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Many soft and biological materials display so-called ‘soft glassy’ dynamics; their constituents undergo
anomalous random motions and complex cooperative rearrangements. A recent simulation model of
one soft glassy material, a coarsening foam, suggested that the random motions of its bubbles are
due to the system configuration moving over a fractal energy landscape in high-dimensional space.
Here we show that the salient geometrical features of such high-dimensional fractal landscapes can
be explored and reliably quantified, using empirical trajectory data from many degrees of freedom,
in a model-free manner. For a mayonnaise-like dense emulsion, analysis of the observed trajectories
of oil droplets quantitatively reproduces the high-dimensional fractal geometry of the configuration
path and its associated local energy minima generated using a computational model. That geometry
in turn drives the droplets’ complex random motion observed in real space. Our results indicate
that experimental studies can elucidate whether the similar dynamics in different soft and biological
materials may also be due to fractal landscape dynamics.

Despite the deterministic nature of classical physics, the world
around us appears filled with random motion. The random Brow-
nian motion of microscopic particles is due to ‘noise’ – the colli-
sions of molecules in incessant thermal motion1. The random
motion of weather systems has a different origin, deterministic
chaos, due to the dynamical evolution of their unstable equa-
tions of motion2. The random motion of foraging animals forms
a third, distinct type of random motion, a Lévy walk, contain-
ing occasional large displacements3. The focus of this work is
a class of systems, including foams, emulsions, pastes, and cy-
toskeletal structures that display random motions having simi-
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lar mathematical structure, called soft glassy dynamics4–8, which
appear to be due to neither thermal fluctuations nor determin-
istic chaos. These systems have in common strongly interacting
and slowly changing constituents forming a disordered solid9–14,
which display super-diffusive motion, non-Gaussian random dis-
placements, and intermittent cooperative motion or ‘avalanches’.

A 2016 simulation study15 of a foam was able to reproduce the
major features of soft glassy dynamics with a remarkably simple
model, and provided insights into its physical and mathematical
origins. The model treated the bubbles as frictionless, compress-
ible spheres with no inertia and no thermal noise, whose radii
slowly changed to mimic gas diffusion between real bubbles. The
bubbles’ positions evolved simply according to the minimization
of the total system energy. This corresponds to the system’s con-
figuration moving downhill on a potential energy landscape16–18

that spans a high-dimensional space of all droplet coordinates.
The system hopped between local minima in this landscape be-
cause stable energy minima were occasionally destabilized by the
slowly changing bubble radii.

Analysis of the foam simulation results revealed an unusual
and complex geometry for the foam energy landscape and the
arrangement of its minima. Interestingly, the random dynamics of
the foams’ bubbles were closely related to features of the fractal
geometry of the energy landscape traversed by the configuration.
The usefulness of such a fractal landscape dynamics approach to
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understanding the physics of foams and emulsions, however, re-
mains untested in experiment. While multi-particle tracking ex-
periments should in principle allow the system’s path through a
high-dimensional configuration space to be followed, the effects
of finite spatial and temporal resolution limit such examination.
Moreover, it is not clear how to best characterize the energy land-
scape geometry using solely positional data and in the absence of
energy or stress data, which are available in the simulations.

Here we show how relevant features of the configuration space
trajectory, the energy landscape and its minima can be deter-
mined in a model-free way using multi-particle tracking data for
an index- and density-matched dense emulsion. We find that
the measured geometry closely matches the predictions of pre-
vious and new simulations, despite finite sampling speed, when
straightforward corrections for measurement error are applied.
Overall, we find that the droplets’ super-diffusive exponent and
power-law rheology exponents are related to the configuration
space path’s fractal dimension, that the non-Gaussian particle dis-
placements are related to the non-random displacement direc-
tions taken by the configuration path, and that fractal clustering
of local energy minima along the path gives rise to power-law dis-
tributed avalanche sizes. Our experimental approach may prove
useful for studying different systems that have similar dynamics
but lack a corresponding simulation model, and whose origins
currently defy understanding.

