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reverse engineering techniques. Section III describes the pro-
posed algorithm flow for designs with only a standalone FSM
and for designs containing a datapath unit with a controller
containing one or more FSMs. Section IV consists of the
experimental setup and a comparison of the results obtained
in Phase 1 and Phase 2. Section V concludes the work.

II. RELATED WORK

Shi et al. [6] proposed a method to extract state registers
from a flattened gate-level netlist. The method follows from the
work presented by McElvain and Kenneth [7]. Their methods
were unable to identify counters and they extracted an FSM
logic that is a composition of smaller FSMs. We adapt the
strategy proposed by Shi et al. [6] to FPGA-based netlists in
the first phase of our tool flow.

The RELIC tool [8] analyzes the netlist topologically to
find similar fan-in cones of cells and to identify state registers.
The netlist is first pre-processed and expressed using AND-
OR-INVERT logic. A recursive algorithm is then used to
check for the similarity between pairs of nodes, with the
graph topology serving as a similarity criterion. The criterion
is checked at each stage based on the transitive fan-in of
that stage. If the value of the similarity metric exceeds a
predetermined threshold, two graph nodes are marked as
similar. The tool is tested on a variety of small benchmark
circuits and demonstrates 80% to 100% accuracy. This work is
improved upon in work done by Brunner et al. [9] to speed up
the RELIC algorithm by 100 times and analyze larger circuits
with a few thousand registers. RELIC applies to ASIC netlists
and does not classify registers.

Chowdhury et al. [10] proposed a machine-learning-based
technique to identify state registers in a netlist. Firstly, the
authors converted the netlist into a graph and extracted fea-
tures related to state registers such as centrality measures,
and trained a Graph Neural Network. The weights obtained
through training were fed to a binary classifier to classify
state registers and data registers. The authors validated their
method with several real-world benchmarks and stated that it
outperformed all the traditional machine-learning techniques
in terms of accuracy and efficiency. The authors claim that the
trained model can be used in classifying registers in extremely
large and complex designs. The average accuracy achieved
by ReIGNN is reported as 96.5%. REIGNN applies to ASIC
netlists and not FPGA-based netlists.

Fyrbiak et al. [11] propose an approach to enhance state
register identification by introducing an influence/dependence
metric. The metric estimates how many gates are controlled
by a given element or logic. FSMs usually control a large part
of a netlist and a high metric would indicate an FSM-related
logic or element. The user still needs to decide whether a
candidate logic is part of an FSM or not. Fyrbiak et al. extend
their work to FSM obfuscation.

Wallat et al. [12] developed the first open-source toolchain
to aid in reverse engineering designs from flattened gate-
level or LUT-level netlists to high-level RTL representations
of the netlists. The tool helps in performing fundamental
processing such as parsing a netlist in Verilog, and storing

cell and net information in an intuitive form. It also helps
in performing basic operations on a netlist and in traversing
a netlist. Narayanan et al. [13] developed a toolchain for
carrying out novel carry chain analysis on FPGA netlists.
In order to identify operators such as adders, subtractors,
comparators, and ALUs, the authors compared the subcircuits
with golden library components. The authors also constructed
a flip-flop dependency graph of the netlist and analyzed the
data flow for sequential components. The toolchain delivers
34% to 100% gate coverage for real-world designs. [14] use
proximity information on cells in the implemented design to
group elements that include LUTs, CARRY, RAM blocks, and
registers. The algorithm groups elements with a Normalized
Mutual Information metric of 0.73 for real-world designs.

III. STATE REGISTER IDENTIFICATION PROCESS

Fig. 2: Tool flow for control register identification.

