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Abstract

Generalized linear mixed models are commonly used to describe relationships between correlated responses and covari-
ates in medical research. In this paper, we propose a simple and easily implementable regularized estimation approach to
select both fixed and random effects in generalized linear mixed model. Specifically, we propose to construct and opti-
mize the objective functions using the confidence distributions of model parameters, as opposed to using the observed
data likelihood functions, to perform effect selections. Two estimation methods are developed. The first one is to use
the joint confidence distribution of model parameters to perform simultaneous fixed and random effect selections. The
second method is to use the marginal confidence distributions of model parameters to perform the selections of fixed
and random effects separately. With a proper choice of regularization parameters in the adaptive LASSO framework, we
show the consistency and oracle properties of the proposed regularized estimators. Simulation studies have been con-
ducted to assess the performance of the proposed estimators and demonstrate computational efficiency. Our method
has also been applied to two longitudinal cancer studies to identify demographic and clinical factors associated with
patient health outcomes after cancer therapies.

Keywords
Confidence distribution, generalized linear mixed model, variable selection, regularization, adaptive Lasso

I Introduction

Generalized linear mixed models (GLMMs) are a commonly used class of models to describe the relationship between
correlated responses and covariates in biomedical research. Researchers often want to determine the fixed effects and (or)
the random effects of covariates for the outcome variables from a pool of covariates using the variable selection approaches.
Our study is motivated by two longitudinal cancer studies. The first study longitudinally measures tumor size in lung cancer
patients during the cycles of radiation therapy. The second study followed up with breast cancer patients for the incidence
of common mammographic sequelae after they received breast-conserving surgery and radiation therapy. To account for
the intra-patient correlation among repeatedly measured outcomes, GLMM analyses have been employed for both studies.
To gain insight about patients’ prognostics and health management, both studies aim to identify important demographic
and clinical covariates that may predict the outcomes as fixed effects. Selections of random effects are also considered to
evaluate heterogeneous effects.
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In the statistical literature, several variable selection approaches for the GLMM have been proposed. For instance, the
selection using the information criterion,!~ e.g. Akaike information criterion or Bayesian information criterion (BIC), etc,
has been commonly used to determine the final model among a number of candidate models. For the popular regularized
estimation approach, some methods are proposed to select both fixed and random effects for the linear mixed models
(LMMs),5 and some for the GLMM.!'? Some approaches emphasize on the selection of fixed effects only,'"!> and some
focus on the selection of random effects only.!3 In general, these methods are computationally extensive and complicated,
primarily due to the complexity of optimizing the objective function constructed from the marginal likelihood function
of the observed data. In the typical GLMM estimation process, the marginal likelihood function involves the integration
with respect to the distribution of the random effects. Except for the LMM with normal responses and identity link, the
marginal likelihood function generally does not have a closed-form solution and is typically approximated using numerical
methods.'#!'8 With the addition of penalty terms to the marginal likelihood function, optimizing the objective functions
can be even more computationally challenging (see the GLMM regularized estimation approaches referenced above as
examples). Recently, Hui, Miieller and Welsh'® proposed a penalized quasi-likelihood (PQL) estimation for GLMM by
approximating the marginal likelihood using the quasi-likelihood function, with sparsity inducing penalties on both fixed
and random effect coefficients. Their simulation studies demonstrated much improved computational efficiency, compared
to some existing methods.

In this paper, we propose a regularized estimation based on the confidence distribution approach.?’ The seed idea of
the confidence distribution could be traced back to Bayes?!' and Fisher.”?> However, the concept and its applications have
advanced extensively in recent years.?32>2426 The confidence distribution can be viewed as a sample—DIFadd-dependent
distribution function, and used to estimate and provide statistical inference for a parameter of interest.?’ Rather than opti-
mizing the objective functions based on the likelihood function using observed data, we propose to construct and optimize
the objective functions using the confidence distributions of model parameters, based on the asymptotic distribution of
the model parameter estimators.”’ Because the confidence distribution of the model parameters is a multivariate normal
distribution, we demonstrate that the objective function using the marginal likelihood function of the observed data can be
approximated by the objective function constructed from the joint confidence distribution of the model parameters. Then,
based on the joint and marginal confidence distributions of the model parameters, we propose two regularized estimations
to perform simultaneous and separate selections of fixed and random effects, respectively. With proper choices for the
regularization parameters, we show that the proposed estimators have the properties of estimation consistency, selection
consistency, and the oracle property. Because the confidence distributions considered in our paper are based on the asymp-
totic distributions of the maximum likelihood estimators (MLEs), we consider finite-dimensional variable selections of the
fixed and random effects as the asymptotic distributions of these MLEs are typically established for finite dimensions. Our
approach may not be applicable for high dimensional variable selections of the fixed and random effects.

To the best of our knowledge, there are only a limited number of tools that perform GLMM regularized variable selec-
tions (e.g. the R packages rpql!® for GLMM joint fixed and random effect selection, glmmLasso!! for GLMM fixed
effects selection only, and the R code of Bondell’s method® for LMM fixed and random effect selections, available at
https://blogs.unimelb.edu.au/howard-bondell/). Therefore, the availability of tools to perform computationally efficient
regularized estimation for GLMM is highly desirable. As demonstrated later, our methods are simple, computationally
efficient, and can be easily implemented using existing software packages without the need to develop new algorithms
specific to GLMM.

The rest of this paper is organized as follows. In Section 2, we provide a brief review of the statistical inference in GLMM.
In Section 3, we delineate the rationale of the proposed regularized estimation approach using confidence distribution and
establish the statistical properties of the proposed regularized estimators. In Section 4, we discuss the implementation of
the optimization method and the determination of tuning parameters. In Sections 5 and 6, we present simulation results and
apply the proposed methods to the two examples of cancer studies. We conclude this paper with a discussion in Section 7.

2 Generalized linear mixed models

Consider a sample of » independent clusters. Let y; = (v;1,¥i --- » y,»m,_)T and y; denote the jth measurement of the ith
cluster, where i = 1,2,...,n,andj = 1,2,...,m;. Let x; be a (p, + 1)-variate vector of covariates corresponding to the
fixed effects, and z;; be a (p, + 1)-variate vector of covariates corresponding to the random effects. Both x;; and z;; include
1 for the intercept. Typically, z;; is a subset of x;;. Conditional on the random effects b;, we assume that the responses y;].s
follow a distribution of the exponential family with conditional mean y;; through the link function g(-) given by

gu)=n,=X,B+ZTIb, ()
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where u; = (U1, Pips -+ » yim’_)T , B =By, by, - ,ﬁpf,)T is the fixed effect regression coefficients, b; is a vector of random
effects assumed to follow a multivariate normal distribution N, , (0,7, ,,) with variance-covariance I, ,, being a (p, +
1)X (p,+1) identity matrix, and I'is a (p, + 1) X (p,. + 1) Cholesky decomposition lower triangular matrix depending on the
parameter y such that I'b; follows N, ,,(0,D) and D = I'T”. Moreover, we assume that y is a vector consisting of the row
elements of the lower triangular components of I' such that the length of ¥ is (p, + 1)(p, + 2)/2. For simplicity, we assume
the canonical link such that g(p;) = ;. Consider p, < oo and p, < oo such that both f and y are of finite dimensions. The

model parameters @ = (87,77, )" can be estimated by maximizing the marginal likelihood of y by integrating out b,,

£@) =] [ suwibzoyo:om, @
i=1

where ¢ is the dispersion parameter, f,,(v;|b;; €) denotes the conditional density function of ¥,|b;, and (b;; €) denotes the
marginal density of b,. Note that the parameters of interest are fand y. Define the MLE of 0 by

A A

T .7 =
0= .7",4)" = argmaxlog L(0;y)

Let 0, denote the true value of 8. Under mild regularity conditions, 0 is consistent and \/;(9 —0,) - N(0,%(0)), where
2710) = lim,__ 1(0), I(0) = —n~' 32 log L(6;y)/36000" , and Z(0) is consistently estimated by £ = T7'(8).282°

n—o0

3 Proposed regularized estimations

3.1 Construction of objective function

Variable selection using regularized approach has achieved much success in recent decades. Typically, the objective function
is constructed from the observed data likelihood function plus the penalty functions for model parameters. Let

Q°(0) = —log L(6:y) + nk,(B) + nx(y)

and define the regularized estimator @ZT:arg min, 0°(6), where K‘Z(ﬁ) and k?(y) are penalty terms that control the sparsity
for the estimates of B and y to select appropriate fixed effects and random effects, respectively. Because the integral in
L(0;y) generally does not have a closed-form solution, various approaches have been proposed to tackle this computa-
tional challenge to estimate @, including the methods for the commonly used GLMM estimations,'*!>!3 and the methods
for the regularized LMM or GLMM estimations.®!%1%1? To alleviate such a computational complexity in the regularized
estimation process, we propose to perform the regularized estimation by optimizing the objective function constructed from
the confidence distribution based on the MLE .

