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Generalized linear mixed models are commonly used to describe relationships between correlated responses and covari-

ates in medical research. In this paper, we propose a simple and easily implementable regularized estimation approach to

select both fixed and random effects in generalized linear mixed model. Specifically, we propose to construct and opti-

mize the objective functions using the confidence distributions of model parameters, as opposed to using the observed

data likelihood functions, to perform effect selections. Two estimation methods are developed. The first one is to use

the joint confidence distribution of model parameters to perform simultaneous fixed and random effect selections. The

second method is to use the marginal confidence distributions of model parameters to perform the selections of fixed

and random effects separately. With a proper choice of regularization parameters in the adaptive LASSO framework, we

show the consistency and oracle properties of the proposed regularized estimators. Simulation studies have been con-

ducted to assess the performance of the proposed estimators and demonstrate computational efficiency. Our method

has also been applied to two longitudinal cancer studies to identify demographic and clinical factors associated with

patient health outcomes after cancer therapies.

Keywords

Confidence distribution, generalized linear mixed model, variable selection, regularization, adaptive Lasso

1 Introduction

Generalized linear mixed models (GLMMs) are a commonly used class of models to describe the relationship between

correlated responses and covariates in biomedical research. Researchers often want to determine the fixed effects and (or)

the random effects of covariates for the outcome variables from a pool of covariates using the variable selection approaches.

Our study is motivated by two longitudinal cancer studies. The first study longitudinally measures tumor size in lung cancer

patients during the cycles of radiation therapy. The second study followed up with breast cancer patients for the incidence

of common mammographic sequelae after they received breast-conserving surgery and radiation therapy. To account for

the intra-patient correlation among repeatedly measured outcomes, GLMM analyses have been employed for both studies.

To gain insight about patients’ prognostics and health management, both studies aim to identify important demographic

and clinical covariates that may predict the outcomes as fixed effects. Selections of random effects are also considered to

evaluate heterogeneous effects.
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In the statistical literature, several variable selection approaches for the GLMM have been proposed. For instance, the

selection using the information criterion,1–5 e.g. Akaike information criterion or Bayesian information criterion (BIC), etc,

has been commonly used to determine the final model among a number of candidate models. For the popular regularized

estimation approach, some methods are proposed to select both fixed and random effects for the linear mixed models

(LMMs),6–9 and some for the GLMM.10 Some approaches emphasize on the selection of fixed effects only,11,12 and some

focus on the selection of random effects only.13 In general, these methods are computationally extensive and complicated,

primarily due to the complexity of optimizing the objective function constructed from the marginal likelihood function

of the observed data. In the typical GLMM estimation process, the marginal likelihood function involves the integration

with respect to the distribution of the random effects. Except for the LMM with normal responses and identity link, the

marginal likelihood function generally does not have a closed-form solution and is typically approximated using numerical

methods.14–18 With the addition of penalty terms to the marginal likelihood function, optimizing the objective functions

can be even more computationally challenging (see the GLMM regularized estimation approaches referenced above as

examples). Recently, Hui, Müeller and Welsh19 proposed a penalized quasi-likelihood (PQL) estimation for GLMM by

approximating the marginal likelihood using the quasi-likelihood function, with sparsity inducing penalties on both fixed

and random effect coefficients. Their simulation studies demonstrated much improved computational efficiency, compared

to some existing methods.

In this paper, we propose a regularized estimation based on the confidence distribution approach.20 The seed idea of

the confidence distribution could be traced back to Bayes21 and Fisher.22 However, the concept and its applications have

advanced extensively in recent years.23,25,24,26 The confidence distribution can be viewed as a sample—DIFadd-dependent

distribution function, and used to estimate and provide statistical inference for a parameter of interest.27 Rather than opti-

mizing the objective functions based on the likelihood function using observed data, we propose to construct and optimize

the objective functions using the confidence distributions of model parameters, based on the asymptotic distribution of

the model parameter estimators.20 Because the confidence distribution of the model parameters is a multivariate normal

distribution, we demonstrate that the objective function using the marginal likelihood function of the observed data can be

approximated by the objective function constructed from the joint confidence distribution of the model parameters. Then,

based on the joint and marginal confidence distributions of the model parameters, we propose two regularized estimations

to perform simultaneous and separate selections of fixed and random effects, respectively. With proper choices for the

regularization parameters, we show that the proposed estimators have the properties of estimation consistency, selection

consistency, and the oracle property. Because the confidence distributions considered in our paper are based on the asymp-

totic distributions of the maximum likelihood estimators (MLEs), we consider finite-dimensional variable selections of the

fixed and random effects as the asymptotic distributions of these MLEs are typically established for finite dimensions. Our

approach may not be applicable for high dimensional variable selections of the fixed and random effects.

To the best of our knowledge, there are only a limited number of tools that perform GLMM regularized variable selec-

tions (e.g. the R packages rpql19 for GLMM joint fixed and random effect selection, glmmLasso11 for GLMM fixed

effects selection only, and the R code of Bondell’s method6 for LMM fixed and random effect selections, available at

https://blogs.unimelb.edu.au/howard-bondell/). Therefore, the availability of tools to perform computationally efficient

regularized estimation for GLMM is highly desirable. As demonstrated later, our methods are simple, computationally

efficient, and can be easily implemented using existing software packages without the need to develop new algorithms

specific to GLMM.

The rest of this paper is organized as follows. In Section 2, we provide a brief review of the statistical inference in GLMM.

In Section 3, we delineate the rationale of the proposed regularized estimation approach using confidence distribution and

establish the statistical properties of the proposed regularized estimators. In Section 4, we discuss the implementation of

the optimization method and the determination of tuning parameters. In Sections 5 and 6, we present simulation results and

apply the proposed methods to the two examples of cancer studies. We conclude this paper with a discussion in Section 7.

2 Generalized linear mixed models

Consider a sample of n independent clusters. Let yi = (yi1, yi2,… , yimi
)T and yij denote the jth measurement of the ith

cluster, where i = 1, 2,… , n, and j = 1, 2,… , mi. Let xij be a (pf + 1)-variate vector of covariates corresponding to the

fixed effects, and zij be a (pr + 1)-variate vector of covariates corresponding to the random effects. Both xij and zij include

1 for the intercept. Typically, zij is a subset of xij. Conditional on the random effects bi, we assume that the responses y′
ij
s

follow a distribution of the exponential family with conditional mean �ij through the link function g(⋅) given by

g(�i) = �i = X i� + Z i�bi (1)
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where �i = (�i1,�i2,… ,�imi
)T , � = (�0, �1,… , �pf

)T is the fixed effect regression coefficients, bi is a vector of random

effects assumed to follow a multivariate normal distribution Npr+1(0, Ipr+1) with variance-covariance Ipr+1 being a (pr +

1)× (pr +1) identity matrix, and � is a (pr +1)×(pr +1) Cholesky decomposition lower triangular matrix depending on the

parameter � such that �bi follows N (pr+1)(0, D) and D = ��T . Moreover, we assume that � is a vector consisting of the row

elements of the lower triangular components of � such that the length of � is (pr + 1)(pr + 2)∕2. For simplicity, we assume

the canonical link such that g(�i) = �i. Consider pf < ∞ and pr < ∞ such that both � and � are of finite dimensions. The

model parameters � = (�T , �T ,�)T can be estimated by maximizing the marginal likelihood of y by integrating out bi,

(�; y) =

n∏

i=1
∫ fy|b(yi|bi;�)f (bi;�)dbi (2)

where � is the dispersion parameter, fy|b(yi|bi;�) denotes the conditional density function of Y i|bi, and f (bi;�) denotes the

marginal density of bi. Note that the parameters of interest are �and �. Define the MLE of � by

�̂ = (�̂
T

, �̂T , �̂)T = argmax
�

log(�; y)

Let �0 denote the true value of �. Under mild regularity conditions, �̂ is consistent and
√

n(�̂− �0)→
D N(0,�(�)), where

�−1(�) = limn→∞ (�), (�) = −n−1�2 log(�; y)∕����T , and �(�) is consistently estimated by �̂ = 
−1(�̂).28,29

3 Proposed regularized estimations

3.1 Construction of objective function

Variable selection using regularized approach has achieved much success in recent decades. Typically, the objective function

is constructed from the observed data likelihood function plus the penalty functions for model parameters. Let

Qo(�) = − log(�; y) + n�o
�
(�) + n�o

�
(�)

and define the regularized estimator �̂
o

��
=argmin� Qo(�), where �o

�
(�) and �o

�
(�) are penalty terms that control the sparsity

for the estimates of � and � to select appropriate fixed effects and random effects, respectively. Because the integral in

(�; y) generally does not have a closed-form solution, various approaches have been proposed to tackle this computa-

tional challenge to estimate �, including the methods for the commonly used GLMM estimations,14,15,18 and the methods

for the regularized LMM or GLMM estimations.6,10,12,19 To alleviate such a computational complexity in the regularized

estimation process, we propose to perform the regularized estimation by optimizing the objective function constructed from

the confidence distribution based on the MLE �̂.

Inference based on the confidence distribution has been extensively studied in the statistical literature (see literary

works30,20,31 and the references therein for a comprehensive review). In short, a confidence distribution can be viewed as

a sample dependent distribution function that can be used to estimate and provide all aspects of statistical inference for

a parameter of interest. This useful feature has been applied in Liu, Liu and Xie24 for meta-analysis and Tian, Wang and

Cai et al.25 for joint inference about a set of constrained parameters in survival analysis. Then, based on Singh, Xie and

Strawderman20 and Liu et al.,24 we write the confidence density of the parameter � according to the asymptotic distribution

of �̂:

h(�) =
1

(2�)p∕2

{
det

(
n−1�̂

)}1∕2
× exp

{
−

1

2
(�̂ − �)T

(
n−1�̂

)−1

(�̂ − �)

}
(3)

where p denotes the length of � and det(C) is the determinant of a matrix C. Note that h(�) is a multivariate normal density.