1 Empirical Approach for high-dimensional land-
scapes

While studying the shape of a fractal curve in a configuration
space having hundreds of dimensions may seem daunting, we
use three readily understandable geometrical analyses, sketched
in Fig. 1. Each of these geometrical features relates to one or
more phenomena of soft glassy materials. First, we assess the
tortuosity of the configuration space path on different length-
scales. As shown in Fig. 1a, we consider random pairs of
points on the high-dimensional configuration space path, R⃗(t),
and compute both the high-dimensional Euclidean distance be-
tween them, ∆R(t,τ) = ||R⃗(t+τ)− R⃗(t)||, and the contour distance
(or path length) between them, ∆s. Comparing these two dis-
tances (averaged over many pairs of points) reports how tortuous
the curve is, often quantified with a fractal dimension, D f . Sec-
ond, we consider the directions taken by the path as it meanders
through space. As in Fig. 1b, by studying the angular distribution
of the path directions we will determine if the directions are ran-
dom (isotropic in configuration space), or restricted to a smaller
range of directions. Third, we examine the clustering of the local
energy minima (where the system is in mechanical equilibrium)
that the path passes through. Specifically, as in Fig. 1c, we will
measure the distribution of Euclidean and contour distances be-
tween consecutive local minima, P(∆R) and P(∆s) respectively. If
the minima are clustered into a fractal pattern themselves, these
distributions will show a power-law form. Together, these mea-
sures provide useful measures of the high-dimensional fractal ge-
ometry of the configuration space path and its minima, which in
turn give rise to many of the unique phenomena observed in soft-

Fig. 1 Paths taken by an SGM system can be analyzed experimentally
in high-dimensional space. (a) Random pairs of points on the high-
dimensional path are chosen to compute their Euclidean distance, ∆R, and
their contour distance, ∆s. (b) Displacements between different points
are converted to unit length vectors to study their angular distribution.
(c) Euclidean distances between adjacent minima (dots) are measured
to quantify their spatial distribution. (d) A confocal micrograph shows
a section through a dense emulsion, field is 150 µm on a side. (e) A
computer generated reconstruction of the same dense emulsion. Viewing
volume is 145x145x100 µm3

glassy materials.
Following the configuration of a soft glassy material through its

high-dimensional configuration space requires dynamical track-
ing of the droplets in three dimensions. We formulated a trans-
parent oil-in-water dense emulsion by matching the oil droplets’
index of refraction to that of the aqueous continuous phase. To
minimize gravity effects, we also matched the mass density of
the two phases to roughly 1 part in 1000. This was achieved by
using four liquids, two non-polar ones (1-bromohexane and oc-
tane) to make up the droplets (dispersed phase), and two polar
ones (formamide and water) to form the continuous phase. An
earlier study used a similar approach to form an index and density
matched, non-ripening emulsion19. The droplets were stabilized
with a polymeric surfactant to prevent coalescence. The emulsion
was prepared using a commercial homogenizer, with the volume
fraction of droplets (φ ≈ 0.80) slightly above the jamming thresh-
old, giving it a mayonnaise-like consistency.

Four dimensional (xyzt) imaging of the emulsion in a sealed
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chamber was performed using a high-speed laser-scanning con-
focal microscope, imaging fluorescein dye dissolved in the con-
tinuous phase. A typical 2-d image is shown in Fig. 1d. The
time-dependent droplet positions and radii were determined us-
ing multi-particle tracking via custom-written software20,21. A
reconstruction is shown in Fig. 1e. Such measurements involve
multiple trade-offs; higher magnification and slower scanning re-
sult in better spatial location of droplet centers22, but poorer
statistical power due to tracking fewer droplets less frequently
and associated tracking limitations23. Our experiments track 775
droplets to a location accuracy of σ = 0.03µm with two minutes
between 3-d scans, (see ESI†, Fig. S2). Our corrections for this
finite resolution are discussed in Sections 2 and 4.

As they age, foams and dense emulsions evolve to a steady
state termed dynamical scaling24 where the shape of the droplet
size distribution becomes independent of time, while the mean
droplet size increases as a function of sample age. Our samples
were allowed to age for 7 hours prior to data acquisition, allowing
the system to reach dynamical scaling25 (Fig. S1a-b, ESI†) and
slow down to the point that the droplets’ motion was easily fol-
lowed. Data was analyzed over a 150 minute span, during which
the system could be approximated to have stationary dynamics.
The time-averaged mean droplet radius is < a >= 4.2± 0.1µm,
with a polydispersity index of 0.47 ± 0.02. The mean droplet
size increases ∼ t1/2, consistent with models24, increasing by
about 8% over the duration of the analysis. The experimental re-
sults were compared to a simulation using a previously published
approach15 based upon frictionless, compressible spheres26–28

whose radii slowly evolve due to quasi-static ripening. See Ma-
terials and Methods for further details of the experimental setup
and simulation.

