GNNIC: Finding Long-Lost Sibling Functions with
Abstract Similarity

Qiushi Wu'?, Zhongshu Gu?, Hani Jamjoom?, Kangjie Lu'
{wu000273 @umn.edu, Qiushi. Wu@ibm.com}, zgu@us.ibm.com, jamjoom@us.ibm.com, kjlu@umn.edu
I University of Minnesota, 2IBM Research

Abstract—Generating accurate call graphs for large programs,
particularly at the operating system (OS) level, poses a well-known
challenge. This difficulty stems from the widespread use of indirect
calls within large programs, wherein the computation of call
targets is deferred until runtime to achieve program polymorphism.
Consequently, compilers are unable to statically determine indirect
call edges. Recent advancements have attempted to use type
analysis to globally match indirect call targets in programs.
However, these approaches still suffer from low precision when
handling large target programs or generic types.

This paper presents GNNIC, a Graph Neural Network (GNN)
based Indirect Call analyzer. GNNIC employs a technique called
abstract-similarity search to accurately identify indirect call targets
in large programs. The approach is based on the observation
that although indirect call targets exhibit intricate polymorphic
behaviors, they share common abstract characteristics, such as
function descriptions, data types, and invoked function calls. We
consolidate such information into a representative abstraction
graph (RAG) and employ GNNs to learn function embeddings.
Abstract-similarity search relies on at least one anchor target to
bootstrap. Therefore, we also propose a new program analysis
technique to locally identify valid targets of each indirect call.
Starting from anchor targets, GNNIC can expand the search
scope to find more targets of indirect calls in the whole program.
The implementation of GNNIC utilizes LLVM and GNN, and
we evaluated it on multiple OS kernels. The results demonstrate
that GNNIC outperforms state-of-the-art type-based techniques
by reducing 86% to 93% of false target functions. Moreover,
the abstract similarity and precise call graphs generated by
GNNIC can enhance security applications by discovering new
bugs, alleviating path-explosion issues, and improving the efficiency
of static program analysis. The combination of static analysis and
GNNIC resulted in finding 97 new bugs in Linux and FreeBSD
kernels.

I. INTRODUCTION

Large programs, such as operating system (OS) kernels,
often use indirect calls to achieve dynamic and polymorphic
behaviors. For example, the Linux kernel 5.7 and Android

kernel 5.10 have more than 55K and 62K indirect call sites.

Accurately identifying these indirect calls is critical for building
precise call graphs and control flow graphs, which are the basis
of modern program analysis and security analysis, including bug
detection [55], program debloating [1, 39], directed fuzzing [5,

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.23492
www.ndss-symposium.org

35], vulnerability assessment [49], model checking [3], and
many others [13, 37, 38, 47].

To identify indirect-call targets, recent works are primarily
based on the following three methods: (1) Refining indirect
call targets based on type analysis [28, 30]. Type analysis
is widely used in indirect-call target identification because
it is simple and can be sound in most cases. Specifically, it
refines the indirect call targets by matching the type information
of potential target functions and the function pointers. (2)
Identifying and refining indirect call targets based on point-to
analysis [24], which is a general approach to matching the
pointer to its pointed addresses. (3) Refining the indirect call
targets at runtime using control-flow integrity (CFI) [22] or
other dynamic techniques [20].

However, the results of traditional approaches are still
imprecise. According to our evaluation (see §VI-D), the
precision rates for type-based approaches are typically less
than 10%. This is mainly because type-based methods rely
solely on type-related constraints for matching, without con-
sidering code semantics or behaviors. This issue is even
more pronounced in large programs or when the type is
too general. For instance, consider the function pointer
int (*console_blank_hook) (int) in the Linux kernel V5.7,
which has an int argument and an int return value. The
type-based approaches match more than 1,200 target functions.
However, in fact, there is only one real target function,
apm_console_blank in the kernel. All other matches are false
positives that merely share the same function type as this
particular target. On the other hand, point-to-based approaches
can suffer from both precision and recall issues. This is because
precise pointer analysis is still an open problem for large
programs. At last, indeed, dynamic analysis is precise, but its
recall issue would make it less useful for analyzing OS-level
large programs. According to the results of HFL [23] and
DR.FUZZ [57], which are two recent kernel fuzzers, the code
coverage is typically less than 10%, and even less than 1% for
drivers.

Observations. Through an empirical study, we found that
target functions of an indirect call typically share the same
abstract behaviors (the most relevant behaviors to the major
functionalities of a function), despite having different detailed
behaviors due to polymorphism. We name the similarity across
target functions as abstract similarity. For instance, in an
operating system, there may be tens of file systems, each with
its own implementation of the write function. The write
functions are typically called through an indirect call based on
the actual file system used. Although these write functions
differ, they share the same abstract behavior — writing an

amount of data in a buffer to a file specified by a file descriptor.
Therefore, when a known target exists for a specific indirect
call, which is a practical assumption, as demonstrated later,
abstract similarity can be used to identify other targets in the
program.

One question that arises immediately is what kind of
information can describe the abstract behaviors of a target
function. Our empirical study shows that one direct source
of information we can use is the representative information
and the metadata of a function, which includes the function
description, signature, and data types. In addition, we found that
nested function calls also contribute to determining the abstract
behaviors. We have further measured the significance of each
kind of information in determining the abstract behaviors. In
this project, we refer to such information that can represent
the abstract behavior of functions as abstractive information.

Additionally, we found that graph structures are well-suited
to represent abstractive information. This is because code
semantics have been commonly represented in the form of
graphs, such as call graphs and control-flow graphs. Further-
more, additional textual information, such as function names
and descriptions, can be integrated into the graph nodes to
capture and represent the human-understandable functionalities
of functions. In the case of abstractive information, a graph
structure can also accurately capture function invocations, data
types, their relations, and textual descriptions.

In this paper, we propose using graphs to represent abstrac-
tive information and utilize Graph Neural Networks (GNNs)
automatically learn and aggregate the abstractive information
for deriving the abstract behaviors of functions. Our approach,
named GNNIC, stands for Graph Neural Network (GNN) based
Indirect Call analysis. By conducting the abstract-similarity
analysis between the known target function of an indirect call
and other functions, we can utilize GNNIC to identify more
target functions for the indirect call.

Technical challenges. We anticipate two main challenges
in implementing the GNNIC approach. First, we require
at least one confirmed target function (referred to as an
“anchor function”) to start the matching process for more
targets. Collecting anchor functions is challenging because static
techniques often produce false positives, while dynamic-based
methods have low coverage rates. Second, we need a reliable
and versatile technique to represent abstractive information
and build a precise similarity analysis for it. The abstractive
information is diverse, including textual descriptions, data types,
and function calls. We need a new representation technique to
generally process such diverse information.

Key techniques. To address these challenges, we propose the
following techniques. First, to identify anchor functions, we
develop scoped unique-name matching. The technique is based
on the fact that if a function pointer’s name is unique in its
dependency scope (i.e., possible scope in which the function
pointer can be defined), any function assigned to the function
pointer is most likely a valid target of an indirect call using
the function pointer based on the same unique name. The
technique thus focuses on generally identifying unique names
and delimiting dependency scope. Second, we propose the use
of a representative abstraction graph (RAG) that captures the
diverse abstractive information of a function, including the

descriptions and signatures of functions, the nested function
calls, and data types. GNNIC trains a graph neural network
against the RAG and generates embeddings for every function,
based on which GNNIC can compare the abstract similarity
between functions and anchor functions to match more targets.

We have built GNNIC upon LLVM, StellarGraph [9] and
GraphSage [18]. We evaluated the effectiveness and perfor-
mance of GNNIC with the commonly used large programs.
We select OS-level programs, as they represent the largest
and most complex programs. Experimented programs include
the Linux kernel, Android kernel, and FreeBSD kernel. The
evaluation results show that compared with state-of-the-art
techniques, GNNIC can further improve the overall precision
from 10% to 92.3%. Such an improvement is significant; for
example, to identify a triggerable call chain in the Linux kernel
through static analysis, on average, we can reduce the number
of detected call chains from 10° to 10* based on the results of
GNNIC (see §VII). Furthermore, GNNIC enhances traditional
program analysis by reducing false positives and detecting
previously missed new bugs.

We make the following research contributions in this paper.

e Analyzing abstract similarity of functions. We propose
abstract similarity analysis as a general approach to
refine indirect-call targets or assist other program analysis
techniques. It performs well in cases (e.g., general types,
large programs, unscalable pointer analysis) where existing
approaches suffer from. It is complementary to existing
approaches, such as type or pointer-based analysis, and
can be used together with them.

e Developing graph-based techniques for indirect call
identification. We propose representative abstraction
graph (RAG), which is designed to capture diverse
information (e.g., textual description, nested function calls,
and data types) of functions and can be directly processed
by GNN. Such an integrated and GNN-compatible repre-
sentation may serve as a generic technique to enable many
applications of GNN in program analysis. We also propose
scoped unique-name matching as a precise technique to
identify anchor functions for indirect calls.

e Evaluating on a spectrum of security applications.
We present a comprehensive evaluation of the security
applications with GNNIC. Our evaluation first showcases
the effectiveness of GNNIC in improving the precision of
bug identification. As a demonstration, we found 97 new
NULL-pointer dereference bugs in well-established OS
kernels, including the Linux kernel and FreeBSD kernel,
by incorporating abstract similarity of functions with tra-
ditional static analysis techniques. In addition, we present
multiple other security applications that can significantly
benefit from the precise results generated by GNNIC.
Overall, our comprehensive evaluation demonstrates the
potential of GNNIC in improving the security of software
systems.

II. BACKGROUND AND STUDY

Large programs usually use indirect calls to increase the
flexibility and scalability of C and C++ code. In this study,
we employ the illustrative example presented in Figure 1 to
demonstrate the indirect calls. To complete an indirect call, the

process includes (1) taking the address of a function (target);
(2) storing the address to a function pointer; (3) propagating
the function pointer to an indirect call site; (4) dereferencing
the function pointer and calling the target.

A. State-of-the-Art for Detecting Indirect-Call Targets

In theory, both point-to analysis and type analysis can be
used to analyze indirect calls. However, due to the precision and
scalability issues of the global point-to analysis, point-to-based
approaches are not commonly used for identifying the indirect
call targets in large programs. Therefore, the state-of-the-art
works [26, 28-31, 46] use type-based approaches to handle
indirect calls in programs. In this section, we discuss their
limitations.

