


authors created a flip-flop dependency graph and analyzed the
data flow. In the case of real-world designs, the toolchain
provides 34% to 100% gate coverage. Venkatesan et al. [9]
organized elements such as LUTs, CARRYs, RAM blocks,
and registers using proximity information on cells in the
implemented design. For real-world designs, the algorithm
groups elements with a Normalized Mutual Information (NMI)
metric of 0.73. However, to our knowledge, no one has
attempted to adapt GNN techniques to reverse engineer LUT-
based netlists.

III. DATAPATH ELEMENTS IDENTIFICATION IN LUT
NETLISTS USING GNNS

To detect datapath elements in the design, we created a
rich custom dataset with varying bit widths. We extracted the
structural and functional features of each design element in the
LUT netlist. We trained RELUT-GNN on custom benchmarks
and cross-validated it. Then, we selected the best-performing
model to evaluate real-world designs. Lastly, we applied post-
processing techniques to extract a high-level representation of
the design.

A. Dataset Generation
We analyzed a wide variety of real-world benchmarks and

identified a list of designs that most frequently appears. Some
of the examples of such designs are adders, subtractors, mul-
tipliers, comparators, counters, etc. In addition to the designs
specified in GNN-RE [5] and ReIGNN [7], We added the
following custom designs to our training dataset.

1) ADD-SUB: This design contains one adder and one
subtractor module, and the output of the design is chosen based
on a select line. From this design, RELUT-GNN learns to
differentiate between adder, subtractor, and add-sub modules.
This design is most common in arithmetic cores [4].

2) MUL-AND-ACC: This design contains one multiplier
and one adder where two words are multiplied and the result
is added to an accumulator. From this design, RELUT-GNN
learns to differentiate between adder and multiplier structures.
This design is most common in DSP cores [4].

3) CROSS-OPTIMIZED: Cross-optimization in logic syn-
thesis is defined as the concept of logic sharing across differ-
ent modules. In real-world designs, the logic across module
boundaries can be cross-optimized and absorbed into LUTs.
This category of designs is generated by interspersing multiple
operators such that each LUT can belong to one or more
operators.

B. Netlist to Graph Conversion and Feature Extraction
We converted LUT netlists into undirected graphs. The

nodes of the graph obtained are the design elements and the
edges of the graph are the connections between the design
elements. An example netlist is shown in Fig 1. We classified
FPGA design primitives, thus IBUFs and OBUFs are not
shown in the converted graph.

We extracted a comprehensive list of structural and func-
tional features for each node in the graph. An example feature

Fig. 1: FPGA netlist to graph conversion and feature extraction

vector of the LUT4 node is shown in Fig 1. The description
of each feature is given below.

1) Gate type (gt): One hot encoding of the list of primitives
in the Xilinx 7-series FPGA. Each bit location indicates a type
of FPGA primitive. A ’1’ indicates a presence of a certain
design element and a ’0’ indicates the absence of the same
element.

2) Gate DATA (gd): Unlike ASIC netlists, it is not enough
to capture just the gate type. In FPGA netlists, each primitive
performs a certain function. i) LUT primitives are used in
generating complex digital logic and the functionality infor-
mation is attached in a format called INIT string. Thus, we
captured the INIT string as a feature. ii) CARRY primitives
perform fast carry logic which improves the performance of
the overall design [10]. Narayanan et, al. [8] discussed in-
depth how the carry chains can be used to extract high-
level functionality. Thus capturing carry module information is
critical. We captured the output pin information of the CARRY
primitive in a binary encoded format since each output pin
performs a certain function based on inputs. iii) For flops, we
captured the control information such as the connectivity of the
inputs and outputs of flops to other primitives. The number of
combinational and sequential elements in the neighborhood of
the flop is also found. iv) Each Shifter in FPGA is associated
with its depth and it is captured as a feature.

3) PI, PO (io): This field gives the number of primary inputs
(IBUFs) and outputs (OBUFs) in the one-hop neighborhood
of the target node. Since we captured this information as a
feature, there is no information loss by converting LUT netlists
to undirected graphs.

4) Neighborhood Information (ni): This feature captures
fan-in, fan-out, predecessor, and successor gate information
of one-hop neighbors of the target node. Fan-in is the total
number of predecessors of the target node and fan-out is the
total number of successors of the target node. We captured the
gate type and gate data information for all predecessors and
successors of the target node.