Inference based on the confidence distribution has been extensively studied in the statistical literature (see literary
works3%2031 and the references therein for a comprehensive review). In short, a confidence distribution can be viewed as
a sample dependent distribution function that can be used to estimate and provide all aspects of statistical inference for
a parameter of interest. This useful feature has been applied in Liu, Liu and Xie?* for meta-analysis and Tian, Wang and
Cai et al.> for joint inference about a set of constrained parameters in survival analysis. Then, based on Singh, Xie and
Strawderman?® and Liu et al.,?* we write the confidence density of the parameter 8 according to the asymptotic distribution
of 0:

1 1 A -1\ p
() = o xexp{—z(e—e) (n z) (9—9)} 3)

Qrypl? {det (n—lﬁ) }

where p denotes the length of @ and det(C) is the determinant of a matrix C. Note that 4(0) is a multivariate normal density.
Taking the logarithm of 4(0), we get

— log[h(6)] = %(@) —o) (n_lﬁl>_l ©-0)+c o
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where c is some constant free of 8. Consider the following approximation. It can be seen that

nlog £(6;y) ~ n~ ' log L(O;y) +n' (6 — 6)T { a% log £(9)} lo—o

N I, N
+1/2(0-6)" {n ! 96 log £(9)} lg—p(© — 0)

=" log £(0;y) +1/2(0 - 0)'E ™ (0 - 0)
= —n"'log[h(0)] + ¢

since d log E(G;y)/dOTlezé = 0 and constant ¢’ = n~! log E(@;y) —cis free of @. Thus n=' Q°(0) ~ n~! log[h(0)] + KZ(,B) +
x?(y)+c’. This motivates us to construct the following objective function Q(6) to approximate 0°(6) to perform regularized
estimation using the confidence density —log[4(0)] in (4). Specifically, let

A A _1 A
0(0) = (0—0) <n—12) ® — 0) + nic,(B) + nic.(y) (5)

Note that the objective function Q(0) takes the same form as the objective function of the least squares approximation
(LSA) approach proposed by Wang and Leng?? for the generalized linear models. Define the regularized estimator by

~

8, = argmin 0(0) (©)

It is interesting to notice the connection of our method with some methods that estimate 0 by optimizing O°(8). For instance,
Ibrahim et al.'? estimates @ by optimizing Q°(6) using a Monte Carlo EM algorithm that involves a Markov chain Monte
Carlo sampling approach to approximate log £(6;y); Hui et al. (2017) uses a quasi-likelihood to approximate log L£(0;y)
to estimate 6. Our method approximates log £(0;y) using the log confidence density, — log[/#(60)], to estimate 6. Note that,
in our method, performing the numerical approximation of the integration in log £(6;y) is only required to derive 0 and
3, which can be achieved using existing software packages (e.g. Proc Glimmix in SAS, and 1lme4 package in R). Once
0 and £ are obtained, constructing and optimizing Q(6) to estimate 6 no longer involves the numerical integration in
log L£(6;y). Thus, the computational burden is greatly alleviated and the computational efficiency is much improved. In
Sections 4 and 5, we discuss how to perform the optimization of Q(0) using existing software packages and demonstrate
the computational efficiency of our method using simulation studies.

3.2 Statistical properties of the proposed estimator

To facilitate statistical inference (e.g. deriving the confidence intervals (Cls)), one may consider to use the adaptive
LASSO? or the smoothly clipped absolute deviation (SCAD)** penalty functions for « ,(-) and «(-). In this paper, we focus
on the adaptive LASSO framework. With little effort, SCAD regularization can be adopted in our proposed procedure. To
be specific, we consider the following objective function:

. R Py P+l
00)=@-6 (n'%) (e—e)+n<2pf|ﬂf|+Zr,,,llr,,,ll)
=1

m=2

by choosing the adaptive LASSO with k ,(8) = Z‘;’: | Pr1 By for the fixed effect selection, where p’fsare the adaptive weights
that control the penalty with respect to |f,|, forf = 1,2, ..., p,. For the random-effect selection, we use the adaptive group
LASSO, following the rationale by He et al.*: Let y,, denote the mth row of T', then y,,y = D, which is the mth variance
component of the random effects I'b;, form = 1,2,...,p, + 1. Note thaty,, =0 < D, =D,, = D,,, = 0 for all /;
that is, if y,, = 0, then the variance and covariance elements of I'b; involving (I'b;),, are also 0. As a result, if a row vector

¥,, 18 not selected, the random effect (I'b;),, and the corresponding component in z are excluded from the model and the
positive-definitiveness of D is preserved. Thus, the adaptive group LASSO penalty is chosen as k. (y) = ‘Z 1;1 T, |17,,1| and
7/ s are the adaptive weights corresponding to ||y, ||, where || - || denotes the L, norm of a vector. Note that the summation
starts from m = 2 to keep the random intercept and preserve the within-subject correlation. Moreover, the parameter y can

be expressed as y = (¥, YZT: s J’,C,)T~
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Without loss of generality, we assume that only the first f; fixed effect covariates x; and the first 7, random effect
covariates s both including the intercepts, are informative. Therefore, we write the true value of 6 by 6, = (ﬁg , yg )T,

where ﬁO = (ﬂgaa ﬂgb = OT) and Yo = (Y(I)-a’ ng = OT) such that ﬁOa = (ﬁOlaﬂOZ’ )ﬂO,fO)T with ﬂO] ?é 0 fOI'j = 1727 9]69
and Y0a corresponds to the first 7, rows in the lower triangle of I' and each of these 7, row vectors is non-zero. Similarly,

T 7 AT AT s _(sT ST T
(ﬁpf’ o’ ¢p‘[) ﬂp‘[ (ﬂpf,a’ ﬂp‘[,b) ’ and Ypr - (yp.[’as ypf’b) . R
Obv1ously, 0(0) is strictly convex in 6. We establish the consistency and oracle properties of 6, in Theorem 1.

Theorem 1. Let a;, = max{p;,j < fy}, by, = min{p;,j > fy}, a,, = max{z;,j < ry}, and b, , = min{z,j > ry}. Then the
regularized estimator 0, satisfies the following as n — oo:

P P . P
1) (Estimation consistency) If n'/?a, — 0andn'/?a. — 0,0 _— 0,;
Y f.n r,n pT 0

P P P P R
2) (Selection consistency) If n'?a, , — 0, n'/?2a,, — 0, n'/?b, — oo, and n'/?b,, — o0, Pr( = 0 and
Y, L n 'fon rn pT.b

JA/pT’b =0) - L
AT P
(3) (Oracle property) Let 0, = (ﬁomyoa d)O)T and@ (ﬂpw,ypm,qﬁo)T Ifn'a,, L 0, n'a, —> 0, n'2b;,— oo,
- 900)—> N (0, (= )Gou]_l)’ where (27! Do, is the submatrix of 2(0)~! correspond-

a1 a1
ing to true non-zero 0,.The variance [():._1)90(‘]‘1 can be consistently estimated by [(= )9%]‘1, where (X )OOa is the

r.n

P
1/2 1/2
and n'/ b, ,— oo, thenn / (Opm

a1
submatrix of X corresponding to 0,y,.

A sketch of the proof is provided in the Appendix.

3.3 An alternative estimation

Recall that the objective function Q(0) is built by the confidence density 4(0) in (3), according to the joint asymptotic
distribution of . Note that A(6) is a multivariate normal density. The true values of the means in the joint distribution are
the same as those in the marginal distributions. Therefore, we propose another estimation based on the marginal confidence
densities with respective to f and y in (3) to separately estimate f# and y. These marginal confidence densities correspond
to the marginal asymptotic distributions of the MLEs B and 7, respectively. We refer the previous estimation as the CD-
joint estimation, and the following estimation as the CD-separate estimation. To proceed, we propose to construct separate
objective functions for f and 7 in the following:

Pr
OB =B -P L) BBy +n Y, plhyl
/=1

prtl

0N =G - 'ET G-y +n ) 1yl

m=2

where £ p and fly are submatrices of & corresponding to the marginal variance-covariance of [3 and 7, respectively. Define
tlre. regularized estimators as i?j):arg ming O,(p) and i =arg miny.Q,(y). The CD-separate estimation allows for the flexi-
bility of performing the selection of fixed effects only or the selection of random effects only, and enables the performance
of fixed- and (or) random-effect selections in case only f8, X4, ¥,and X, are available by convenience.

As noted previously, the true values of the underlying parameters f and y in the joint distribution of B and 7 in h(0) are
the same as those in the individual marginal distributions of  and 7 in 4(60), respectively. Therefore, the true values of g
and y for the estimators based on the CD-joint estimation and CD-separate estimation are the same, although the CD-joint
estimators and CD-separate estimators are different estimators. Recall that f, and y, are expressed as o =(p ga, ﬂg by = 07)"

A;,hT)T and 7 = (?iaT, ?ibT) . Obviously, both Q,(f) and

0,(y) are convex in f and y, respectively. We establish the consistency and oracle properties for B; and 7} as follows.

and yy = (v, 7y, = 07)". Similarly, we write ﬂ ﬂpa ,

Theorem 2. Leta,, = max{p;,j < fo}, and b;, = min{p;,j > fo}. Then the regularized estimator ii: satisfies the following
asn — oo
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P .5 P
(1) (Estimation consistency) If n'/ 2af’n—> 0, ﬂ;—> Bo:

P P s
(2) (Selection consistency) Ifnl/zaf,n—> 0, and nl/zbf’n—> 0, Pr(ﬁpb =0)- 1.
P P s D
(3) (Oracle property) Ifnl/zaf’n — 0, and nl/zbf,n — 00, then nl/z(ﬂpa - Bo) — N(0, [(Z/;l)ﬁ%]_l), where (El;l)ﬁm
is the submatrix of E;l corresponding to B,.The variance [(EI;I) ﬁo,z]_l can be consistently estimated by [(ﬁ);l)ﬂm]‘l,

A -1 a1
where (X g, is the submatrix of X 5 corresponding to f,.