The proposed controller identification tool works in two
phases as shown in Fig 2. Phase 1 is an adaptation of a few
existing ASIC netlist-based control register identification tech-
niques to FPGA designs with modifications since the FPGA
primitives are different from ASIC primitives. The results of
Phase 1 are then processed with a sequence of algorithms in
a particular order to achieve the best isolation of the control
registers from data registers. The registers are classified into
three sets for the purpose of a better understanding of the
proposed tool flow. Set A which contains the registers that are
highly likely to be control registers. Set B which contains the
set of registers that cannot be concretely identified as control or
data registers is left to the reverse engineer for further manual
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analysis. The registers eliminated are put into a set of data
registers.

The steps are separated into Phase 1 and 2. Steps 1, 2, 3,
4, 5, 6, 7, 8, 13, and 14 describe the flow to identify control
registers in Single and Multiple-FSM controller designs. Steps
1, 2, 9, and 10 describe control register identification in
Standalone FSM designs without a datapath.

A. Phase 1

The first step of the algorithm is to identify the potential
control registers irrespective of the number of FSMs in a
controller design. Based on work done by Shi et al [6] the
state registers in an FSM have a unique feedback structure for
both Mealy and Moore state machines. There is both a forward
and backward flow of data for the control registers. However,
there are also data-path registers with the same property. This
technique also classifies other sequential module registers like
counters with similar structures as state machines. Initially,
Set A would contain all registers present in the current design
extracted from the HAL tool [12]. Then by a forward Breadth
First Search (BFS) algorithm, the path of the output fan-out
net is explored until the same register’s input net (at D pin)
appears. If it encounters an output or an input buffer, that path
is discarded. The resultant registers that satisfy this property
will remain in Set A. The registers without this feedback
property are eliminated and will fall into the set of data
registers. Algorithm 1, lines 5 to 12 perform this step.

The second step is to incorporate an additional constraint
to filter only the registers that control the data-path elements
in their fanout and eliminate the other registers which are
not control signals. The check is to see if the fan-out net is
connected to a Control Enable (CE) pin of a flop or a select
line of the multiplexor. FPGAs have registers in their designs
with CE pins that enable/disable them. With forward BFS from
the register’s Q pin and by checking if the destination pin of
the fanout net is tied to a CE pin, we can decide if a flip-
flop’s output net is a control signal. As FPGAs do not have
multiplexors as a part of the primitives and the logic is usually
synthesized into LUTs, we had to make some changes to adapt
existing methods to FPGA designs. We consider the Boolean
equation associated with a LUT connected to any potential
state register. We check if the fanout net of a register is present
as a variable in the Boolean equation. We check the number of
occurrences of the fanout net’s literal in the Boolean equation.
A large number of occurrences may indicate that the fanout
net is a select line and belongs to a multiplexor. We adapt
this approach from [11]. If the fanout is a select line (shown
in Fig 3, literals I1 and I1 are counted), the register is a
candidate state register else not. State registers can sometimes
be directly connected to output buffers. Hence, Registers in
Set A satisfying this property remain in Set A. Registers in
Set A without this property are put in Set B. Algorithm 1,
lines 13 to 19 perform this step.

These existing techniques allowed some false positives
indicating the presence of data registers with similar structural
properties as state registers. The algorithms discussed below
are implemented to reduce the false positives progressively.

Fig. 3: Control signal identification

The methods in Phase 2 eliminate false positives (FP) by a
considerable number.

B. Phase 2
1) Eliminating data registers by identifying other sequential

modules: In step 4, we started by identifying datapath modules
such as counters, shifters and multi-bit registers from the
toolchain developed by Narayanan et al. [13]. The registers
in these modules that are identified as datapath are eliminated
among the set of candidate state registers obtained at the end
of Phase 1 (Set A). This reduces the false positives which
are counters as they mostly have a structure of FSMs. But
the registers eliminated in this step are not classified as data
registers but classified into the potential state register bank
(Set B) that we already have. The counter and shifter registers
eliminated in this step have unique control signals. Registers in
Set A that are classified as sequential datapath modules in this
step are put in Set B. The other registers are left untouched.
There may exist counters which share the enable signal with
control registers and these counters will be eliminated in the
following steps. Algorithm 1, lines 20 to 25 perform this step.