5) Centrality Measures (cm): In graph theory, centrality
measures give information about the data flow among nodes
in the graph. This information is essential in identifying state
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registers in the design. In addition to the measures mentioned
in the ReIGNN [7], we added closeness and degree centrality
of the node.

Definition 1: Closeness Centrality [11] is defined as how
close the target node x is to all nodes in the design and
is shown in equation 1, where S(x, y) is the shortest path
between nodes x and y.

CC(x) =
1P

y 6=x S(x, y)
(1)

Definition 2: Degree centrality [11] is defined as how many
edges are connected to the target node x and is shown in
equation 2, where deg(x) is the degree of node x and n is the
total number of nodes in the design.

CD(x) =
deg(x)

n� 1
(2)

C. GNN Classification
In our experiment, we used a graph learning pipeline

called GraphSAINT [6]. GraphSAINT uses a graph sampling-
based inductive learning mechanism to extract subgraphs from
the input graph. It then builds a complete GNN for each
retrieved subgraph. Once the GNN model is trained using the
GraphSAINT framework, the trained GNN model is evaluated
on real-world designs. An example classification of flattened
LUT netlist is shown in Fig 2.

Fig. 2: Supervised node classification technique for identifying
operators

D. RELUT-GNN Tool Flow
The RELUT-GNN tool shown in Fig 3 is built on top

of the tool discussed in Narayanan et al. [8]. The GNN
classification result is post-processed using techniques such
as register grouping and majority voting algorithms. We used
DANA [12] API from HAL [13] tool to group data registers.
To more accurately identify nodes from adders and multipliers
in the design, we applied a majority voting algorithm. Then
the detected datapath elements are given to an RTL writer to
generate a high-level representation of the netlist. This tool
eliminates the necessity to establish module boundaries and
the hassle of analyzing carry chains in the design.

IV. EVALUATION

The tests were carried out on an Intel Core i7 processor
with 16GB RAM. We used HAL [13] tool to parse the
LUT netlist and extract features for each node. GraphSAINT

Fig. 3: RELUT-GNN tool workflow showing high-level func-
tionality extraction of the design by integrating different
techniques

framework [6] is used for developing GNN models. Python is
used for writing scripts run by the HAL tool, employing the
GraphSAINT framework, and developing the overall tool.

A. Dataset and Feature Importance

Our original training dataset contains stand-alone, intercon-
nected, and cross-optimized designs that are synthesized using
Xilinx Vivado targeting Artix 7-series FPGAs [14]. We have
set the flatten hierarchy to full, max bram, and max dsp flags
to zero while leaving other synthesis options as is. We removed
all original net names that may have indicated the design
information and replaced them with unique random names.
The bit-width of operands in the designs varies from 8 to 128
bits.

We calculated the feature set importance by progressively
adding one feature at a time. The prediction accuracy of the
model is observed for the same. It is evident from Table I
that the accuracy of the model is higher after including the
neighborhood information in the feature vector.

TABLE I: Feature Importance

Feature Set Subset Accuracy (%)
gt 42.8

gt + io 56.7
gt + io + gd 91.3

gt + io + gd + ni 97.8
gt + io + gd + ni + cm 97.1

513

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 13:40:03 UTC from IEEE Xplore.  Restrictions apply. 



B. GNN Model Parameters
For this experiment, a random walker sampler is selected to

generate subgraphs. We employed two Graph Convolutional
Network (GCN) layers with mean aggregators. Each layer
has 256 hidden dimensions and a ReLU activation function is
added to operate on these subgraphs. The Adam optimization
approach is used to train the GNN. It uses an initial learning
rate of 0.01 and a dropout rate of 0.1 for 1000 epochs. The final
layer consists of five fully connected layers for combinational
and four for sequential GNN models. A softmax activation
function is used for single-label classification and Sigmoid for
multi-label classification. Multi-label classification is useful in
detecting cross-optimized modules. We used a 70/10/20 split
for training/validation/test datasets.