Taking the logarithm of h(�), we get

− log[h(�)] =
1

2
(�̂ − �)T

(
n−1�̂

)−1

(�̂ − �) + c (4)
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where c is some constant free of �. Consider the following approximation. It can be seen that

n−1 log(�; y) ≈ n−1 log(�̂; y) + n−1(� − �̂)T
{

�

��T
log(�)

}
|�=�̂

+ 1∕2(� − �̂)T
{

n−1 �2

��T� �
log(�)

}
|�=�̂(� − �̂)

= n−1 log(�̂; y) + 1∕2(� − �̂)T �̂
−1
(� − �̂)

= − n−1 log[h(�)] + c′

since � log(�; y)∕��T |�=�̂ = 0 and constant c′ = n−1 log(�̂; y)−c is free of �. Thus n−1Qo(�) ≈ n−1 log[h(�)]+�o
�
(�)+

�o
�
(�)+c′. This motivates us to construct the following objective function Q(�) to approximate Qo(�) to perform regularized

estimation using the confidence density − log[h(�)] in (4). Specifically, let

Q(�) = (�̂ − �)T
(

n−1�̂

)−1

(�̂ − �) + n��(�) + n��(�) (5)

Note that the objective function Q(�) takes the same form as the objective function of the least squares approximation

(LSA) approach proposed by Wang and Leng32 for the generalized linear models. Define the regularized estimator by

�̂�� = argmin
�

Q(�) (6)

It is interesting to notice the connection of our method with some methods that estimate � by optimizing Qo(�). For instance,

Ibrahim et al.10 estimates � by optimizing Qo(�) using a Monte Carlo EM algorithm that involves a Markov chain Monte

Carlo sampling approach to approximate log(�; y); Hui et al. (2017) uses a quasi-likelihood to approximate log(�; y)

to estimate �. Our method approximates log(�; y) using the log confidence density, − log[h(�)], to estimate �. Note that,

in our method, performing the numerical approximation of the integration in log(�; y) is only required to derive �̂ and

�̂, which can be achieved using existing software packages (e.g. Proc Glimmix in SAS, and lme4 package in R). Once

�̂ and �̂ are obtained, constructing and optimizing Q(�) to estimate � no longer involves the numerical integration in

log(�; y). Thus, the computational burden is greatly alleviated and the computational efficiency is much improved. In

Sections 4 and 5, we discuss how to perform the optimization of Q(�) using existing software packages and demonstrate

the computational efficiency of our method using simulation studies.

3.2 Statistical properties of the proposed estimator

To facilitate statistical inference (e.g. deriving the confidence intervals (CIs)), one may consider to use the adaptive

LASSO33 or the smoothly clipped absolute deviation (SCAD)34 penalty functions for ��(⋅) and ��(⋅). In this paper, we focus

on the adaptive LASSO framework. With little effort, SCAD regularization can be adopted in our proposed procedure. To

be specific, we consider the following objective function:

Q(�) = (�̂ − �)T
(

n−1�̂

)−1

(�̂ − �) + n

( pf∑

f =1

�f |�f | +
pr+1∑

m=2

�m||�m||
)

by choosing the adaptive LASSO with ��(�) =
∑pf

f =1
�f |�f | for the fixed effect selection, where �′

f
sare the adaptive weights

that control the penalty with respect to |�f |, for f = 1, 2,… , pf . For the random-effect selection, we use the adaptive group

LASSO, following the rationale by He et al.35: Let �m denote the mth row of �, then �m�
T
m
= Dmm which is the mth variance

component of the random effects �bi, for m = 1, 2,… , pr + 1. Note that �m = 0 ⇔ Dmm = Dmh = Dhm = 0 for all h;

that is, if �m = 0, then the variance and covariance elements of �bi involving (�bi)m are also 0. As a result, if a row vector

�m is not selected, the random effect (�bi)m and the corresponding component in z are excluded from the model and the

positive-definitiveness of D is preserved. Thus, the adaptive group LASSO penalty is chosen as ��(�) =
∑pr+1

m=2
�m||�m|| and

�′
m

s are the adaptive weights corresponding to ||�m||, where || ⋅ || denotes the L2 norm of a vector. Note that the summation

starts from m = 2 to keep the random intercept and preserve the within-subject correlation. Moreover, the parameter � can

be expressed as � = (�1, �T
2

,… , �T
m
)T .
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Without loss of generality, we assume that only the first f0 fixed effect covariates xij and the first r0 random effect

covariates zij, both including the intercepts, are informative. Therefore, we write the true value of � by �0 = (�T
0

, �T
0

,�)T ,

where �0 = (�T
0a

, �T
0b

= 0T ) and �0 = (�T
0a

, �T
0b

= 0T ) such that �0a = (�01, �02,… , �0,f0
)T with �0j ≠ 0 for j = 1, 2,… , f0,

and �0a corresponds to the first r0 rows in the lower triangle of � and each of these r0 row vectors is non-zero. Similarly,

�̂�� = (�̂
T

��
, �̂T

��
, �̂��)

T , �̂�� = (�̂
T

��,a
, �̂

T

��,b
)T , and �̂�� = (�̂T

��,a
, �̂T

��,b
)T .

Obviously, Q(�) is strictly convex in �. We establish the consistency and oracle properties of �̂�� in Theorem 1.

Theorem 1. Let af ,n = max{�j, j ≤ f0}, bf ,n = min{�j, j > f0}, ar,n = max{�j, j ≤ r0}, and br,n = min{�j, j > r0}. Then the

regularized estimator �̂�� satisfies the following as n → ∞:

(1) (Estimation consistency) If n1∕2af ,n

P
←←←←←←→ 0 and n1∕2ar,n

P
←←←←←←→ 0, �̂��

P
←←←←←←→ �0;

(2) (Selection consistency) If n1∕2af ,n

P
←←←←←←→ 0, n1∕2ar,n

P
←←←←←←→ 0, n1∕2bf ,n

P
←←←←←←→ ∞, and n1∕2br,n

P
←←←←←←→ ∞, Pr(�̂��,b = 0 and

�̂��,b = 0) → 1.

(3) (Oracle property) Let �0a = (�T
0a

, �T
0a

,�0)
T and �̂��,a = (�̂

T

��,a
, �̂T

��,a
, �̂0)

T . If n1∕2af ,n

P
←←←←←←→ 0, n1∕2ar,n

P
←←←←←←→ 0, n1∕2bf ,n

P
←←←←←←→ ∞,

and n1∕2br,n

P
←←←←←←→ ∞, then n1∕2(�̂��a − �0a)

D
←←←←←←←→  (0, [(�−1)�0a

]−1), where (�−1)�0a
is the submatrix of �(�)−1 correspond-

ing to true non-zero �0a.The variance [(�−1)�0a
]−1 can be consistently estimated by [ ̂(�

−1
)�0a

]−1, where ̂(�
−1
)�0a

is the

submatrix of �̂
−1

corresponding to �0a.

A sketch of the proof is provided in the Appendix.

3.3 An alternative estimation

Recall that the objective function Q(�) is built by the confidence density h(�) in (3), according to the joint asymptotic

distribution of �̂. Note that h(�) is a multivariate normal density. The true values of the means in the joint distribution are

the same as those in the marginal distributions. Therefore, we propose another estimation based on the marginal confidence

densities with respective to � and � in (3) to separately estimate � and �. These marginal confidence densities correspond

to the marginal asymptotic distributions of the MLEs �̂ and �̂, respectively. We refer the previous estimation as the CD-

joint estimation, and the following estimation as the CD-separate estimation. To proceed, we propose to construct separate

objective functions for �̂ and �̂ in the following:

Qf (�) = (�̂ − �)T [n−1�̂�]
−1(�̂ − �) + n

pf∑

f =1

�f |�f |

Qr(�) = (�̂ − �)T [n−1�̂�]
−1 (�̂ − �) + n

pr+1∑

m=2

�m||�m||

where �̂� and �̂� are submatrices of �̂ corresponding to the marginal variance-covariance of �̂ and �̂, respectively. Define

the regularized estimators as �̂
s

�
=argmin� Qf (�) and �̂s

�
=argmin� Qr(�). The CD-separate estimation allows for the flexi-

bility of performing the selection of fixed effects only or the selection of random effects only, and enables the performance

of fixed- and (or) random-effect selections in case only �̂, �̂� , �̂,and �̂� are available by convenience.

As noted previously, the true values of the underlying parameters � and � in the joint distribution of �̂ and �̂ in h(�) are

the same as those in the individual marginal distributions of �̂ and �̂ in h(�), respectively. Therefore, the true values of �

and � for the estimators based on the CD-joint estimation and CD-separate estimation are the same, although the CD-joint

estimators and CD-separate estimators are different estimators. Recall that �0 and �0 are expressed as �0 = (�T
0a

,�T
0b

= 0T )T

and �0 = (�T
0a

, �T
0b

= 0T )T . Similarly, we write �̂
s

�
= (�̂

s

�,a
T , �̂

s

�,b
T )T and �̂s

�
= (�̂s

�,a
T , �̂s

�,b
T )

T
. Obviously, both Qf (�) and

Qr(�) are convex in � and �, respectively. We establish the consistency and oracle properties for �̂
s

�
and �̂s

�
as follows.

Theorem 2. Let af ,n = max{�j, j ≤ f0}, and bf ,n = min{�j, j > f0}. Then the regularized estimator �̂
s

�
satisfies the following

as n → ∞:

Jerry Cheng
Highlight

Jerry Cheng
Highlight



6 Statistical Methods in Medical Research 0(0)

(1) (Estimation consistency) If n1∕2af ,n

P
←←←←←←→ 0, �̂

s

�

P
←←←←←←→ �0;

(2) (Selection consistency) If n1∕2af ,n

P
←←←←←←→ 0, and n1∕2bf ,n

P
←←←←←←→ ∞, Pr(�̂

s

�,b
= 0) → 1.

(3) (Oracle property) If n1∕2af ,n

P
←←←←←←→ 0, and n1∕2bf ,n

P
←←←←←←→ ∞, then n1∕2(�̂

s

�,a
− �0a)

D
←←←←←←←→  (0, [(�−1

�
)�0a

]−1), where (�−1
�
)�0a

is the submatrix of �−1
�

corresponding to �0a.The variance [(�−1
�
)�0a

]−1 can be consistently estimated by [(�̂
−1

�
)�0a

]−1,

where ̂(��

−1
)�0a

is the submatrix of �̂
−1

�
corresponding to �0a.

Theorem 3. Let ar,n = max{�j, j ≤ r0}, and br,n = min{�j, j > r0}. Then the regularized estimator �̂s
�

satisfies the following

as n → ∞:

(1) (Estimation consistency) If n1∕2ar,n

P
←←←←←←→ 0, �̂s

�

P
←←←←←←→ �0;

(2) (Selection Consistency) If n1∕2ar,n

P
←←←←←←→ 0, and n1∕2br,n

P
←←←←←←→ ∞, Pr(�̂s

�,b
= 0 ) → 1.

