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Abstract

This article provides a systematic review on recent progress in
optimization-based process synthesis. We first discuss the multi-scale
modeling frameworks featuring targeting approaches, phenomena-based
modeling, unit operation-based modeling, and hybrid modeling. Next,
we present the expanded scope of process synthesis objectives high-
lighting the considerations of sustainability and operability to assure
cost-competitive production in the current increasingly dynamic mar-
ket with growing environmental awareness. Advances in optimization
algorithms and tools are then reviewed, including the emerging ma-
chine learning and quantum computing-assisted approaches. The arti-
cle concludes by summarizing the advances and perspectives for process
synthesis strategies.
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1. INTRODUCTION

Conceptual process design plays a critical role toward creating innovative chemical plants
from an early stage. As shown in Figure 1, the typical conceptual process design procedure

consists of defining the general chemical production problem, synthesizing process design

solutions, analyzing and evaluating the designs (1). The step of process design synthesis

is of particular importance which aims to select the optimal unit operations with optimal
operating conditions and stream interconnections at the systems level (2). This is a chal-
lenging task considering the plethora of plausible unit operations and flowsheets which have
been investigated in process systems and chemical engineering.

Process synthesis approaches can be generally categorized into knowledge-based meth-
ods, optimization-based methods, and hybrid knowledge/optimization methods. The hier-
archical decision procedure introduced by Douglas (3) is one of the most classic knowledge-

based methods and widely adapted in process design teaching and training. Guided by a
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series of heuristic rules, it offers a top-down approach to successively select the overall pro-
cess input-output structure, recovery streams, and reactor and separator designs. Process
synthesis can also be performed in a bottom-up manner (4), i.e. the basic physicochemical
functions can be first determined followed by defining unit operations and flowsheets to
carry out the functions (Figure 1). Process intensification will be achieved if multiple
functions are integrated into a single unit operation (5). An example of knowledge-based
function-oriented process synthesis and intensification approach is the means-ends analysis
developed by Siirola (6). However, as process systems become larger with increasing com-
plexity and interactions, heuristic-driven process design more often arrives at sub-optimal
solutions without exploiting the full potential of process improvements.

Optimization-based methods employ mathematical programming to synthesize process
designs based on a superstructure containing all the plausible unit operations and flowsheet
structural alternatives of interest (7). These methods can provide a quantitative, systematic,
and comprehensive outlook at the process systems level. Their potential and efficacy have
been demonstrated in many chemical and energy systems leading to notable cost and energy
savings (8), while challenges remain in the algorithmic, modeling, and tool developments
before realizing widespread applications in industrial settings. For examples, the request for
users to develop an all-inclusive superstructure specific to each design problem, the limited
capability for systematic process intensification and innovation, the complexity to solve
the resulting large-scale optimization models, and the lack of a well-accepted commercial
software to automate process synthesis.

The last several years, however, have witnessed exciting progress in optimization-based
process synthesis approaches (9, 10) which is also stimulated by the burgeoning scientific
computing capabilities such as machine learning and quantum computing (11, 12). This
article aims to review the recent advances in this area from the following aspects: Section 2
presents the multi-scale modeling frameworks for process synthesis, comprising targeting ap-
proaches, phenomena-based modeling, unit operation-based modeling, and, more recently,
hybrid modeling. Section 3 briefs the expanded process synthesis objectives for sustainable
and operable production. Section 4 reviews optimization algorithms and tools including the
new developments aided by machine learning and quantum computing. Section 5 summa-
rizes the challenges and opportunities.

2. PROCESS SYNTHESIS MODELING FRAMEWORKS

In this section, we present various types of modeling frameworks to represent chemical
processes. We also highlight their methodological interactions and synergies toward a multi-
scale process synthesis strategy.

2.1. Targeting Approaches

Given a chemical production problem with available raw materials, kinetic routes (and de-
sired products), a first question is how good the process can be even before establishing any
specific design configurations. To this purpose, generic thermodynamic and/or kinetic laws
are normally utilized to identify the best possible performance targets against productivity,
economics, energy use, carbon emissions, etc.