C. Performance metrics
Our model is evaluated on a variety of real-world designs

from OpenCores [4] that range from Arithmetic cores to
DSP cores and ALUs. Table II shows the list of benchmarks
used, the number of gates in the design, and the metrics
such as precision, recall, f1 score, and sub-set accuracy for
each benchmark. A ”–” in the table shows the design doesn’t
contain that class.

The node classification outcome of the GNN model can
be seen as follows: True positives (TP), the node is correctly
classified as a positive outcome; False Positives (FP), the node
is falsely classified as a positive outcome; similarly one can
define True Negatives (TN) and False Negatives (FN). The
column Precision % shows the ratio of TP to the total number
of predicted positive outcomes (TP + FP), if the precision
measure is high that means the model does not predict a
negative outcome as a positive outcome. The column Recall
% shows the ratio of TP to the total number of actual positive
outcomes (TP + FN), if this measure is high that means the
model correctly predicts a node as a positive outcome. The
column F1-Score % shows the harmonic mean of precision
and recall

F1 = 2 · Precision · Recall
Precision + Recall

(3)

which is the balanced measure of both metrics, if this
measure is high that means the model performs well in
all outcomes. Subset accuracy is defined as the number of
correctly classified nodes to the total number of nodes in all
classes.

D. Detection of Combinational Sub-circuits
We can infer from Table II that RELUT-GNN detects

adder and subtractor structures well in all the designs. How-
ever, in the designs containing multiplier structures such as
Quadrature Oscillator, FIR filter, and PID Controller, the
accuracy of the adders are low i.e. 93.33%, 78.68%, and
91.3% respectively. This is because multipliers involve certain
addition operations. The nodes which are part of the addition
operation are incorrectly classified as multipliers. A majority
voting algorithm can be used to increase the accuracy of the
model. In LUT netlists, the multiplexer nodes contain logic

from different operators. To detect them we employed a multi-
label classification method that performed well on fixed point

arithmetic and Cordic polar2rect designs. However, if the
complexity of the design is increased, many operators can
be cross-optimized which poses a limitation to GNN node
classification. Benchmarks Cordic polar2rect and Cordic

rect2polar contain add-sub modules and comparator structures
which are detected with an accuracy of 98.87% and 96.51%.
For designs containing multiplier structures, we generated
a low-level representation of the design in terms of FPGA
primitives instead of a high-level representation.

E. Detection of Sequential Sub-circuits

Table III shows the number of flip-flops in each benchmark
and the same metrics as described in the previous section
are calculated. The GNN model for sequential modules only
applies to the sequential elements in the design. We collect
features such as control signal information and centrality
measures for each sequential element. The GNN model learns
the structure and data flow in the design. It can be inferred
from Table III that Benchmarks 1–5 show the detection of
Data registers, Counters, and Shifters, Benchmarks 6–10 show
the detection of single FSM controllers taken from ITC’99
[15]. Shifters in all the designs are identified with high
accuracy and this is because FPGA shifter primitives such as
SRL32, SRL64, etc. are unique compared to the FPGA flip-
flop primitives. Counters in the benchmarks DDS Synthesizer,
FIR filter, CIC filter are detected with good accuracy i.e.
97.3%, 94.78%, and 96.29% respectively. This shows that
RELUT-GNN utilizes the structural similarity of counters and
accurately classifies them. State registers are also identified
with high accuracy for the designs ITC b01, ITC b03, ITC

b04.

F. Comparison with State-of-the-art GNN Techniques

We synthesized the benchmarks using Xilinx Vivado for
comparison with other state-of-the-art GNN techniques. When
tested with EPFL, ISCAS-85 benchmarks, RELUT-GNN
achieved an average accuracy of 99.7% in classify nodes
which is slightly higher than the GNN-RE [5] accuracy. The
reason for high classification accuracy is that the benchmarks
contains stand-alone operations and the LUT netlist sizes are
much smaller compared to ASIC netlists. We also compared
RELUT-GNN performance with ReIGNN [7] for state register
identification. As shown in Fig 4, RELUT-GNN achieved
better accuracy for the benchmarks fsm (86.2%), gcm aes
(98.3%) and uart (91.8%) compared to ReIGNN. This can
be explained by the fact that we are performing a four-way
classification for the sequential circuits, and the counters are
classified correctly in these designs. The registers in counter
designs are misclassified as state-registers in ReIGNN. Also,
the performance of other designs can be improved by applying
structural analysis techniques.