Theorem 3. Leta,, = max{z,j <ry}, andb,, = min{z;,j > ry}. Then the regularized estimator 7, satisfies the following
asn — oo:

P
(1) (Estimation consistency) If n'/ zam—> 0, 7.— 7o

P P
(2) (Selection Consistency) [fn1/2a,’n—> 0, and nl/zb,’n—> co, Pr(y,=0)— 1.
1/2 P 1/2 P 1/2(45 b -1 -1 -1 :
(3) (Oracle Property) If n'/ a,,— 0,andn / b, ,— oo, then n / Fou— Vo) N(0, [(Zy )700] ), where (Ey )m is the
submatrix of Z;l corresponding to y,. The variance [(Z;l)},m]_1 can be consistently estimated by [(ﬁ;l)m]_l, where

& —1 . . &l .
(&, )y, is the submatrix of Zy corresponding to y .

The proofs for Theorems 2 and 3 are similar to that for Theorem 1, thus are omitted.

Although the dispersion parameter ¢ is often a nuisance parameter and thus omitted in the previously described separate
estimation, it can actually be included, for instance, by combining ¢ with y. Then we modify Q,(y) by Q7 (y, ¢) given below,
based on the (marginal) joint distribution of  and ¢ in (3):

N T N
" Y—v -1 -1 (VY
(¥, D)=\ 3 n X » + nk,
') <¢_¢> ', ] <¢_¢> %)
where flm is the variance-covariance of  and ¢.

4 Optimization and determination of tuning parameters

To obtain & - Via optimizing Q(0), we follow the method of Zhang and Lu’® and rewrite the objective function Q(0) as
0(0) = (A0 — )" (AO —¥) + 1k, (B) + nic,(¥) (M

where ¥ = AO , and A can be obtained using the singular value decomposition such that (n~1£)~! = ATA. Then the
function in (7) is a typical convex optimization problem and can be solved by standard software packages, for instance,
the R packages glmnet®’ and gglasso.*® The same approach can also be applied to optimize Qy(B), O,(r), and Q% (,¢).
For instance, let W5 = AﬂB and ¥, = A,7, where Ag and A, are obtained using the singular value decomposition
such that [n~'Z517" = ATA, and [n7'E, 17" = ATA,. As aresult, O,(B) = (AgB — ¥p)  (Agh — Wp) + nic,(B) and
0,(r) =y - lP},)T (Ayy —¥,) +nx(y), respectively. In our simulations and data analysis, we used R package gglasso
to optimize (6), Q,(y), and Q’(y, ¢), and glmnet to optimize Or(P).

Typically, the tuning parameters p,’s and 7,,’s can be chosen using the approaches of cross validation or generalized
cross validation. But, these methods can be computationally extensive. With the simple solution suggested by Zou,3* we
consider p, = /l|ﬁ}|_‘/’f’ and 7,, = 4/|7,,||”%" for the CD-joint estimation method, and p, = 4,»|ﬁ}|“"f and 7,, = A,||7,,||7¢
for the CD-separate estimation method, for f = 1,2,..., Py and m = 2,3,...,p, + 1, where ﬁf and y,, are the maxi-
mum likelihood estimates for f, and y,,, respectively, and ¢, and ¢, are pre-specified positive numbers. In the CD-joint
method, the adaptive LASSO penalties for the fixed effects and random effects are linked by the tuning parameter A > 0.
The CD-separate estimation allows each of the fixed- and random-effect selections to have its own tuning parameter to
control the shrinkage. Because the MLEs ﬂ}’s and 7,,’s are y/n-consistent, it can be verified that the tuning parameters
considered above satisfy the conditions required by Theorems 1, 2, and 3, provided that n'/24 — 0, n1*9)/2} - oo,
and n1*)/2) > oo as well as n'/24, — 0, """}, > oo, n'/24, — 0 and n*®)/2}, - co. Thus it suffices to
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select A € R+ = [0, ), Ar € R+ =10, 00) and A, € R+ = [0, o). Therefore, to determine 4, As, and A,, we consider

to minimize BIC, per recommendations by prior research.’?4? Specifically, for the CD-joint estimation, we define the

BIC as: BIC,, = n(épr - 9)Tﬁ_l(@pT -0+ (logn)(df, + df,), where df, is the number of non-zero coefficients in i}pr,

and df, is the number of groups with non-zero within-group coefficients .. For the CD-separate estimation, we define
AS A A—1 ~s A C . AS N &1 AS A~

BIC; , = n(ﬁ; - ,B)TEﬁ (B, — B) + (log m)df, for optimizing O/(p), and BIC, . = n(¥, — y)TZy (7 — #) + (log n)df, and

BICY = ( )T[n‘lf}y¢]‘1( (Jf; : ; ) + (log n)df, for optimizing O,(y) and Q%(y,¢), respectively.

-r
-¢

S =

5 Simulation studies

We conducted simulation studies to examine the performance of the proposed CD methods and compared them with the
methods by Hui et al."? (rpql R package), Bondell et al.® (available at https://blogs.unimelb.edu.au/howard-bondell/), and
the method of Groll et al.!! (glmmLasso R package). Hui et al.'” and Bondell et al.® used adaptive Lasso penalties. Groll
et al.!! used the Lasso penalty. We applied these methods because either the R packages or the R code are publicly avail-
able. Data were simulated under 3 scenarios (i.e. LMM, random effects logistic regression models, and random effects
Poisson models) according to model (1), with results summarized in Tables 1 to 5. Moreover, we have extended our meth-
ods to nested random effects in GLMM, with detailed descriptions of model specifications and simulation results in the
Supplemental Materials.

In Scenario 1, we generated ylfj,s from the LMM such that y;|b; follows N (xUT. p +zijT. I'b;, 6%) with ¢ = ¢*> = 1. In Scenario
2, we simulated binary data from the random effects logistic regression model. In Scenario 3, we simulated count data for
the random effects Poisson model with a log link. In all three scenarios, we chose p, = 15 for fixed effects and p, = 3 for
random effects. The true value for g was g, = (1¢, 0,,) for LMM and random effects logistic regression models (Scenarios
1 and 2), and B, = (1, 15, 0,,) for random effects Poisson models (Scenarios 3). The true 4 X 4 random effect covariance
matrix D is given by vech(D) = (9,4.8,0.6,0;4,0.9,0; 1, 0; 0) for Scenario 1, and vech(D) = (3,1.2,0.8,0;2,0.5,0; 1,0; 0)
for Scenarios 2 and 3, i.e. only the first three components of z;, including the random intercept, are informative. As a
result, we express the corresponding Cholesky decomposition lower triangular matrix by showing the row elements in
the lower triangle as I' = (3;1.6,1.2;0.2,0.57,0.8; 0,) for Scenario 1 and I' = (1.73;0.69, 1.23;0.46,0.15,0.88; 0,) for
Scenarios 2 and 3. In each scenario, we considered varying numbers of clusters »n and cluster size m. Covariates x; =
(l,x,]-’l,x,j,z, ,xij,p/_)T and Z; = (l,zy,l,z[j,z, ,zij’pr)T, forpf = 15 and p, = 3, were generated from a mix of continuous,
categorical (binary) variables and interactions of continuous and categorical variables. Specifically, x;; 1, ;3,6 ~ X;g
are generated from the standard normal distribution, x;;,,x; ;, ~ x;; 4 were generated from exponential distribution with
mean 1 (exponential(1)), x;;4,X;9 ~ x;;;; Were generated from Bernoulli (0.4) distribution; x;;4 and x;; 5 are interaction
terms with x;; 5 = x;;; * x;4 and x5 = x;;6 * x;;9. Moreover, z;; = x;;, for / = 1,2,3. All continuous covariates were
standardized to have mean 0 and variance 1.

For the proposed methods, we refer CD-joint and CD-separate estimations as CD-J and CD-S, respectively. We showed
the mean of the estimates, empirical standard error (ESE), percentage of selection (% Sel), and the average computation
time (Time (mins)). For the proposed CD methods, coverage probability of 95% Cls (CovP) was calculated based on the
oracle properties in Theorems 1 to 3. In addition to the CD methods, we also fitted the GLMM models to obtain the model
estimates as initial values to implement the method of Hui et al.!® (referred to as the rPQL method), following the examples
in Hui.?® When we calculated the computation time, we included the time for fitting the GLMM models, when applicable,
as well as the time of the regularization process, including the determination of tuning parameters. The R 1me4 package
was used to derive the GLMM estimates. For the CD-J and CD-S, the tuning parameters 4, 4, and 4, were determined from
10%, where @ went from —4 to 4 by 0.01 (801 values in total). For the rPQL method, we used the function Iseq(), provided
by the rpql package,’ to determine the tuning parameters from (0, 100] using syntax “Iseq(le — 6, 10, length = 200)”
(200 values in total). Several ranges wider than (0, 100] were applied, each for 50 — 100 simulation runs, and results were
similar. For glmmLasso, the tuning parameters were chosen from 10”, where @ went from —4 to 4 by 0.08 (101 values in
total). We applied different ranges and different numbers of tuning parameters for the CD-methods, rPQL and glmmLasso
methods, with CD-methods using the most number of tuning parameters. Because the computation time of the rPQL and
glmmLasso methods was longer, especially for large n’s, we determined to use smaller numbers of tuning parameters for
these methods to facilitate the progress of the simulation studies, after trying various ranges of tuning parameters and
making sure results were similar.

Moreover, we performed additional simulations to examine the impact of ¢, and @, (see results in the Supplemental
Materials). Specifically, we considered the values of ¢, and ¢, to be 0.25, 1 and 4 for the proposed CD-J, CD-S, and the

ij,9- il
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Table |. Linear mixed model: Fixed effect selection.