False positives resulted from generic types. Due to the
following two reasons, applying the type-based analysis to
large programs may trigger a large number of false pos-
itives. The first cause is related to generic types. When
the types of function pointers are too general, such as
int (*console_blank_hook) (int) , type analysis often per-
forms poorly and falsely matches hundreds to thousands of
targets. MLTA [28, 30] tries to alleviate this problem by
involving more layers of type constraints, but it still struggles
with generic types, often reporting thousands of targets for a
single indirect call.

False positives resulted from global search. Another common
problem with traditional type-based approaches is that they
globally search for matched targets in the whole program. As
type analysis does not track data flows, such a global search
becomes a must, which, however, incurs many false positives. In
a large program, many modules are not dependent on each other.
For example, the Linux kernel has 15 well-defined subsystems,
each containing numerous independent modules. Functions in
modules that are independent of the module containing an
indirect call can never become valid targets of the indirect
call, even if their types match. Unfortunately, type matching
is unable to delimit the search scope, which results in many
false positives.

Out-of-the-scope cases of MLTA. To understand the cases
that MLTA cannot handle, we have reused the two-layer type
analysis implementation from [30] against the Linux kernel v5.7.
The results show that many indirect calls cannot be handled by
MLTA and must resort to single-layer type matching. There are
two out-of-scope cases for MLTA. The most obvious case is that
many function pointers do not involve a composite type (e.g.,
struct), i.e., they have a single layer of type, thus, cannot benefit
from MLTA at all. Second, function pointers or object pointers
are frequently cast to general-type pointers (e.g., void *),
which also makes the function pointers disqualified for MLTA.
Therefore, MLTA generates, on average, 84.7 potential targets
for indirect calls in the Linux kernel, which is still very large,
considering there are more than 55K indirect call sites in the
Linux kernel.

B. An Empirical Study of Abstract Behaviors

The abstract behaviors of target functions. We refer
to a behavior of a function as an operation against an
object. Then, the abstract behaviors of a target function

Vs ***Potential Target functions**
s32 el000_check for_copper_link_ich8lan(struct el®00_hw
struct el@00_mac_info *mac = &hw->mac;
s32 ret_val, tipg_reg = 0;

ret_val = el@00e_phy_has_link_generic(hw, 1, 0, &link);

% 9 U AW =

e1000e_check_downshift (hw);

10 ret_val = el@00e_config_fc_after_link_up(hw);

11 if (ret_val)

12 e_dbg("Error configuring flow control\n");

13

14 }

15 s32 el®00e_check_for_copper_link(struct el®00_hw *hw) {

16 struct el@00_mac_info *mac = &hw->mac;

17 s32 ret_val;

18 ret_val = el000e_phy_has_link_generic(hw, 1, 0, &link);
19 e

20 e1000e_check_downshift (hw);

21 ces

22 ret_val = el@00e_config_fc_after_link_up(hw);

23 if (ret_val)

24 e_dbg("Error configuring flow control\n");

25

26 }

27 JFF “**Function address taken** */

28 static const struct el®00_mac_operations ich8_mac_ops = {
29 .check_for_link = e1000_check_for_copper_link_ich8lan,

}
32 s32 el000_init_mac_params_80003es2lan(struct el@00_hw *hw) {

33 mac->ops.check_for_link = el000e_check_for_copper_link;
34}

35 /FF “**Indirect call site*” wk)
36 static bool el@00e_has_link(...) {

37 e

38 ret_val = hw->mac.ops.check_for_link(hw);

39

40 }

Fig. 1: An indirect-call example in the Linux kernel.

are supposed to be the most relevant behaviors to the ma-
jor functionalities of the function. In the example of in-
direct call hw->mac.ops.check_for_link(hw) (see line 38
in Figure 1), we can list and empirically rank the behav-
iors of each target function based on their relevance to
its major functionalities. The most relevant behaviors of
e1000_check_for_copper_link_ich8lan() include: checking

the existence of the link, checking if there is downshift , con-
figuring the link and checking configuration status, and checking
and handling the link for different mac types; while the
most relevant behaviors of e1000e_check_for_copper_link

include: checking the existence of the link, checking if
there is downshift , configuring the link, and checking the
configuration status. By cross-checking the targets, we can
clearly see that they indeed share three most relevant behaviors.
In other words, these two targets share their abstract behaviors.

Furthermore, we have conducted a manual analysis of
501 target functions from 100 random indirect calls to verify
if abstract behaviors are commonly shared between target
functions of indirect calls. Our analysis showed that all indirect
calls have targets that share at least one relevant behavior, with
commonness decreasing as relevance decreases. This confirms
that the most relevant behaviors, i.e., the abstract behaviors,
are commonly shared across indirect call targets.

The abstractive information of target functions. Next, we
aim to understand what information can be used to represent
the abstract behaviors of a function. In pursuit of this goal,

we have examined 100 indirect calls and their corresponding
target functions, as mentioned in the previous subsection for
our empirical investigation. It is important to note that the
findings presented in this section serve only as empirical or
directional guidance. Additionally, our sampling methodology
and its statistical validity are thoroughly addressed in Section
§VI-A. Specifically, we first select possible behavior-related
information, including the name of the target function, the
data types used by the target function, the nested function
calls, the control flow of the target function, and the data
flow of the target function. We then empirically analyze which
information is commonly shared across targets. The idea is that,
as abstract behaviors are shared, we believe that commonly
shared behavior-related information among target functions can
be likely used to describe abstract behaviors.

The results show that the target functions for 97% of the
indirect calls share similar names and descriptions and corre-
spond to the behavior indicated by the function pointer name.
For instance, as illustrated in Figure 1, the target functions of
the indirect call exhibit a comparable function name, “check
for link,” signifying the analogous behavior of these functions.
Additionally, we discover that the nested function calls and
data types of target functions within an indirect call display
similarity, boasting average Jaccard similarities of 0.62 and 0.41,
respectively. This is determined by comparing the callee sets and
utilized type sets of target functions. These values are markedly
greater than the average similarity between randomly chosen
functions, which are 0.33 and 0.23, respectively. Moreover,
upon conducting a manual comparison of control and data flow
among the target functions of a specific indirect call, we observe
that only around 38% and 16% of them display similarity. To
conclude, we can use function names and descriptions, internal
function calls, and data types as the abstractive information of
target functions.

Using GNN to represent nested abstractive information.
Manually analyzing abstract behaviors is relatively straightfor-
ward for experienced programmers since people can understand
and learn the descriptions, names, and nested callees of
functions. However, automatically summarizing such abstract
behaviors is not easy. This is because function calls and types
are nested in programs. Suppose the tool cannot analyze such
a nested relationship, in that case, it cannot accurately capture
the abstractive similarity of functions. For example, writeb

and writew further call __raw_writeb and __raw_writew

respectively. The tool can accurately capture the similarity
between writeb and writew only if it can understand the
names of these functions and can further collect the abstractive
information from their callees. Then, the tool can reflect all this
abstractive information to the abstractive similarity between
writeb and writew .

GNN is well-suited to catch such abstractive information of
the nodes in the graph. The intuition of GNN is that given a node
in the graph, GNN can aggregate the information of adjacent
nodes to represent the given node. The neighboring nodes can
further be described by their neighboring node. This feature is
excellent for describing the nested abstractive information of
functions in the call graph, because given a function in the call
graph, we want to aggregate the abstractive information from
its callee, which can further be used to describe the abstractive
behavior of the given function. Similarly, these callees can be

further described by the abstractive information of their callees.
Therefore, GNN can accurately catch the abstractive behaviors
of functions as we expect.

III. OVERVIEW
A. The Workflow of GNNIC

The goal of GNNIC is to identify indirect-call targets
precisely, even for large programs. Figure 2 shows the overview
workflow of GNNIC, which consists of four parts: @D collecting
abstractive information, Q) building representative abstraction
graph (RAG) as GNN inputs, ® collecting anchor functions
for each indirect call, and @ identifying more target functions
using abstract similarity.

Specifically, by analyzing the source code and LLVM
IRs of the target program, GNNIC first collects some basic
information, including the representative information (e.g.,
function names, function descriptions, etc.), indirect call sites,
all potential target functions, type-related information, the
program call graph (without considering indirect call), etc.
Then, GNNIC builds a RAG that integrates the call graph,
representative information, and type-related information. It
uses the RAG to train a graph neural network (GNN) model,
based on which GNNIC can get a unique embedding for
every function in the program. Furthermore, with a new
technique, scoped unique-name matching, GNNIC identifies
anchor functions for each indirect call in a delimited searching
scope. At last, given an indirect call and its anchor functions,
GNNIC uses the abstract similarity to identify more target
functions.

B. Challenges and Techniques of GNNIC

Before showing the design of GNNIC, we first discuss the
technical challenges (C) of realizing the GNNIC approach and
the corresponding techniques (T) to address these challenges.

C-1: Collecting the anchor functions. To use abstract
similarity to match more targets, GNNIC first requires anchor
functions—at least one validated target function for an indirect
call, which is still non-trivial. When talking about collecting
real target functions, the most intuitive idea is using dynamic
analysis because it would typically not introduce false targets.
However, dynamic analysis against the system-level large
programs suffers from a very low coverage rate. Thus, it is
not a good solution for GNNIC. Additionally, preparing a
fuzzing environment for a new program requires much effort
and is time-consuming, such as generating quality seeds and
preparing specific hardware for the driver. On the other hand, as
we discussed, none of the current data-flow-based or type-based
approaches can guarantee the precision of their indirect-call-
targets identification. Therefore, new techniques are required
for collecting anchor functions.