2 Super-diffusion and viscoelasticity due to fractal
paths

The random motion of the droplets in our dense emulsion is in-
termittent. The droplets are nearly motionless except for abrupt
motions, or avalanches, where many droplets move by a fraction
of their radius, see Movie S1, ESI†. To quantify such random mo-
tion, we will first compute the droplets’ mean-squared displace-
ment (MSD), ⟨∆r2(τ)⟩ = ⟨∆x2(τ)⟩+ ⟨∆y2(τ)⟩, where x and y are
droplet positions in the horizontal plane, τ is the lag (or waiting)
time and ⟨.⟩ denotes an average over multiple droplets and time.
Except where noted otherwise, we consider only the x and y coor-
dinates because of their lower measurement error without loss of
generality, assuming our system is isotropic. The observed MSD
has a super-diffusive form, ⟨∆r2(τ)⟩ ∼ τa, with a = 1.38 ± 0.02,
Fig. 2a. Measurement error affects the MSD by adding a con-
stant noise term of 2σ2 at short times23, which was subtracted
from the data and shows σ = 0.03µm (see ESI†, S2). The phys-
ical origin of such power-law super-diffusive motion is not obvi-
ous. Other properties of the bubble motion (discussed in a later
section) are inconsistent with existing models for super-diffusion,
such as Lévy walks or chaotic advection3,29,30, or fractional Brow-
nian motion31. We do find that smaller droplets move faster than
larger droplets (Fig. S1c-d, ESI†), consistent with the material

Fig. 2 Analysis of configuration space paths and bulk rheology. (a)
Mean-squared displacement (green) of individual droplets. Grey sym-
bols are the data before subtracting error and the grey line is its fit to
a power law plus a constant (see ESI† S2). (b) Squared Euclidean and
contour distances between pairs of configurations show a fractal scaling
after smoothing (green) with a slope of 1.41 from a power law fit (for
∆s > 20 µm). Values without correction for measurement error (grey)
show slight deviations from a power law for smaller values. (c) The con-
tour and temporal difference between pairs of configurations shows linear
scaling, despite the system’s intermittent dynamics. (d) Measurements
of G∗(ω) show power-law viscoelasticity at low frequencies, whose expo-
nent agrees mathematically with the observed fractal dimension. Samples
were loaded 7 hours after formation to correspond to the imaging study,
then measured, top to bottom, 3, 10, 40, 75, 127 minutes later.
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acting as a mechanical continuum driven by active fluctuating
stresses32.

In the fractal landscape dynamics picture, the steepest descent
paths on the energy landscape have a fractal geometry, and this
causes the super-diffusion seen in real space15. To test this idea
with empirical data, we consider a 1550-dimensional path R⃗(t)
constructed from the experimental x(t) and y(t) coordinates of all
the droplets. Then, as sketched in Fig. 1a, we consider ‘fragments’
of the path spanning all pairs of observed configurations, and
compute the ‘size’ ∆R and ‘mass’ ∆s of each path fragment. Sim-
ilar to the MSD, these high-dimensional quantities are affected
by measurement error, but correcting such measurements has not
been previously reported. We note that large high-dimensional
displacements are dominated by a small number of components
(or dimensions) with very large displacement magnitudes (Fig.
S2a-b, ESI†), while measurement error contributes to all of the
components equally. Indeed, we find it useful to discard the small-
est displacement components from the calculation to improve the
signal to noise ratio of the measurement. Specifically, we find that
excluding components with displacements < 4σ from the calcu-
lations effectively removes the effects from noise on ∆R and ∆s
without significantly perturbing their true scaling and probability
distribution exponents, as verified numerically (Fig. S2c-d, ESI†).