(3) (Oracle Property) If n1∕2ar,n

P
←←←←←←→ 0, and n1∕2br,n

P
←←←←←←→ ∞, then n1∕2(�̂s

�,a
−�0a)

D
←←←←←←←→  (0, [(�−1

�
)�0a

]−1), where (�−1
�
)�0a

is the

submatrix of �−1
�

corresponding to �0a.The variance [(�−1
�
)�0a

]−1 can be consistently estimated by [(�̂
−1

�
)�0a

]−1, where

̂(��

−1
)�0a

is the submatrix of �̂
−1

�
corresponding to �0a.

The proofs for Theorems 2 and 3 are similar to that for Theorem 1, thus are omitted.

Although the dispersion parameter � is often a nuisance parameter and thus omitted in the previously described separate

estimation, it can actually be included, for instance, by combining � with �. Then we modify Qr(�) by Q∗
r
(�,�) given below,

based on the (marginal) joint distribution of �̂ and �̂ in (3):

Q∗
r
(�,�) =

(
�̂ − �

�̂ − �

)T

[n−1�̂��]
−1

(
�̂ − �

�̂ − �

)
+ n��(�)

where �̂�� is the variance-covariance of �̂ and �̂.

4 Optimization and determination of tuning parameters

To obtain �̂�� via optimizing Q(�), we follow the method of Zhang and Lu36 and rewrite the objective function Q(�) as

Q(�) = (Λ� − Ψ)T (Λ� − Ψ) + n��(�) + n��(�) (7)

where Ψ = Λ�̂ , and Λ can be obtained using the singular value decomposition such that (n−1�̂)−1 = ΛTΛ. Then the

function in (7) is a typical convex optimization problem and can be solved by standard software packages, for instance,

the R packages glmnet37 and gglasso.38 The same approach can also be applied to optimize Qf (�), Qr(�), and Q∗
r
(�,�).

For instance, let Ψ� = Λ� �̂ and Ψ� = Λ� �̂, where Λ� and Λ� are obtained using the singular value decomposition

such that [n−1�̂�]
−1 = ΛT

�
Λ� and [n−1�̂�]

−1 = ΛT
�
Λ� . As a result, Qf (�) = (Λ�� − Ψ�)

T (Λ�� − Ψ�) + n��(�) and

Qr(�) = (Λ�� −Ψ�)
T (Λ�� −Ψ�) + n��(�), respectively. In our simulations and data analysis, we used R package gglasso

to optimize Q(�), Qr(�), and Q∗
r
(�,�), and glmnet to optimize Qf (�).

Typically, the tuning parameters �f ’s and �m’s can be chosen using the approaches of cross validation or generalized

cross validation. But, these methods can be computationally extensive. With the simple solution suggested by Zou,33 we

consider �f = �|�̂f |−�f and �m = �||�̂m||−�r for the CD-joint estimation method, and �f = �f |�̂f |−�f and �m = �r||�̂m||−�r

for the CD-separate estimation method, for f = 1, 2,… , pf and m = 2, 3,… , pr + 1, where �̂f and �̂m are the maxi-

mum likelihood estimates for �f and �m, respectively, and �f and �r are pre-specified positive numbers. In the CD-joint

method, the adaptive LASSO penalties for the fixed effects and random effects are linked by the tuning parameter � > 0.

The CD-separate estimation allows each of the fixed- and random-effect selections to have its own tuning parameter to

control the shrinkage. Because the MLEs �̂f ’s and �̂m’s are
√

n-consistent, it can be verified that the tuning parameters

considered above satisfy the conditions required by Theorems 1, 2, and 3, provided that n1∕2� → 0, n(1+�f )∕2� → ∞,

and n(1+�r)∕2� → ∞ as well as n1∕2�f → 0, n(1+�f )∕2�f → ∞, n1∕2�r → 0 and n(1+�r)∕2�r → ∞. Thus it suffices to
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select � ∈ R+ = [0,∞), �f ∈ R+ = [0,∞) and �r ∈ R+ = [0,∞). Therefore, to determine �, �f , and �r, we consider

to minimize BIC, per recommendations by prior research.32,40 Specifically, for the CD-joint estimation, we define the

BIC as: BIC�� = n(�̂�� − �̂)T �̂
−1
(�̂�� − �̂) + (log n)(df� + df�), where df� is the number of non-zero coefficients in �̂�� ,

and df� is the number of groups with non-zero within-group coefficients �̂�� . For the CD-separate estimation, we define

BICf ,� = n(�̂
s

�
− �̂)T �̂

−1

�
(�̂

s

�
− �̂) + (log n)df� for optimizing Qf (�), and BICr,� = n(�̂s

�
− �̂)T �̂

−1

�
(�̂s

�
− �̂) + (log n)df� and

BIC∗
r,�

= (
�̂ − �

�̂ − �
)T [n−1�̂��]

−1(
�̂ − �

�̂ − �
) + (log n)df� for optimizing Qr(�) and Q∗

r
(�,�), respectively.

5 Simulation studies

We conducted simulation studies to examine the performance of the proposed CD methods and compared them with the

methods by Hui et al.19 (rpql R package), Bondell et al.6 (available at https://blogs.unimelb.edu.au/howard-bondell/), and

the method of Groll et al.11 (glmmLasso R package). Hui et al.19 and Bondell et al.6 used adaptive Lasso penalties. Groll

et al.11 used the Lasso penalty. We applied these methods because either the R packages or the R code are publicly avail-

able. Data were simulated under 3 scenarios (i.e. LMM, random effects logistic regression models, and random effects

Poisson models) according to model (1), with results summarized in Tables 1 to 5. Moreover, we have extended our meth-

ods to nested random effects in GLMM, with detailed descriptions of model specifications and simulation results in the

Supplemental Materials.

In Scenario 1, we generated y′
ij
s from the LMM such that yij|bi follows N(xT

ij
�+zT

ij
�bi, �

2) with � = �2 = 1. In Scenario

2, we simulated binary data from the random effects logistic regression model. In Scenario 3, we simulated count data for

the random effects Poisson model with a log link. In all three scenarios, we chose pf = 15 for fixed effects and pr = 3 for

random effects. The true value for � was �0 = (16, 010) for LMM and random effects logistic regression models (Scenarios

1 and 2), and �0 = (1,−15, 010) for random effects Poisson models (Scenarios 3). The true 4 × 4 random effect covariance

matrix D is given by vech(D) = (9, 4.8, 0.6, 0; 4, 0.9, 0; 1, 0; 0) for Scenario 1, and vech(D) = (3, 1.2, 0.8, 0; 2, 0.5, 0; 1, 0; 0)

for Scenarios 2 and 3, i.e. only the first three components of zij, including the random intercept, are informative. As a

result, we express the corresponding Cholesky decomposition lower triangular matrix by showing the row elements in

the lower triangle as � = (3; 1.6, 1.2; 0.2, 0.57, 0.8; 04) for Scenario 1 and � = (1.73; 0.69, 1.23; 0.46, 0.15, 0.88; 04) for

Scenarios 2 and 3. In each scenario, we considered varying numbers of clusters n and cluster size m. Covariates xij =

(1, xij,1, xij,2,… , xij,pf
)T and zij = (1, zij,1, zij,2,… , zij,pr

)T , for pf = 15 and pr = 3, were generated from a mix of continuous,

categorical (binary) variables and interactions of continuous and categorical variables. Specifically, xij,1, xij,3, xij,6 ∼ xij,8

are generated from the standard normal distribution, xij,2, xij,12 ∼ xij,14 were generated from exponential distribution with

mean 1 (exponential(1)), xij,4, xij,9 ∼ xij,11 were generated from Bernoulli (0.4) distribution; xij,4 and xij,15 are interaction

terms with xij,5 = xij,1 ∗ xij,4 and xij,15 = xij,6 ∗ xij,9. Moreover, zij,l = xij,l, for l = 1, 2, 3. All continuous covariates were

standardized to have mean 0 and variance 1.

For the proposed methods, we refer CD-joint and CD-separate estimations as CD-J and CD-S, respectively. We showed

the mean of the estimates, empirical standard error (ESE), percentage of selection (% Sel), and the average computation

time (Time (mins)). For the proposed CD methods, coverage probability of 95% CIs (CovP) was calculated based on the

oracle properties in Theorems 1 to 3. In addition to the CD methods, we also fitted the GLMM models to obtain the model

estimates as initial values to implement the method of Hui et al.19 (referred to as the rPQL method), following the examples

in Hui.39 When we calculated the computation time, we included the time for fitting the GLMM models, when applicable,

as well as the time of the regularization process, including the determination of tuning parameters. The R lme4 package

was used to derive the GLMM estimates. For the CD-J and CD-S, the tuning parameters �, �f , and �r were determined from

10�, where � went from −4 to 4 by 0.01 (801 values in total). For the rPQL method, we used the function lseq(), provided

by the rpql package,39 to determine the tuning parameters from (0, 100] using syntax “lseq(1e − 6, 102, length = 200)”

(200 values in total). Several ranges wider than (0, 100] were applied, each for 50 − 100 simulation runs, and results were

similar. For glmmLasso, the tuning parameters were chosen from 10�, where � went from −4 to 4 by 0.08 (101 values in

total). We applied different ranges and different numbers of tuning parameters for the CD-methods, rPQL and glmmLasso

methods, with CD-methods using the most number of tuning parameters. Because the computation time of the rPQL and

glmmLasso methods was longer, especially for large n’s, we determined to use smaller numbers of tuning parameters for

these methods to facilitate the progress of the simulation studies, after trying various ranges of tuning parameters and

making sure results were similar.

Moreover, we performed additional simulations to examine the impact of �f and �r (see results in the Supplemental

Materials). Specifically, we considered the values of �f and �r to be 0.25, 1 and 4 for the proposed CD-J, CD-S, and the
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Table 1. Linear mixed model: Fixed effect selection.