C-2: Digesting diverse abstractive information for similarity
analysis. Given an indirect call, even if we have its anchor
functions, it is still challenging to compute abstract similarity
due to the diverse nature of abstractive information of target
functions. Such information includes textual information, code
semantics, and types. In addition, the relations among different
kinds of information are also complex. Functions can call each
other; complex types can contain each other; and functions can

Collecting Abs Info Building RAG
Compile M» Text embeddings

‘Func and type

EType graphs
R RAG
=

J

Source code LLVM IRs 5 - . < User
- textual info @ T T— . ,, >
Collect ‘ 5 ! = N %Q/ . [lndirect calﬂ%be‘jdmlgs> .
G Y v o= N e T . Abstract-similarity
. Function calls| : call graph S G ; . . : checker
[Textual mfotype info, _| P Training Function | ; [I;/Iaf:ck.\tlum(lutte flemc ;t)om:ler : ,
TP \ — embeddings | | efinitive dataflow tracking ledd‘“g
Abstractive information " ee«\‘q Output
?(0“\6 :

Collecting anchor funcs " Identifying targets

"Anchor functions
: Target functions

Fig. 2: Overview of GNNIC. RAG=representative abstraction graph, Abs Info=abstractive information, Th = threshold specified by user.

use different complex types. Thus, we need a systematic way to
integrate diverse information, which should also be compatible
with GNN.

T-1: Scoped unique-name matching for anchor functions. To
address C-1, we propose a new technique to precisely identify
anchor functions. In this step, we aim for high precision but
allow for false negatives in identifying targets. Our technique is
based on the fact that if a function pointer’s name is unique in its
dependency scope (possible scope in which the function pointer
can be defined), any function assigned to the function pointer
will likely be a valid target of an indirect call dereferencing the
function pointer (with the same unique name). To realize the
technique, we generalize the definition of “name” to support
function pointers in structs and employ an iterative algorithm
to narrow down the dependency scope for an indirect call. Our
evaluation shows that the technique can identify at least one
anchor function for 93.7% of indirect calls with a precision
of 94%. We present the details of the technique in §IV-C. In
addition, we find two scenarios where we can definitively
determine anchor functions: callback functions and global
variable related indirect calls. Thus, we also develop a definitive
data flow tracking to precisely identify anchor functions for
such indirect calls.

T-2: Catching diverse information with representative
abstraction graph. To digest the diverse information about
the abstract behaviors of a function, we propose the repre-
sentative abstraction graph (RAG). RAG is not only capable
of integrating various kinds of information, such as textual
description, but, more importantly, it is also compatible with
GNN. Its graph structure can be seamlessly processed by GNN.
Specifically, RAG is essentially a graph structure in which each
node is a function or type augmented with its representative
information, and each edge represents the relation between
nodes. By representing the abstract behaviors of functions with
RAG, we are able to train a graph neural network for generating
embeddings for abstract behaviors, which finally allows us to
match more target functions from anchor functions based on
the abstract similarity.

IV. THE DESIGN OF GNNIC
A. Collecting Abstractive Information

As shown in our empirical study in §1I-B, there are mainly
three types of abstractive information that can reflect abstract

behaviors of target functions: (1) function names and textual
descriptions, (2) the function calls, as well as their relations,
and (3) data types that are used by the functions. More
specifically, the function names and descriptions are expected to
be descriptive, which are intended to help programmers quickly
understand the major functionalities of functions. Undoubtedly,
they are important information that should be included for
describing abstract behaviors. To a great extent, the nested
calls of a function can also determine its abstract behaviors.
This is because code reuse is a programming paradigm. In
almost all programs, primitive functions (e.g., library functions
for allocation, file operation, and memory management) are
frequently reused. In other words, the parent function often
acts like a synthesizer that logically organizes the primitive
functions. Therefore, nested calls and their relations should also
be included to describe the abstract behaviors of a function.
Furthermore, the data types are the metadata pre-defining the
objects that are operated by function behaviors, so they should
also be included.

As an example, Figure 3 summarizes the abstractive
information of several target functions for the indirect
call, hw->mac.ops.check_for_link(hw) (also see line 38
in Figure 1). First, the function names and descriptions
of these target functions are descriptive, indicating the ab-
stract behavior that checks the status of some links in
el000 module. Moreover, the shared callees of these target
functions, such as e1000e_config_fc_after_link_up and
el000e_phy_has_link_generic, and the data types used
by these target functions including e1000_mac_info and
el000_hw also indicate that the abstract behaviors of these

target functions are e1000 and “link” related. Therefore, all
such information is included as abstractive information.

Collecting abstractive information of target functions. We
can collect the data types and function call information through
an analysis pass on LLVM IR and collect the textual information
from the source code. Specifically, by analyzing IR, GNNIC
first extracts the call relations between functions, the types
used by functions, and the inclusion relations between types.
Furthermore, GNNIC uses regex expressions to collect the
descriptions of functions and types by scanning the source
code.

e1000e_has_link(...) {

@Dcalleel, Callee2

(@D el000_mac_info, €1000_hw, ...

(2) Calleel, Callee2

(2e1000_mac_info, e1000_hw, ...

hw->mac.ops.check_for_link(hw);

Call site

} Indirect call

®Callee1, Callee2, Callee3,
Callee4, Callee5,

(3e1000_mac_info, e1000_hw, ...
(4e1000_mac_info, €1000_hw, ...

"]
(D e1000e_check_for fiber _link

@ Calleel, Callee2, Callee3,
Calleed4, ...

Related structs

(2 e1000_check_for_serdes_link_82571

Callee functions

4
/D) Check for link (Fiber) ...
(@ Check for link (Serdes) ...

(@) e1000_check_for_copper_link_ich8lan
(@) e1000e_check_for_copper_link

Target functions

&

Fig. 3: Abstractive information of target functions.

‘ , @ Check for link (Copper) ...
Extract functiopafities . i W
/ Function descriptions

Calleel to Callee5 are

(Check for link (Copper) ...

el1000e_config_fc_after_link up, e_dbg,

el000e_phy_has_link_generic, el®00e_check_downshift , and el®00e_get_speed_and_duplex_copper .

B. Building RAG as GNN Inputs

As the next phase of GNNIC, it generates a vector for every
function of the program, which can be used to evaluate the
similarity of functions. Specifically, it includes three parts: (1)
using vectors to represent the textual information, (2) generating
representative abstraction graph (RAG) and, (3) leveraging the
RAG to generate function embeddings.

Embedding textual information for the representation of
functions and types. The names and descriptions associated

with functions and types are considered as textual descriptions.

Such descriptions are usually human-readable and encompass
key information for understanding the functionalities. Thus,
such information can assist GNNIC in evaluating the abstract
similarity of functions. However, in order for programs to
understand such textual information, we need natural language
processing (NLP) techniques to turn such textual information
into vectors. For example, by examining the description, the
programmer can see that the “release” operation is similar
to the “free” operation, which, however, is not quantifiable
for programs. But after applying the NLP techniques, such
two words can be changed into vectors with a short distance
and thus can be quantified by other programs. Therefore, in
this project, to easily integrate textual information into RAG
and then be analyzed by GNN, GNNIC first equips NLP

techniques to embed such textual information into vectors.

Specifically, for each function and type, GNNIC separates its
name into tokens and combines them with the descriptions
(if any) as a single sentence. For example, for the function
e1000e_check_for_fiber_link , GNNIC extracts “ e1000e ”,
“ check 7, “ for ”, “ fiber 7, and “ link ” from its function
name and also collects the comment “Check for link (Fiber);
Checks for link up on the hardware. If link is not up and we
have a signal, then we need to force link up.” from its function
description [6]. Notice that we only consider the overarching
descriptions of functions, excluding comments embedded within
the functions’ code. These internal annotations, while often
elucidating specific variables or detailed operations, do not

typically serve as summary descriptions of the whole function.

GNNIC then pre-processes such text information based on
the commonly used text pre-processing techniques [44], such
as removing stop words and stemming. At last, by using
Word2Vec [32, 33], the corpus of each function and type is

embedded into a vector with 300 dimensions, which are used
as the initial features for functions and types in RAG. To do
s0, GNNIC pre-trains a Word2Vec model based on more than
1.5GB textural corpus, which combines the code comments,
documentation, git logs, and other program-related texts from
multiple git repositories, including Linux, FreeBSD, OpenSSL,
etc. In this way, the model can learn more descriptions and
words related to programs.

Representative Abstraction Graph (RAG). Since there
are three types of representative information, treating them
separately can only yield one-sided results. Such information
thus should be integrated at first. To this end, we propose RAG
to leverage the graph structure reflecting the use, invocation,
and containment relations between types and functions. Simul-
taneously, it incorporates individual node information, such as
names and descriptions. To integrate such information, GNNIC
first builds a separate graph for each relation between nodes
(including nested functions and types) and then merges them
into one graph, which is RAG. Finally, GNNIC initializes each
node with its corresponding textual information.

Specifically, GNNIC first builds a directed graph to rep-
resent the function call graph (without considering indirect
calls), indicating the function call relationship. Then, GNNIC
builds a type usage graph that records all the functions and
data types used by these functions. In this graph, the nodes
are functions and types, and the directed edges point from
functions to types indicating the usage relation. At last, GNNIC
builds the type-relation graph, which describes the containment
relations between different types. Each node is a specific
data type, and the weighted directed edges point from the
container types to its element types; the weights are the
counts for the number of the specific element’s types. For
example, as a struct type, struct el®00_mac_info can be
one of the nodes in the type-relationship graph, which includes
one element with type struct el®00_mac_operations , three
elements with type u8, twelve elements with type bool ,
etc. Therefore, in the type-relationship graph, from the node
struct el000_mac_info , there are at least three edges, an
edge points to struct el@00_mac_operations with weight 1;
an edge points to u8 with weight 3; and an edge points to
bool with weight 12. Based on all these relationship graphs
and the embedding of textual information, GNNIC then merges

them into a RAG.

As shown in Figure 4, this merged graph is RAG, in which
the nodes are functions and types with their embedding. Edges
in the RAG can point from function to function, function to
type, or type to type, which represents the relations between
the caller with the callee, the type-user with the type, and the
type with the types of its elements. After this, GNNIC trains
a GNN against this RAG.

Init by text info of Fn-

o L 53(”“
‘ ’/Fl,‘ : ¥ Type relationship

FG;;FS ‘ X v’[j: Fna] [Function types >
H . \[} Tlff]*Tz ‘]-' H Function call —
HF7 \;F - T3H [Aggregatorl
8 [Aggregator2

Fig. 4: Structure of GNN on representative abstraction graph.
F=function, T=type.