Attainable region (AR) theory is a representative class of targeting approaches, origi-
nated from reaction engineering by Horn (15). As illustrated in Figure 2a, AR for steady-
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Attainable region for process synthesis: (a) AR, (b) CFSTR.
Reproduced from (13, 14) with permission

state reaction systems was defined as the region of all possible products in the concentration
space under various reaction kinetics and feed regimes. It leveraged a generalized reactor
network representation using ideal continuous stirred tank reactors, plug flow reactors, and
differential side stream reactors to capture all plausible reactor designs. Key information
provided by AR included the boundary of attainable region, the best possible performance
targets (e.g., max productivity), and the structure of ideal reactors to achieve the targets.
AR was also extended for thermodynamic attainable region based on heat and work bal-
ance (16). Feinberg and Ellison (17) proposed an AR representation for reactor-separator
systems using continuous flow stirred tank reactors (CFSTRs). The CFSTR Equivalence
Principle was proven that, given reaction kinetics and raw materials, any arbitrary steady-
state reactor-mixer-separator system with total reaction volume greater than zero could be
decomposed into a new CFSTR system as depicted in Figure 2b. A nonlinear program-
ming formulation was developed for the CFSTR Equivalence Principle by Frumkin and
Doherty (14). An extensive review on AR historical developments, theory, and applications
can be found in Charis et al. (18).

Heat and mass exchange networks (HEN, MEN) are also frequently used as target-
ing approaches to determine minimum utility consumption, economic cost, etc. Klemes
and Kravanja (19) reviewed the HEN developments in the past decades via pinch analysis
and mathematical programming. Using a mass exchange network state-space representa-
tion, Wilson and Manousiouthakis (20) introduced the Infinite DimEnsionAl State Space
(IDEAS) approach to minimize utility cost. As shown in Figure 3a, IDEAS representation
comprised a set of process operators (e.g., mass or heat pinch operators) which were con-
nected through a distribution network (e.g., mixing and splitting operations). Successive
works extended IDEAS for attainable region approximation to synthesize reactor networks
via a sequence of linear programs of ever increasing size (21). Figure 3b presents the
carbon, hydrogen, and oxygen Symbiosis Networks (CHOSYN) framework by Noureldin
and El-Halwagi (22), which aimed to achieve maximal mass integration and utilization via
atomic targeting based on a source-interception-sink representation.
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MEN-based targeting approaches: (a) IDEAS approach, (b) CHOSYN framework.
Reproduced from (20, 22) with permission

2.2. Phenomena-based Modeling

Phenomena-based modeling uses a set of fundamental physicochemical building blocks
that are shared in common by different chemical systems (e.g., reaction, separation, mix-
ing/heating). It represents process designs from a lower aggregated level compared to unit
operation-based modeling. Therefore, phenomena-based synthesis systematically addresses
function selection and integration from which the optimal unit operation and flowsheet de-
signs can be identified (as shown in Figure 1). This class of approaches has gained much
interest in computer-aided process intensification. As illustrated in Figure 4, it opens up
the opportunities to generate innovative or non-intuitive process designs with step-change
performance improvements, e.g. by leveraging the flexibility to integrate multiple phenom-
ena into a single unit to exploit multi-functional synergy. The suggested phenomenological
designs can then be rigorously simulated and designed via unit operation-based modeling

Phenomena

DHO->0L Yo @

reaction  separation

=0 \
. ( /7 ( innovative/
cooling mixing non-intuitive design

1
1
1
1
1
1
1
1
1
1
1
i
1
/heating /splitting 1

1

1

i

1

! eat
1 packed bed exc]i!langer
| reactor

1
1
1
1
1
1
1

D conventional
design
__flash _distillation 4oy .
Figure 4

Phenomena-based and unit operation-based chemical process representation.
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(Section 2.3). In what follows, we present a brief overview to elucidate the major features
of such approaches. For more detailed discussions, readers are referred to the recent reviews
by Tian et al. (23), Skiborowski (24), Tula et al. (25), etc.