(n,m) Method Bo | | | | | | 010
(30,100  CD B,. 1011 099 098 099 0997 0992  0.000
ESE 0565 0388 0099 007! 0.146 056  0.042
CovP(%) 930 92.4 93.9 93.0 94.1 93.9 -
% Sel 1000 99.8 100.0 100.0 100.0 1000 80
cD-S B 1011 0.99 0.98 0.99 0.991 0987  0.000
ESE 0565 0391 0.201 0.071 0.147 0157  0.030
CovP(%) 926 92.0 935 926 93.7 935 .
% Sel 1000 992 100.0 100.0 100.0 1000 40
PQL B 0916 0791 0.87 0998 0987 0976  0.000
ESE 0473 0500 0318  0.06l 0.137  0.66  0.000
% Sel 1000 76.l 95.8 100 100 99.8 7.9
Bondell etal.  B° . 0.176 0.8l 0988 0932 0937 000l
ESE . 0249 0257 0069  0.I58  0.174 0.0
% Sel - 452 99.2 100.0 100.0 1000 6.l
(60,6) cD B, 0979 0979 0997 099! 0.99 0994  —0.00l
ESE 0417 0286  0.048 0073  0.42  0.166  0.037
CovP(%) 934 928 93.8 916 94.5 929 .
% Sel 100.0 100.0 100.0 100.0 100.0 1000 66
cD-s B 0979 0973 0992 098 0984 0989  —0.00I
ESE 0417 0288  0.049 0074  0.43  0.167 0028
CovP(%) 934 927 93.7 90.9 94.5 925 -
% Sel 1000 999 100.0 100.0 100.0 1000 34
PQL B 0907 0797 086l 0.995 0972 097 0.000
ESE 0489 0488 0319 007 0.16 0.197  0.000
% Sel 1000 789 95.9 100.0 1000 995 125
Bondell etal.  f° - 0238 0774 099 0964 098 0.001
ESE - 0223 0174 005 0.106  0.117 0.0l
% Sel - 765 100.0 100.0 100.0 1000 65
(120,6)  CD B,. 0993 0991 0993 0994 0996 0995  0.000
ESE 0.291 0197 oIl 0.05 0.103  0.I16 0023
CovP(%) 938 94.0 93.1 93.9 94.3 93.1 -
% Sel 100.0 100.0 100.0 100.0 100.0 1000 39
cD-S B 0993 0988 099 0992 0993 0992  0.000
ESE 0.291 0.198 0.l 0.05 0.104 0116 0017
CovP(%)  93.7 94 93 93 94.1 932 .
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.96
PQL B 1.021 0936 0957 0999 0988  0.998 ~0.001
ESE 0347 0333 0.9 0055  O.II 0.128  —0.00l
% Sel 100 916 99.6 100.0 100.0 1000 77
Bondell etal.  f° - 0.351 0.834 1008 0992 0978  0.002
ESE . 0.188 0132 0052 0.l 0.118 0002
% Sel - 95.5 100.0 100.0 100.0 1000 73
(500,6)  CD- B, 1.001 0999 0999 0998 1.002 1.001 0.000
ESE 0.142 0094 0052 0024 0049 0053  0.007
CovP(%) 942 95.4 95.5 93.8 95 94.7 -
% Sel 100.0 100.0 100.0 100.0 100.0 100.0 15
cD-S B 1.001 0999 0998 0997 1.001 1.001 0.000
ESE 0.142 0094 0052 0024 0049 0053  0.005
CovP(%) 942 953 955 936 95.1 94.7 -
% Sel 100.0 100.0 100.0 100.0 100.0 1000 06
PQL B 1023 099 0991 099 0995 1000 0.000
ESE 0.141 0.106 0055 0025  0.05I 0054  0.000
% Sel 100.0 100.0 100.0 100.0 100.0 1000 06

PQL: penalized quasi-likelihood; ESE: empirical standard error.
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Table 2. Linear mixed model: Random effect selection.

(n,m) Yo 3 1.6 1.2 0.2 0.57 0.8 04 Time (Mins)
(30,100  CD- 7o 3.066 1609 1.189  0.194 0508 0645 0.000  0.003 + 0.001
ESE 0467 0346 0200 0206 0.198 0.177  0.007
oV 0 . . . . . . -
CovP(%) 880 88.6 86.9 88.6 87.1 68.3
% Sel 1000 1000 1000 987 98.7 98.7 0.2
CD-S 7 3.066 1623 1200 0206 0558 0719  0.000  0.003 + 0.001
ESE 0467 0344 0200 0217 0207 0.163  0.029
CovP(%) 880 89.4 86.9 87.1 88.6 78.1 -
% Sel 1000 1000 1000 1000 1000 1000 0.7
rPQL et 2978 1587 1282 0206 0465 0920 0.060  0.332 + 0.474
ESE 0263 0225 051 0.156 0175 0.123  0.185
% Sel 99.5 99.5 99.5 99.5 99.5 99.5 0.0
Bondell etal. 7B 2935 1634 0259 1.089 0583 0652 0004 3.587 + I.119
ESE 0400 0318 0206 0227 0203 0.I56  0.005
% Sel 1000 1000 1000 1000 1000 1000 1.8
(60, 6) CD-J 7o 3116 1633 1207 0193 0511 0699 0000  0.004 + 0.00]
ESE 0353 0258 0.174 0.152 0165 0.I58  0.000
CovP(%) 838 90.1 84.6 91.6 87.4 76.6 -
% Sel 1000 1000 1000  99.7 99.7 99.7 0.0
CD-S i 3116 1660 1229 0214 0574 0794  0.027  0.003 + 0.001
ESE 0353 0257 0.174 0.167 0.171  0.144  0.175
CovP(%)  85. 90.2 85.1 89.5 88.4 87.4 -
% Sel 1000 1000 1000 1000 1000 1000 0.0
rPQL et 2978 1587 1282 0206 0465 0920 0.060  0.113 + 0.489
ESE 0263 0225 051 0.156 0175 0.123  0.185
% Sel 99.5 99.5 99.5 99.5 99.5 99.5 0.0
Bondell etal.  #B 3.011 1651 0228 1.149 0564 0728 0.0l 18.452 + 5.107
ESE 0283 0226 0.140 0.144 0.142 0.099  0.002
% Sel 1000 1000 1000 1000 1000 1000 04
(120,6)  CD4 7or 3.055  1.609 1202 0.193 0545 0744 0.000  0.009 + 0.002
ESE 0247 0180 0.114 0103 0.110 0.102  0.000
CovP(%) 862 89.9 88.3 94.0 92.1 83.0 -
% Sel 1000 1000 1000 1000 1000 1000 0.0
CD-S 7 3.055 1619 1209 0.099 0566 0772  0.000  0.005 + 0.001
ESE 0247 0.180 0114 0.107 0113 009 00I4
CovP(%) 862 89.6 89.2 92.8 91.9 88.4 -
% Sel 1000 1000 1000 1000 1000 1000 0.2
rPQL et 2990 1591 1272 0206 0466 0926 0.048  0.638 + 0.347
ESE 0204 0.163 0.105 0108 0.121 0079  0.140
% Sel 99.6 99.6 99.6 99.6 99.6 99.6 0.0
Bondell etal.  #B 3.062 1663 0237 1159 0594 0734 0.003 8625l + 19.771
ESE 0216 0172 0.103 0.8 0.123 0.088  0.004
% Sel 1000 1000 1000 1000 1000 1000 1.3
(500,6) CD- 7 pe 3.023 1608 1200 0202 0559 0782  0.000  0.034 + 0.004
ESE 0.117 0092 0056 0055 0055 0.047  0.000
CovP(%) 873 89.2 90.6 93.6 93.6 87.9 -
% Sel 1000 1000 1000 1000 1000 1000 0.0
CD-S 7 3.023 1611 1202 0204 0566 0791  0.000  0.020 + 0.003
ESE 0.117 0092 0056 0.055 0055 0047  0.006
CovP(%) 873 89.6 90.6 93.4 93.1 90.0 -
% Sel 1000 1000 1000 1000 1000  100.0  O.
rPQL preeL 2999 1576 1277 0202 0467 0945  0.000  43.226 + 7.230
ESE 0.107 0098 0051 0057 0046 0.040  0.096
% Sel 99.1 99.1 99.1 99.1 99.1 99.1 0.0

PQL: penalized quasi-likelihood; ESE: empirical standard error.
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Table 3. Random effect logistic regression model: Fixed effect selection.