Figure 2b shows that these two experimental high-dimensional
measures display a power-law scaling relationship, ∆R2 ∼ ∆sc,
with c ≈ 1.41 ± 0.03. Data corrected for measurement error is
shown in green, uncorrected in grey. Such scaling confirms that
the configuration path is a fractal with a corresponding fractal di-
mension D f = 2/c = 1.42±0.03, such that path fragment mass ∼
(size)D f . Calculation of the fractal dimension using other meth-
ods, such as the correlation dimension33 shows similar results.
Analysis of the configuration space path generated by simulations
shows essentially indistinguishable fractal scaling to the experi-
ments (Fig. S2, ESI†).

The relationship between the droplet super-diffusion and the
fractal scaling is straightforward to understand. The configura-
tion path is parameterized by both time t and contour distance
s. While intermittent dynamics causes s to increase by vary-
ing amounts in a given t interval, the corresponding average
differences in these variables, ∆s and τ, are nevertheless pro-
portional,30 Fig. 2c. This linear correlation indicates that the
high-dimensional mean-squared displacement ∆R2 will show the
same power-law scaling, ∼ ∆sc and ∼ τc. Because the individ-
ual droplet trajectories are just projections of the configuration
space path to lower dimensions, the conventional MSD, ⟨∆r2(τ)⟩,
shows the same power-law scaling as well—super-diffusion with
the observed exponent satisfying a ≈ c.

Lastly, the earlier study15 also predicted a link between the
fractal dimension of the configuration path and a soft glassy ma-
terial’s power-law viscoelasticity, G∗(ω)∼ ωβ , where ω is the fre-
quency. Specifically, if the fluctuating stresses in the material re-
semble a Brownian random walk, the observed power-law super-
diffusion predicts the relation β = D−1

f − 0.5. This corresponds
to β = 0.20±0.02 for the experimental D f and is consistent with
direct measurements of the rheology of age-matched emulsions,
Fig. 2d, which show β = 0.19± 0.03. This provides experimen-

tal confirmation that the previously unexplained power-law vis-
coelasticity of SGMs34 is also a result of fractal landscape dy-
namics. Conversely, while the fluctuating stresses are not directly
measurable in tracking experiments, comparison of the rheology
with the tracking data allows us to confirm that the fluctuating
stresses resemble the diffusive form seen in simulation.

3 Anomalous displacements due to landscape
anisotropy

A second anomalous feature of soft glassy dynamics can be seen
in the probability distribution of random displacements that oc-
cur in a given lag time, Fig. 3a, termed the van Hove self-
correlation function. For normal random walks, this distribution
has a Gaussian shape. The distribution we find here is distinctly
non-Gaussian and heavy tailed—large displacements are much
more probable than for a Gaussian distribution with the same
width.

Our first task is to determine a suitable fitting function to de-
scribe the distribution. For smaller displacement values, we find
that the distributions are well fit by the Lévy alpha-stable dis-
tribution, often called the stable distribution (SD), a family of
transcendental functions containing the Gaussian function. The
stable distribution is a natural choice for the van Hove of a ran-
dom process, because it is stable under the repeated convolution
corresponding to a generalized random walk3. The stable distri-
bution has power-law tails, with an exponent controlled by the
stability parameter α, and so contains arbitrarily large (positive
and negative) values. Distributions of physical variables, how-
ever, are typically truncated as very large displacements are phys-
ically impossible. Indeed, we find empirically that our van Hove,
or displacement distributions are remarkably well fit by an expo-
nentially truncated stable distribution (ETSD), see Fig. 3a. The
ETSD satisfies ETSD(x,α,λ ) = A [SD(x,α)exp(−|x|/λ )], where λ

is a truncation length and A is a normalization constant. We find
that the observed stability parameter depends on lag time, reach-
ing a minimum of αvH ≈ 1.4 at intermediate τ and then trending
upward towards αvH ≈ 2 (Gaussian) at the longest τ, Fig. 3b inset.
Such regression to a Gaussian form is expected for any process
with a truncated van Hove distribution due to the Central Limit
Theorem, but can require a surprisingly long lag time for large λ

values,35. The small upturn in αvH at short lag time is consistent
with the effect of measurement error. Reassuringly, simulation
data can also be well fit to the same ETSD form (Fig. S3, ESI†)
yielding αvH having similar values and time dependence, Fig. S4,
ESI†.

