plots illustrating the
cumulative sensitivity and selectivity distributions of all probes
sampled over the course of the active learning campaign. In
terms of sensitivity, we see round-on-round improvements in
the top candidate identified up to cycle 6, beyond which no
further advances are observed. In terms of selectivity, we see
improvements only through cycle 2, where the top candidate is
identified. The initial 45 probes (cycle 0) have a broad range of
sensitivities�−0.9 ± 0.3 to 8.4 ± 0.5 kJ/mol (Figure 4a)�
but their selectivities span a relatively narrow range −2.2 ± 0.6
to 1.5 ± 0.9 kJ/mol (Figure 4b). A fully chlorinated probe
C12Cl26 with 12 backbone carbons has the highest sensitivity to
PFOS among all of the studied probes in cycle 0. However, this
probe has lower selectivity to PFOS than probe C3H7NH2 that
has three backbone carbons and one primary amine head-
group, which has the highest selectivity among all of the probes
in cycle 0. We discovered three more probes with improved
sensitivity in cycles 1, 4, and 6. These include a semi-
brominated probe C7Br15C5H10P(CH3)2 with 12 backbone
carbons and a tertiary phosphine headgroup, a completely
chlorinated probe C11Cl23N(CH3)2 with 11 backbone carbons
and a tertiary amine headgroup, and a completely brominated
probe C11Br23P(CH3)2 with 11 backbone carbons and a
tertiary phosphine headgroup. A semibrominated probe
C5H11C7Br14N(CH3)2 with 12 backbone carbons and a tertiary
amine headgroup has the highest selectivity among all of the
probes discovered in the active learning cycles.
To facilitate contact with experimental measurements, we

compute the equilibrium-binding constant Kb from our
calculated free energy profiles by numerically evaluating the
following integral70,71

=K C r r k T4 exp( PMF( )/ )dr
r

b
0

0

2
B

bound

(4)

where C0 = 1/1661 Å−3 is the standard state concentration at 1
mol/L, and the cutoff of rbound = 1 nm delimits the bound and
unbound states, motivated by the 1 nm cutoff of the van der
Waals and real-space electrostatic interactions implemented in
our simulations. A derivation of this expression is provided in
the Supporting Information. We report in Table S1 the values
of Kb

PFOS, Kb
SDS, and Kb

PFOS/Kb
SDS for the five top-performing

probes residing on the sensitivity−selectivity Pareto frontier in
the terminal round of our active learning campaign. The Kb

PFOS

and Kb
SDS values for all molecules considered within our screen

are reported in Tables S2−S12.
How are the top-performing probes identified in our screen

predicted to perform in practice? With regard to sensitivity,
adopting a target PFOS concentration of 4 ng/L ≈ 8 × 10−12

mol/L mandated by EPA guidelines for safe drinking water15

and assuming a 10-fold higher initial free PFOS concentration
and negligible interferents present, we can invert the
relationship Kb

PFOS = C0Cprobe−PFOS/CprobeCPFOS to estimate
that the most sensitive probe discovered in our screen with
Kb
PFOS = (177.4 ± 12.7) would require to be present at a

concentration of Cprobe ≈ 0.05 mol/L. It is conceivable that
such local probe concentrations may be achievable by surface
immobilization within a sensing device, but substantially lower
concentrations may be expected for previously reported high-
affinity molecular host−guest systems such as β-cyclodextrin
(Kb ≈ 104−105, Cprobe ≈ 0.1−1 mmol/L)72,73 or
guanidinocalix[5]arenes (Kb ≈ 107, Cprobe ≈ 1 μmol/L).73

Assuming that our active learning search has identified the top-
performing candidates within the molecular design space, these
results indicate that this class of linear molecules does not
contain highly sensitive molecular probes for PFOS detection.
With regard to selectivity, assuming equimolar initial free
concentrations of PFOS and SDS of 8 × 10−11 mol/L, the
most selective probe in our screen with Kb

PFOS = 62.7 ± 15.3,
Kb
SDS = 13.6 ± 3.8, and Kb

PFOS/Kb
SDS = 4.6 ± 1.7 would require a

concentration of Cprobe ≈ 0.1 mol/L to achieve the EPA target
PFOS concentration and would produce a bound PFOS to
SDS relative enrichment of Cprobe−PFOS/Cprobe−SDS ≈ 1.4. This
suggests that the linear molecular candidate space does not
contain highly selective molecular probes, although we observe
that even modest selectivities can be exploited within
multiplexed sensing schemes.74