Sundmacher et al. (26) proposed a function module-based process representation as
given in Figure 5a. Function modules were defined for pre-processing, contacting, activat-
ing, reaction, heat supply/removal, separating, and product formation. Using reaction as
example, the optimal design was obtained by optimizing the dynamic mass fluxes using el-
ementary process functions. The Generalized Modular Representation Framework (GMF)
developed by Pistikopoulos, Tian, et al. (27, 28) is shown in Figure 5b. Leveraging
Gibbs free energy-based driving force constraints, GMF systematically identified the opti-
mal conventional or intensified tasks (e.g., reaction, reactive separation, membrane-assisted
reaction) from mass and heat exchange building blocks. The synergy between GMF and
CFSTR Principle was explored to drive superstructure optimization-based process syn-
thesis toward the best-possible performances at AR boundaries. The Sustainable Process
Synthesis-Intensification Framework developed by Gani et al. (29) featured a stage-wise
procedure to decompose the process synthesis-intensification design space. As shown in
Figure 5c, phenomena building blocks were used to generate intensified and sustainable
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Phenomena-based modeling approaches — An indicative list. (a) Elementary process functions,
(b) Generalized Modular Representation Framework, (c) Sustainable Process Synthesis-
Intensification Framework, (d) Abstract building block. Adapted from (26, 29, 30) with permission
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processes (e.g., advanced distillation, reactive distillation, membrane separation). Some
PBB examples included Mixing (M), 2-phase mixing (2phM), phase transition (PT), phase
contact (PC), phase separation (PS), Reaction (R), and heating (H). The Abstract Building
Block (ABB) approach (Figure 5d) was introduced by Hasan et al. (30), which formu-
lated a 2-D grid structure to represent chemical processes using the building blocks such as
mixing/splitting, heating/cooling, phase contact, phase transition, etc. The building blocks
could also be assigned with different types of boundaries to allow free, partial, or no mass
transfer for applications in, e.g. distillation, extraction, and membrane-assisted process
systems.

2.3. Unit Operation-based Modeling

Immense efforts have been made on process synthesis using unit operations as the super-
structure building blocks. Excellent reviews were presented by Chen and Grossmann (7)
and Mencarelli et al. (31) on recent developments and challenges. Therein, the proper selec-
tion of unit operation-based representation approaches was emphasized to ensure tractable
computational formulation with sufficient modeling accuracy and flexibility to extract the
desired design information. Figure 6 gives a few examples of such approaches which have
been widely applied for process synthesis. Figure 6a shows the State-Task-Network (STN)
by Yeomans and Grossmann (32). States referred to the physicochemical properties which
defined the process streams and tasks were transformations connecting adjacent streams.
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Unit operation-based modeling approaches: Ternary distillation sequence representation using
(a) STN, (b) SEN (32), Distillation representation using (c) P-graph (33) and UPCS (34).
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STN could be employed for continuous and/or discrete time network formulations, which
were originated from production scheduling problems but also necessitated by many reviv-
ing design objectives such as resiliency (to be detailed in Section 3). The State-Equipment-
Network (SEN) is shown in Figure 6b. SEN explicitly considered the equipment to carry
out the task while the task assigned to each piece of equipment was determined via mathe-
matically modeling. This was in reverse with STN. More recently, Ryu et al. (35) proposed a
generalized process synthesis framework represented with simultaneous reactor, separation,
and heat exchanger networks. To include all plausible unit connections in the superstruc-
ture, many works explored automatic superstructure generation (despite the types of units
are required to be pre-postulated). Friedler et al. (33) introduced the P-graph (Figure
6¢) which used a polynomial algorithm to generate the maximal superstructure based on
a representation of material, operation nodes, and interconnecting arcs. Wu et al. (34)
developed a UPCS superstructure representation using Units (i.e., unit operations, raw ma-
terial sources, product sinks), Ports (i.e., stream inlet and outlet points), and Conditioning
Streams (i.e., connections between ports). Via connectivity rules, fully connected minimal
superstructure could be generated with all feasible routes.

It is also worth noting the rapidly increasing capability of large-scale process synthesis
with temporal and/or spatial considerations for chemical plant design, supply chain op-
timization, etc. Figure 7 gives a such example for multi-product plant synthesis using
intermittent renewable energy sources (36). In this context, a verifiable multi-scale process
synthesis framework is in essential need.
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2.4. Hybrid Modeling

Data-driven/Surrogate modeling has been a powerful tool to reformulate rigorous first-
principle models with reduced numerical complexity, thus resulting in computationally
tractable and efficient (large-scale) process synthesis problems to attain better (or glob-
ally) optimal design solutions. Recent extensions to hybrid modeling open up even more
exciting potential to more accurately describe process systems with imperfect mechanis-
tic models (e.g., unknown modeling equations, simplified assumptions) by augmenting first
principles and process data. In what follows, we briefly review these advances.