(n, m) Method �0 1 1 1 1 1 1 010

(30, 10) CD-J �̂�� 1.011 0.996 0.986 0.996 0.997 0.992 0.000

ESE 0.565 0.388 0.199 0.071 0.146 0.156 0.042

CovP(%) 93.0 92.4 93.9 93.0 94.1 93.9 -

% Sel 100.0 99.8 100.0 100.0 100.0 100.0 8.0

CD-S �̂
s

�
1.011 0.99 0.98 0.99 0.991 0.987 0.000

ESE 0.565 0.391 0.201 0.071 0.147 0.157 0.030

CovP(%) 92.6 92.0 93.5 92.6 93.7 93.5 -

% Sel 100.0 99.2 100.0 100.0 100.0 100.0 4.0

rPQL �̂
rPQL

0.916 0.791 0.87 0.998 0.987 0.976 0.000

ESE 0.473 0.500 0.318 0.061 0.137 0.166 0.000

% Sel 100.0 76.1 95.8 100 100 99.8 7.9

Bondell et al. �̂
B

- 0.176 0.681 0.988 0.932 0.937 0.001

ESE - 0.249 0.257 0.069 0.158 0.174 0.001

% Sel - 45.2 99.2 100.0 100.0 100.0 6.1

(60, 6) CD-J �̂�� 0.979 0.979 0.997 0.991 0.99 0.994 −0.001

ESE 0.417 0.286 0.148 0.073 0.142 0.166 0.037

CovP(%) 93.4 92.8 93.8 91.6 94.5 92.9 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 6.6

CD-S �̂
s

�
0.979 0.973 0.992 0.986 0.984 0.989 −0.001

ESE 0.417 0.288 0.149 0.074 0.143 0.167 0.028

CovP(%) 93.4 92.7 93.7 90.9 94.5 92.5 -

% Sel 100.0 99.9 100.0 100.0 100.0 100.0 3.4

rPQL �̂
rPQL

0.907 0.797 0.861 0.995 0.972 0.97 0.000

ESE 0.489 0.488 0.319 0.07 0.16 0.197 0.000

% Sel 100.0 78.9 95.9 100.0 100.0 99.5 12.5

Bondell et al. �̂
B

- 0.238 0.774 0.996 0.964 0.981 0.001

ESE - 0.223 0.174 0.051 0.106 0.117 0.001

% Sel - 76.5 100.0 100.0 100.0 100.0 6.5

(120, 6) CD-J �̂�� 0.993 0.991 0.993 0.994 0.996 0.995 0.000

ESE 0.291 0.197 0.11 0.05 0.103 0.116 0.023

CovP(%) 93.8 94.0 93.1 93.9 94.3 93.1 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 3.9

CD-S �̂
s

�
0.993 0.988 0.99 0.992 0.993 0.992 0.000

ESE 0.291 0.198 0.11 0.05 0.104 0.116 0.017

CovP(%) 93.7 94 93 93 94.1 93.2 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.96

rPQL �̂
rPQL

1.021 0.936 0.957 0.999 0.988 0.998 −0.001

ESE 0.347 0.333 0.196 0.055 0.11 0.128 −0.001

% Sel 100 91.6 99.6 100.0 100.0 100.0 7.7

Bondell et al. �̂
B

- 0.351 0.834 1.008 0.992 0.978 0.002

ESE - 0.188 0.132 0.052 0.11 0.118 0.002

% Sel - 95.5 100.0 100.0 100.0 100.0 7.3

(500, 6) CD-J �̂�� 1.001 0.999 0.999 0.998 1.002 1.001 0.000

ESE 0.142 0.094 0.052 0.024 0.049 0.053 0.007

CovP(%) 94.2 95.4 95.5 93.8 95 94.7 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.5

CD-S �̂
s

�
1.001 0.999 0.998 0.997 1.001 1.001 0.000

ESE 0.142 0.094 0.052 0.024 0.049 0.053 0.005

CovP(%) 94.2 95.3 95.5 93.6 95.1 94.7 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.6

rPQL �̂
rPQL

1.023 0.996 0.991 0.996 0.995 1.000 0.000

ESE 0.141 0.106 0.055 0.025 0.051 0.054 0.000

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.6

PQL: penalized quasi-likelihood; ESE: empirical standard error.
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Table 2. Linear mixed model: Random effect selection.

(n, m) �0 3 1.6 1.2 0.2 0.57 0.8 04 Time (Mins)

(30, 10) CD-J �̂�� 3.066 1.609 1.189 0.194 0.508 0.645 0.000 0.003 ± 0.001

ESE 0.467 0.346 0.200 0.206 0.198 0.177 0.007

CovP(%) 88.0 88.6 86.9 88.6 87.1 68.3 -

% Sel 100.0 100.0 100.0 98.7 98.7 98.7 0.2

CD-S �̂s
�

3.066 1.623 1.200 0.206 0.558 0.719 0.000 0.003 ± 0.001

ESE 0.467 0.344 0.200 0.217 0.207 0.163 0.029

CovP(%) 88.0 89.4 86.9 87.1 88.6 78.1 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.7

rPQL �̂rPQL 2.978 1.587 1.282 0.206 0.465 0.920 0.060 0.332 ± 0.474

ESE 0.263 0.225 0.151 0.156 0.175 0.123 0.185

% Sel 99.5 99.5 99.5 99.5 99.5 99.5 0.0

Bondell et al. �̂B 2.935 1.634 0.259 1.089 0.583 0.652 0.004 3.587 ± 1.119

ESE 0.400 0.318 0.206 0.227 0.203 0.156 0.005

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.8

(60, 6) CD-J �̂�� 3.116 1.633 1.207 0.193 0.511 0.699 0.000 0.004 ± 0.001

ESE 0.353 0.258 0.174 0.152 0.165 0.158 0.000

CovP(%) 83.8 90.1 84.6 91.6 87.4 76.6 -

% Sel 100.0 100.0 100.0 99.7 99.7 99.7 0.0

CD-S �̂s
�

3.116 1.660 1.229 0.214 0.574 0.794 0.027 0.003 ± 0.001

ESE 0.353 0.257 0.174 0.167 0.171 0.144 0.175

CovP(%) 85.1 90.2 85.1 89.5 88.4 87.4 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

rPQL �̂rPQL 2.978 1.587 1.282 0.206 0.465 0.920 0.060 0.113 ± 0.489

ESE 0.263 0.225 0.151 0.156 0.175 0.123 0.185

% Sel 99.5 99.5 99.5 99.5 99.5 99.5 0.0

Bondell et al. �̂B 3.011 1.651 0.228 1.149 0.564 0.728 0.001 18.452 ± 5.107

ESE 0.283 0.226 0.140 0.144 0.142 0.099 0.002

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.4

(120, 6) CD-J �̂�� 3.055 1.609 1.202 0.193 0.545 0.744 0.000 0.009 ± 0.002

ESE 0.247 0.180 0.114 0.103 0.110 0.102 0.000

CovP(%) 86.2 89.9 88.3 94.0 92.1 83.0 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

CD-S �̂s
�

3.055 1.619 1.209 0.199 0.566 0.772 0.000 0.005 ± 0.001

ESE 0.247 0.180 0.114 0.107 0.113 0.096 0.014

CovP(%) 86.2 89.6 89.2 92.8 91.9 88.4 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.2

rPQL �̂rPQL 2.990 1.591 1.272 0.206 0.466 0.926 0.048 0.638 ± 0.347

ESE 0.204 0.163 0.105 0.108 0.121 0.079 0.140

% Sel 99.6 99.6 99.6 99.6 99.6 99.6 0.0

Bondell et al. �̂B 3.062 1.663 0.237 1.159 0.594 0.734 0.003 86.251 ± 19.771

ESE 0.216 0.172 0.103 0.185 0.123 0.088 0.004

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.3

(500, 6) CD-J �̂�� 3.023 1.608 1.200 0.202 0.559 0.782 0.000 0.034 ± 0.004

ESE 0.117 0.092 0.056 0.055 0.055 0.047 0.000

CovP(%) 87.3 89.2 90.6 93.6 93.6 87.9 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

CD-S �̂s
�

3.023 1.611 1.202 0.204 0.566 0.791 0.000 0.020 ± 0.003

ESE 0.117 0.092 0.056 0.055 0.055 0.047 0.006

CovP(%) 87.3 89.6 90.6 93.4 93.1 90.0 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.1

rPQL �̂rPQL 2.999 1.576 1.277 0.202 0.467 0.945 0.000 43.226 ± 7.230

ESE 0.107 0.098 0.051 0.057 0.046 0.040 0.096

% Sel 99.1 99.1 99.1 99.1 99.1 99.1 0.0

PQL: penalized quasi-likelihood; ESE: empirical standard error.
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Table 3. Random effect logistic regression model: Fixed effect selection.

(n, m) Method �0 1 1 1 1 1 1 010 Time (Mins)