3.2. Identification of Chemical Substructures that Are
the Principal Determinants of Sensitivity and Selectiv-
ity. Having efficiently navigated the search space using our
active learning protocol to discover the candidates populating
the sensitivity−selectivity Pareto frontier, we now seek to infer
the chemical features underpinning the calculated sensitivity
and selectivity of the molecular probes to PFOS. This
understanding can both help rationalize the trends observed
within our active learning search and guide and inform the
subsequent design and exploration of augmented libraries
engineered to be enriched with molecules with promising

Figure 5. Chemical substructures within the 252 molecular probes considered within our active learning search identified by LASSO regression to
be the leading determinants of PFOS (a) sensitivity and (b) selectivity. Large LASSO weights, w, identify substructures that are the leading
determinants of sensitivity or selectivity. The chemical substructures possessing the largest LASSO weights are illustrated in green on representative
probe molecules containing these substructures. The vertical arrows on the y-axis indicate the direction of favorable LASSO weights.
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chemical features. To do so, we trained LASSO regression
models as interpretable “glass box” predictive models to
identify the chemical substructures within the molecular
probes that are the principal determinants of PFOS sensitivity
and selectivity. We present in Figure 5 the LASSO regression
weights w associated with each chemical substructure. The
magnitude of these weights can be interpreted, under the linear
LASSO model, as the relative importance of that substructure
in determining the sensitivity or selectivity. Negative weights
indicate molecular substructures that tend to promote elevated
sensitivity (−ΔGPFOS

i ) or selectivity (−ΔΔGPFOS−SDS), whereas
positive weights indicate substructures that tend to be
detrimental to sensitivity or selectivity.
Analysis of the sensitivity LASSO model (Figure 5a)

indicates that the substructure with the most negative
LASSO weight and therefore the chemical motif that most
promotes high PFOS sensitivity is the C−C bond. The next
three most favorable substructures are a hydrogenated probe
with seven backbone carbons and a secondary amine
headgroup, a five backbone carbon substructure with one
brominated methyl group, and a chlorinated substructure with
an amine-based headgroup. The top 20 substructures that
promote favorable sensitivity are presented in Figure S9 and
include hydrogenated and halogenated substructures contain-
ing amine and phosphine headgroups. Taken together, these
results indicate that the chain length (i.e., number of C−C
bonds) and the presence of chlorinated or fluorinated heads or
tails, and brominated headgroup appear to elevate PFOS
sensitivity. Turning to the positive LASSO weights, we identify
a rather small number of significant chemical substructures that
are detrimental to sensitivity, including two brominated
substructures with seven backbone carbons and a semi-
brominated substructure with a quaternary amine headgroup.
The remaining top seven substructures that promote
unfavorable sensitivity are presented in Figure S10 and include
substructures with chlorinated methyl groups and primary
phosphine headgroups. These results appear to indicate that
bromination of the tail and the inclusion of phosphine
headgroups are detrimental to probe sensitivity.
Analysis of the selectivity LASSO model (Figure 5b) reveals

a semibrominated substructure with eight branched backbone
carbons to be the most favorable in promoting selectivity of
probes for the PFOS target over the SDS interferent. This is
followed by a similar semibrominated substructure but seven
branched backbone carbons and a phosphine-based head-
group. Chlorinated, fluorinated substructures with phosphine-

and amine-based headgroups are the next most favorable
substructures. The top 20 substructures that promote favorable
selectivity are presented in Figure S11, from which we identify
the importance of halogenation and headgroups in improving
the selectivity of a probe. In contrast to sensitivity, we identify
a relatively large number of unfavorable substructures to
selectivity. These include a semibrominated substructure with
seven branched backbone carbons and phosphine headgroup, a
branched brominated substructure with seven backbone
carbons, a hydrogenated substructure with seven backbone
carbons and a secondary amine headgroup, and the C−C
bond. The top 20 substructures unfavorable to selectivity are
presented in Figure S12. This indicates that bromination and
increasing chain length can be unfavorable to promoting the
selectivity of the molecular probes.
Considering now both sensitivity and selectivity, we observe

that the third most unfavorable substructure to selectivity is the
same as the second most favorable substructure to sensitivity.
Furthermore, the fourth most unfavorable substructure to
selectivity, the C−C bond, is the same as the most favorable
substructure to sensitivity. This analysis suggests the
competing nature of both chain length and certain
substructures for the simultaneous optimization of both
PFOS sensitivity and selectivity and exposes an inherent
challenge for this two-dimensional optimization by controlling
the presence of particular chemical groups.