Generating node embedding for RAG. This step aims to use
an unsupervised approach to learn embeddings of functions and
types only based on the RAG. To this end, we choose to use
the state-of-the-art technique, GraphSage [18], to embed nodes
in the RAG. We choose GNN mainly because it can effectively
learn and utilize the relations between nodes in the RAG. In
particular, when given a node in the graph, GNNIC aggregates
the feature information of its neighbors and represents this
node with the aggregated information. Given a node v in k-th
layer, its embedding h* can be expressed by the nodes in the
(k-1)-th layer as follows:

hE = o(W- Mean({h*" "} U {hE~1 Yu e N(v)})) (1)

Here, N(v) represents the sampled neighbors of node v; W
indicates the trainable weight matrix; ¢ is a non-linear activation
function such as ReLu. For example, as shown in Figure 4, the
embedding of the function F1 is generated by the aggregation
of the abstractive features for its callee functions F2, F3, F5,
and the contained type T1 . Based on this approach, GNNIC
can generate the embedding for every function in the program,
representing the abstract behavior of functions.

C. Collecting Anchor Functions with Scoped Unique-Name
Matching

As we discussed in §1II, GNNIC should first collect anchor
functions, with which GNNIC can further refine the indirect
call targets by checking the abstract similarity between potential
target functions and these anchor functions. The goal is to
precisely identify at least one anchor function for as many
indirect calls as possible. It is worth noting that this step never
aims for completeness but for precision. Also, as we discussed
in C1 (see §III-B), due to the low coverage rate or high false-
positive rate of traditional approaches, we need a new solution.

Intuitively, if a function pointer’s name is unique in the
program or in the scope of its dependencies, we can precisely
match any assignment of a function’s address to the function

pointer with an indirect call using the function pointer based
on the name, without the need for tracking the data flows.
Any function whose address is assigned to a unique function
pointer is most likely a valid target of an indirect call. Based
on the insight, we propose scoped unique-name matching to
identify anchor functions. Although in theory, it is possible
that the function pointer can be re-defined, resulting in invalid
matched targets, our evaluation in §VI-C shows that such a
technique works extremely well for GNNIC—it can identify
at least one anchor function for 93.7% of indirect calls with
6% false positives.

For example, in the Linux kernel, the name of func-
tion pointer associate_indicator is unique in the whole
kernel. Also, we can find that the address of the function
lane2_assoc_ind is assigned to this unique function pointer.
Therefore, the function lane2_assoc_ind is an anchor func-
tion for any indirect call that uses this function pointer. Note
that because of the uniqueness of the function pointer, we can
know if an indirect call dereferences the function pointer. The
power of such a unique name matching is that it eliminates
the need for data flow tracking from function assignment to
indirect call.

To make the technique general and precise, we still need
to overcome two problems: (1) generalizing the definition of
“name” for function pointers and (2) delimiting the dependency
scope for an indirect call.

Defining unique names. In large programs, function pointers
typically exist as fields of structs instead of as standalone
pointers. Therefore, we define the name as a composite name
that includes the name and type of struct objects, as well
as the name of the function pointer. For example, for the
function pointer on line 38 of Figure 1, its composite name is
a combination of strings, “el000_mac_operations” , “ops”,

“s32*(struct el000_hw *)” , and “check_for_link” ,
which contain the name and type of the function pointer, as
well as its struct object. Such a representation of the name
allows us to generally cover all kinds of function pointers.

Delimiting the dependency scope. Another problem we
overcome is the scoping of dependencies. Apparently, indirect
calls can only call the functions of modules that have data
dependencies with the indirect call, as the addresses of the
functions must be passed to the indirect call through data
flows. Therefore, in this step, we delimit the scope to only
data-dependent modules for the indirect call. We choose to
perform the scoping at the granularity of the module to simplify
the design and ease the implementation, which has worked
reasonably well.

Specifically, GNNIC adopts a simple yet effective policy to
define dependency. Two modules can have data dependencies
only under the following two conditions, (D one module calls
functions defined in another module, or) one module uses
the global variable defined in another module. Based on these
two conditions, by iteratively considering modules with data
dependency as the scope, GNNIC uses unique-name matching
to identify anchor functions only within that scope. Notice
that, to be precise, when finding the data dependency modules,
GNNIC does not consider the data flow passed by indirect
calls. Such a limited scope can significantly narrow down the

search space, so that the name of a function pointer has a
high chance to be unique. For example, ops.release() is an

indirect call in e1000e module. In the whole kernel, we can
find hundreds of target functions whose addresses are assigned
to the function pointers with the same name. However, after
we delimit the scope to the modules that have data dependency
with e1000e , only eight targets are identified and all of them
are valid according to our manual analysis.

Type ST GV{
.func_pointer = fool;

}

FuncPointer(A);

1
2
3
4
5 void CallerOfIcalls(Type (*FuncPointer)(Type A), ...) {
6
7 GV. func_pointer(...);

8

}
9
10 void CallerOfIcaller(...) {
11 CallerOfIcalls(foo02,...);
12 }

Fig. 5: A simplified example for definitive data flow tracking.

Definitive data flow tracking for function pointers. In
addition to using scope unique-name matching, we find two
scenarios in which standard data flow tracking suffices to
identify anchor functions: (1) call back as a function argument,
and (2) direct use of a function pointer in a global initializer.

Specifically, for the call-back functions, the function address
is typically directly stored to a function pointer as an argument,
which is typically used in the current function. For example, in
Figure 5, on line 11, the function address of foo2 is directly
passed to CallerOfIcalls and used in it. Through an intra-
procedural backward data flow analysis, GNNIC can precisely
know that foo2 is an anchor function.

On the other hand, a global object is often initialized through
a global initializer that clearly stores the address of a function
to a function pointer in the object. When an indirect call uses
the global, we can precisely know the function is an anchor
function. For example, in Figure 5, func_pointer in the global

variable GV is initialized as fool (on line 2). Thus, fool is
an anchor function for the indirect call on line 7. Our evaluation
shows that GNNIC can use such definitive data flow tracking
to find anchors for 2% of indirect calls.

D. Identifying More Targets with Abstract Similarity

After we get the embedding of each function and the anchor
functions of each indirect call, GNNIC then tries to identify
more target functions using abstract similarity.

Similarity analysis. Since we have the embedding of abstract
behaviors for both anchor functions and other functions, the idea
is to compute the similarity of embeddings. Given an anchor
function (or sometimes multiple anchor functions) and a to-be-
matched candidate function, GNNIC evaluates the similarity
based on the following expression.

Vaq * Ve

.= MEAN ,
S Calival

Vv, € G(V)}) 2)

Here, let us assume func_t is a candidate target function.
Then, v. is the embedding for the func_t; S. represents

the similarity between this function and the anchor functions;
v, is the embedding for an anchor function; G(v) represents
the set for all anchor functions of the indirect call. GNNIC
uses the average number for the similarity between func_t
and all anchor functions of the indirect call, which can show
the abstract similarity of func_t with the ones of anchor
functions. The similarity, S., always belongs to the interval

[-1,1] ; the larger S, is, the more similar func_t and the

ground truth are. Therefore, S. = 1 means func_t has the
same functionality with at least one anchor function. Thus
func_t very likely belongs to the real target function of the

indirect call. Oppositely, S. = —1 means func_t is totally

different from all the anchor functions. Thus func_t unlikely
belongs to the real target function of the indirect call.

This approach makes the inputs and outputs of GNNIC
flexible. First, GNNIC can refine the results of different
traditional indirect-call analysis techniques such as type analysis
and multi-layer type analysis. Second, GNNIC can easily
adjust the false-positive rate and false-negative rate of the
results by changing the threshold (S.) to fit the precision-
driven applications or the recall-driven applications. Third, our
evaluation results reveal a notable similarity among anchor
functions involved in indirect calls with multiple anchors, as
evidenced by a medium similarity of 0.79 and an average of
0.78. Such a feature enables incorporating multiple anchor
functions to ensure system robustness with minimal false
positives, providing reliable and accurate results. Note that
GNNIC is complementary to existing approaches. For example,
it can be used to refine the results of type analysis by further
removing functions reported by type analysis that are not similar
to anchor functions in abstract behaviors.

V. IMPLEMENTATION OF GNNIC

We have implemented GNNIC based on LLVM and
GraphSage [18]. This section presents several implementation
details of GNNIC.

Extracting the name of function pointers. As discussed
in §IV-C, in order to collect anchor target functions, GNNIC
collects and matches the unique function pointers in a limited
scope. Collecting the name of the function pointer and container
struct at the indirect call site is done by a Python script
code, including mainly two parts, collecting function-pointer
initializers and expanded Macros. Here we did not directly work
on the pre-compiled code, in which the Macros are expanded.
This is mainly because we can only map the instructions in
the LLVM IR into the source code lines based on the debug
information. However, we cannot directly map such instructions
to the pre-compiled code. Specifically, given an indirect call
instruction, GNNIC first collects its source code line based on
the debug information provided by LLVM. Further, GNNIC
checks if a Macro does have such an indirect call. If the answer
is yes, GNNIC further looks for the function-pointer name
and struct name inside the Macro. Otherwise, GNNIC directly
extracts such names. This approach works well for most indirect
calls; however, it cannot correctly handle some corner cases,
such as the function pointer name being formed by multiple
strings pasted by token-pasting operators.

Handling no anchor function cases. Based on our evaluation
(see §VI-C), GNNIC can detect at least one anchor function

for 93.7% of indirect calls. For the uncovered 6.3% of indirect
calls, we choose to “borrow” the anchor functions from similar
indirect calls to represent their abstract behaviors. Specifically,
given an uncovered indirect call, GNNIC first finds another
indirect call that is most similar to it by comparing the name
and type of the function pointer. Then, GNNIC regards the
anchor functions of that similar indirect call as the anchor
functions for the uncovered indirect calls. This decision is
based on the results of the background study, which show that
in most cases, the name of function pointers is highly related
to the abstract behavior of the indirect call. Therefore, similar
indirect calls also tend to have similar function pointers and
abstract behaviors. This is essentially another application of
abstract similarity, where it is applied to indirect calls instead
of functions. More evaluation related to the anchor functions
can be found in §VI-C.