(n,m) Method Bo | | I | | I 00 Time (Mins)
(30,100  CD- B,. 1394 1272 1260 1209 1278 1318 0004  0.078 + 0.036
ESE 1297 1.143 110l 0855 1386 1384  0.36l
CovP(%) 821 89 835 764 832 778 -
% Sel 1000 968 989 998 927 924 145
cD-S B 1394 1261 1251 1212 1273 1318 0002  0.078 = 0.036
ESE 1297  1.144 1101 0851 138 138 036l
CovP(%) 876 887 919 794 911 814 -
% Sel 1000 961 986 998 922 914 129
rPQL B 0718 0599 0570 0652 0547 0601 0001 0816+ 0.625
ESE 0381 0431 0353 0327 0487 0540 0.0l
% Sel 1000 774 825 83 660 655 7.0
gmmlasso  B° 0631 0343 0292 0334 021 0351 —0001  1.203 +0.398
ESE 0227 0.93 0197 0.193 0257 0252  —0.00I
% Sel 1000 937 872 914 599 8. 186
(80,100  CD- B,. 1048 1021 0998 1.001 1027 1013 0000  0.163+0.033
ESE 0331 0289 023 0.8 0333 0373 006
CovP(%) 884 902 8.1 892 906 893 -
% Sel 1000 1000 1000 1000 997 990 55
cD-S B 1048 102 0999  1.006 1029 1017 0000  0.163+0.033
ESE 0331 0289 0234 0.8 0332 0371 0.06
CovP(%) 908 933 919 925 940 934 -
% Sel 1000 999 1000 1000 996 989 45
rPQL B 0.664 0604 0619 0689 0642 0605 0000 0339+ 0.04]
ESE 0206 0238 0175 0.8 0344 0365  0.000
% Sel 1000 947 983 973 887 817 54
gimmlasso  B° 055 0409 0401 046 0375 0465 0.0 7.407 + 3471
ESE 0151 0013  OIIl  0.104 0192 0.I71 0.0l
% Sel 1000 1000 1000 1000 995 1000 43.4
(200,6)  CD- B,. 1046 1021 10l 0981 1005 0989  —000I  0.282 = 0.082
ESE 0392 0303 0293 02 0324 037 0055
CovP(%) 821 877 83 85 8.7 908 -
% Sel 1000 1000 1000 1000 999 999 45
cD-S B 1046 1023 1013 0987 1009 0995 0000  0.282 + 0.082
ESE 0392 0303 0292 02 0324 0369  0.054
CovP(%) 879 928 913 914 954 948 -
% Sel 1000 1000 1000 1000 999 999 32
rPQL B 0640 0524 0501 0591 0532 0505  0.00l 2.361 + 0.282
ESE 0.179 0280 0254 0265 0364 0377 0.0
% Sel 1000 854 876 886 798 732 46
(200,10)  CD- B,. 1014 1.009 0999 0988 0998 0983 0000  0.350 + 0.057
ESE 0206 0.071 0139 0012 0192 0210 0036
CovP(%) 872 903 872 908 913 915 -
% Sel 1000 1000 1000 1000 1000 1000 5.3
cD-S B 1014 1005 0995 0984 0994 0979 0000  0.350 + 0.057
ESE 0206 0.071 0137 O.Ill 0193 0211 0025
CovP(%) 896 937 914 932 946 938 -
% Sel 1000 1000 1000 1000 1000 1000 1.9
PQL B 0609 0415 0350 0463 0397 0359 0000  0.585+ 0.493
ESE 0076 0277 025 0310 0339 0309  0.000
% Sel 1000 748 733 733 644 652 27
gimmlasso  B° 049 0416 0439 0493 0442 0502 0.0 615 + 35.362
ESE 0094 0066 0069 0066 0.16 0098 0.0
% Sel 100 100 100 100 100 100 543

(continued)
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Table 3. Random effect logistic regression model: Fixed effect selection.

(n,m) Method Bo | I | | | 09 Time (Mins)
(500,6)  CD-J B,. 1008  1.008 1001 0983 0999 098 0000  0.546 + 0.09
ESE 0.126  0.105 0098 0.21 0062 0.105  0.020
CovP(%) 893 918 885 936 882 940 -
% Sel 1000 1000 1000 1000 1000 1000 3.6
cD-S B 1010 0995 0978 0971 0979 0966 0000  0.546 + 0.09
ESE 0.126  0.106 0098 0.121 0062 0.105 0010
CovP(%) 905 936 949 941 937 942 -
% Sel 1000 1000 1000 1000 1000 1000 14
PQL e 0609 0415 0350 0463 0397 0359 0000  33.08 + 3.608
ESE 0076 0277 0256 0310 0339 0309  0.000
% Sel 1000 748 733 733 644 652 27

PQL: penalized quasi-likelihood; ESE: empirical standard error.

rPQL method because the rpql package provided the flexibility to specify the penalty weight. In this section, we reported
results of ¢, = ¢,=1 for the CD-J and CD-S methods, and ¢, =¢,=4 for the rPQL method because of the better performance.

Scenario 1. For LMM, we showed the performance of the proposed CD-J and CD-S methods, and compared them with
the rPQL method and Bondell’s method. For the Bondell’s method, we did not show the intercept estimates because they
were not readily provided. Also, we did not continue with Bondell’s method for (n, m) = (500, 6) because of being unable
to complete the estimation process after 48 hours for a single try. For fixed effect selection using the CD-J and CD-S
methods (Table 1), results were vey similar. The estimates in both ﬁpr and ﬁ; were very close to the true values. The types
of covariates (e.g. continuous vs. binary, symmetric vs. right-skewed, and interactions) had little impact on the biasedness
of the estimates. The ESE, as expected, decreased with n. The coverage probability of 95% CI for the proposed CD-J and
CD-S was generally close to the nominal 95% level. For the performance of the variable selection, the selection of true
covariates by the CD methods was close to 100%. The noise covariates were selected but at a very low rate, especially
for large n. For the rPQL and Bondell’s methods, we noted that the first 3 fixed effect estimates in feL (+PQL) and pB
(Bondell’s method), whose corresponding covariates are associated with random effects, showed some bias from the true
values and low selection rate when the number of clusters # is moderately small (e.g. » = 30, 60), but the bias and selection
rate improved as n increased. For the random effect selections (Table 2), the parameter estimates of the proposed CD
methods were generally close to the true values; the ESE decreases with 7, and the coverage probability of 95% CI is close
to but slightly under the nominal 95% level. The selection rate of true covariates was nearly 100%. The noise covariates
were selected but at a very lower rate. The rPQL and Bondell’s methods were similar, too. In terms of the computation
time, the CD methods generally took less than (<) 1 minute, while the other two methods can take much longer, especially
when 7 is large (say, #» = 500). When # is moderate to large, the proposed CD methods can be an attractive and competitive
approach.

Scenario 2. For the random effects logistic regression models, we compared the CD methods with rPQL and glmmLasso!!
for the fixed effect selection (Table 3). Note that glmmLasso only performs the fixed effect selection. When we used
glmmLasso, we included the correct random-effect covariates in the models. For the CD methods, there was some bias in
the fixed effect estimates when # is small (e.g. n = 30), but the bias and ESE decreased with n. When # is 80 or more, the
bias becomes minimal. The coverage probability was lower than the nominal 95% level for small » (e.g. n = 30), largely
due to the bias of B e and B;, but improved as n increased. The performance of CD-S was slightly better than the CD-J, with
a slightly lower false selection rate and better coverage rate of the 95% CI. For both CD methods, the computation time
was primarily spent in deriving § and 2. The time to obtain f o ﬁ;, 7pc» and ¥ in the regularized estimation process was
minimal (« 1 minute). Compared to rPQL and glmmLasso, the bias of the estimates, the selection rate and computation
time, the CD methods were obviously better. For the random effect selection (Table 4), results were similar. For the CD
methods, there was some bias in the random effect estimates when # is small (e.g. » = 30). When » increased to 80 or more,
the bias became minimal. The selection rate was lower when n was small which resulted in lower coverage rate of the 95%
CIs. We also noticed that the selection rate of the random effect corresponding to x;;, was low. It might be because x;; ,
follows the exponential distribution with mean 1 and is right-skewed. After increasing m (e.g. (n, m) = (200, 6) increased
to (n,m) = (200, 10)) and/or increasing n, the selection rate and the probability coverage rate of the 95% Cls improved.
Compared to rPQL, the bias of the estimates and the selection rate of the CD methods were better.
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Table 4. Random effect logistic regression model: Random effect selection.

(n,m) Method Yo 1.73 0.69 1.23 0.46 0.15 0.88 0,4
(30, 10) CD- - 2.181 0.662 1.139 0.324 0.018 0.339 0.003
ESE 1.284 1.023 1.657 0.738 0.549 1.472 0.297
CovP(%) 79.9 81.9 73.1 275 239 27.9 -
% Sel 100.0 86.0 86.0 327 327 327 1.6
CcD-S P 2.181 0.770 1.375 0.476 0.074 0.493 0.003
ESE 1.284 1.047 1.629 0.839 0.662 1.507 0.297
CovP(%) 89.0 88.5 91.2 445 40.4 454 -
% Sel 100.0 96.2 96.2 50.5 50.5 492 1.6
rPQL L 1.127 0.421 0.651 0.300 0.126 0.261 0.000
ESE 0.070 0.105 0.133 0.132 0.194 0.170 0.014
% Sel 90.0 86.6 87.7 69.4 68.5 70.8 60.1
(80, 10) CD-J ¥ pe 1.761 0617 1.037 0316 0.060 0.455 0.000
ESE 0.293 0.289 0.299 0.315 0.212 0.403 0.000
CovP(%) 87.9 91.4 77.4 61.8 61.3 60.5 -
% Sel 100.0 99.6 99.6 63.6 63.6 63.6 0.0
CD-S P 1.761 0.677 1.145 0417 0.096 0.632 0.000
ESE 0.293 0.301 0.288 0.340 0.271 0.419 0.000
CovP(%) 92.9 94.0 88.6 747 732 76.8 -
% Sel 100.0 100.0 100.0 78.1 78.1 78.0 0.0
rPQL et 1.108 0416 0.597 0.291 0.091 0.235 0.006
ESE 0.180 0211 0212 0.222 0.281 0.220 0.156
% Sel 99.3 97.3 97.3 84.3 84.0 84.3 41.4
(200, 6) CD-J 7o 1.740 0.636 1.031 0.356 0.067 0.507 0.000
ESE 0.250 0.242 0.287 0315 0.205 0.407 0.006
CovP(%) 83.2 89.3 69.5 63.4 66.3 65.5 -
% Sel 100.0 99.9 99.9 68.7 68.7 68.7 0.1
CD-S P 1.740 0.695 1.127 0.456 0.103 0.666 0.000
ESE 0.250 0.248 0.278 0.326 0.257 0.417 0.006
CovP(%) 92.0 93.3 85.6 76.3 75.8 78.4 -
% Sel 100.0 99.9 99.9 81.0 81.0 81.0 0.1
rPQL L 1.108 0416 0.597 0.291 0.091 0.235 0.006
ESE 0.180 0211 0212 0.222 0.28I 0.220 0.156
% Sel 82.0 745 765 535 53.0 535 1.4
(200, 10) CD-J 7 pe 1.714 0.648 1.117 0.398 0.109 0.672 0.000
ESE 0.166 0.174 0.173 0.193 0.156 0.235 0.000
CovP(%) 89.3 92.2 785 85.5 91.6 729 -
% Sel 100.0 100.0 100.0 95.2 95.2 95.2 0.0
CD-S P 1.714 0.674 I.167 0.452 0.128 0.779 0.000
ESE 0.166 0.177 0.169 0.190 0.178 0.201 0.000
CovP(%) 93.8 93.9 89.2 92.7 92.7 90.9 -
% Sel 100.0 100.0 100.0 99.4 99.4 99.4 0.0
rPQL et 1.108 0.416 0.597 0.291 0.091 0.235 0.006
ESE 0.180 0211 0.212 0.222 0.281 0.220 0.156
% Sel 99.9 99.4 99.4 85.4 85.7 85.8 20.0
(500, 6) CD- 7 pe 1.714 0.648 1117 0.398 0.109 0.672 0.000
ESE 0.166 0.174 0.173 0.193 0.156 0.235 0.000
CovP(%) 89.3 922 785 85.5 91.6 729 -
% Sel 100.0 100.0 100.0 95.2 95.2 95.2 0.0
CcD-S 7S 1.714 0.674 1.167 0.452 0.128 0.779 0.000
ESE 0.166 0.177 0.169 0.190 0.178 0.201 0.000
CovP(%) 93.8 93.9 89.2 92.7 92.7 90.9 -
% Sel 100.0 100.0 100.0 99.4 99.4 99.4 0.0
rPQL et 0.985 0.384 0.545 0.245 0.056 0.174 0.000
ESE 0.093 0.134 0.156 0.242 0.230 0.130 0.000
% Sel 82.4 71.8 729 57.6 56.5 57.6 1.2