3.3. Correlation Analysis of Important Identified
Chemical Substructures. Our substructure analysis exposed
C−C groups, halogenation, and headgroups as chemical
substructures as important determinants of sensitivity and
selectivity. Informed by this analysis, we now perform
correlation analysis to quantify the role of these features
upon sensitivity (−ΔGPFOS) and selectivity (−ΔΔGPFOS−SDS).
In Figure 6, we plot the sensitivity and selectivity dependence
upon the chain length for fully hydrogenated and fully
fluorinated probes. For hydrogenated probes, we observed
∼0.4−1.3 kJ/mol increase on average in sensitivity with each
additional C−C bond (Figure 6a). Fluorinated probes appear
to be marginally more sensitive than their hydrogenated
counterparts, but the corresponding values generally do not lie
outside standard errors. Contrariwise, there is a degradation in
selectivity with increasing probe length of ∼1−2 kJ/mol upon
elongating the hydrogenated and fluorinated probes from 4 to
12 C−C bonds (Figure 6b), but this trend is not monotonic.
In all cases, the selectivity for SDS is higher than or equal to
that for PFOS, indicating that these probes are not selective

Figure 6. Effect of probe length upon PFOS (a) sensitivity and (b) selectivity for fully hydrogenated (blue) and fully fluorinated (red) probes.
Markers and error bars represent means and standard errors estimated by a threefold block averaging over a 900 ns production run. Standard
propagation of errors is employed to obtain the standard errors on selectivity. The vertical arrows on the y-axis indicate the direction of favorable
sensitivity and selectivity.
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toward the desired target molecule. Again, there tends not to
be statistically meaningful differences in selectivity between
fully fluorinated and hydrogenated probes of the same length.
Although the PFOS target has a fluorinated tail, whereas the

SDS interferent has a hydrogenated tail, our results indicate
both fluorinated and hydrogenated probes have largely similar
sensitivities and selectivities. This indicates the relatively weak
role of fluorophilic interactions in modulating probe perform-
ance and is consistent with the DFT-SAPT-based study by
Tsuzuki and Uchimaru,49 which indicates that the dispersion
forces that dominate intermolecular interactions are nearly
identical among CF4−CF4, CF4−CH4, and CH4−CH4. It is
only the electrostatic interactions that arise due to electro-
negativity effects that are higher in unlike pairs relative to like
pairs, but their net contributions are smaller than dispersion
forces.49 Furthermore, the interactions between the probes and
PFOS and SDS can be largely entropic, with a significant role
played by the solvent. For example, fluorination of hydro-
carbons can increase hydrophobicity75 and alter the hydration
shell structure of fluorinated methyl groups.50 Complementary
work shows that these changes are nonmonotonic in methyl
groups with increasing fluorination.51 In the context of the
present work, we find similarly nonmonotonic trends in
interaction strengths as a function of the degree of fluorination.
In Figure 7, we present the effect of different amine

headgroups on the sensitivity and selectivity of fully hydro-
genated and fluorinated probes of various lengths. Specifically,
we consider probe molecules C4X10, C8X18, and C12X26, where
X = H or F, and consider replacing the terminal CH3 group
with a primary NH2, secondary NH(CH3), tertiary N(CH3)2,
and charged quaternary N(CH3)3+ amines. Overall, we see
relatively muted and nonmonotonic trends in the influence of
headgroup upon sensitivity and selectivity, although there is
evidence for a generally favorable influence of substituting in a

primary, secondary, or tertiary amine upon the sensitivity and
selectivity at the C8 probe length. There are also no clear
trends in the sensitivity and selectivity difference of fully
hydrogenated or fully fluorinated probes; however, the
addition or removal of halogen atoms and amine or phosphine
headgroups produces nonmonotonic changes in both
sensitivity and selectivity with changes to sensitivity of up to
2.5 kJ/mol. The addition of charge to the probe via the
charged quaternary amine did not tend to lead to statistically
meaningful improvements in sensitivity or selectivity.