2) SCC-based FP reduction technique and FSM separation:
In step 5, the next type of false positive targeted is the status
registers which did not get eliminated in the previous steps.
As we already know the unique feature of the FSMâs control
registers which is to have feedback to themselves which makes
an FSM a strongly connected component. Running a strongly
connected component algorithm on the resulting registers sep-
arates the data/status registers from control registers as shown
in Fig 4. Using the netlist utilities of HAL tool, a strongly
connected components algorithm is used to find whether a
given netlist contains multiple FSMs. The algorithm gives
components that contain elements that have a bidirectional
path to each other. The algorithm used for identifying strongly
connected components is observed to produce results similar
to the groupings made by Tarjan’s SCC algorithm [15]. The
registers that are single register SCC are eliminated and con-
sidered data registers as a single register cannot form a state
machine. If the resulting list of components contains a single
SCC it is a single FSM controller design. If there are multiple
SCCs found, the netlist is a controller with multiple FSMs.
Registers found in the SCC components returned belong to
Set A. Registers which do not have any other registers in their
SCC component are put in the set of data registers. Algorithm
1, lines 26 to 35 perform this step.
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Fig. 4: SCC-based FP reduction

3) Path-based FP reduction: The next type of False posi-
tive includes registers belonging to counters which sometimes
have the same structure and control/enable signal as FSMs
and could not be identified in earlier steps. We use a path-
based algorithm where we check for a direct bidirectional path
between a register and one other register in the component,
this can be described as a more constrained feedback property.
The counters do not have a direct bidirectional path in their
structure and it is not a constraint in the SCC algorithm before
(as SCC somehow tries to find a path between a false positive
counter register and a control register). In counters, Lower-
order bits connect to all higher-order bits, and higher-order
bits are only connected to any higher-order bits if they exist as
shown in Fig. 5 and they do not have at-least one connection
bi-bidirectionally to each other whereas FSM shown in the
figure does. This path-based property is checked and the
counter registers which escaped the detection in step 3 are
classified as data registers. Registers in Set A satisfying this
property remain in Set A. Algorithm 1, lines 36 to 43 perform
this step.

Fig. 5: Example of a counter with no bidirectional path

4) Enable tree-based classification: Finally, there are cer-
tain status registers that pass all the above checks but have
different control signals. Enable tree identification is done
where FSMs are identified as shown in Fig. 6 (register in green
is added to the group while the registers not in this group are
eliminated). Registers in Set A grouped by the enable tree
remain in Set A. Registers in Set A that are not grouped by

the enable tree are put in the set of data registers. This step
is done in the last part of the algorithm because there could
be many data registers that share the same control signal.
Control signal-based grouping assumes registers grouped in
the control tree to be state registers [6]. Algorithm 1, lines 44
to 54 perform this step.

Algorithm 1 Detection of datapath controllers
1: procedure DETECTCONTROLLERS(Netlist, SMR)
2: . SMR - Sequential Module Registers from identified counters,

shifters, and multi-bit registers
3: SetA all_flops
4: SetDataRegs ;
5: for Register in SetA do
6: if HAS FEEDBACK(Register) then
7: SetA Register . include register in set
8: else
9: SetDataRegs Register

10: SetA.REMOV E(Register)
11: end if
12: end for
13: for reg in SetA do
14: if fanout(reg) is not control signal then
15: . net tied to CE pin or net is select line
16: SetA.REMOVE(reg)
17: SetB  reg

18: end if
19: end for
20: for regC in SMR do
21: if regC in SetA then
22: SetA.REMOVE(regC)
23: SetB  regC

24: end if
25: end for
26: SCC  StronglyConnectedComponents(Netlist)
27: . list of sets
28: for Component in SCC do
29: Component Component \ SetA