An early data-driven/surrogate modeling framework was proposed by Henao and Mar-
avelias (37) which was designed to collect data from process simulators (e.g., Aspen, Mat-
lab), train artificial neural network-based surrogates via a variable analysis approach, and
formulate mixed-integer nonlinear models to be used in superstructure optimization. Wil-
son and Sahinidis (38) introduced ALAMO (Automatic Learning of Algebraic MOdels) to
generate algebraic surrogate models of black-box systems. ALAMO allowed for a super set
of potential basis functions, from which optimization and statistic methods were used to
select the optimal subset of basis functions. The surrogate was iteratively refined by adding
new data points obtained from error maximization sampling via derivative-free optimiza-
tion. More data-driven modeling approaches include: MINOAn by Kim and Boukouvala
(39) for mixed-integer optimization using approximations, PARIN (Parameter as Input
Variable) by Mohammadi and Cremaschi (40) to build surrogate models of stochastic sim-
ulations accounting for parameter uncertainty as training inputs, OMLT by Ceccon et al.
(41) to incorporate neural network and gradient-boosted tree surrogate models into larger
optimization problems, etc.

An excellent review has been offered by Bradley et al. (42) on the methods integrat-
ing first-principle and data-driven modeling, which also included a chemical reactor case
study to showcase hybrid modeling, physics-informed neural network (PINN), and model
calibration. Figure 8a-b illustrate hybrid modeling via mechanism estimation (in which
mass/energy balances can be strictly imposed) and mechanism correction (to compensate
low quality mechanistic model) (43). An example of PINN, proposed by Raissi et al. (44), is
depicted in Figure 8c. PINN utilized physical laws as prior knowledge to train neural net-
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First-principle/data-driven modeling: (a) Mechanism estimation, (b) Mechanism correction (42)
(c) Physics-informed neural network (44)
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work architectures. Namely, the model was iteratively trained to minimize the sum of loss
functions by incorporating the physics informed regulations through the partial differential
operators used in species and energy balances, etc. Process constraints (e.g., conversion
laws) and temporal dynamics could be imposed by introducing biases.

ML-assisted modeling is also indispensable for chemical and manufacturing processes
without well-accepted first principles models. One special case is process systems at in-
cipient development stage where only experimental data are available in limited amount.
Several works have investigated the use of neural networks to model such systems like car-
bon fiber synthesis, carbon nanorod manufacturing, silicon wafer planarization, etc. based
on 30-40 experimental data (45, 46). Liu et al. (46) also integrated the Synthetic Mi-
nority Oversampling Technique (SMOTE) to generate larger amount of synthetic data in
compensation of limited experimental data availability. These approaches show promises
to quantitatively evaluate many new (lab-scale) process technologies and benchmark them
with conventional counterparts at systems-level via process synthesis and optimization.

3. PROCESS SYNTHESIS OBJECTIVES

Economics has been the dominant driver for chemical process design which can be quantified
via total annualized cost, profitability, return on investment, etc. In addition, sustainability
and operability have become key process synthesis objectives to ensure economic promises
in the current dynamic and volatile market environment with burgeoning environmental
awareness. In this section, we review the process synthesis approaches to design sustainable
and operable processes. A fundamental understanding is instrumental, yet currently lacking,
to unravel the interactions between economics, sustainability, and operability which will
elucidate the synergistic ways to enhance chemical process designs in all facets.