Handling RAG with indirect callees. When building the
RAG, GNNIC incorporates the call graph, which is part of the
abstractive information we include. A target function may have
many nested calls, and some of them are indirect calls. When
a nested call is an indirect call, the nested callee is missing
and cannot be incorporated into the abstractive information
of the target function. To handle this problem, we borrow the
identified anchor functions of indirect calls to complete the
missing nested callees. Such a strategy can slightly improve
the overall stability of the model when we use RAG to train
the function embeddings.

Setting up the GNN model. We use the directed Graph-
Sage [18] model, which is implemented by the library Stellar-
Graph [9], to handle RAG. Specifically, we use two layers in
the GraphSage encoder, with a 10 and 5 sample size for the
first and the second hops. We run five epochs with batch size
10K. The input of the mode is RAG, the nodes of which are
initialized by the vector representing the textual information
with 300 dimensions.

VI. EVALUATION

A. Experiment Setting and Data Sets

Platform. We use two computing resources available to us,
including a server (8 cores/60GB memory/a single GPU) and a
desktop (24 cores/64GB memory/a single GPU). Both of these
two machines are running on Ubuntu 20.04.

Ground-truth targets for false-negative evaluation. To
evaluate and compare the false-negative of GNNIC under
different settings, we must first have a set of ground-truth
targets. To this end, we downloaded and analyzed the previous
fuzzing logs from the results of Syzbot [17], from which,
we identified 3,831 unique indirect caller-callee pairs. To
acquire these function pairs, we first extracted all caller-
callee pairs in the fuzzing logs reported by Syzbot, whether
or not the corresponding cases trigger bugs. Because all of
them are resources for supplying us with valid caller-callee
pairs. Consequently, we have collected a collection of 11,286
fuzzing logs, all of which were reported before the year 2022.
Furthermore, we collected the indirect caller-callee pairs from
them by leveraging MLTA, which has no false negatives. Any
overlooked pair in this dataset would signify a false negative of
GNNIC. Such results can be used to evaluate the false negatives
of GNNIC conservatively. Notice that the real false-negative

rate of GNNIC must be lower than the estimation provided
by this method, due to the false positives of the MLTA. For
instance, if a caller directly invokes a callee while a function
pointer is dereferenced in this caller function, the MLTA might
incorrectly identify the same callee as an indirect call target,
when the function pointer and the callee share the same types.
Our current method would classify such misidentifications
as ground truth, increasing the estimated false negatives of
GNNIC. Although these cases are relatively rare, as evidenced
by our manual analysis.

We adopt this approach for several reasons. First, it allows
us to gather sufficient data points, enhancing the statistical
confidence of our analysis. Second, it helps minimize human
bias in the evaluation of false negatives because humans often
focus on confirming simpler true positives based on involved
functions and pointer names while overlooking complex data
flows. Third, we leverage open fuzzing logs, which offer com-
prehensive coverage, instead of relying solely on self-executed
dynamic analysis. This approach overcomes limitations such
as exploring a limited number of paths within a constrained
time frame and the inability to access specific devices where
certain execution results may be unattainable.

Method for false-positive evaluation. Most of the state-of-the-
art works(e.g., ICallee [59], TypeDive [28], Crix [30]) only use
the refining rate of indirect-call targets to show the effectiveness
of their tools compared with the previous approaches. However,
none of them has evaluated the real false-positive rate for the
indirect-call target identification, mainly due to the program
complexity, which makes such evaluation time-consuming. To
fill this gap and demonstrate the concrete performance of the
current state-of-the-art, we manually performed a false-positive
analysis. Specifically, we first sampled 100 indirect caller-callee
pairs from the results of each following method: our work, type
analysis, and type+multi-layer type analysis (MLTA). Then,
we manually analyze such pairs to see if the target function
can be a real target function or a false positive based on the
following methods. (D If we can find at least one path that
can pass the address of the target function to the call site,
then we believe it is a true target function. @ If we cannot
find such paths and the functionality of the target function is
obviously different from the intention of the function pointer
Then we believe it is a false target. Otherwise, we will consult
as many auxiliary materials as possible, such as a fuzzing log,
to determine whether the function is the real target function.

Data sampling for manual analysis. Static analysis techniques
often rely on manual inspection of code segments or results
to design or evaluate systems. Given the time-intensive and
complex nature of the cases, manual analysis usually focuses
on a sample of cases. When the total number of cases is
substantial, state-of-the-art practices [4, 12, 15, 30, 43, 48,
49, 55] typically sample and manually analyze 40-400 cases.
According to the previous study [7], such sampling ratios would
result in a margin of error between +5% to £15%. In line with
these state-of-the-art works and considering the complexity of
manual analysis, we choose to select 100 - 300 samples for our
case study (see §1I-B) and false positive analysis respectively,
ensuring that the margin of error falls within +5% to +10%,
thereby providing statistically valid results. And to make sure
the randomness of our sampled cases, we use pseudo-random
number generators [11] to choose the data from the whole data

set.

B. Scalability of GNNIC

GNNIC can analyze system-level programs in hours. For
the Linux kernel and the Android kernel, which has more than
20 million lines of code, it takes about 10 minutes to collect
all abstractive information from their corresponding LLVM IR.
Furthermore, it takes about three hours to pre-train Word2 Vec,
build RAG, and train GNN with RAG. Notice that people do not
need to re-train the Word2Vec model when analyzing different
target programs because they are reusable. Also, benefiting
from the inductive learning of GraphSage, people do not need
to re-train the whole GNN model after some new functions
are added to the target program. At last, it takes about 10
minutes to generate the anchor functions and the final indirect
call results. Thus, in total, it will take less than 4 hours to
analyze the Linux or Android kernel. And the analysis time can
be reduced to less than one hour for analyzing the FreeBSD
kernel.

C. Evaluation on Anchor Function Identification

In this section, we assess the effectiveness of the anchor
function identification process by examining instances of both
false positives and false negatives.

The precision of the anchor functions. As discussed in
§VI-A, we have sampled and evaluated the precision of the
100 anchor functions. Specifically, in the 100 sampled indirect
caller and target pairs, 94 of them are valid targets, and 6 are
false positives. This result indicates that most of the anchor
functions are valid targets. Moreover, after looking into the 6
cases, we find that all of them are caused by the implementation
issue of name matching. Because on the source code level,
GNNIC cannot perfectly catch the name of the function pointer
and its container struct when meeting some complex code,
such as nested complex macros. Such issues would require
extensive engineering effort to resolve; however, they would
not significantly enhance the overall system. Thus, we propose
to regard them as potential future work.

Failures in anchor identification. Besides the precision,
we also evaluate the failures in anchor identification where
GNNIC cannot find any anchor functions for an indirect call.
Specifically, for the Linux kernel, GNNIC fails to identify
anchor functions for 6.3% of indirect calls. By manually looking
into 50 failure cases, we found the following causes. D 56%
of them are caused by the complexity of source code, such
as using complex Macros to initialize function pointers. Q)
44% of these issues stem from function pointers that never
directly take the target functions’ address but instead acquire it
from other function pointers. In §VIII, we will further discuss
covering more anchor functions in the future.

D. The Precision Improvements on Target Identification

We compared GNNIC with the two-layer type analysis,
which represents MLTA [28, 30], for the following reasons.
First, to ensure a fair comparison of GNNIC, it is essential
to evaluate it against source-code level or IR-level program
analysis techniques, rather than binary-based approaches. No-
tably, recent methodologies, such as iCallee [59], specifically

10

focus on binary code, which inherently lacks certain infor-
mation when compared to IR-level analysis. Consequently,
comparing GNNIC to such approaches will introduce biases
that may potentially underestimate the contribution of their
results. Second, based on the results of TypeDive [28], other
IR or source-code level methods, such as pointer analysis,
are not scalable for system-level programs and typically do
not even surpass MLTA [28]. Third, using GNNIC with
MLTA is scalable and can minimize false negatives, benefiting
downstream applications.

In this evaluation, we tested the performance of GNNIC
on the Linux kernel. As type analysis globally matches targets
and finds a superset, we apply GNNIC on the results of
type analysis to refine the target functions. Notice that, as we
discussed in §II, not all the indirect calls qualify MLTA because
some indirect calls only have one-layer type information. In
this scenario, we step back to use the results of the one-layer
type analysis.

The reduction rate of target functions. Figure 6 illustrates
the proportion of target functions that can be reduced by the
GNNIC system under varying threshold settings. In this graph,
the x-axis represents the abstract similarity (the threshold)
between the candidate target function and the anchor functions,
as described in Section IV-D. The y-axis corresponds to the
reduction rate of target functions at a specific threshold. As
the abstract similarity threshold rises, the GNNIC system is
capable of filtering a greater number of target functions, the
majority of which are considered invalid. For example, for
the Linux kernel, GNNIC can reduce about 88% of target
functions when the abstract similarity is larger than 0.9.

1.0
0ol —— FreeBSD S
Android i
0.8 Li 7 /./
---- Linux ’ -
9o / /
© / /
— 0.6 ya /
7 /
8 0.54 w Vi
4 .
S o4/ /! !
© / !
Q 0.3 / !
o / /
0.2 vd 7
/ /
0.14 - 7
—’// /</
0.0 S L e P
0.3 014 015 0t6 0?7 018 019 1?0
Similarity

Fig. 6: Percentage of refined indirect-call targets for different OS
kernels.

Receiver operating characteristic (ROC) of GNNIC. To
more effectively evaluate the performance of the GNNIC
system, we examine the relationship between the false-positive
rate (FPR = FP/(FP+TN)) and true-positive rate (i.e., recall,
TPR = TP/TP+FN), reflecting the false negatives of GNNIC,
in Figure 7. We used the 3,831 ground-truth function pairs
collected from fuzzing logs (see §VI-A) to assess the true-
positive rate evaluation of GNNIC. Furthermore, as mentioned
in Section VI-A, we sampled and manually analyzed 100
indirect caller and callee pairs from the MLTA results. Our aim

is to evaluate the false-positive rate of GNNIC based on these
samples. To further minimize random error and to ensure the
smoothness of the ROC curve, we further randomly sampled
extra 200 pairs, bringing the total to 300 indirect caller and

callee pairs from the MLTA to assist the false positive evaluation.