As previously with super-diffusion, the physical origin of the
non-Gaussian van Hove distributions in SGMs is not obvious.
A class of literature models predicts such heavy-tailed displace-
ment distributions36,37 are due to the ∼ r−2 dependence of the
quadrupolar strain field around a local rearrangement. This gives
rise to a truncated power-law tail with α ≃ 1.5, which appears in-
consistent with our observations. More complicated models with
spatially extended, non-quadrupolar deformation fields, however,
might lead to a different α value. More generally, Lévy walk pro-
cesses are both super-diffusive and can have displacement distri-
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Fig. 3 Probability distributions, or van Hove functions, of droplet dis-
placements are non-Gaussian in both real space and configuration space.
(a) The van Hove function of individual droplet displacements for τ = 2,
10, 16, 34, 68, and 120 minutes (bottom to top). Solid black curves rep-
resent the best fit ETSD for each τ, dashed curves show the best fit SD,
and the dotted curve is a best fit Gaussian distribution for τ = 2 minutes.
(b) The distribution function of the components of high-dimensional dis-
placement unit vectors, Ui, for τ = 2, 16, and 34 minutes (bottom to
top). Black curve is a best fit ETSD to the data. The red curves repre-
sent a simple construction of N = 775 uncorrelated components with the
same ETSD as the data at each τ, and the dotted curve shows a similar
construction for τ = 2 min but with a Gaussian distribution of N = 775
uncorrelated components (isotropic in configuration space). Inset shows
αvH(τ) (circles) and αU (τ) (squares).

butions that resemble stable distributions, but their MSD expo-
nent is related to their displacement distribution30 via α = 3−a,
which is also not consistent with the data. Fractional Brownian
motion31 is super-diffusive, but has a Gaussian van Hove corre-
lation, α = 2 in its simplest realization. An extension to the frac-
tional Brownian motion model with stable distribution van Hoves
has been developed38,39, suggesting that similar models might
describe our data if truncation were added.

We have found that the heavy-tailed van Hove correlation is
closely related to the anisotropy of the configuration space path,
as sketched in Fig. 1b. That is, the directions taken by the con-
figuration space path are not random, as might be supposed. If
we consider a set of uniformly distributed points on a unit radius
hypersphere (corresponding to random direction unit vectors),
their components will be nearly Gaussian distributed in the limit
of large dimensionality. This suggests a simple test of random di-
rectedness is to compute the high dimensional displacements of
the configuration path in a given lag time, to convert them to unit
length vectors, and then examine the distribution of their vector
components, Ui(τ) = (Ri(t + τ)−Ri(t))/∆R(t,τ), pooling values at
all t. We consider only the y coordinates to calculate Ui since
they display the least time-dependent drift. Fig. 3b shows the re-
sulting distribution for our data at three different lag times. The
resulting distribution is highly non-Gaussian, demonstrating that
the configuration space path is not randomly directed in space;
equivalently, this means the valleys in the landscape that the con-
figuration is following are also not randomly directed in space.

We find that the component distribution P(Ui(τ)) can also be
fit by an ETSD form. Indeed, the shape of the distribution func-
tion is very similar to that of the van Hove distribution, quantified
by the similarity of their stability parameters: αU ≈ αvH , Fig. 3b
inset. The nearly constant value of αU (τ) for small τ (which is
confirmed in simulation, Fig. S4, ESI†) indicates that this non-
random directionality of the configuration path is roughly self-
similar on corresponding length scales in configuration space.
The observed ETSD van Hove distribution is merely a projection
in real space of the distribution controlling the self-similar non-
random directionality of the energy landscape valleys. This shows
again that a dynamical feature of SGMs in real space is a direct
result of a fractal geometrical feature of the energy landscape.

Naïvely, we might suppose that the observed non-random di-
rectionality in configuration space could be a consequence of
correlations between the displacements of different degrees of
freedom. However, while the motion of different bubbles must
have some finite correlation (due to the affine elastic strain field
that connects them), the motion of well-separated bubbles ap-
pears nearly uncorrelated. Indeed, a simple construction shows
how non-random directionality can arise without correlated mo-
tion. Specifically, we can numerically generate an ensemble of N-
dimensional unit vectors with uncorrelated random components
having the same ETSD distribution as the observed van Hove dis-
tribution. Figure 3b compares the result of of this uncorrelated
degree of freedom construction to the experimental P(Ui(τ)),
showing very good agreement. This agreement shows that the
non-random directionality is not a consequence of correlated mo-
tion between droplets, but rather due to the heavy-tailed statistics
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of individual droplet displacements. Stated another way, when
the displacements of individual degrees of freedom are uncorre-
lated, the P(Ui) and the van Hove distributions have the same
shape.