3.1. Sustainability

We first present a statistics survey which can well illustrate the growing significance of
sustainability research in chemical engineering. The number of articles on process design
with sustainability considerations is shown in Fig. 9. To ensure that the publications
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Figure 9

Statistics of articles on process design with sustainability considerations.
(Citation database: Web of Science Core Collection, Update: July 15, 2023)
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have a focused research development on sustainability, the search was restricted to articles
and review articles with “process design” topic and “sustainabl*” in title under Web of Sci-
ence “Engineering Chemical” category. Specifically on process systems engineering methods
for sustainable chemical engineering, Bakshi (47) provided a comprehensive review on the
definition of hierarchical environmental-societal-economic sustainability metrics and the in-
corporation in process design. It also stressed the importance to expand the boundary of
systems analysis, thus holistically evaluating sustainability across space, time, disciplines,
and flows. Martin et al. (48) reviewed model-based sustainable process synthesis with
application to carbon capture and utilization, biorefineries, and water desalination. More
generally, the synthesis and design of sustainable systems have investigated: (i) explicit
incorporation of process constraints or objectives on environmental impacts, life cycle anal-
ysis, waste minimization, etc. (49), (ii) process integration to recycle the use of chemicals,
waste, and energy (50), (iii) consideration of more sustainable process technologies in place
of their conventional counterparts such as intensified units (51), and (iv) use of alternative
raw materials (e.g., solid waste, biomass) and energy sources (e.g., solar, wind) (52, 53).
Readers are also referred to the reviews on synergistic concepts such as circular economy
(9, 54), decarbonization (55), food-energy-water nexus (56, 57), electrification (58), net-zero
emission energy transition (59), etc.

3.2. Process Operability

We adapt a general operability definition as the capability of process to perform satisfac-
torily under conditions different from the nominal design conditions (60). Specifically, we
discuss operability objectives from the aspects of flexibility (i.e., capability to have feasible
operation under changing conditions), safety (i.e., prevention of major hazards given possi-
ble failures), and resiliency (i.e., capability to tolerate and recover from undesirable changes
and upsets). The statistics survey on process design with these operability considerations
can be found in Figure 10, which indicates a notable growth in the last five years.

Flexibility — The earliest flexibility consideration was oriented to maintain desired output
process/product specifications under input feed/utility disturbances during steady-state
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Figure 10

Statistics of articles on process design with operability considerations.
(Citation database: Web of Science Core Collection, Update: July 15, 2023)
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process design. This led to the classical tri-level optimization formulation for process flexi-
bility quantification by Swaney and Grossmann (61). On this basis, extensive efforts were
made to develop dynamic flexibility and stochastic flexibility analyses (62) with application
to chemical and, of much interest, pharmaceutical processes (63). The ongoing sustainable
energy transition has significantly expanded process flexibility needs from all supply, de-
mand, and network perspectives such as to accommodate varying bio-based feedstock com-
positions, intermittent renewable energy resources, and dynamic demand responses (64).
Riese et al. (65) discussed the requirement of product flexibility, expansion flexibility, relo-
cation flexibility, etc. in emerging modular plants and multi-product plants.

Safety — The integration of process safety with conceptual process design typically follows
the principles of inherently safer design (66). The central idea is to achieve a safer chemical
process by designing it to minimize hazardous inventories, substitute hazardous materials,
moderate hazardous conditions, and simplify process complexity (67). More than twenty-
five indices were developed to quantify inherent process safety, an extensive review of which
can be found in Roy et al. (68). Model-based approaches have also been developed to
characterize safe operating window under uncertainty (69), incorporate simultaneous ma-
terial selection (70), and integrate inherent safety metrics with (phenomena-based) process
synthesis (71). Process safety also motivates the consideration of modular process intensifi-
cation, major principles of which are to create substantially smaller processes and integrate
multiple process steps into a single unit (72).

Resiliency — The past several years suffered from ever more frequent major regional, na-
tional, and global disruptions including natural disasters, COVID-19 pandemic, geopolitical
conflict, etc. with striking impacts on chemical and energy supply networks. As highlighted
in Chrisandina et al. (73), the enhancement of system resiliency rerquires a multi-scale inte-
gration of chemical process systems ranging from molecular, unit, process, to supply chain.
At the process level, Grossmann and Morari (60) quantified static resiliency as flexibility
and assessed dynamic resiliency against the impact of feasible operating window, time delay,
model uncertainty, etc. Ribeiro and Barbosa-Povoa (74) reviewed the definition and mod-
eling approaches for supply chain resilience. The use of modular manufacturing facilities
provides another promising solution at the supply chain level due to their dynamic mobility
(75, 76).