Figure 7 demonstrates the effectiveness of GNNIC in achieving
a desirable balance between false positive and true positive
rates. At a false-positive rate of 0.33%, GNNIC achieves a
true-positive rate (recall) of 84.8%, indicating 15.2% of false
negatives. Under this condition, all the identified target functions
are anchor functions. Conversely, when the true-positive rate
(recall) reaches 99.6%, the corresponding false-positive rate
rises to 60.7%. This underlines the precision of the GNNIC
system in identifying the target functions of indirect calls.

T

1.0

0.9 1

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

0.3 1

0.2 4

True Positive Rate

0.14
—— ROC curve

0.0

03 04 05 06 07 08 09 1.0

False Positive Rate

00 01 0.2

Fig. 7: ROC curve for results for GNNIC on the Linux kernel.

Comparing with type-based approaches. A comparison
between the results of GNNIC and type-based approaches
against FPR can be problematic, as determining the total number
of negative targets within the entire program for type analysis
is challenging. This difficulty makes it hard to compute the
false-positive rate. Nonetheless, we can still draw a comparison
between the precision (precision = TP/(TP+FP)) and recall of
GNNIC and type-based approaches. To this end, by manually
checking all these 300 indirect caller and callee pairs, we can
find 30 of these cases are true positives, which indicates that the
precision of MLTA is 10%. Based on the mathematical proof of
MLTA [28], in theory, there should be no false negatives, and
thus the recall rate of MLTA is 100%. For GNNIC, when its
precision reaches the highest value of 92.3%, the corresponding
recall value is 84.8%. This precision aligns with the 94%

precision of anchor functions, as discussed in Section VI-C.

These findings suggest that GNNIC can improve precision by
up to 82.3% compared to MLTA, while missing 16.2% of real
targets.

E. Evaluating GNNIC on Different Projects

Besides the Linux kernel, we also evaluated GNNIC over
the Android kernel and the FreeBSD kernel.

Distribution for the number of targets. We also evaluated
the distribution for the number of indirect-call targets identified
by the type-based approach and by GNNIC. Similar to the
previous implementations, we reused the implementation of

11

a type-based approach [30]. Table I shows the distribution
for the number of identified indirect call targets in the Linux
kernel, Android kernel, and FreeBSD kernel. The percentage
in the table indicates the percentage of indirect calls that have
the corresponding number of target functions. The ‘“Mean”
and “Max” indicates the average and the maximum number
of target functions for a specific indirect call. The results in
Table I show that for 7.2%, 7.2%, and 2.8% of indirect calls
in the Linux kernel, Android kernel, and FreeBSD kernel, the
type-based approach will detect more than 100 target functions
for them. However, GNNIC can reduce the corresponding
number to 1.3%, 0.6%, and 0.2%, which shows that GNNIC
can effectively refine the indirect call targets identified by the
traditional type-based approaches.

Improvement for different kernels. Furthermore, Figure 6
also shows the percentage of reduced target functions based
on the different similarity thresholds. Specifically, GNNIC can
reduce 86% and 93% of target functions for the FreeBSD kernel
and the Android kernel, which means GNNIC can effectively
reduce the irrelevant target functions for different programs.
However, due to missing enough ground truths for the FreeBSD
and the Android kernel, we cannot draw the recall-precision
curve for them.

VII. SECURITY APPLICATIONS

A. Leveraging Abstract Similarity for Enhanced Bug Detection

We evaluate the effectiveness of GNNIC in real-world
security applications by integrating it with static analysis tools
for finding security bugs in the Linux and FreeBSD kernels.
Our analysis uncovered a significant number of bugs, which we
are currently reporting to the developers. To prioritize security,
we will withhold the disclosure of these bugs until we have
ensured they are thoroughly resolved.

Enhancing bug detection in similar functions through
refined cross-checking techniques. Cross-checking techniques
are widely utilized in static analysis for bug identification, as
they collect similar code snippets and consider deviations as
potential bugs [30, 54, 56]. However, these techniques face
challenges, including requiring a large number of code snippets
to establish correct usage patterns, cannot handle infrequent
cases, and hard to identify deviations in certain situations. To
address these limitations, we propose a combination approach
to improve bug detection. We aim to identify overlooked bugs
for uncommonly used functions, by combining our technique
with cross-checking. We first cluster functions with abstract
similarities and apply cross-checking to the entire class of
functions, allowing for analysis of functions not commonly used
and tolerating more noise. To illustrate its effectiveness, we use
“allocation” as an example of abstract behavior and manually
selected misused allocation functions as anchor functions,
such as mlx4_alloc_cmd_mailbox , from APISan [54] and
Crix [30] results. Table II shows that our analysis of the
Linux and FreeBSD kernels found 97 missing return value
check bugs for 38 different allocation functions, with 63%
(24/38) of those functions used less than 10 times in the
program. All of these instances have the potential to trigger
NULL-pointer dereference problems when the unchecked return
pointers are further dereferenced. Traditional cross-checking
techniques in Crix and APISan failed to report these bugs due

TABLE I: Distribution of indirect calls that have a number of targets in the range (specified on the first row). Type-based:

Original type-based

approach on the system; Sim=0.9: The results of GNNIC based on the similarity at 0.9.

System/ # of targets <10 10-100 | 100-1000 | >= 1000 | TotalTargets | Total Icalls | Mean | MAX
Linux (Type-based) 77.0% | 158% | 5.4% 1.8% 4734762 55921 84.7 8862
Linux (GNNIC, Sim = 0.9) 85.7% | 13.0% 1.3% 0.0% 545452 55921 9.7 2436
Android (Type-based) 82.8% | 10.0% | 5.6% 1.6% 4769716 62618 76.1 9056
Android (GNNIC, Sim = 0.9) 94.9% | 4.5% 0.6% 0.0% 297284 62618 4.7 2645
FreeBSD (Type-based) 85.5% | 11.7% 1.3% 1.5% 251307 7578 332 1960
FreeBSD (GNNIC, Sim = 0.9) | 88.5% | 11.3% | 0.2% 0.0% 34669 7578 4.5 217

to their limitations in analyzing infrequently used or misused
functions with a higher deviation proportion than the threshold.
Such results demonstrate that combining our method with
cross-checking can effectively identify more code issues, by
reducing the false negatives of the original cross-checking-based
techniques. On the other hand, GNNIC can also help reduce
the false positives of traditional static analysis by providing
them with more precise call graphs. A more in-depth discourse
on this aspect will be presented later.

TABLE II: Misused “allocation” related functions in the Linux and
FreeBSD kernels. ITT = identified total used times; IMT = identified
misused times (bugs); F = flag to indicate if the cross-checking-
only approaches can find the issue; Linux kernel is at git commit
dbd736¢8116f; FreeBSD kernel is at git commit 4ba619etbdd2476;

Target Misused function name ITT | IMT | F
Linux proc_net_mkdir 7 1 Y
Linux nci_skb_alloc 9 1 Y
Linux bio_alloc_bioset 5 1 Y
Linux kcalloc_node 14 1 Y
Linux dma_alloc_attrs 19 1 Y
Linux alloc_wrb_handle 4 1 Y
Linux cdns3_gadget_ep_alloc_request 2 1 N
Linux v412_ctrl_new_custom 23 4 Y
Linux drm_atomic_get_new_connector_state 6 1 Y
Linux acpi_os_allocate 5 2 Y
Linux acpi_os_allocate_zeroed 7 1 Y
Linux acpi_os_allocate_zeroed 3 1 Y
Linux nfp_cpp_mutex_alloc 3 1 Y
Linux alloc_irq_cpu_rmap 9 1 Y
Linux pblk_alloc_rqd 4 2 N
Linux __alloc_object 2 1 N
Linux alloc_buffer_head 2 1 N
Linux alloc_page_buffers 3 1 Y
Linux kcalloc_node 14 1 Y
Linux nci_skb_alloc 9 1 Y
Linux alloc_pages_node 12 3 Y
Linux v412_ctrl_new_int_menu 17 1 Y
Linux 12c_new_device 9 1 Y
Linux v412_ctrl_new_std_menu 32 2 Y
Linux compat_alloc_user_space 15 15 N
Linux iova_magazine_alloc 3 3 N
Linux nd_dax_alloc 2 2 N
Linux usbhs_pipe_malloc 2 2 N
FreeBSD | xpt_alloc_ccb 8 3 Y
FreeBSD | cam_simq_alloc 27 1 Y
FreeBSD | nvme_allocate_request_vaddr 10 5 N
FreeBSD | g_malloc 31 13 Y
FreeBSD | devfs_alloc 3 1 Y
FreeBSD | if_alloc 69 3 Y
FreeBSD | bit_alloc 2 1 N
FreeBSD sglist_alloc 12 1 Y
FreeBSD | buf_ring_alloc 4 1 Y
FreeBSD | uma_zalloc 64 14 Y

12

Interesting findings during the bug detection. Incorporating
abstract similarity of functions with static analysis not only
enhances the capabilities of cross-checking techniques but also
reveals new bugs that conventional cross-checking methods
would completely miss. This is because if a function is used in
a single, uniform pattern, the cross-checking technique cannot
detect any issues. For instance, if the return value of a function
is never checked throughout the entire program, the cross-
checking approaches, such as Crix, will not identify the missing
check issue. Similarly, if most of the usages (>=50%) of a
function are incorrect, cross-checking methods would also miss
them. However, such bugs can be identified by integrating
abstract-similarity-based clustering. Due to such reasons, 33 out
of 97 missing NULL-check bugs against 10 allocation functions
would be totally missed by cross-checking-only approaches
focusing on security checks. More interestingly, the return
values from 3 of these allocation functions were never checked
by security checks and thus will have gone unnoticed using
only cross-checking techniques. Therefore, combining abstract
similarity and static program analysis dramatically increases
the ability to find new and previously overlooked bugs in code.

Reducing false positives in static analysis. Static analysis
tools are widely used in both industry and academia to
enhance software security and quality. Indirect-call analysis
is critical for these tools, but false positives can impede bug
detection. For example, as the claims from INCRELUX [55]
and DiffCVSS [49], using traditional techniques, such as type
analysis, to identify indirect calls will introduce high false
positives into their results and sometimes even make the tool
unusable. Our study found that imprecise indirect call analysis
is a major contributor to the results of Crix, accounting for
59% of the total warnings. Integrating our system with Crix
reduced these cases by 74%, resulting in a 44% reduction in
total false positives. This demonstrates the potential of our
system to deliver high-accuracy results when combined with
conventional program analysis techniques.