4. CONCLUSIONS
The detection and elimination of PFAS “forever chemicals”
within environmental water courses represent a pressing
challenge for the design of highly sensitive and selective
molecular probes. In this work, we employed a computational
active learning pipeline combining enhanced sampling
calculations, deep representational learning, Gaussian process
regression, and multiobjective Bayesian optimization to
efficiently screen molecular candidate libraries for highly
sensitive and selective molecular probes. We chose to focus
on a design space comprising 3850 linear hydrogenated and
halogenated molecules of length 3−14 carbons with and
without an amine- or phosphine-based headgroup. The design
of the library was motivated by the ready synthetic accessibility
of these candidate probes, their similar chemical nature to
PFAS, and their capacity to exploit hydrophobic binding to the
aliphatic tail and electrostatic binding to the head. After
conducting 10 rounds of our active learning screen during
which we simulated a total of 252 probe molecules (∼6% of
the 3850 candidate design space) at a cost of ∼25,000 GPU-h
and ∼5000 CPU-h, we identified five candidate molecules
lying on the sensitivity−selectivity Pareto frontier with
sensitivities spanning (−ΔGPFOS) = 6.9−9.8 kJ/mol and

Figure 7. Effect of amine headgroup upon PFOS sensitivity and selectivity for fully hydrogenated (blue) and fully fluorinated (red) probes with a
backbone length of (a, b) 4, (c, d) 8, and (e, f) 12 single bonds. Markers and error bars represent means and standard errors estimated by a
threefold block averaging over a 900 ns production run. Standard propagation of errors is employed to obtain the standard errors on selectivity. The
vertical arrows on the y-axis indicate the direction of favorable sensitivity and selectivity.

Journal of Chemical & Engineering Data pubs.acs.org/jced Article

https://doi.org/10.1021/acs.jced.3c00404
J. Chem. Eng. Data XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/10.1021/acs.jced.3c00404?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00404?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00404?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00404?fig=fig7&ref=pdf
pubs.acs.org/jced?ref=pdf
https://doi.org/10.1021/acs.jced.3c00404?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


selectivities spanning −ΔΔGPFOS−SDS = −5.6−3.1 kJ/mol. The
most sensitive probe identified in our screen, a C11Br23P-
(CH3)2 molecule containing 11 backbone brominated carbons
and a tertiary phosphine headgroup, possesses a binding
constant of Kb

PFOS = 177.4 ± 12.7 and the most selective probe,
a semibrominated molecule C5H11C7Br14N(CH3)2 containing
12 backbone carbons and a tertiary amine headgroup,
possesses a binding constant ratio of Kb

PFOS/Kb
SDS = 4.6 ±

1.7. An analysis of the influence of particular chemical motifs
within the probes that are the primary determinants of the
observed sensitivity and selectivity exposes delicate and
relatively weak trends in probe length, halogenation, and
headgroup in modulating their behaviors.
The relative paucity of highly performant linear probe

molecules identified by our ML-enabled workflow militates for
an expansion of the molecular search space to molecular
libraries containing a richer chemical diversity of candidate
molecules including branched and cyclic hydrocarbons, as well
as more exotic molecules such as cyclodextrin-based probes
that have garnered some attention and success in PFAS
sequestration.7,76−78 Further enlargements of the design space
can make the computational screening platform established in
this work even more valuable in performing an efficient
filtration of the enlarged design space to identify the most
promising molecular probes to be explored experimentally and
also in excavating a molecular-level understanding of probe
performance that can be coupled with experimental intuition
to help inform rational molecular design. The performance of
our active learning pipeline in achieving convergence after
considering only 6% of the molecular space provides support
for its capacity to efficiently navigate and traverse large search
spaces and quickly focus on the most promising candidates.
While we focused on only one interferent in this work, it

may be desirable to find probes that are selective to a given
target PFAS in the presence of various types of interferents for
practical applications. To this end, one may take the top-
performing probes identified in the primary screen into a
lower-throughput secondary screen against a broader panel of
potential interferents to better evaluate the breadth of their
selectivity. In the future, it is of interest to also extend our
approach for discovering molecular probes for some of the
other commonly known PFAS variants79 such as perfluor-
ooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS),
and 6:2 fluorotelomer sulfonate (6:2FTS). Similarly, it may be
of interest to evaluate the performance of the top probes over a
wider range of operating temperatures and pH conditions. We
would also like to couple our computational search to hybrid
computational/experimental active learning campaigns, in
which we conduct asynchronous but simultaneous computa-
tional and experimental screens in order to integrate high-
throughput computation and low-throughput experimentation
to minimize the experimental costs in time and labor to
identify the top-performing probes for applications in PFAS
sensors.68
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