To solve the operability problems (and more general, the optimization under uncertainty
problems), large-scale multi-period or multi-stage optimization models are typically neces-
sitated in which integer variables are used to model logical and other discrete decisions
(121, 122). Major approaches for optimization under uncertainty include stochastic pro-
gramming, which models uncertainty via probability distributions, and robust optimization,
which employs an uncertainty set. Zakaria et al. (123) reviewed the uncertainty modeling
approaches for stochastic optimization (e.g., Monte Carlo Simulation, Generative Adversar-
ial Networks) with particular focus on renewable energy systems. Grossmann et al. (124)
presented algorithmic advances in robust optimization with recourse and two-stage/multi-
stage stochastic programming. Case studies were also provided on demand side management
and supply chain risk management. More discussions on stochastic programming and state-
of-the-art software tools can be found in Li and Grossmann (125) and Torres et al. (126).
An overview was provided by Parnianifard et al. (127) to bridge robust optimization with
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hybrid modeling. Ning and You (128) reviewed machine learning-assisted approaches for
optimization under uncertainty, such as data-driven (distributionally) robust optimization,
data-driven stochastic programming, data-driven scenario-based optimization, etc.

4. OPTIMIZATION ALGORITHMS AND TOOLS

In this section, we present the optimization algorithms and tools to solve process synthesis
problems. Brief discussions are provided on classic (mixed-integer) linear/nonlinear opti-
mization and machine learning (ML)/quantum computing (QC)-assisted optimization.

4.1. (Mixed-Integer) Linear/Nonlinear Optimization

(Mixed-integer) Linear/Nonlinear optimization are well-established for process synthesis.
Herein, we summarize an indicative list of algorithms, reviews/books, solvers in Table 1.

4.2. ML/QC Assisted Optimization

The impetus of machine learning and quantum computing offers potential to speed up
the discovery and development of chemical process designs (11, 12). In what follows, we
introduce the latest developments on data-driven optimization algorithms, reinforcement
learning-driven process synthesis, and quantum computing-assisted optimization.

Data-Driven Optimization Algorithms — ML have been employed to investigate many chal-
lenging optimization problems, among which global optimization is a representative example
(106). Several works applied clustering methods (114) to identify global optimum by learn-
ing the shape of different basins of local optima attractions. The synergy of data-driven
modeling and global optimization can also be leveraged. Boukouvala et al. (115) proposed
the ARGONAUT approach as algorithms for global optimization of constrained grey-box
computational problems. The approach incorporated variable selection, bounds tightening
and constrained sampling techniques to develop accurate and globally optimized surrogate
representations of unknown equations. The DOMINO approach presented by Beykal et al.
(116) aimed to solve bi-level mixed-integer nonlinear problems using data-driven optimiza-
tion. Therein, a single-level optimization reformulation was achieved by collecting samples
from the upper-level objective and solving the lower-level problem to global optimality at
the sampling points.

Reinforcement Learning-Driven Process Synthesis — Reinforcement learning (RL) were re-
cently used to drive process synthesis, instead of mathematical programming, by Stops et al.
(117) and Wang et al. (118). These approaches started with a maximum pool of unit oper-
ations without requesting superstructure postulation. The intelligent RL agent (e.g., using
Deep Q Network) would select among the available unit operations and generate arbitrary
process design configurations represented via graphical neural network (117), input-output
stream connection matrix (118), etc. The RL agent was repetitively trained and rewarded
toward the generation of better process designs. The approaches offer promises toward au-
tomated process design, while challenges exist on the optimality of resulting design solutions
and the algorithmic scalability as the number of available unit operations increases.
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Quantum Computing-Assisted Optimization — QC is defined as computing that follows the
logic of quantum mechanics. In contrast with the “bit” used in classic computers which has
a deterministic value represented by basic states 0 and 1, infinite number of states are possi-
ble for a QC “qubit” until measurement. The distinct computing fundamentals render QC
the capability to reduce the number of calculation steps compared with classic algorithms
and to speed up computation for linear algebra, linear and quadratic programming, ma-
chine learning and other problems in e.g. quadratic or exponential manner (119). Bernal
et al. (12) presented a latest review on quantum computing fundamentals, QC-assisted
mathematical programming and machine learning algorithms, the potential impacts and
applications in chemical engineering. Ajagekar and You (120) highlighted QC applications
for energy process systems, in which different quantum hardware were showcased to solve a
facility location-allocation problem. Limitations of current quantum hardware architecture
and algorithms were also identified in terms of precision and error mitigation, large-scale
complex process application, etc.