PQL: penalized quasi-likelihood; ESE: empirical standard error. @ CovP(%) calculated after excluding incorrect non-selections (0’s
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Table 5. Random effects poisson regression model: Fixed effect and random effect selections.

Fixed effects Method B I -1 -1 -1 -1 -1 0o Time (mins)
(30,100  CD- B,. 0990 —1.020 —0989 —-0999 —0988 —098 0001 0.113  0.090
ESE 0313 0292 0209 0028 0098 0079 0012
CovP(%) 946 903 91.3 86.0 719 76.3 ,
% Sel 1000 1000 1000 1000 1000 1000 58
cos B 0990 —1.019 -0988 -0998 -0987 —0985 0.000 0.13 + 0.090
ESE 0313 0292 0209 0028 0098 0079  0.008
CovP(%) 946  90.6 91.3 86.6 90.6 87.0 -
% Sel 1000 1000 1000 1000 1000 1000 1.7
Pl BT 1107 —0964 —0938 —0996 —0989 —1.001 0000 0062+ 0.0I3
ESE 0331 0308 0271 0042 0108 0119  0.000
% Sel 1000  97.9 99.1 1000  99.9 1000 09
(200,6)  CD B, 0991 —1.008 —1.000 —1.001 —1.004 —1.001 0.000 0.260 + 0.197
ESE 0.135 0.14 0087 0014 0044 0037 0004
CovP(%) 943  93.1 93.9 91.0 77.6 87.8 ;
% Sel 1000 1000 1000 1000 1000 1000 2.l
cos B 0991 —1.008 —1.000 —1000 —1.003 —1.001 0000 0.260 + 0.19
ESE 0.135 0114 0087 0014 0044 0037 0003
CovP(%) 947  93.I 94.7 91.8 95.9 93.9 -
% Sel 1000 1000 1000 1000 1000 1000 08
QL p 1000 —1.000 —1006 —0998 —0997 —0999 0000 2971 +0.716
ESE 0135 0113  0.100  00I13 0027 0030  0.000
% Sel 1000 1000 1000 1000 1000 1000 02
(500,6)  CD B, 1000 —1.000 -0997 —1.000 —1.003 —1.002 0000 0.565 % 0.190
ESE 0079 0064 0056 0007 0029 0022 0002
CovP(%) 949  97.7 92.2 95.9 75.1 85.3 ;
% Sel 1000 1000 1000 1000 1000 1000 0.7
cos B 1000 0999 —-0997 —1.000 —1.003 —1.002 0000 0.565 + 0.190
ESE 0079 0064 0056 0007 0029 0022 0.0l
CovP(%) 949  97.7 92.2 96.3 94.9 91.7 .
% Sel 1000 1000 1000 1000 1000 1000 0.2
QL P 1009 —1.003 -0999 —0999 —0999 —0998 0.000 43.025 + 7.323
ESE 0082 0067 0056 006 0018 0007  0.000
% Sel 1000 1000 1000 1000 1000 1000  100.0
Random effects Yo 1.73 0.69 1.23 0.46 0.15 0.88 04
(30,10)  CD 7 e 1703 0679 1136 0416  0.36 0722  0.000
ESE 0267 0257  0.163 0204  0.85  0.35  0.000
CovP(%) 896 923 84.3 91.0 90.6 732 0.0
% Sel 1000 1000 1000 1000 1000 1000 -
cos 7 1703 0693 1165 0445  0.147 0800  0.000
ESE 0267 0260  0.163 0212 098  0.I32  0.000
CovP(%) 896 943 88.3 93.6 89.0 86.0 ;
% Sel 1000 1000 1000 1000 1000 1000 0.0
rPQL et 1.573  0.631 1.143 0.387 0.156 0.761 0.001
ESE 0247 0276  0.76 0233  0.197  0.168  0.034
% Sel 1000 1000 1000 1000 1000 1000 00
(200,6)  CD- 7 e 1727 0684 1216 0453  0.38 0839  0.000
ESE 0.101  0.106 0074 0085 0075 0063 0.0l
CovP(%) 955 939 89.8 95.1 94.7 85.3 .
% Sel 1000 1000 1000 1000 1000 1000 00
cos 7 1727 0688 1224 0461  0.141 0859  0.000
ESE 0.101 0.107 0074 008 0077 0061 0.0l
CovP(%) 955  95.1 90.2 9.7 93.5 89.8 ;
% Sel 1000 1000 1000 1000 1000 1000 00

(continued)
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Table 5. Random effects poisson regression model: Fixed effect and random effect selections.

Fixed effects Method B, | -1 -1 -1 -1 -1 00 Time (mins)
rPQL et 1.626  0.652 1.191 0426 0.I55 0842 0.000
ESE 0.093 0.106 0.072 008 0.078 0.060 0.000
% Sel 99.8 99.8 99.8 99.8 99.8 99.8 0.0
(500,6) CD-) 7 or I.716 0681 1227 0446 0.145 0856 0.000
ESE 0.067 0.068 0.047 0060 0.048 0.040 0.000
CovP(%) 922 94.0 94.0 90.8 94.0 88.0 -
% Sel 100.0 100.0 1000 1000 1000 100.0 0.0
CD-S f'sp I.716 0683 1231 0450 0.147 0865 0.000
ESE 0.067 0.068 0.046 0061 0.049 0.040 0.000
CovP(%) 922 94.5 95.4 92.6 94.0 90.8 -
% Sel 1000 100.0 1000 1000 1000 100.0 0.0
rPQL et 1.629 0.652 1200 0428 0.148 0848 0.000
ESE 0.061 0.065 0.040 0054 0.047 0.035
% Sel 99.5 99.5 99.5 99.5 99.5 99.5 0.0

PQL: penalized quasi-likelihood; ESE: empirical standard error.

Scenario 3. For the random effects Poisson regression models (Table 5), the fixed effect and random effect estimates of
CD-J, CD-S and rPQL methods were very close to the true values. The selection rate of true covariates was close to 100%,
and nearly no noise covariates was selected by all three methods. Compared to rPQL, the computation time of the CD
methods was shorter, especially when # is large.

6 Applications: Data analysis

We applied the proposed CD approach to the two longitudinal cancer studies that motivated our methods. Regression
coefficient estimates were reported and the 95% Cls by the CD methods were calculated based on the oracle properties in
Theorems 2 and 3. Moreover, we used ¢,=¢,=1 in the CD methods, and ¢,=¢,=4 in the rPQL method, based on the results
from simulation studies.

Data Example 1. This study longitudinally measured the tumor volume during the cycles of radiation therapy in 111 patients
with unresectable, locally advanced, non-small cell lung cancer (NSCLC). Most patients were treated with concurrent
chemoradiation therapy (CRT) as it offers much improved survival outcomes, compared to a sequential combination of
chemotherapy followed by radiation therapy.*! To measure the response to CRT, the cone beam computed tomography, as
part of the image guided radiation therapy and known to have higher precision, has been used to measure the tumor volumes.
The investigators were interested in knowing which demographic and clinical factors are associated with shrinkage of tumor
volume over the treatment cycles. We then fitted the linear mixed model and applied the proposed CD methods.