4 Avalanches due to fractal clustering of minima
In the previous sections, we have discussed aspects of the droplet
motion in SGMs other than their striking intermittency and coop-
erativity, to which we now turn. A simple way to quantify cooper-
ativity, when large numbers of droplets move at the same time, is
to count how many droplets move more than a threshold amount
in a given time interval. Using the displacement truncation length
λ as a threshold would isolate those droplets undergoing the
very largest motions. We choose a lower threshold λ/2 = 0.33µm
for improved statistics, which is still about 10 times larger than
our experimental measurement error. Figure 4a shows the num-
ber of droplets that move more than that threshold, Nλ/2(t), in
the time interval between consecutive image scans, as a function
of time. This function shows large peaks at times when many
droplets make large motions. Moreover, a plot of the probabil-
ity distribution P(Nλ/2) in Fig. 4a(inset) shows a heavy-tailed
form, varying as P(Nλ/2) ∼ (Nλ/2)

−1.4. If every particle moved
independently of the others, this distribution would be a peaked
binomial distribution. Based on the idea that cooperativity con-
sists of some local droplet rearrangements triggering others, such
large, power-law distributed rearrangement events are commonly
called avalanches, analogous to those in snow or sand.

A common method to visualize the spatial arrangement of such
avalanches is to prepare a movie that renders only the most mo-
bile droplets, for example, using a threshold such that 5% of all
droplets appear on a time-averaged basis, see Movie S2, ESI†.
Corresponding images for two typical large avalanches are shown
in Fig. 4b-c. To indicate the direction of the droplet motions, the
final location of each droplet is rendered in red, the starting loca-
tion in blue. Because the displacements are small, most droplets
render as slightly displaced red and blue hemispheres. Render-
ing of simulation data yields similar results (Fig. S5a-b, ESI†).
Closer examination reveals the avalanches have a complex spatial
structure, forming extended, nearly dense clusters of neighboring
droplets. Such clustering is qualitatively similar to the dynam-
ical heterogeneity seen in the cooperative Brownian motion of
dense colloidal fluids19,40. Further analysis reveals that the num-
ber of droplets participating in each cluster follows a power-law
distribution, and that the clusters themselves are fractal40 with
dimension D f ≃ 2.50 (Fig. S5c-d, ESI†).

Again returning to the high-dimensional analysis, we seek to
understand what features of the energy landscape give rise to
these intermittent and cooperative dynamics. Notably, we find
that avalanches correspond to large high-dimensional Euclidean
displacements, ∆R, between two consecutive points in configura-
tion space. In fact, the two measures of avalanche size are propor-
tional: ∆R2 ∝ Nλ/2, as shown in Fig. 4d. Since the Nλ/2 values are
power-law distributed, this correlation implies that ∆R2 should be
as well; indeed, we find P(∆R2)∼ (∆R2)−1.4, shown in Fig. 4e. As
expected, small values of ∆R are dominated by noise in particular
when Nλ/2 is small. Applying our error correction method results

Fig. 4 Intermittent system dynamics at τ = 2 minutes. (a) Number of
droplets moving by ∆x,∆y > λ/2 at each time point. Only data from t =
1 to 150 minutes was analyzed throughout this study. Inset shows the
probability distribution of those t < 150 min values, following a power law
with slope of −1.4±0.1. (b,c) Renders of droplets that move in the top
5% of all displacements reveal localized clusters during large avalanche
events. (d) ∆R2 for τ = 2min scales linearly with Nλ/2 (black), data
uncorrected for measurement error is in grey. (e) Probability distribution
of ∆R2 also follows a power law with slope of −1.4±0.1 (green), matching
that of Nλ/2 and the simulation ∆R2 (red).

in improved scaling between the two values and better agreement
with the simulation.