The toolchain discussed in section III-D is used to produce
a high-level representation of the designs and the functionality
of the extracted design is verified using Cadence Jaspergold.
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TABLE II: Detection of Combinational Datapath elements

No. Benchmarks Total no. of gates Precision (%) Recall (%) F1-Score (%) Subset Accuracy
(%)Adder Subtractor Multiplier Comparator Mux Adder Subtractor Multiplier Comparator Mux Adder Subtractor Multiplier Comparator Mux

1 32-bit ALU 171 93.18 97.62 – – 86.84 97.62 95.35 – – 100 95.34 96.47 – – 92.96 95.1
2 DDS synthesizer 209 100 – – 75 81.8 95.5 – – 93.8 90 97.7 – – 83.4 85.7 95.8
3 Fixed point arithmetic 220 100 100 – 98.63 100 100 100 – 100 96.77 100 100 – 99.31 98.36 99.54
4 CIC filter 332 100 100 – – – 97.46 100 – – – 98.71 100 – – – 98.38
5 Quadrature Oscillator 379 100 100 92.34 – 100 87.5 100 100 – 100 93.33 100 96 – 100 95.49
6 FIR filter 469 80 – 99.62 – – 77.4 – 95.97 – – 78.68 – 97.76 – – 95.82
7 Hilbert transformer 871 100 95.8 – – – 84.1 100 – – – 91.3 97.87 – – – 97.05
8 PID Controller 1399 100 100 97.38 – 94.44 76.19 80.76 99.66 – 94.44 86.48 89.36 98.51 – 94.44 97.65
9 Cordic polar2rect 1602 99.56 99.61 – 84.61 100 99.27 98.98 – 100 76.92 99.42 99.29 – 91.66 86.95 98.87

10 Cordic rect2polar 2331 96.23 95.98 – 97.5 79.66 99.7 99.5 – 98.9 97.91 97.96 97.7 – 98.2 87.85 96.3
Averages 96.90 98.63 96.45 88.94 91.82 91.47 96.82 98.54 98.18 93.72 93.89 97.59 97.42 93.14 92.32 97.00

TABLE III: Detection of Sequential Datapath Elements

No. Benchmarks Total no. of Flops Precision (%) Recall (%) F1-Score (%) Subset Accuracy
(%)State register Data register Counter Shifter State register Data register Counter Shifter State register Data register Counter Shifter

1 Quadrature Oscillator 32 – 100 – – – 100 – – – 100 – – 100
2 32-bit LFSR 38 – 95.8 – 100 – 92.34 – 100 – 94.04 – 100 97.76
3 DDS synthesizer 63 – 81 99.5 – – 78.4 95 – – 79.6 97.3 – 92.36
4 FIR filter 111 – 92.3 96.7 100 – 94.8 93 100 – 93.53 94.78 100 95.8
5 CIC filter 167 – 98.4 95.6 100 – 91.6 97 100 – 94.49 96.29 100 97.3
6 ITC b01 19 100 100 – – 100 100 – – 100 100 – – 100
7 ITC b02 12 100 50 – – 85.7 100 – – 92.33 66.67 – – 92.8
8 ITC b03 54 100 100 – – 100 100 – – 100 100 – – 100
9 ITC b04 37 100 100 – – 100 100 – – 100 100 – – 100

10 ITC b05 47 97.6 100 – – 100 96.9 – – 98.8 98.4 – – 97.51
Averages 99.52 91.75 97.27 100.00 97.14 95.40 95.00 100.00 98.23 92.67 96.12 100.00 97.35
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Fig. 4: ReIGNN vs RELUT-GNN performance [7]

V. CONCLUSIONS AND FUTURE WORK

We proposed a tool chain RELUT-GNN that detects nodes
belonging to datapath components such as adders, subtractors,
multipliers, comparators, multiplexers, shift registers, coun-
ters, and FSMs in flattened LUT-level netlists using Graph
Neural Networks. The correctness of the node classification
on average is observed to be 97.12%. This paper presented
a preliminary study on how cross-optimized modules pose a
difficulty in LUT-based netlist to RTL reverse engineering.
We intend to improve accuracy in netlists including cross-
optimized modules and processors.
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