Data with 777 observations from the 111 NSCLC patients were included in the data analysis. The outcome variable,
tumor volume, was log-transformed to ensure normality. Potential covariates considered for the fixed effect selection
included Weeks (weeks from the start of radiation cycle), Age (age when radiation therapy started), Gender (women vs.
men), smoking (yes vs. no), mean lung dose, and Lung V20. Mean lung dose (MLDGy) measured how much radiation
dose the normal lung tissues have received, and Lung V20 (LungV20) was the portion of normal lung volume that received
20 Gy of radiation dose. Weeks and MLDGy were considered for the random effect selection. All continuous variables
were standardized to have mean 0 and variance 1. In order to evaluate the performance of the proposed methods , we have
randomly generated 2 noise variables following standard normal distribution and included them to the fixed effect selec-
tion. One of these noise variables was also included in the random effect selection. Results were summarized in Table 6.
For the fixed effect selection by the CD-J method, the randomly generated noise variables were not selected. Weeks, Age,
Gender, MLDGy, and LungV20 were selected. Specifically, the selected fixed effect estimates suggested that tumor volume
decreased with Weeks (ﬁp, = —0.114, 95% CI: [-0.126,—0.102]), and was larger in men than women (ﬁp, =0.477,95%
CI:[0.010,0.943]). The mean tumor size also increased with MLDGy (ﬁm = 0.689, 95% CI: [0.004, 1.373]) and decreased
with LungV20 (ﬁm = —0.499, 95% CI: [—1.177,0.180]). Random intercept (I";, = 1.190, 95% CI: [1.188, 1.192]) and

random slope for Weeks (f,; = 0.000, 95% CI: [0.000, 0.000], and "), = 0.062, 95% CI: [0.062,0.063]) were selected,
suggesting a positive within-person correlation and a heterogeneous effect by Weeks. Results from CD-S were similar. We
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Table 6. Linear mixed model analysis of lung cancer data.

CD-J method CD-S method rPQL Bondell et al.

Fixed effects . (95% ClI) B (95% Cl) i B
Intercept 3.572 (2.742, 4.403) 3.869 (3.537, 4.202) 3.909 -
Weeks -0.114 (—0.126, —0.102) —-0.111 (-0.123, —-0.099) —-0.110 —-0.112
Age (in years) 0.125 (—0.106, 0.356) 0.087 (—0.131, 0.304) 0 0
Gender (men vs. women) 0.477 (0.010, 0.943) 0.588 (0.168, 1.008) 0.592 0.430
Smoking (yes vs. no) Yes 0 0 0 3.948
MLDGy 0.689 (0.004, 1.373) 0.860 (0.238, 1.482) 0.146 0.177
LungV20 —0.499 (—1.177,0.180) —0.635 (—1.259, —-0.010) —0.092 0
Noise | 0 0 0 0
Noise 2 0 0 0 0
Random effects

P e (95% Cl) 7 (95% Cl) prhat 7B
Intercept (') 1.190 (1.188, 1.192) 1.244 (1.242 1.246) 1.308 1.521
Weeks (I'y)) 0.000 (0.000, 0.000) 0.002 (0.001, 0.002) 0.003 0.004
Weeks (I'y;) 0.062 (0.062, 0.063) 0.062 (0.061, 0.063) 0.051 0.060
MLDGy (I3, '3, I'33) 0 0 0 0
Noise | (F4| N F42, F43, F44) 0 0 0 0

PQL: penalized quasi-likelihood; Cl: confidence interval; MLD: mean lung dose.

also applied the rPQL and Bondell’s methods to this dataset. Neither of these methods selected the noise variables. The
rPQL didn’t select Age in the fixed effect. Bondell’s method did not select Age but selected Smoking. For the random
effect selection, all four methods selected the same random effects.

Data Example 2. Patients with early-stage breast cancer are commonly treated with breast-conserving therapy (BCT), which
includes lumpectomy followed by radiation therapy. Prior studies with long-term follow-up have demonstrated equivalent
overall survival in those treated with lumpectomy and radiation, compared with those who underwent mastectomy.*>43
Because mammographic alterations after BCT can mimic or hide tumor recurrence, they become clinically relevant when
unnecessary biopsies or delayed diagnoses occur. Then this study longitudinally followed up the mammographic changes
in early-stage breast cancer patients after BCT, and is interested in identifying covariates associated with the incidence or
changes of common mammographic sequelae.**

Data from 89 patients with a total of 605 longitudinally measured observations were included in the data analysis.
Among several image parameters, we fitted a random effects logistic regression model with calcification (yes vs. no) as
the dependent variable, and applied the proposed CD-S method to select fixed effects from the following covariates: age
(years), years from radiation therapy, African Americans (yes vs. no), Her2/neu positive (yes vs. no), adjuvant chemo and/or
hormonal therapy (yes vs. no), smoking (yes vs. no), bilateral disease (yes vs. no) and 2 unrelated and randomly generated
standard normal noise variables. Potential covariates for the random effect selection included the intercept, age, and the two
unrelated noise variables that were also included in the fixed effect selection. All continuous variables were standardized
to have mean 0 and variance 1. Results were summarized in Table 7. For the fixed effect selection, the randomly generated
noise variables were not selected. Age, years since radiation therapy, African Americans, Her2/neu positive, and Bilateral
Disease were selected. For instance, estimates of the selected fixed effects suggested that the risk of calcification increased
with age (ﬁpr = 4.035, 95% CI: [2.579, 5.492]), years since radiation therapy (ﬁpr = 1.270, 95% CI: [0.824,1.717]), and
was lower in African Americans (/?pr = —4.330, 95% CI: [-7.199, —1.462]). For random effects, age (I",; = 6.002, 95%
CI:[3.095,8.910], and I",, = 5.049, 95% CI: [2.657, 7.442]) was selected, in addition to the random intercept (I",; = 3.374,
95% CI: [2.125,4.622]), suggesting a positive within-person correlation and a heterogeneous effect by age. Results from
the CD-S method were similar. We applied the rPQL and glmmLasso methods to this dataset. Because glmmLasso only
performs the fixed effect selection, we only included the intercept and age as random effects in the model and reported
the parameter estimates for reference. The rPQL method selected the same fixed effect covariates as the CD-S method,
but did not select any random effects. The method of glmmLasso selected more fixed effect covariates. The magnitude of
the selected fixed effect coefficient estimates of these two methods were generally smaller than that by the CD methods,
consistent with the observations from the simulation studies.
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Table 7. Random effects logistic regression model analysis of calcification data.

Fixed effects CD-J method CD-S method rPQL glmmLasso
. (95% ClI) g (95% CI) s B
Intercept 4614 (2.482, 6.748) 4.615 (3.118, 6.112) 1.251 1.361
Age 4.035 (2.579, 5.492) 4.022 (2.031, 6.013) 0.442 0.954
Years from radiation therapy 1.270 (0.824, 1.717) 1.259 (0.768, 1.749) 0.446 0916
African Americans —4.330 (—7.199, —1.462) —4.315 (—7.884, —0.745) —2.054 —2.889
Her2/neu positive —1.969 (—3.418, —0.520) —1.877 (—3.336, —0.418) —0.965 —1.265
Bilateral disease 1.915 (—0.494, 4.325) 1.790 (—0.854, 4.434) 0.778 0814
Smoking 0 0 0 0.457
Adjuvant therapy 0 0 0 0.502
Noise | 0 0 0 —0.060
Noise 2 0 0 0 0
Random effects - (95% ClI) 7 (95% Cl) preaL 7€
Intercept (') 3.374 (2.125, 4.622) 3.184 (1.488, 4.879) 0 2.160
Age (T'y)) 6.002 (3.095, 8.910) 5.955 (0.935, 10.975) 0 0.117
Age (I'yy) 5.049 (2.657, 7.442) 5.022 (1.914, 8.129) 0 1.385
Noise | (F3|,F32,F33) 0 0 0 0
Noise 2 (F4|,F42,F43,F44) 0 0 0 0

PQL: penalized quasi-likelihood; CI: confidence interval.

7 Discussion

In this paper, we propose a regularized estimation approach using the confidence distributions of model parameters to
select both fixed and random effects in GLMMs. Specifically, we propose to construct and optimize the objective functions
based on the confidence distributions of model parameters, as opposed to the objective functions typically constructed from
the likelihood function using the observed data. This can greatly alleviate the computational burden in approximating the
integral in the log marginal likelihood function in the regularization step.

We started from showing that the log marginal likelihood function, after integrating out the random effects, can be
approximated by the log confidence density of the model parameters based on the asymptotic distribution of the MLEs. As
a result, we propose the CD-joint estimation method by constructing the objective functions using the confidence density,
as opposed to the observed data likelihood function. Because the joint confidence density of the fixed effect and random
effect parameters is a multivariate normal density, the parameters of the joint distribution and the marginal distribution
are the same. Therefore, we propose the CD-separate estimation method by constructing the objective functions based on
the marginal confidence density corresponding to the fixed effect and random effect parameters, respectively. In spite that
the CD-joint estimators and CD-separate estimators are different estimators, the true values of the underlying parameters
of these estimators are the same. With a proper choice of regularization parameters in the adaptive LASSO framework,
we show that the proposed estimators have consistency and oracle properties. Based on the asymptotic properties of the
proposed estimators and our simulation studies, when the sample size (i.e. the number of independent cluster, ) is large,
our methods generally performed well and do not require to refit a GLMM model after the variable selection step. However,
when 7 is small, we noticed that our methods may result in bigger bias and false selection rate (e.g. n = 30 and m = 10 in
the simulation studies of random effect logistic regression analysis). Thus, similar to Hui et al.,'® we recommend the hybrid
estimation approach, e.g. refitting a GLMM model using REML after the variable selection step, to improve the finite sample
performance. Moreover, because GLMM typically requires the assumption that the random effects follow a multivariate
normal distribution with mean 0, we applied this assumption in our simulation studies to assess the performance of the
proposed methods. In case this assumption is violated and the random effects are following a right-skewed distribution
with non-zero means, it is likely to cause biased GLMM estimates and affect the asymptotic distributions of the estimators.
Because the proposed CD methods are built upon the asymptotic distributions of the GLMM estimators, we expect the
performance of our methods will be negatively affected due to the deviation from this assumption.