Recall that the emulsion relaxes rapidly from one stable energy
minimum (where the forces between droplets are in balance) to
another, spending most of its time arrested at a minimum. As a
result, experimental observations should typically correspond to
energy minima. Thus, the measured P(∆R2) between consecu-
tive images may effectively be reporting the distribution of dis-
tances between pairs of minima of the energy landscape itself, as
sketched in Fig. 1c. Of course, multiple avalanches may occur
between (or during) microscope scans of the sample, so the ∆R2

between measurements may ‘skip’ some closely spaced minima
and undercount small ∆R2 events. Examining simulation data
confirms this idea. But importantly, we also find that the limited
temporal sampling rate of the experiments does not significantly
alter the power-law exponent of the measured P(∆R2), at least for
the largest ∆R2, see Fig. 4e.

The observed distribution of squared Euclidean distances be-
tween minima is unusual, and does not correspond to what would
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be expected if the minima were randomly distributed along the
configuration space path. Indeed, it is a hallmark of the minima
being arranged into fractal clusters along the path, with a frac-
tal dimension that can be derived from the exponent of P(∆R2).
First, given the observed distribution P(∆R2) ∼ (∆R2)−1.40 and
the previously shown relationship between ∆R and ∆s, it can be
shown that P(∆R) ∼ ∆R−1.80 and P(∆s) ∼ ∆s−1.56. To interpret
the last scaling form, we can suppose that if the configuration
path were stretched out straight, the minima would cluster into
a ‘dust fractal’, a fractal with a dimension less than 1. A nu-
merical calculation using the observed exponent for P(∆s) indi-
cates that Dmin

f ≈ 0.5. See Materials and Methods for calculation
details. In an earlier study, we found that minima are preferen-
tially located in regions of configuration space where the energy
landscape is almost flat on longer length scales15, suggesting that
here, the fractal clustering of minima is likely yet another man-
ifestation of the underlying fractal structure of the energy land-
scape itself18,41–45.

5 Discussion and Outlook
At the most basic level, the excellent agreement between our ex-
perimental measurements and a matched quasi-static simulation
confirms the latter model’s usefulness for describing slowly ripen-
ing dense emulsions and wet foams. At the same time, our ex-
periment confirms that fractal landscape dynamics is the origin
of the previously mysterious soft glassy dynamics in those ma-
terials. In particular, we have found nearly one-to-one corre-
spondence between real-space observables, including the mean
squared displacement,

〈
∆r2

xy(τ)
〉
, the van Hove correlation func-

tion P(∆y(τ)) and the avalanche number Nλ/2(t) with three mea-
sures of the high-dimensional self-similar geometry,

〈
∆R2(τ)

〉
,

P(Ui) and ∆R2(t) of the configuration path and its minima. More
generally, this study demonstrates that the physically relevant ge-
ometrical features of the high-dimensional energy landscape are
not visible only in a simulation or an analytical calculation, but
can be reliably deduced from multi-particle tracking data. While
we have thoroughly characterized the fractal geometry of the en-
ergy landscape that emerges in a dense emulsion near jamming,
the mathematical origin of this geometry remains mysterious.
The appearance of similar dynamics in other systems is sugges-
tive that such landscapes may emerge in a variety of other sys-
tems. Future work will seek to understand the emergence of such
fractal geometry, the effect of viscosity on fractal landscape dy-
namics and the limits to the quasistatic assumption in this work,
and to develop a dynamic model for the random motion and in-
termittency in these materials.

We expect the exploration of high-dimensional landscapes from
empirical data may prove useful in a variety of systems with
similar dynamics, such as cytoskeletal networks8 and perhaps
even neural networks46,47. High resolution multi-particle track-
ing data in cells48,49 may enable the characterization of the cy-
toskeleton’s energy landscape, enabling the screening or refine-
ment of emerging cytoskeletal models. Practical applications of AI
rely on deep learning, where computationally costly learning pro-
cesses are accelerated by ‘shortcut’ connections50 in the network,
which alter the structure of the high-dimensional ‘loss’ landscape.