B. Other Potential Security-related Applications of GNNIC

Enhancing vulnerability-reachability analysis. Another
potential security application of the GNNIC is assessing the
reachability of a vulnerability [53]. An analysis of call chains
from Syzbot [17] reveals that, on average, there are 4.7 indirect
calls in a chain within the Linux kernel. Also, based on the
average number of target functions identified by GNNIC and
type-based approach (see §VI-E), we can infer that in order to
find the correct call chain; we need to analyze 84.7%7 (10°)
candidate call chains based on the call graph constructed by
the traditional approaches. However, with the accurate call
graph built by GNNIC, we only need to analyze 9.747 (10%)

candidate call chains. This result indicates that the call graph
built with GNNIC can dramatically improve the precision of
call chain identification, thereby supporting future security-
related research, such as vulnerability assessment.

Expanding bug identification capabilities with abstract
similarity. In §VII-A, we demonstrated the potential of
abstract similarity in enhancing bug identification. Our example
of missing NULL checks for allocation-related functions
showcases the effectiveness of our approach. However, it is
essential to recognize that the application of abstract similarity
is not confined to this specific type of bug and can be employed
to detect other common bugs as well. Future research could
concentrate on investigating the use of abstract similarity for
identifying various bug types, such as permission issues in
critical APIs. As highlighted in PEX [56], abstract similarity
holds the potential for aiding in the detection of similar
permission issues. Although this kind of research is time-
consuming and beyond the primary scope of this paper, it
offers exciting prospects for further exploration.

Improving directed fuzzing and concolic execution. Directed
fuzzing and concolic execution often require knowledge of
indirect-call targets during the execution. However, due to
accuracy limitations or performance issues or existing ap-
proaches, only a few existing tools effectively handle indirect
calls, such as HFL [23] and CollAFL [13]. Conversely, many
dynamic analysis tools and concolic-execution tools, such
as previous works [8, 19, 21, 25, 36-38, 40, 47, 58], do
not handle indirect branches at all. However, neglecting to
correctly handle indirect calls result in dynamic analysis tools
missing many targets. For example, Bohme et al. [5] proposed
a Greybox Fuzzing (DGF) based on the AFLGo, which found
that “more than half of the changed basic blocks are accessible
only via register indirect calls or jumps (e.g., from function-
pointers). Those do not appear as edges in the analyzed call-
graph or in the control flow graph.” These findings suggest
that over-approximated approaches, like type-based analysis,
may generate numerous false positives, affecting downstream
application accuracy and increasing analysis time. On the
other hand, under-approximated approaches may introduce false
negatives in downstream applications. Consequently, an accurate
call-graph construction tool like GNNIC holds significant
potential for enhancing existing directed fuzzing and concolic
execution instruments. Furthermore, users can optimize the
balance between false positives and false negatives by adjusting
the thresholds.

VIII. DISCUSSION

Comparison with type-based indirect-call analysis. Although
type-based indirect call analysis can generate many false
positives in large software, in theory, it can ensure soundness.
This is essential for some special applications, such as control-
flow integrity (CFI). However, many security applications do not
require soundness but accuracy (balanced precision and recall).
Most recently, Lu proposed the Range-Aware Multi-layer Type
Analysis (MLTA) [27] in order to enhance the accuracy of
indirect call target identification. Although this method holds the
potential to improve the performance of security applications,
our study (see §1I) and evaluation results (see §VI) have shown
that, due to the prevalence of cases where the scope of type-
based approaches is exceeded, this method still falls short

13

in providing precise assistance for program static analysis,
such as inter-procedural taint analysis. More importantly, our
system, which is designed to filter target functions based on
abstract similarity, can provide complementary benefits to these
type-based approaches, including the range-aware MLTA. By
incorporating the strengths of both approaches, the performance
of both our and their system can be further improved.

Comparison with CFI-based indirect-call analysis. In
the realm of refining indirect call targets, several state-of-
the-art approaches, including OS-CFI [22], 7CFI [16], and
PathArmor [42], utilize CFI techniques to refine indirect
call targets during runtime. While these approaches benefit
from dynamic analysis and can effectively analyze user space
programs with high precision, they suffer from low coverage
rates for large programs, particularly OS-level software, and
cannot be easily applied to low-level programs, such as device
drivers, without hardware support. For example, HFL [23] and
DR.FUZZ [57], which are two recent kernel fuzzers, show
that the code coverage for Linux kernel and its drivers is
typically less than 10%, and sometimes even less than 1% for
some drivers. Beyond this, as discussed in OS-CFI, such CFI-
based techniques typically require hardware features, including
Intel MPX, Intel TSX, and Intel PT. But, in contrast, our
approach is based on static code analysis and does not require
hardware support, making it suitable for analyzing large and
low-level programs. Thus, while both our approach and CFI-
based techniques aim to identify indirect call targets, they
cater to different types of programs and have distinct security
applications.

Path-based indirect-call analysis. Most of the existing
indirect-call detection approaches aim to give all the possible
target functions for a given indirect call. However, for some
situations that require analyzing the specific execution paths,
such as path-sensitive analysis, the target functions given by
the current approaches are too general. For example, although,
on average, we can reduce the number of cases for finding
the correct call chain from 10° to 10%, based on our results
compared to type-based methods (see §VII-A), this is still
not unique. The target function of the indirect call should
be uniquely identifiable by giving enough preconditions and
constraints. However, such path-sensitive indirect call analysis
is out of this project’s scope. We would like to regard it as
interesting future work.

Limitation of current work and potential future works.
First, finding the anchor functions is an unexplored problem,
and none of the existing methods can handle this problem
well. So in this project, we chose to combine the IR level
information with the source code level information to find the
anchor functions within the restricted scope. However, due to
the lack of accurate matching methods from IR variables to
variables on the source code, and the lack of accurate source
code or pre-compiled code analysis tools, we cannot match the
name of each function pointer with one hundred percent of
accuracy. This part of the problem can be alleviated in the future
by improving the precision of source-level value and name
analysis. Such a tool is preferably compiler-based, which can
make the analysis more accurate. In this way, it automatically
extracts the names and initializers of all function pointers
during the compilation process, thereby assisting GNNIC in
associating function pointers with target functions.

IX. RELATED WORK

Refining indirect-call targets. Recently a number of works
on refining indirect-call targets emerge, including value-set
analysis, point-to analysis, type analysis, and Neural Networks.
Some previous works are working on refining the indirect-call
targets on the binary level. For example, BPA [24] is a binary-
level points-to analysis framework based on a block memory
model, which can improve precision by 34.5% compared with
other binary-level techniques. Icallee [59] is a Siamese Neural
Network approach that uses NLP to embed the context of call
instructions, reducing indirect call targets compared to other
binary-level approaches like BPA and 7CFI [16] but has better
performance. However, such approaches are only tested on
small programs, such as libraries, and are not scalable on large
programs, such as OS kernels. Also, currently, the source-level
solutions can still generate much better performance than the
binary-level approaches, such as Icallee. Source-code level and
IR-level pointer-based approaches, such as K-miner [14] and
SVF [41], are also used to analyze function pointers. However,
as we discussed, such approaches are typically not scalable for
large programs or have a high false-negative or false-positive
rate. Therefore, as we discussed, type-based approaches are
typically the best choice for source-code level indirect-call
targets identification. And moreover, multi-layer type-based
solutions [28, 30] have been proposed in recent years, which
improve the type-based approaches and have much better results.
However, still, many function pointers do not qualify multi-
layer type analysis, and our evaluation (see §VI) shows that for
kernel-level large programs, GNNIC can still improve such
state-of-the-art approaches a lot.

Measuring the similarity of code. Machine learning tech-
niques are widely used in program and code similarity analysis.
Code2Vec [2] can embed code pieces into fixed-length code
vectors by aggregating the information of collected code paths
in the abstract syntax tree (AST). Func2Vec [10] is based
on a neural network, which can generate function vectors by
random walking on the interprocedural control-flow graph of
programs. FuncGNN [34] is a graph neural network trained on
a labeled control-flow graph, which can be used to estimate
the graph edit distance of the program. FA-AST [45] trains
the GNN on a flow-augmented AST, which can catch the data
and control-flow information of the program. Gemini [52] is
a neural network-based approach to compute the embedding
of functions based on their control flow graph at the binary
level. All the above techniques are based on the program’s
control and data flow, which can be used in clone detection
or predict semantic properties of the code snippet. Unlike
these works, some machine learning models are also trained on
program call graphs. Xu et al. [51] can detect Android malware,
which leverages the natural language processing techniques
to compute the embedding of the program by analyzing the
whole call graph. DeepCatra [50] is designed to detect the
malware behaviors of Android APPs. DeepCatra consists of a
bidirectional LSTM (BiLSTM) and a GNN, which is trained on
the features from the call trace of the program. Different from
all these works, GNNIC focuses on the function call and types
related information, representing the features of indirect-call
target functions better.

14

X. CONCLUSION

In this paper, we introduce GNNIC, an innovative call
graph construction tool that seamlessly combines program
analysis and GNN to accurately identify indirect-call targets.
This enables the creation of highly precise call graphs for large
programs. GNNIC uses abstract-similarity analysis to match
target functions based on the abstract behaviors they share. To
realize this approach, we propose techniques, such as scoped
unique-name matching, to identify anchor functions, and the
use of a representative abstraction graph to incorporate diverse
information about a function. The graph can be fed to GNN for
training embedding models. Our evaluation results show that
GNNIC significantly improves precision compared to existing
state-of-the-art techniques. Additionally, we demonstrate that
using function abstraction-based similarity analysis alongside
precise call graphs can be effective in a wide range of security
applications.

XI. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
feedback and suggestions. This work was initiated during Qiushi
Wu’s internship at IBM Research and further finished upon his
return to the University of Minnesota. Kangjie Lu and Qiushi
Wu were supported in part by NSF awards CNS-1815621, CNS-
1931208, CNS2045478, CNS-2106771, and CNS-2154989. Any
opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] 1. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portokalidis.
Nibbler: debloating binary shared libraries. In Proceedings of the 35th
Annual Computer Security Applications Conference, pages 70-83, 2019.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1-29, 2019.