The proposed CD methods require obtaining the GLMM estimates in order to apply the confidence distribution approach
and perform the variable selections, while other methods, e.g. the Bondell’s® method, may not require this condition,
and some may only need good initial estimates to implement their methods, e.g. the rPQL!® method. To implement our
methods in practice, one may construct the proposed objective functions by using existing software packages (e.g. 1me4
package in R and Proc Glimmix in SAS) that provide readily available solutions of @ and £. Then optimizing the proposed
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objective functions to obtain the regularized estimators no longer involves the numerical approximation of the integral in the
log marginal likelihood function, and thus boosts computational efficiency. Moreover, optimizing the proposed objective
functions in the regularized estimation process can also use existing software packages without the need to develop new
computational algorithms specific to GLMM.

When the data are independent, the proposed CD-J method generally does not work due to the singularity of the joint
variance-covariance of the fixed and random effect parameter estimates. For the proposed CD-S method, the fixed effect
selection still works well, but the random effect selection does not, due to the same singularity issue of the variance-
covariance of the random effect estimates. Therefore, we recommend to apply our methods when the dependent variables
are correlated and the GLMM analysis can produce meaningful random effect estimates.

Due to the asymptotic normality property of the MLE, we notice that the proposed CD-based objective functions take
the similar forms to the objective function based on the LSA proposed by Wang and Leng* for the generalized linear
models. Simulation studies demonstrate the consistency, oracle properties and computational efficiency, especially when
the number of independent clusters # is large. The coverage probability of the 95% CI seemed to be lower than the nominal
95% level in some cases. Replacing £ by other consistent estimators of ¥, for instance, the robust sandwich variance
estimator*>#¢ might improve the coverage probability.

For future work, we will extend our method to the framework of generalized estimating equation approach*’ for corre-
lated outcome data. The extension to other likelihood-based approaches for complex modeling, such as the joint analysis
of survival and longitudinal data analysis, will also be explored.
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Appendix A: Proof of Theorem |

(1) Since the objective function Q(0) is strictly convex in 6, a local consistent minimizer is the global consistent mini-
mizer. Therefore, it suffices to show the existence of a local consistent minimizer, then the estimation consistency follows
immediately. Following Fan and Li** and letting u = (1, uy, uy, ... Uy, Vi Vi, V;H )T, where u,’s and v, are scalar, for

1=0,1,2,... sy and VrTn’s are vectors of length m, form = 2,3, ...,p, + 1. Let p = length(6). The existence of a local
consistent minimizer is implied by the fact that for any given e > 0, there exists a large constant C such that

n—oo

lim P{ it 06+ n12u) > Q(OO)} >l—¢ (8)

where ||a|| = (a”a)'/? for a column vector a.
To show this, consider

00, +n'?u) — 0(6,)

Py
= 'S u+ 20"ET {020, — )} + 1 Y o1y + 1 gl — 1By

f=1
1
+1 3 2, (1Y om + 172,11 = 1Yol D
m=2
A—1 A—1 A _
>u'E u+20"E (020, -0} +n D pp(1Bo + 1 Purl = 1By
{f:Bor#0}
1 D 2, (l¥om + 17,1 = 1YoulD)

{m:y0,#0}

> uTﬁ]_lu + 2uTﬁ}_1 {n‘/2(00 - 9)} —n Z pfln_l/zuf|
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~—1 ~—1 A
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followed by By, = 0, vy, = 0, the triangle inequality, a,, = max{p;,j < f,} and a,, = max{t;,j < ry}. According to

1/2

P P A & . .
the conditions n'/“a,, — 0 and n!/ 2am — 0, the third term in (9) is 0,(1). Because 6 and 2 are consistent estimators

of @ and Z, respectively, the second term in (9) is bounded by 2C| |)§_1n1/ 20, — 0)||, which is linear in C with a coeffi-
cient 2| |ﬁ1_1n1/ 20, — 0)|| = 0,(1). As X and its estimate ¥ are positive semidefinite, the first term in (9) is larger than

;Jmm(fl_l)C2 —P> ymin(Z_l)Cz, where y,,;,(.) refers to the minimal eigenvalue. It follows that, with probability going to 1,
the first term in (9) is larger than ;4,,”-,1(21_1)C2 which is quadratic in C. By choosing a sufficiently large C, the first term
dominates the other two terms with arbitrarily large probability. Hence, by choosing a sufficiently large C, (8) holds and
the proof of estimation consistency is completed.

(2) The selection consistency can be shown by contradiction. To show Pr(f pep =0and g, , =0) - 1, we show that

~

Pr(ﬁpTJ = 0) - 1foranyf, <j < p;and Pr(§,,,, = 0) — 1 forany r, < m < p, + 1. Suppose f,. ;
Jo <J < py, then by definition

# 0 for some

17200(0)

A—1 A A A
o5 o=0, = 28, n'/%(0,. = 0) + ' psgn(B,. ;) = 0 (10)
J

Al o1 . .. . . .
where z 5, Tepresents the row vector of X  corresponding to the position of g; and sgn(.) is the sign function. It can
) .
P
be shown that the first term on the right hand side of (10) is O,(1). Based on the condition n'/ 2bf’n — o0, we have

P .
n'2p; > n'?h, , — oco. Then to satisfy ('10), with probability tending to 1, §,,; = 0, which contradicts the assumed
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condition that ﬁpr ; # 0. As aresult, with probability tending to 1, i p
for some r, < m < p, + 1, then by definition

.; = 0forany f, <j < p,. Similarly, suppose . ,, # 0

Y pT,m

00(0 o A A
n~!/2 X )Igzgh =2X ylm)nl/z(ep, - 0)+n'?z,

4 =0 (11)
Y ¢ "N pemll

o1 . e o1 . o
where Z(y ) Tepresents the submatrix consisting of of the row vectors of X corresponding to the position of y,,. It can

P
be shown that the first term on the right hand side of (11) is O,(1). Based on the condition n'/ zbr,n — o0, we have
P
n'2z, > n'/ zbr’n —> oo. Then to satisfy (11), with probability tending to 1, ¥,, ,, = 0, which contradicts the assumed
condition that ¥ ,, ,, # 0. As a result, with probability tending to 1, .. ,, = 0 for any ry < m < p, + 1. This completes the
proof of selection consistency.
(3) To prove the oracle property, we first ease the notation within the scope of this proof, by re-arranging 6, 6, and 6 .,

according to the order of 6, = (Gga, ng =077, such that 6 = (95, HbT)T and @W = (éﬂg, 9MZ)T. Similarly, we use X and

3 to represent the re-arranged matrices according to the order of parameters in 0,. Moreover, we decompose X and (Z)!

into block matrices as:
h)) X Q Q
Y= aa ab , (z)—l =Q= < aa ab>
<Eba 2bb> Q,, Qy

where M, is the leading a X a submatrix of M. Decomposing Q(8), we have

00) = (6 - 0" [nQ1(0 — 0) + nx,(B) + nx(y)

-G & 8{0)-6)

fo 7o Pr 1
+n Y plBl+n Y Iy, l+n Y plBl+n Y, 7,7, |l
J=1 m=2 J=fo+1 m=ry+1
Taking partial derivative of Q(0) and evaluating at the global minimizers, by definition, we have
00(0) A A A R A
o7 R =2nQ,0,. ,—0,)+2nQ,0-06,+nDO, ,)=0 12)
a 0= pT.a
(%)
A _ A A A ?PT,Z ?:r,r T : Va p—
where D(0,, ,) = (p15gn(B,; 1), p258n(By.2)s --- ,pﬁ)sgn(ﬁp%), sz’ s Ty, ”ymz D Reorganize (12), we have 6, , =

0, +(©Q,)"'Q,,0, —1/2(Q,,)"'D@,, ), which leads to

pra

P00 = 00) = 120, = 00) + (Qus) Qs =1/2(Qus) DO, (13)

P P P P
According to the condition n'/?a,, — 0 and n'/?a,,, — 0, we have n'/?p; < n'?a;, — 0 and n'/*z,, < n'/a,,— 0.
Thus the third term in (13) is 0,(1). Then, we can rewrite (13) as

A A\l A 0 —
n'2(®,,, - 6y,) = {1, (€u) Qab} /2 (95 _93a> +0,(1) (14)
b

0,-6,,\ P Zo Z
1/2 a Oa 0 aa ab
)= G E)

Given that
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A P L P
and that Q ,— Q,_,, Q,,— Q, (14) can be derived into

aa’

1/2/9 D -1 Eaa Eab -1 T
n (ea -0 a) N <O5 { la Qaa Qa } < 19 (Q) Qa

0 ( ) b . Zp { aa b}
Providing the fact that

Q= Qaa Qab _ A _"“‘zab(zbb)_1
Q. Qy —(Ep) By Epp) T (B) T E AT (Byy) !

where A = (T, — Z,,(Z;,)"'Z,,)7". It then follows that Q'Q,, = —X ,(Z,,)~". Then the proof of the oracle property is
completed by verifying that

- > X - T
{l’ (Qaa) 1 Qab} <E:Z Zzz) {1’ (Qaa) 1 Qab}

_ _ 1
= {Zau + (Qaa) 1 Qabzba’zab + (Qaa) ls—zabz"bb) { (Q )—1 Q . }

= 2aa - zab(zbb)_lzba - 2abzab(zbb)_1 + 2abzab(zbb)_l
= 2tm - 2ab(zbb)_lzba

= ([®™,,)" = ([@)“]wou,ym,@)_l
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