Our analysis may lead to a clearer understanding of deep learning
dynamics47, and more efficient learning algorithms.
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Materials and Methods

Sample preparation

The O/W emulsion was prepared by slow, dropwise addition of
the dispersed phase (80% v/v) to the continuous phase with con-
stant homogenization (IKA T18) at 21,500 rpm. The continuous
phase contained 3% (w/w) Synperonic PE P105 (Sigma-Aldrich)
surfactant dissolved in a mixture of 95% (w/w) formamide, 5%
(w/w) water. For confocal imaging fluorescein sodium salt was
dissolved in the water component at 2.7 mM concentration, prior
to mixing and emulsification. The dispersed phase contained a
mixture of 94% (w/w) 1-bromohexane and 6% (w/w) octane.
Following emulsification, the sample was centrifuged for 10 min-
utes at 700 rpm for removal of air bubbles, and was aged in a
closed microscopy chamber at room temperature. This chamber
consisted of stacked #1.5 coverslips used as spacers, topped by
a #0 coverslip and sealed with high viscosity UV glue (Norland
68T). The dense emulsion was then imaged using a Zeiss LSM 800
confocal microscope with an oil immersion objective. The rate of
ripening in the emulsion is seen to decrease slowly over time, un-
til nearly complete arrest occurs 10-11 hours after formation. We
conjecture this is due to the increase of surfactant concentration
in the connected phase, and a corresponding decrease in droplet
surface tension. All analyses are performed for t < 150 mins or
7-9.5 hours after emulsion formation.

Rheology

Measurements were performed using a strain-controlled rheome-
ter (DHR-3 TA Instruments) with a parallel plate geometry (40
mm plate diameter). All measurements were done in the linear
viscoelastic regime (strain ε = 1%), which was verified by an am-
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plitude sweep at ω = 1 rad/sec. Complex shear modulus values
were obtained from frequency sweeps at T = 25± 1◦C and fre-
quencies from ω = 0.016 to 30 rad/sec. The gap size ranged from
90-150 µm and the same sample was measured multiple times to
observe the effects of emulsion aging. Frequency scans in both
directions (from low to high ω and vice versa) showed similar re-
sults and were averaged together. Measurements were started 7
hours after emulsion preparation to reach dynamical scaling and
to correspond to the confocal imaging data.

Emulsion Simulation
We simulate our dense emulsion using a modified 3-D bubble
model, extending the one used in our previous study15, based
on a system of polydisperse soft-spheres at a volume fraction
φ = 0.75, with pairwise interaction energy:

V (di j) =

 ε

2

(
1− ∥di j∥

ri+r j

)2
, if ∥di j∥< ri + r j

0, otherwise,
(1)

di j being the distance between two bubbles (soft-spheres) of radii
ri and r j. The bubbles exchange mass due to differences in no-
tional Laplace pressure according to:

Qi = −α1

neighbors

∑
j

(
1
ri

− 1
r j
)Aoverlap − α2(

1
ri

− 1
< r >

)ri (2)

The evolution of the system is considered in the quasi-static
limit - where the energetic relaxation time is much smaller than
the ripening time scale. This leads us to relax the system to
a minimum between consecutive ripening moves. The param-
eters for the simulation are similar to Ref.15. The system is
initialized using a Gaussian distribution of bubble radii, and its
properties are considered once the system reaches a dynami-
cal scaling state. Under such a steady state, the droplets reach
a radii distribution resembling a Weibull distribution, P(r) =
(k/λ )(r/λ )k−1exp(−(r/λ )k), where k ≈ 1.66 and λ is a scale pa-
rameter.

Fractal Exponent Calculation
In general, if a random variable x is power-law distributed, P(x)∼
xa, and a second variable y scales as y ∼ xb then y is also power-
law distributed with P(y)∼ yc and c = (a+1)/b−1. This relation
is used to estimate the scaling exponents for P(∆R) and P(∆s)
from those for P(∆R2) and the scaling exponent c ≈ 1.41± 0.03
defined in the main text. To estimate the dust fractal dimension
of the minima in s, we created simple asymmetric Lévy walks30

by cumulative summing uncorrelated positive random numbers x
having a power-law distribution of values, P(x) ∼ x−d , and then
computing their fractal dimension Dmin

f using a correlation di-
mension33. The results could be well fit by the empirical form:
Dmin

f ≈ ((1/(d −1)3)+1)−1/3, which was used to compute the ex-
perimental value.
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