G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian,
S. Yong, C.-H. Chen, and T. Teitelbaum. Model checking x86 executables
with codesurfer/x86 and wpds++. In International Conference on
Computer Aided Verification, pages 158—163. Springer, 2005.

R. Bavishi, H. Yoshida, and M. R. Prasad. Phoenix: Automated data-
driven synthesis of repairs for static analysis violations. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 613-624, 2019.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed

greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2329-2344, 2017.

Bootlin. The function el000e_check_for_fiber_link and
its description, 2022. URL https://elixir.bootlin.com/linux/v5.7/source/
drivers/net/ethernet/intel/e1000e/mac.c#L.459.

[2

—

3

—

[4

=

(5]

[6

[t

[7

—

R. Conroy. Sample size: A rough guide. Retreived from http:/fwww.
beaumontethics. ie/docs/application/samplesizecalculation. pdf, 2015.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna. Difuze: Interface aware fuzzing for kernel drivers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2123-2138, 2017.

[8

=

[9] C. Data6l. Stellargraph machine learning library. https://github.com/

stellargraph/stellargraph, 2018.

D. DeFreez, A. V. Thakur, and C. Rubio-Gonzdlez. Path-based function
embedding and its application to specification mining. arXiv preprint
arXiv:1802.07779, 2018.

P. S. Foundation. random — generate pseudo-random numbers, 2023.
URL https://docs.python.org/3/library/random.html.

[10]

[11]

https://elixir.bootlin.com/linux/v5.7/source/drivers/net/ethernet/intel/e1000e/mac.c#L459
https://elixir.bootlin.com/linux/v5.7/source/drivers/net/ethernet/intel/e1000e/mac.c#L459
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
https://docs.python.org/3/library/random.html

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

L. Fu, S. Ji, K. Lu, P. Liu, X. Zhang, Y. Duan, Z. Zhang, W. Chen, and
Y. Wu. Cpscan: Detecting bugs caused by code pruning in iot kernels.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 794-810, 2021.

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. Collafl:
Path sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 679-696. IEEE, 2018.

D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi. K-miner: Uncovering
memory corruption in linux. In NDSS, 2018.

A. Ghaleb and K. Pattabiraman. How effective are smart contract analysis
tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 415427, 2020.

J. Grossklags and C. Eckert. 7cfi: Type-assisted control flow integrity
for x86-64 binaries. In Research in Attacks, Intrusions, and Defenses:
21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings, volume 11050, page 423. Springer,
2018.

S. group. Syzbot fuzzing logs, 2022. URL https://syzkaller.appspot.com/
upstream/.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning
on large graphs. Advances in neural information processing systems, 30,
2017. URL https://snap.stanford.edu/graphsage/.

H. Han and S. K. Cha. Imf: Inferred model-based fuzzer. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2345-2358, 2017.

C. T. Inc. Dynamic call tracking method based on cpu interrupt
instructions to improve disassembly quality of indirect calls, 2020.

D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin. Razzer: Finding
kernel race bugs through fuzzing. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 754-768. IEEE, 2019.

M. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang. Origin-sensitive
control flow integrity. In USENIX Security Symposium, pages 195-211,
2019.

K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee. Hfl:
Hybrid fuzzing on the linux kernel. In NDSS, 2020.

S. H. Kim, C. Sun, D. Zeng, and G. Tan. Refining indirect call targets at
the binary level. In Network and Distributed System Security Symposium,
NDSS, 2021.

S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim. Cab-
fuzz: Practical concolic testing techniques for cots operating systems. In
USENIX Annual Technical Conference, pages 689-701, 2017.

C. Liu, Y. Chen, and L. Lu. Kubo: Precise and scalable detection of
user-triggerable undefined behavior bugs in os kernel. In Network and
Distributed System Security Symposium (NDSS), 2021.

K. Lu. Practical program modularization with type-based dependence
analysis. In 2023 IEEE Symposium on Security and Privacy (SP), pages
1610-1624. IEEE Computer Society, 2023.

K. Lu and H. Hu. Where does it go? refining indirect-call targets with
multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1867—
1881, 2019.

K. Lu, C. Song, T. Kim, and W. Lee. Unisan: Proactive kernel memory
initialization to eliminate data leakages. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages
920-932, 2016.

K. Lu, A. Pakki, and Q. Wu. Detecting Missing-Check Bugs via
Semantic- and Context-Aware Criticalness and Constraints Inferences. In
Proceedings of the 28th USENIX Security Symposium (Security), Santa
Clara, CA, Aug. 2019. URL https://github.com/umnsec/crix.

A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna.
DR. CHECKER: A soundy analysis for linux kernel drivers. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1007-1024,
Vancouver, BC, Aug. 2017. USENIX Association. ISBN 978-1-931971-
40-9. URL https://www.usenix.org/conference/usenixsecurity 1 7/technical-
sessions/presentation/machiry.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,

15

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. Advances
in neural information processing systems, 26, 2013.

A. Nair, A. Roy, and K. Meinke. Funcgnn: a graph neural network
approach to program similarity. In Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1-11, 2020.

S. Osterlund, K. Razavi, H. Bos, and C. Giuffrida. Parmesan: Sanitizer-
guided greybox fuzzing. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2289-2306, 2020.

S. Pailoor, A. Aday, and S. Jana. Moonshine: Optimizing os fuzzer seed
selection with trace distillation. In USENIX Security Symposium, pages
729-743, 2018.

J. Pan, G. Yan, and X. Fan. Digtool: A virtualization-based framework
for detecting kernel vulnerabilities. In USENIX Security Symposium,
pages 149-165, 2017.

S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kafl:
Hardware-assisted feedback fuzzing for os kernels. In USENIX Security
Symposium, pages 167-182, 2017.

H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. Trimmer: application
specialization for code debloating. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages
329-339, 2018.

D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz. Periscope: An effective probing
and fuzzing framework for the hardware-os boundary. In NDSS, 2019.

Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in
llvm. In Proceedings of the 25th international conference on compiler
construction, pages 265-266, 2016.

V. Van der Veen, D. Andriesse, E. Goktag, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical context-sensitive
cfi. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 927-940, 2015.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman. How developers engage with static analysis tools in different
contexts. Empirical Software Engineering, 25:1419-1457, 2020.

S. Vijayarani, M. J. Ilamathi, M. Nithya, et al. Preprocessing techniques
for text mining-an overview. International Journal of Computer Science
& Communication Networks, 5(1):7-16, 2015.

W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin. Detecting code clones
with graph neural network and flow-augmented abstract syntax tree.
In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 261-271, 2020. doi:
10.1109/SANER48275.2020.9054857.

X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving
integer security for systems with kint. In /0th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages
163-177, 2012.

V. M. Weaver and D. Jones. perf fuzzer: Targeted fuzzing of the perf
event open () system call. UMaine VMW Group, Tech. Rep, 2015.

Q. Wu, Y. He, S. McCamant, and K. Lu. Precisely characterizing security
impact in a flood of patches via symbolic rule comparison. In The 2020
Annual Network and Distributed System Security Symposium (NDSS’20),
2020.

Q. Wu, Y. Xiao, X. Liao, and K. Lu. Os-aware vulnerability prioritization
via differential severity analysis. In 31st USENIX Security Symposium
(USENIX Security 22), pages 395-412, 2022.

Y. Wu, J. Shi, P. Wang, D. Zeng, and C. Sun. Deepcatra: Learning
flow-and graph-based behaviors for android malware detection. arXiv
preprint arXiv:2201.12876, 2022.

P. Xu, C. Eckert, and A. Zarras. Detecting and categorizing android
malware with graph neural networks. In Proceedings of the 36th Annual
ACM Symposium on Applied Computing, pages 409412, 2021.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song. Neural network-
based graph embedding for cross-platform binary code similarity detection.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 363-376, 2017.

https://syzkaller.appspot.com/upstream/
https://syzkaller.appspot.com/upstream/
https://snap.stanford.edu/graphsage/
https://github.com/umnsec/crix
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry

[53]

[54]

[55]

[56]

(571

[58]

[59]

A. A. Younis, Y. K. Malaiya, and 1. Ray. Using attack surface entry
points and reachability analysis to assess the risk of software vulnerability
exploitability. In 2014 IEEE 15th International Symposium on High-
Assurance Systems Engineering, pages 1-8. IEEE, 2014.

I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik. Apisan: Sanitizing api
usages through semantic cross-checking. In Usenix Security Symposium,
pages 363-378, 2016.

Y. Zhai, Y. Hao, Z. Zhang, W. Chen, G. Li, Z. Qian, C. Song, M. Sridharan,
S. V. Krishnamurthy, T. Jaeger, et al. Progressive scrutiny: Incremental
detection of ubi bugs in the linux kernel. In 2022 Network and Distributed
System Security Symposium, 2022.

T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang. Pex: A
permission check analysis framework for linux kernel. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1205-1220, 2019.
W. Zhao, K. Lu, Q. Wu, and Y. Qi. Semantic-informed driver fuzzing
without both the hardware devices and the emulators. In NDSS, 2022.
Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. Firm-afl:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation. In 28th USENIX Security Symposium (USENIX Security 19),
pages 1099-1114, 2019.

W. Zhu, Z. Feng, Z. Zhang, C. Zhang, Z. Ou, and M. Yang. icallee:
Recovering call graphs for binaries. arXiv preprint arXiv:2111.01415,
2021.

16

	Introduction
	Background and Study
	State-of-the-Art for Detecting Indirect-Call Targets
	An Empirical Study of Abstract Behaviors

	Overview
	The Workflow of GNNIC
	Challenges and Techniques of GNNIC

	The design of GNNIC
	Collecting Abstractive Information
	Building RAG as GNN Inputs
	Collecting Anchor Functions with Scoped Unique-Name Matching
	Identifying More Targets with Abstract Similarity

	Implementation of GNNIC
	Evaluation
	Experiment Setting and Data Sets
	Scalability of GNNIC
	Evaluation on Anchor Function Identification
	The Precision Improvements on Target Identification
	Evaluating GNNIC on Different Projects

	Security Applications
	Leveraging Abstract Similarity for Enhanced Bug Detection
	Other Potential Security-related Applications of GNNIC

	Discussion
	Related Work
	Conclusion
	Acknowledgment