(30, 10) CD-J �̂�� 1.394 1.272 1.260 1.209 1.278 1.318 0.004 0.078 ± 0.036

ESE 1.297 1.143 1.101 0.855 1.386 1.384 0.361

CovP(%) 82.1 83.9 83.5 76.4 83.2 77.8 -

% Sel 100.0 96.8 98.9 99.8 92.7 92.4 14.5

CD-S �̂
s

�
1.394 1.261 1.251 1.212 1.273 1.318 0.002 0.078 ± 0.036

ESE 1.297 1.144 1.101 0.851 1.386 1.383 0.361

CovP(%) 87.6 88.7 91.9 79.4 91.1 81.4 -

% Sel 100.0 96.1 98.6 99.8 92.2 91.4 12.9

rPQL �̂
rPQL

0.718 0.599 0.570 0.652 0.547 0.601 0.001 0.816 ± 0.625

ESE 0.381 0.431 0.353 0.327 0.487 0.540 0.001

% Sel 100.0 77.4 82.5 88.3 66.0 65.5 7.0

glmmLasso �̂
g

0.631 0.343 0.292 0.334 0.21 0.351 −0.001 1.203 ± 0.398

ESE 0.227 0.193 0.197 0.193 0.257 0.252 −0.001

% Sel 100.0 93.7 87.2 91.4 59.9 86.1 18.6

(80, 10) CD-J �̂�� 1.048 1.021 0.998 1.001 1.027 1.013 0.000 0.163 ± 0.033

ESE 0.331 0.289 0.236 0.189 0.333 0.373 0.06

CovP(%) 88.4 90.2 86.1 89.2 90.6 89.3 -

% Sel 100.0 100.0 100.0 100.0 99.7 99.0 5.5

CD-S �̂
s

�
1.048 1.02 0.999 1.006 1.029 1.017 0.000 0.163 ± 0.033

ESE 0.331 0.289 0.234 0.186 0.332 0.371 0.06

CovP(%) 90.8 93.3 91.9 92.5 94.0 93.4 -

% Sel 100.0 99.9 100.0 100.0 99.6 98.9 4.5

rPQL �̂
rPQL

0.664 0.604 0.619 0.689 0.642 0.605 0.000 0.339 ± 0.041

ESE 0.206 0.238 0.175 0.186 0.344 0.365 0.000

% Sel 100.0 94.7 98.3 97.3 88.7 81.7 5.4

glmmLasso �̂
g

0.55 0.409 0.401 0.46 0.375 0.465 0.001 7.407 ± 3.471

ESE 0.151 0.113 0.111 0.104 0.192 0.171 0.001

% Sel 100.0 100.0 100.0 100.0 99.5 100.0 43.4

(200, 6) CD-J �̂�� 1.046 1.021 1.01 0.981 1.005 0.989 −0.001 0.282 ± 0.082

ESE 0.392 0.303 0.293 0.2 0.324 0.37 0.055

CovP(%) 82.1 87.7 82.3 85.5 89.7 90.8 -

% Sel 100.0 100.0 100.0 100.0 99.9 99.9 4.5

CD-S �̂
s

�
1.046 1.023 1.013 0.987 1.009 0.995 0.000 0.282 ± 0.082

ESE 0.392 0.303 0.292 0.2 0.324 0.369 0.054

CovP(%) 87.9 92.8 91.3 91.4 95.4 94.8 -

% Sel 100.0 100.0 100.0 100.0 99.9 99.9 3.2

rPQL �̂
rPQL

0.640 0.524 0.501 0.591 0.532 0.505 0.001 2.361 ± 0.282

ESE 0.179 0.280 0.254 0.265 0.364 0.377 0.001

% Sel 100.0 85.4 87.6 88.6 79.8 73.2 4.6

(200, 10) CD-J �̂�� 1.014 1.009 0.999 0.988 0.998 0.983 0.000 0.350 ± 0.057

ESE 0.206 0.171 0.139 0.112 0.192 0.210 0.036

CovP(%) 87.2 90.3 87.2 90.8 91.3 91.5 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 5.3

CD-S �̂
s

�
1.014 1.005 0.995 0.984 0.994 0.979 0.000 0.350 ± 0.057

ESE 0.206 0.171 0.137 0.111 0.193 0.211 0.025

CovP(%) 89.6 93.7 91.4 93.2 94.6 93.8 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.9

rPQL �̂
rPQL

0.609 0.415 0.350 0.463 0.397 0.359 0.000 0.585 ± 0.493

ESE 0.076 0.277 0.256 0.310 0.339 0.309 0.000

% Sel 100.0 74.8 73.3 73.3 64.4 65.2 2.7

glmmLasso �̂
g

0.49 0.416 0.439 0.493 0.442 0.502 0.001 61.5 ± 35.362

ESE 0.094 0.066 0.069 0.066 0.116 0.098 0.001

% Sel 100 100 100 100 100 100 54.3

(continued)
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Table 3. Random effect logistic regression model: Fixed effect selection.

(n, m) Method �0 1 1 1 1 1 1 010 Time (Mins)

(500, 6) CD-J �̂�� 1.008 1.008 1.001 0.983 0.999 0.986 0.000 0.546 ± 0.091

ESE 0.126 0.105 0.098 0.121 0.062 0.105 0.020

CovP(%) 89.3 91.8 88.5 93.6 88.2 94.0 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 3.6

CD-S �̂
s

�
1.010 0.995 0.978 0.971 0.979 0.966 0.000 0.546 ± 0.091

ESE 0.126 0.106 0.098 0.121 0.062 0.105 0.010

CovP(%) 90.5 93.6 94.9 94.1 93.7 94.2 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.4

rPQL �̂
rPQL

0.609 0.415 0.350 0.463 0.397 0.359 0.000 33.081 ± 3.608

ESE 0.076 0.277 0.256 0.310 0.339 0.309 0.000

% Sel 100.0 74.8 73.3 73.3 64.4 65.2 2.7

PQL: penalized quasi-likelihood; ESE: empirical standard error.

rPQL method because the rpql package provided the flexibility to specify the penalty weight. In this section, we reported

results of�f =�r=1 for the CD-J and CD-S methods, and�f =�r=4 for the rPQL method because of the better performance.

Scenario 1. For LMM, we showed the performance of the proposed CD-J and CD-S methods, and compared them with

the rPQL method and Bondell’s method. For the Bondell’s method, we did not show the intercept estimates because they

were not readily provided. Also, we did not continue with Bondell’s method for (n, m) = (500, 6) because of being unable

to complete the estimation process after 48 hours for a single try. For fixed effect selection using the CD-J and CD-S

methods (Table 1), results were vey similar. The estimates in both �̂�� and �̂s
�

were very close to the true values. The types

of covariates (e.g. continuous vs. binary, symmetric vs. right-skewed, and interactions) had little impact on the biasedness

of the estimates. The ESE, as expected, decreased with n. The coverage probability of 95% CI for the proposed CD-J and

CD-S was generally close to the nominal 95% level. For the performance of the variable selection, the selection of true

covariates by the CD methods was close to 100%. The noise covariates were selected but at a very low rate, especially

for large n. For the rPQL and Bondell’s methods, we noted that the first 3 fixed effect estimates in �̂rPQL (rPQL) and �̂B

(Bondell’s method), whose corresponding covariates are associated with random effects, showed some bias from the true

values and low selection rate when the number of clusters n is moderately small (e.g. n = 30, 60), but the bias and selection

rate improved as n increased. For the random effect selections (Table 2), the parameter estimates of the proposed CD

methods were generally close to the true values; the ESE decreases with n, and the coverage probability of 95% CI is close

to but slightly under the nominal 95% level. The selection rate of true covariates was nearly 100%. The noise covariates

were selected but at a very lower rate. The rPQL and Bondell’s methods were similar, too. In terms of the computation

time, the CD methods generally took less than (≪) 1 minute, while the other two methods can take much longer, especially

when n is large (say, n = 500). When n is moderate to large, the proposed CD methods can be an attractive and competitive

approach.

Scenario 2. For the random effects logistic regression models, we compared the CD methods with rPQL and glmmLasso11

for the fixed effect selection (Table 3). Note that glmmLasso only performs the fixed effect selection. When we used

glmmLasso, we included the correct random-effect covariates in the models. For the CD methods, there was some bias in

the fixed effect estimates when n is small (e.g. n = 30), but the bias and ESE decreased with n. When n is 80 or more, the

bias becomes minimal. The coverage probability was lower than the nominal 95% level for small n (e.g. n = 30), largely

due to the bias of �̂�� and �̂
s

�
, but improved as n increased. The performance of CD-S was slightly better than the CD-J, with

a slightly lower false selection rate and better coverage rate of the 95% CI. For both CD methods, the computation time

was primarily spent in deriving �̂ and Σ̂. The time to obtain �̂�� , �̂s
�
, �̂�� , and �̂s

�
in the regularized estimation process was

minimal (≪ 1 minute). Compared to rPQL and glmmLasso, the bias of the estimates, the selection rate and computation

time, the CD methods were obviously better. For the random effect selection (Table 4), results were similar. For the CD

methods, there was some bias in the random effect estimates when n is small (e.g. n = 30). When n increased to 80 or more,

the bias became minimal. The selection rate was lower when n was small which resulted in lower coverage rate of the 95%

CIs. We also noticed that the selection rate of the random effect corresponding to xij,2 was low. It might be because xij,2

follows the exponential distribution with mean 1 and is right-skewed. After increasing m (e.g. (n, m) = (200, 6) increased

to (n, m) = (200, 10)) and/or increasing n, the selection rate and the probability coverage rate of the 95% CIs improved.

Compared to rPQL, the bias of the estimates and the selection rate of the CD methods were better.
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Table 4. Random effect logistic regression model: Random effect selection.