30: end for
31: for Component in SCC do
32: if size(Component) == 1 then
33: SCC.REMOVE(Component)
34: end if
35: end for
36: for Component in SCC do
37: for Register in Component do
38: if Register has no bidirectional path then
39: . with other registers in component
40: Component.REMOVE(Register)
41: end if
42: end for
43: end for
44: for Component in SCC do
45: ET Groupings = ENABLE TREE(Component)
46: for group in ET Groupings do
47: if size(group) <= 2 then
48: . group has <= 2 registers
49: Component Component� group

50: SCC  Component

51: . update SCC list of FSM components
52: end if
53: end for
54: end for
55: StateRegs ; . Final list of state registers
56: for Component in SCC do
57: StateRegs Component

58: end for
59: end procedure

C. Stand-alone FSM design control register identification
This algorithm is the basic approach that detects the state

registers in FSM-only designs and the designs in which all the
registers are state registers. This is a two-step algorithm where
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Fig. 6: Enable tree based FP reduction

in the first step all registers are checked for feedback. In the
next step we perform enable tree-based grouping on Set A. The
control signals are traced back one level and all the registers
in the fanin cone of the target elements are identified as state
registers. Algorithm 2 describes the flow of this technique.

Algorithm 2 Standalone FSM register identification
1: procedure DETECTSTANDALONEFSM(Netlist)
2: allRegs All_flops
3: for Register in allRegs do
4: if HAS FEEDBACK(Register) then
5: StateReg  Register . append to list
6: end if
7: end for
8: StateReg  EnableTreeBackTracing(StateReg)
9: . append to list

10: end procedure

IV. EXPERIMENTATION AND RESULTS

A. Experimentation Setup
1) Tools Used: The Hardware Analyzer tool (HAL) [12] is

used to aid in the reverse engineering process. The tool accepts
a fully flattened FPGA or ASIC synthesized design in Verilog
as input. It has a Python interface that helps traverse the netlist.
Python3 was used in implementing the algorithms. NetworkX
[16] and igraph [17] packages are used to express the circuit
as directed and undirected graphs. Xilinx Vivado 2021.1 was
used to synthesize designs into flattened LUT-level netlists for
analysis with the HAL tool. The designs are synthesized in
desired state machine encoding techniques such as One-hot,
Sequential, Binary, Gray, and an Auto mode in Xilinx Vivado.
The proposed tool flow also gets a set of registers belonging to
certain sequential modules detected by the tool developed by
[13]. The Benchmarks chosen to evaluate our tool are drawn
from ITC 99 [18] benchmarks and OpenCores org site [19].
and the GitHub repository secworks [20] where ↵, � and �
in the table denotes the benchmarks from the these sources
respectively. Standalone FSM designs were used from [21].

B. Results
Phase 1 is executed first and the results are compared with

the results after Phase 2. On average, the accuracy increment
from Phase 1 to Phase 2 is observed to be 51%. Accuracy
is measured considering Set A and the set of data registers
obtained. It is observed that the accuracy of register identifica-
tion has increased considerably and all the control registers are

identified. More intricate structural analysis of state registers
in Phase 2 made an increase in accuracy possible.

Tables I, II, and III show the accuracy and false positive
measures. The tables include the register count of both data
and state registers, the registers identified after each phase
in the algorithm, True Positives i.e., state registers actually
identified as state registers, False Positives - Data registers
incorrectly identified as state registers, False Negatives - state
registers identified as data registers and finally the accuracy of
detection. There are still some false positives in some designs
which indicate that there are data-path components that have
similar structural characteristics when compared with FSMs
in the controller.

The results after Phase 2 are also compared with the bench-
marks used in state-of-the-art techniques RELIC. FastRELIC
and REIGNN [8] [9] [10] in Figure 7. The results obtained
with the above flow of techniques show consistently better
or equal accuracy in comparison to the literature techniques
with both machine learning algorithms and deterministic al-
gorithms.