4.3. Software Tools

There has been a surge of tool developments for process synthesis, design, and operability
analysis as well as for applications in energy systems, process intensification, etc. An
indicative list of commercial and academic developments is summarized in Table 2. The
list of algorithm solvers can be found in Table 1 and indicative surrogate modeling tools
(e.g., ALAMO, MINOAN, PARIN, OMLT) are discussed in Section 2.4. Readers are also
referred to Pistikopoulos et al. (9) for a comprehensive review of software tools used by the
process systems engineering community.

5. CONCLUDING REMARKS

Substantial advances have been made on process synthesis modeling, optimization algo-
rithms, and software tools. As can be noted, sustainability has become a key driver for
process development which necessitates a holistic multi-layer systems-based strategy to as-
sess the integral role of resources, processes, environment, and society (9, 47). Multi-scale
modeling, as detailed in Section 2, is essential to enable such quantitative and verifiable
analyses in both temporal and spatial domains. Integrated process and material design
has also received increasing attention leveraging e.g. process-structure-property modeling
(146, 147, 148). The scope of process synthesis applications is also expanded to address in-
tegrated energy systems, food-energy-water nexus, circular economy, electrification, energy
transition, etc. (56, 58, 59) These processes invoke the commercial deployment of many
novel chemical and energy technologies (e.g., electrolyzer, waste pyrolysis, microwave heat-
ing), which necessitates the establishment of (new) first principles/hybrid models as well as
systems-level optimization for the incorporation to existing process practice.

On the other hand, an open question remains on how to drive systematic innovation
using computer-aided strategies in addition to assessing available techniques. This is the
central idea motivating phenomena-based process synthesis for process intensification, and
much promise has been shown in generating non-intuitive unit/flowsheet designs with step-
change improvements (23, 25). The potential of such approaches is worthwhile to be further
exploited. Besides the current focus on distillation and membrane-based systems, the ma-
jority of PI methods remain unexplored e.g. rotating, micro-, and periodic processes (149).
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More constructive insights will be gained by elucidating the multi-functional synergies,
dynamic driving forces, and scaling up/down mechanisms based on physicochemical funda-
mentals, thus to discover the truly out-of-the-box process design solutions. The synergistic
integration of physicochemical principles, machine learning, and quantum computing may
also provide a promising way to accelerate process design innovation.

There is also an increasing need toward the unification of process design, operability, and
operations (150). As discussed in Section 3, a fundamental theory is still lacking to unravel
the interactions between economics, sustainability, and operability from which a process
design can be improved in all aspects (122). Additionally, the supply network is growing
more and more dynamic due to uncertainties in resource availability, energy prices, market
demands, regional/global disruptions, etc. The penetration of renewable energy sources
renders process design an intrinsically dynamic problem. The emerging trend of distributed
modular manufacturing, such as for stranded gas utilization, also emphasizes the importance
of geographical mobility. The scale of the resulting optimization continues increasing which
calls for efficient/tailored mixed-integer linear/nonlinear optimization algorithms (64, 75).

On top of methodological advances, software development and dissemination play a vi-
tal role for the adoption of optimization-based process synthesis in industrial settings. Chen
and Grossmann (7) commented in 2017 that “there lacks a general-purpose mathematical
programming synthesis tool akin to Aspen for flowsheet simulation”, which still holds true
to date. However, impressive progress has been made on this front as reviewed in Section 4,
which are also benefited from the advances of Python-based open-source tools. Moreover,
such efforts have been made for the dissemination of academic-oriented software tools to the
broader academic and industrial community such as the hands-on training workshops orga-
nized by IDAES, PSE for SPEED, RAPID (SYNOPSIS, Reaction Software Ecosystems),
etc. The cooperative engagement of industrial professionals and commercial software ven-
dors with academic developers is certainly instrumental to further advance and promote
the methodologies and tools.
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