(n, m) Method �0 1.73 0.69 1.23 0.46 0.15 0.88 04

(30, 10) CD-J �̂�� 2.181 0.662 1.139 0.324 0.018 0.339 0.003

ESE 1.284 1.023 1.657 0.738 0.549 1.472 0.297

CovP(%) 79.9 81.9 73.1 27.5 23.9 27.9 -

% Sel 100.0 86.0 86.0 32.7 32.7 32.7 1.6

CD-S �̂s
�

2.181 0.770 1.375 0.476 0.074 0.493 0.003

ESE 1.284 1.047 1.629 0.839 0.662 1.507 0.297

CovP(%) 89.0 88.5 91.2 44.5 40.4 45.4 -

% Sel 100.0 96.2 96.2 50.5 50.5 49.2 1.6

rPQL �̂rPQL 1.127 0.421 0.651 0.300 0.126 0.261 0.000

ESE 0.070 0.105 0.133 0.132 0.194 0.170 0.014

% Sel 90.0 86.6 87.7 69.4 68.5 70.8 60.1

(80, 10) CD-J �̂�� 1.761 0.617 1.037 0.316 0.060 0.455 0.000

ESE 0.293 0.289 0.299 0.315 0.212 0.403 0.000

CovP(%) 87.9 91.4 77.4 61.8 61.3 60.5 -

% Sel 100.0 99.6 99.6 63.6 63.6 63.6 0.0

CD-S �̂s
�

1.761 0.677 1.145 0.417 0.096 0.632 0.000

ESE 0.293 0.301 0.288 0.340 0.271 0.419 0.000

CovP(%) 92.9 94.0 88.6 74.7 73.2 76.8 -

% Sel 100.0 100.0 100.0 78.1 78.1 78.0 0.0

rPQL �̂rPQL 1.108 0.416 0.597 0.291 0.091 0.235 0.006

ESE 0.180 0.211 0.212 0.222 0.281 0.220 0.156

% Sel 99.3 97.3 97.3 84.3 84.0 84.3 41.4

(200, 6) CD-J �̂�� 1.740 0.636 1.031 0.356 0.067 0.507 0.000

ESE 0.250 0.242 0.287 0.315 0.205 0.407 0.006

CovP(%) 83.2 89.3 69.5 63.4 66.3 65.5 -

% Sel 100.0 99.9 99.9 68.7 68.7 68.7 0.1

CD-S �̂s
�

1.740 0.695 1.127 0.456 0.103 0.666 0.000

ESE 0.250 0.248 0.278 0.326 0.257 0.417 0.006

CovP(%) 92.0 93.3 85.6 76.3 75.8 78.4 -

% Sel 100.0 99.9 99.9 81.0 81.0 81.0 0.1

rPQL �̂rPQL 1.108 0.416 0.597 0.291 0.091 0.235 0.006

ESE 0.180 0.211 0.212 0.222 0.281 0.220 0.156

% Sel 82.0 74.5 76.5 53.5 53.0 53.5 11.4

(200, 10) CD-J �̂�� 1.714 0.648 1.117 0.398 0.109 0.672 0.000

ESE 0.166 0.174 0.173 0.193 0.156 0.235 0.000

CovP(%) 89.3 92.2 78.5 85.5 91.6 72.9 -

% Sel 100.0 100.0 100.0 95.2 95.2 95.2 0.0

CD-S �̂s
�

1.714 0.674 1.167 0.452 0.128 0.779 0.000

ESE 0.166 0.177 0.169 0.190 0.178 0.201 0.000

CovP(%) 93.8 93.9 89.2 92.7 92.7 90.9 -

% Sel 100.0 100.0 100.0 99.4 99.4 99.4 0.0

rPQL �̂rPQL 1.108 0.416 0.597 0.291 0.091 0.235 0.006

ESE 0.180 0.211 0.212 0.222 0.281 0.220 0.156

% Sel 99.9 99.4 99.4 85.4 85.7 85.8 20.0

(500, 6) CD-J �̂�� 1.714 0.648 1.117 0.398 0.109 0.672 0.000

ESE 0.166 0.174 0.173 0.193 0.156 0.235 0.000

CovP(%) 89.3 92.2 78.5 85.5 91.6 72.9 -

% Sel 100.0 100.0 100.0 95.2 95.2 95.2 0.0

CD-S �̂s
�

1.714 0.674 1.167 0.452 0.128 0.779 0.000

ESE 0.166 0.177 0.169 0.190 0.178 0.201 0.000

CovP(%) 93.8 93.9 89.2 92.7 92.7 90.9 -

% Sel 100.0 100.0 100.0 99.4 99.4 99.4 0.0

rPQL �̂rPQL 0.985 0.384 0.545 0.245 0.056 0.174 0.000

ESE 0.093 0.134 0.156 0.242 0.230 0.130 0.000

% Sel 82.4 71.8 72.9 57.6 56.5 57.6 1.2

PQL: penalized quasi-likelihood; ESE: empirical standard error. a CovP(%) calculated after excluding incorrect non-selections (0’s



Lu et al. 13

Table 5. Random effects poisson regression model: Fixed effect and random effect selections.

Fixed effects Method �0 1 −1 −1 −1 −1 −1 010 Time (mins)

(30, 10) CD-J �̂�� 0.990 −1.020 −0.989 −0.999 −0.988 −0.986 0.001 0.113 ± 0.090

ESE 0.313 0.292 0.209 0.028 0.098 0.079 0.012

CovP(%) 94.6 90.3 91.3 86.0 71.9 76.3 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 5.8

CD-S �̂
s

�
0.990 −1.019 −0.988 −0.998 −0.987 −0.985 0.000 0.113 ± 0.090

ESE 0.313 0.292 0.209 0.028 0.098 0.079 0.008

CovP(%) 94.6 90.6 91.3 86.6 90.6 87.0 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 1.7

rPQL �̂
rPQL

1.107 −0.964 −0.938 −0.996 −0.989 −1.001 0.000 0.062 ± 0.013

ESE 0.331 0.308 0.271 0.042 0.108 0.119 0.000

% Sel 100.0 97.9 99.1 100.0 99.9 100.0 0.9

(200, 6) CD-J �̂�� 0.991 −1.008 −1.000 −1.001 −1.004 −1.001 0.000 0.260 ± 0.197

ESE 0.135 0.114 0.087 0.014 0.044 0.037 0.004

CovP(%) 94.3 93.1 93.9 91.0 77.6 87.8 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 2.1

CD-S �̂
s

�
0.991 −1.008 −1.000 −1.000 −1.003 −1.001 0.000 0.260 ± 0.196

ESE 0.135 0.114 0.087 0.014 0.044 0.037 0.003

CovP(%) 94.7 93.1 94.7 91.8 95.9 93.9 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.8

rPQL �̂
rPQL

1.000 −1.000 −1.006 −0.998 −0.997 −0.999 0.000 2.971 ± 0.716

ESE 0.135 0.113 0.100 0.013 0.027 0.030 0.000

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.2

(500, 6) CD-J �̂�� 1.000 −1.000 −0.997 −1.000 −1.003 −1.002 0.000 0.565 ± 0.190

ESE 0.079 0.064 0.056 0.007 0.029 0.022 0.002

CovP(%) 94.9 97.7 92.2 95.9 75.1 85.3 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.7

CD-S �̂
s

�
1.000 −0.999 −0.997 −1.000 −1.003 −1.002 0.000 0.565 ± 0.190

ESE 0.079 0.064 0.056 0.007 0.029 0.022 0.001

CovP(%) 94.9 97.7 92.2 96.3 94.9 91.7 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.2

rPQL �̂
rPQL

1.009 −1.003 −0.999 −0.999 −0.999 −0.998 0.000 43.025 ± 7.323

ESE 0.082 0.067 0.056 0.016 0.018 0.007 0.000

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Random effects �0 1.73 0.69 1.23 0.46 0.15 0.88 04

(30, 10) CD-J �̂�� 1.703 0.679 1.136 0.416 0.136 0.722 0.000

ESE 0.267 0.257 0.163 0.204 0.185 0.135 0.000

CovP(%) 89.6 92.3 84.3 91.0 90.6 73.2 0.0

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 -

CD-S �̂s
�

1.703 0.693 1.165 0.445 0.147 0.800 0.000

ESE 0.267 0.260 0.163 0.212 0.198 0.132 0.000

CovP(%) 89.6 94.3 88.3 93.6 89.0 86.0 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

rPQL �̂rPQL 1.573 0.631 1.143 0.387 0.156 0.761 0.001

ESE 0.247 0.276 0.176 0.233 0.197 0.168 0.034

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

(200, 6) CD-J �̂�� 1.727 0.684 1.216 0.453 0.138 0.839 0.000

ESE 0.101 0.106 0.074 0.085 0.075 0.063 0.001

CovP(%) 95.5 93.9 89.8 95.1 94.7 85.3 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

CD-S �̂s
�

1.727 0.688 1.224 0.461 0.141 0.859 0.000

ESE 0.101 0.107 0.074 0.086 0.077 0.061 0.001

CovP(%) 95.5 95.1 90.2 96.7 93.5 89.8 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

(continued)
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Table 5. Random effects poisson regression model: Fixed effect and random effect selections.

Fixed effects Method �0 1 −1 −1 −1 −1 −1 010 Time (mins)

rPQL �̂rPQL 1.626 0.652 1.191 0.426 0.155 0.842 0.000

ESE 0.093 0.106 0.072 0.086 0.078 0.060 0.000

% Sel 99.8 99.8 99.8 99.8 99.8 99.8 0.0

(500, 6) CD-J �̂�� 1.716 0.681 1.227 0.446 0.145 0.856 0.000

ESE 0.067 0.068 0.047 0.060 0.048 0.040 0.000

CovP(%) 92.2 94.0 94.0 90.8 94.0 88.0 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

CD-S �̂s
�

1.716 0.683 1.231 0.450 0.147 0.865 0.000

ESE 0.067 0.068 0.046 0.061 0.049 0.040 0.000

CovP(%) 92.2 94.5 95.4 92.6 94.0 90.8 -

% Sel 100.0 100.0 100.0 100.0 100.0 100.0 0.0

rPQL �̂rPQL 1.629 0.652 1.200 0.428 0.148 0.848 0.000

ESE 0.061 0.065 0.040 0.054 0.047 0.035

% Sel 99.5 99.5 99.5 99.5 99.5 99.5 0.0

PQL: penalized quasi-likelihood; ESE: empirical standard error.

Scenario 3. For the random effects Poisson regression models (Table 5), the fixed effect and random effect estimates of

CD-J, CD-S and rPQL methods were very close to the true values. The selection rate of true covariates was close to 100%,

and nearly no noise covariates was selected by all three methods. Compared to rPQL, the computation time of the CD

methods was shorter, especially when n is large.

6 Applications: Data analysis

We applied the proposed CD approach to the two longitudinal cancer studies that motivated our methods. Regression

coefficient estimates were reported and the 95% CIs by the CD methods were calculated based on the oracle properties in

Theorems 2 and 3. Moreover, we used �f =�r=1 in the CD methods, and �f =�r=4 in the rPQL method, based on the results

from simulation studies.

Data Example 1. This study longitudinally measured the tumor volume during the cycles of radiation therapy in 111 patients

with unresectable, locally advanced, non-small cell lung cancer (NSCLC). Most patients were treated with concurrent

chemoradiation therapy (CRT) as it offers much improved survival outcomes, compared to a sequential combination of

chemotherapy followed by radiation therapy.41 To measure the response to CRT, the cone beam computed tomography, as

part of the image guided radiation therapy and known to have higher precision, has been used to measure the tumor volumes.

The investigators were interested in knowing which demographic and clinical factors are associated with shrinkage of tumor

volume over the treatment cycles. We then fitted the linear mixed model and applied the proposed CD methods.

Data with 777 observations from the 111 NSCLC patients were included in the data analysis. The outcome variable,

tumor volume, was log-transformed to ensure normality. Potential covariates considered for the fixed effect selection

included Weeks (weeks from the start of radiation cycle), Age (age when radiation therapy started), Gender (women vs.

men), smoking (yes vs. no), mean lung dose, and Lung V20. Mean lung dose (MLDGy) measured how much radiation

dose the normal lung tissues have received, and Lung V20 (LungV20) was the portion of normal lung volume that received

20 Gy of radiation dose. Weeks and MLDGy were considered for the random effect selection. All continuous variables

were standardized to have mean 0 and variance 1. In order to evaluate the performance of the proposed methods , we have

randomly generated 2 noise variables following standard normal distribution and included them to the fixed effect selec-

tion. One of these noise variables was also included in the random effect selection. Results were summarized in Table 6.