Fig. 7: Comparison of accuracy against state of the art
techniques

V. CONCLUSION

We discussed a tool flow to perform state register iden-
tification in controllers with or without datapath units and
controllers with single or multiple FSMs. We have adapted
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Benchmark Registers Identified Control Registers True Positives False Positives False Negatives Accuracy
State Registers Data Registers After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2

Counter 5 0 5 5 5 5 0 0 0 0 100% 100%
Garage door Controller 8 0 8 8 8 8 0 0 0 0 100% 100%

GCD Control logic 5 0 5 5 5 5 0 0 0 0 100% 100%
Triggered Monostable Circuit 12 0 12 12 12 12 0 0 0 0 100% 100%

Light Rotator 7 0 7 7 7 7 0 0 0 0 100% 100%
Signal Generator 7 0 7 7 7 7 0 0 0 0 100% 100%

FSM without bypass 15 0 15 15 15 15 0 0 0 0 100% 100%
Slow Counter 9 0 9 9 9 9 0 0 0 0 100% 100%

FSM of RTC I2C 5 0 5 5 5 5 0 0 0 0 100% 100%

TABLE I: Standalone FSM Designs

Benchmark Registers Identified Control Registers True Positives False Positives False Negatives Accuracy
State Registers Data Registers After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2

ITC b01 ↵ 8 6 10 8 7 8 2 0 1 0 80% 100%
ITC b02 ↵ 7 4 8 7 5 7 1 0 2 0 87.5% 100%
ITC b03 ↵ 3 12 15 3 3 3 12 0 0 0 20% 100%
ITC b04 ↵ 3 34 11 3 1 3 8 0 2 0 27.27% 100%
ITC b05 ↵ 5 42 18 5 5 5 13 0 0 0 27.77% 100%
ITC b06 ↵ 7 5 12 7 3 7 5 0 4 0 58.33% 100%
ITC b07 ↵ 7 37 9 7 7 7 2 0 2 0 77.77% 100%
ITC b08 ↵ 4 18 11 4 2 4 7 0 2 0 36.36% 100%
ITC b09 ↵ 4 45 13 4 1 4 9 0 3 0 30.76% 100%
ITC b10 ↵ 11 32 16 11 6 11 5 0 5 0 68.75% 100%

sha1 � 3 850 3 3 3 3 12 1 0 0 94.76% 99.88%
siphash � 8 794 5 8 5 8 33 4 3 0 88.75% 99.5%
cr div � 3 4172 16 3 3 3 13 0 0 0 94.3% 100%

TABLE II: Single FSM Controller Designs

Benchmark Registers Identified Control Registers True Positives False Positives False Negatives Accuracy
State Registers Data Registers After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2 After Phase 1 After Phase 2

UART � 20 214 41 20 17 20 21 0 3 0 48.7% 100%
SPI � 12 907 30 9 5 12 18 0 7 0 40% 100%
I2C � 9 135 39 15 9 9 30 3 0 0 23% 80%

OpenFPU � 16 744 74 21 9 16 63 5 2 0 17.44% 73.33%
aes � 15 2994 45 15 11 15 30 18 4 0 57.5% 99.4%

TABLE III: Multiple FSM Controller Designs

some techniques which are used in ASIC netlist reverse engi-
neering and proposed techniques to reverse engineer FPGA-
based designs. With some knowledge of registers belonging
to identified sequential modules such as counters, shifters, and
multi-bit registers, and analyzing several structural properties
concerning the neighborhood of a given register, our toolchain
was able to identify state registers with high accuracy. On
average 51% increase in accuracy was gained over Phase 1
at end of Phase 2 in the case of real-world designs. This
is accompanied by a significant reduction in false positives.
The work can be further extended by expressing the FSMs
containing the state registers and the associated combinational
logic in high-level RTL described in Verilog or VHDL.
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