For the fixed effect selection by the CD-J method, the randomly generated noise variables were not selected. Weeks, Age,

Gender, MLDGy, and LungV20 were selected. Specifically, the selected fixed effect estimates suggested that tumor volume

decreased with Weeks (�̂�� = −0.114, 95% CI: [−0.126,−0.102]), and was larger in men than women (�̂�� = 0.477, 95%

CI: [0.010, 0.943]). The mean tumor size also increased with MLDGy (�̂�� = 0.689, 95% CI: [0.004, 1.373]) and decreased

with LungV20 (�̂�� = −0.499, 95% CI: [−1.177, 0.180]). Random intercept (Γ̂11 = 1.190, 95% CI: [1.188, 1.192]) and

random slope for Weeks (Γ̂21 = 0.000, 95% CI: [0.000, 0.000], and Γ̂22 = 0.062, 95% CI: [0.062, 0.063]) were selected,

suggesting a positive within-person correlation and a heterogeneous effect by Weeks. Results from CD-S were similar. We
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Table 6. Linear mixed model analysis of lung cancer data.

CD-J method CD-S method rPQL Bondell et al.

Fixed effects �̂�� (95% CI) �̂s
�

(95% CI) �̂
rPQL

�̂
B

Intercept 3.572 (2.742, 4.403) 3.869 (3.537, 4.202) 3.909 -

Weeks −0.114 (−0.126, −0.102) −0.111 (−0.123, −0.099) −0.110 −0.112

Age (in years) 0.125 (−0.106, 0.356) 0.087 (−0.131, 0.304) 0 0

Gender (men vs. women) 0.477 (0.010, 0.943) 0.588 (0.168, 1.008) 0.592 0.430

Smoking (yes vs. no) Yes 0 0 0 3.948

MLDGy 0.689 (0.004, 1.373) 0.860 (0.238, 1.482) 0.146 0.177

LungV20 −0.499 (−1.177, 0.180) −0.635 (−1.259, −0.010) −0.092 0

Noise 1 0 0 0 0

Noise 2 0 0 0 0

Random effects

�̂�� (95% CI) �̂s
�

(95% CI) �̂ rPQL �̂B

Intercept (Γ11) 1.190 (1.188, 1.192) 1.244 (1.242 1.246) 1.308 1.521

Weeks (Γ21) 0.000 (0.000, 0.000) 0.002 (0.001, 0.002) 0.003 0.004

Weeks (Γ22) 0.062 (0.062, 0.063) 0.062 (0.061, 0.063) 0.051 0.060

MLDGy (Γ31, Γ32, Γ33) 0 0 0 0

Noise 1 (Γ41,Γ42,Γ43,Γ44) 0 0 0 0

PQL: penalized quasi-likelihood; CI: confidence interval; MLD: mean lung dose.

also applied the rPQL and Bondell’s methods to this dataset. Neither of these methods selected the noise variables. The

rPQL didn’t select Age in the fixed effect. Bondell’s method did not select Age but selected Smoking. For the random

effect selection, all four methods selected the same random effects.

Data Example 2. Patients with early-stage breast cancer are commonly treated with breast-conserving therapy (BCT), which

includes lumpectomy followed by radiation therapy. Prior studies with long-term follow-up have demonstrated equivalent

overall survival in those treated with lumpectomy and radiation, compared with those who underwent mastectomy.42,43

Because mammographic alterations after BCT can mimic or hide tumor recurrence, they become clinically relevant when

unnecessary biopsies or delayed diagnoses occur. Then this study longitudinally followed up the mammographic changes

in early-stage breast cancer patients after BCT, and is interested in identifying covariates associated with the incidence or

changes of common mammographic sequelae.44

Data from 89 patients with a total of 605 longitudinally measured observations were included in the data analysis.

Among several image parameters, we fitted a random effects logistic regression model with calcification (yes vs. no) as

the dependent variable, and applied the proposed CD-S method to select fixed effects from the following covariates: age

(years), years from radiation therapy, African Americans (yes vs. no), Her2/neu positive (yes vs. no), adjuvant chemo and/or

hormonal therapy (yes vs. no), smoking (yes vs. no), bilateral disease (yes vs. no) and 2 unrelated and randomly generated

standard normal noise variables. Potential covariates for the random effect selection included the intercept, age, and the two

unrelated noise variables that were also included in the fixed effect selection. All continuous variables were standardized

to have mean 0 and variance 1. Results were summarized in Table 7. For the fixed effect selection, the randomly generated

noise variables were not selected. Age, years since radiation therapy, African Americans, Her2/neu positive, and Bilateral

Disease were selected. For instance, estimates of the selected fixed effects suggested that the risk of calcification increased

with age (�̂�� = 4.035, 95% CI: [2.579, 5.492]), years since radiation therapy (�̂�� = 1.270, 95% CI: [0.824, 1.717]), and

was lower in African Americans (�̂�� = −4.330, 95% CI: [−7.199,−1.462]). For random effects, age (Γ̂21 = 6.002, 95%

CI: [3.095, 8.910], and Γ̂22 = 5.049, 95% CI: [2.657, 7.442]) was selected, in addition to the random intercept (Γ̂11 = 3.374,

95% CI: [2.125, 4.622]), suggesting a positive within-person correlation and a heterogeneous effect by age. Results from

the CD-S method were similar. We applied the rPQL and glmmLasso methods to this dataset. Because glmmLasso only

performs the fixed effect selection, we only included the intercept and age as random effects in the model and reported

the parameter estimates for reference. The rPQL method selected the same fixed effect covariates as the CD-S method,

but did not select any random effects. The method of glmmLasso selected more fixed effect covariates. The magnitude of

the selected fixed effect coefficient estimates of these two methods were generally smaller than that by the CD methods,

consistent with the observations from the simulation studies.
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Table 7. Random effects logistic regression model analysis of calcification data.

Fixed effects CD-J method CD-S method rPQL glmmLasso

�̂�� (95% CI) �̂s
�

(95% CI) �̂
rPQL

�̂
g

Intercept 4.614 (2.482, 6.748) 4.615 (3.118, 6.112) 1.251 1.361

Age 4.035 (2.579, 5.492) 4.022 (2.031, 6.013) 0.442 0.954

Years from radiation therapy 1.270 (0.824, 1.717) 1.259 (0.768, 1.749) 0.446 0.916

African Americans −4.330 (−7.199, −1.462) −4.315 (−7.884, −0.745) −2.054 −2.889

Her2/neu positive −1.969 (−3.418, −0.520) −1.877 (−3.336, −0.418) −0.965 −1.265

Bilateral disease 1.915 (−0.494, 4.325) 1.790 (−0.854, 4.434) 0.778 0.814

Smoking 0 0 0 0.457

Adjuvant therapy 0 0 0 0.502

Noise 1 0 0 0 −0.060

Noise 2 0 0 0 0

Random effects �̂�� (95% CI) �̂s
�

(95% CI) �̂ rPQL �̂g

Intercept (Γ11) 3.374 (2.125, 4.622) 3.184 (1.488, 4.879) 0 2.160

Age (Γ21) 6.002 (3.095, 8.910) 5.955 (0.935, 10.975) 0 0.117

Age (Γ22) 5.049 (2.657, 7.442) 5.022 (1.914, 8.129) 0 1.385

Noise 1 (Γ31,Γ32,Γ33) 0 0 0 0

Noise 2 (Γ41,Γ42,Γ43,Γ44) 0 0 0 0

PQL: penalized quasi-likelihood; CI: confidence interval.

7 Discussion

In this paper, we propose a regularized estimation approach using the confidence distributions of model parameters to

select both fixed and random effects in GLMMs. Specifically, we propose to construct and optimize the objective functions

based on the confidence distributions of model parameters, as opposed to the objective functions typically constructed from

the likelihood function using the observed data. This can greatly alleviate the computational burden in approximating the

integral in the log marginal likelihood function in the regularization step.

We started from showing that the log marginal likelihood function, after integrating out the random effects, can be

approximated by the log confidence density of the model parameters based on the asymptotic distribution of the MLEs. As

a result, we propose the CD-joint estimation method by constructing the objective functions using the confidence density,

as opposed to the observed data likelihood function. Because the joint confidence density of the fixed effect and random

effect parameters is a multivariate normal density, the parameters of the joint distribution and the marginal distribution

are the same. Therefore, we propose the CD-separate estimation method by constructing the objective functions based on

the marginal confidence density corresponding to the fixed effect and random effect parameters, respectively. In spite that

the CD-joint estimators and CD-separate estimators are different estimators, the true values of the underlying parameters

of these estimators are the same. With a proper choice of regularization parameters in the adaptive LASSO framework,

we show that the proposed estimators have consistency and oracle properties. Based on the asymptotic properties of the

proposed estimators and our simulation studies, when the sample size (i.e. the number of independent cluster, n) is large,

our methods generally performed well and do not require to refit a GLMM model after the variable selection step. However,

when n is small, we noticed that our methods may result in bigger bias and false selection rate (e.g. n = 30 and m = 10 in

the simulation studies of random effect logistic regression analysis). Thus, similar to Hui et al.,19 we recommend the hybrid

estimation approach, e.g. refitting a GLMM model using REML after the variable selection step, to improve the finite sample

performance. Moreover, because GLMM typically requires the assumption that the random effects follow a multivariate

normal distribution with mean 0, we applied this assumption in our simulation studies to assess the performance of the

proposed methods. In case this assumption is violated and the random effects are following a right-skewed distribution

with non-zero means, it is likely to cause biased GLMM estimates and affect the asymptotic distributions of the estimators.

Because the proposed CD methods are built upon the asymptotic distributions of the GLMM estimators, we expect the

performance of our methods will be negatively affected due to the deviation from this assumption.

The proposed CD methods require obtaining the GLMM estimates in order to apply the confidence distribution approach

and perform the variable selections, while other methods, e.g. the Bondell’s6 method, may not require this condition,

and some may only need good initial estimates to implement their methods, e.g. the rPQL19 method. To implement our

methods in practice, one may construct the proposed objective functions by using existing software packages (e.g. lme4

package in R and Proc Glimmix in SAS) that provide readily available solutions of �̂ and �̂. Then optimizing the proposed
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objective functions to obtain the regularized estimators no longer involves the numerical approximation of the integral in the

log marginal likelihood function, and thus boosts computational efficiency. Moreover, optimizing the proposed objective

functions in the regularized estimation process can also use existing software packages without the need to develop new

computational algorithms specific to GLMM.

When the data are independent, the proposed CD-J method generally does not work due to the singularity of the joint

variance-covariance of the fixed and random effect parameter estimates. For the proposed CD-S method, the fixed effect

selection still works well, but the random effect selection does not, due to the same singularity issue of the variance-

covariance of the random effect estimates. Therefore, we recommend to apply our methods when the dependent variables

are correlated and the GLMM analysis can produce meaningful random effect estimates.

Due to the asymptotic normality property of the MLE, we notice that the proposed CD-based objective functions take

the similar forms to the objective function based on the LSA proposed by Wang and Leng32 for the generalized linear

models. Simulation studies demonstrate the consistency, oracle properties and computational efficiency, especially when

the number of independent clusters n is large. The coverage probability of the 95% CI seemed to be lower than the nominal

95% level in some cases. Replacing �̂ by other consistent estimators of Σ, for instance, the robust sandwich variance

estimator45,46 might improve the coverage probability.

For future work, we will extend our method to the framework of generalized estimating equation approach47 for corre-

lated outcome data. The extension to other likelihood-based approaches for complex modeling, such as the joint analysis

of survival and longitudinal data analysis, will also be explored.
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Appendix A: Proof of Theorem 1

(1) Since the objective function Q(�) is strictly convex in �, a local consistent minimizer is the global consistent mini-

mizer. Therefore, it suffices to show the existence of a local consistent minimizer, then the estimation consistency follows

immediately. Following Fan and Li34 and letting u = (u0, u1, u2,… , upf
, v1, vT

2
,… , vT

pr+1
)T , where ul’s and v1 are scalar, for

l = 0, 1, 2,… , pf , and vT
m

’s are vectors of length m, for m = 2, 3,… , pr + 1. Let p = length(�). The existence of a local

consistent minimizer is implied by the fact that for any given � > 0, there exists a large constant C such that

lim
n→∞

P

{
inf

u∈Rp:||u||=C
Q(�0 + n−1∕2u) > Q(�0)

}
> 1 − � (8)

where ||a|| = (aT a)1∕2 for a column vector a.

To show this, consider

Q(�0 + n−1∕2u) − Q(�0)

= uT �̂
−1

u + 2uT �̂
−1 {

n1∕2(�0 − �̂)
}
+ n

pf∑

f =1

�f (|�0f + n−1∕2uf | − |�0f |)

+ n

pr+1∑

m=2

�m(||�0m + n−1∕2vm|| − ||�0m||)

≥ uT �̂
−1

u + 2uT �̂
−1 {

n1∕2(�0 − �̂)
}
+ n

∑

{f :�0f ≠0}

�f (|�0f + n−1∕2uf | − |�0f |)

+ n
∑

{m:�0m≠0}

�m(||�0m + n−1∕2vm|| − ||�0m||)

≥ uT �̂
−1

u + 2uT �̂
−1 {

n1∕2(�0 − �̂)
}
− n

∑

{f :�0f ≠0}

�f |n−1∕2uf |

− n
∑

{m:�0m≠0}

�m||n−1∕2vm||

≥ uT �̂
−1

u + 2uT �̂
−1 {

n1∕2(�0 − �̂)
}
− (n1∕2f0af ,n + n1∕2r0ar,n)||u|| (9)

followed by �0b = 0, �0b = 0, the triangle inequality, af ,n = max{�j, j ≤ f0} and ar,n = max{�j, j ≤ r0}. According to

the conditions n1∕2af ,n

P
←←←←←←→ 0 and n1∕2ar,n

P
←←←←←←→ 0, the third term in (9) is op(1). Because �̂ and Σ̂ are consistent estimators

of � and Σ, respectively, the second term in (9) is bounded by 2C||�̂−1
n1∕2(�0 − �̂)||, which is linear in C with a coeffi-

cient 2||�̂−1
n1∕2(�0 − �̂)|| = Op(1). As � and its estimate �̂ are positive semidefinite, the first term in (9) is larger than

�min(�̂
−1
)C2

P
←←←←←←→ �min(�

−1)C2, where �min(.) refers to the minimal eigenvalue. It follows that, with probability going to 1,

the first term in (9) is larger than �min(�
−1)C2 which is quadratic in C. By choosing a sufficiently large C, the first term

dominates the other two terms with arbitrarily large probability. Hence, by choosing a sufficiently large C, (8) holds and

the proof of estimation consistency is completed.

(2) The selection consistency can be shown by contradiction. To show Pr(�̂��,b = 0 and �̂��,b = 0) → 1, we show that

Pr(�̂��,j = 0) → 1 for any f0 < j ≤ pf and Pr(�̂��,m = 0) → 1 for any r0 < m ≤ pr + 1. Suppose �̂��,j ≠ 0 for some

f0 < j ≤ pf , then by definition

n−1∕2 �Q(�)

��j

|�=�̂�� = 2�̂
−1

(�j)
n1∕2(�̂�� − �̂) + n1∕2�jsgn(�̂��,j) = 0 (10)

where �̂
−1

(�j)
represents the row vector of �̂

−1
corresponding to the position of �j and sgn(.) is the sign function. It can

be shown that the first term on the right hand side of (10) is Op(1). Based on the condition n1∕2bf ,n

P
←←←←←←→ ∞, we have

n1∕2�j ≥ n1∕2bf ,n

P
←←←←←←→ ∞. Then to satisfy ( 10), with probability tending to 1, �̂��,j = 0, which contradicts the assumed
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condition that �̂��,j ≠ 0. As a result, with probability tending to 1, �̂��,j = 0 for any f0 < j ≤ pf . Similarly, suppose �̂��,m ≠ 0

for some r0 < m ≤ pr + 1, then by definition

n−1∕2 �Q(�)

��m

|�=�̂�� = 2�̂
−1

(�m)
n1∕2(�̂�� − �̂) + n1∕2�m

�̂��,m

||�̂��,m||
= 0 (11)

where �̂
−1

(�m)
represents the submatrix consisting of of the row vectors of �̂

−1
corresponding to the position of �m. It can

be shown that the first term on the right hand side of (11) is Op(1). Based on the condition n1∕2br,n

P
←←←←←←→ ∞, we have

n1∕2�m ≥ n1∕2br,n

P
←←←←←←→ ∞. Then to satisfy (11), with probability tending to 1, �̂��,m = 0, which contradicts the assumed

condition that �̂��,m ≠ 0. As a result, with probability tending to 1, �̂��,m = 0 for any r0 < m ≤ pr + 1. This completes the

proof of selection consistency.

(3) To prove the oracle property, we first ease the notation within the scope of this proof, by re-arranging �0, �, and �̂�� ,

according to the order of �0 = (�T
0a

,�T
0b

= 0T )T , such that � = (�T
a

,�T
b
)T and �̂�� = (�̂��

T
a

, �̂��
T
b
)T . Similarly, we use � and

�̂ to represent the re-arranged matrices according to the order of parameters in �0. Moreover, we decompose � and (�)−1

into block matrices as:

� =

(
�aa �ab

�ba �bb

)
, (�)−1 = � =

(
�aa �ab

�ba �bb

)

where Maa is the leading a × a submatrix of M . Decomposing Q(�), we have

Q(�) = (�̂ − �)T [n�̂](�̂ − �) + n��(�) + n��(�)

= n

{(
�a

�b

)
−

(
�̂a

�̂b

)}T (
�̂aa �̂ab

�̂ba �̂bb

){(
�a

�b

)
−

(
�̂a

�̂b

)}

+ n

f0∑

j=1

�j|�j| + n

r0∑

m=2

�m||�̂�m
|| + n

pf∑

j=f0+1

�j|�j| + n

pr+1∑

m=r0+1

�m||�̂�m
||

Taking partial derivative of Q(�) and evaluating at the global minimizers, by definition, we have

�Q(�)

��T
a

|||||�=
(
�̂��,a

0

) = 2n�̂aa(�̂��,a − �̂a) + 2n�̂ab(0 − �̂b) + nD(�̂��,a) = 0 (12)

where D(�̂��,a) = (�1sgn(�̂��,1), �2sgn(�̂��,2),… , �f0
sgn(�̂��,f0

), �2

�̂T
��,2

‖�̂��,2‖
,… , �r0

�̂T
��,r0

‖�̂��,r0
‖ )

T . Reorganize (12), we have �̂��,a =

�̂a + (�̂aa)
−1�̂ab�̂b − 1∕2(�̂aa)

−1D(�̂��,a), which leads to

n1∕2(�̂��,a − �0a) = n1∕2(�̂a − �0a) +
(
�̂aa

)−1

�̂ab�̂b − 1∕2
(
�̂aa

)−1

D(�̂��,a) (13)

According to the condition n1∕2af ,n

P
←←←←←←→ 0 and n1∕2ar,n

P
←←←←←←→ 0, we have n1∕2�j ≤ n1∕2af ,n

P
←←←←←←→ 0 and n1∕2�m ≤ n1∕2ar,n

P
←←←←←←→ 0.

Thus the third term in (13) is op(1). Then, we can rewrite (13) as

n1∕2(�̂��,a − �0a) =

{
1,
(
�̂aa

)−1

�̂ab

}
⋅ n1∕2

(
�̂a − �0a

�̂b − 0

)
+ op(1) (14)

Given that

n1∕2

(
�̂a − �0a

�̂b − 0

)
D
←←←←←←←→ 

(
0,

(
�aa �ab

�ba �bb

))
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and that �̂aa

P
←←←←←←→ �aa, �̂ab

P
←←←←←←→ �ab, (14) can be derived into

n1∕2(�̂a − �0a)
D
←←←←←←←→ 

(
0,
{

1,
(
�aa

)−1
�ab

}(
�aa �ab

�ba �bb

){
1, (�)−1

aa
�ab

}T
)

Providing the fact that

� =

(
�aa �ab

�ba �bb

)
=

(
A −A�ab(�bb)

−1

−(�bb)
−1�baA (�bb)

−1 + (�bb)
−1�baA�ab(�bb)

−1

)

where A = (�aa − �ab(�bb)
−1�ba)

−1. It then follows that �−1
aa
�ab = −�ab(�bb)

−1. Then the proof of the oracle property is

completed by verifying that

{
1,
(
�aa

)−1
�ab

}(
�aa �ab

�ba �bb

){
1,
(
�aa

)−1
�ab

}T

= {�aa +
(
�aa

)−1
�ab�ba,�ab +

(
�aa

)−1
�ab�bb)

{
1(

�aa

)−1
�ab

}

= �aa − �ab(�bb)
−1�ba − �ab�ab(�bb)

−1 + �ab�ab(�bb)
−1

= �aa − �ab(�bb)
−1�ba

=
([
(�)−1

]
aa

)−1
=
([
(�)−1

]
(�0a,�0a,�)

)−1
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