


A. Bitstream Reverse Engineering 
A bitstream establishes the configuration of an SRAM-based 

field configurable device fabric into a specific functional logic 
element. The device fabric is the static physical structure of the 
device including all logic components and interconnect. The 
bitstream contains the information necessary to configure the 
device fabric to perform logic operations. Complete knowledge 
of both the physical device fabric and a specific bitstream should 
be sufficient to determine the complete configuration of the 
SRAM-based field programmable device thus defined by the 
bitstream. 

Software RE is a more studied topic than bitstream or 
firmware RE [ 11]. The conversion of a bitstream into a netlist is 
more complicated because of limited available information 
mapping bitstream segments into specific netlist configurations 
[ 12]. The additional challenges to bitstream RE introduce 
uncertainties into the extracted netlist [13], and these 
uncertainties reduce the confidence in the correctness of the 
results. While various tools are being developed to support 
bitstream RE, these tools typically exhibit low accuracy while 
demanding much computational time [14]. In addition, existing 
tools target one device family at a time, and are not easily 
modified to support other FPGA manufacturers and families 
[15-24]. 

This paper identifies representative sources of uncertainty in 
bitstream RE for generic and special FPGA architectures [26]. 
A more comprehensive description of the FPGA hardware is 
found in [26]. This identification of uncertainty sources can be 
used to inform the collection of evidence to support confidence 
in the result. 

II. CONFIGURATION OVERVIEW 

For most FPGAs, configuration is performed by loading data 
into a frame-based programming memory. This data is contained 
in a bitstream. Typically, the device will include a serial path to 
minimize the number of pins used for bitstream loading. 
Alternately, parallel paths may be available to provide higher 
performance or greater interface flexibility. For example, the 
Xilinx® 7 series devices provide a serial interface and parallel 
interfaces having widths of 8, 16, or 32 bits. The example devices 
have fixed length bitstreams for each device type [27-28]. 

A. Generic Bitstream 
The bitstream contains both the information for configuring 

the fabric and the information on how to perform the 
configuration. The bitstream format is specific to the 
architecture, and this section provides information about the 
type of information that would typically be found in a bitstream. 
A bitstream is conveyed using a protocol defined by the device 
manufacturer. A significant part of the bitstream RE process 
involves the exposure of this protocol. 

B. Configuration Packets 
The parts of the bitstream that are logically interpreted are 

configuration packets. Project X-Ray [29] found three types of 
packets for the Xilinx bitstreams. Type O packets zero-fill 
between rows. Type 1 packets are used for reads and writes. 
Type 2 packets extend the number of words for type 1 packets. 
All packets include a header that includes one of three 

commands: NOP, READ, and WRITE. The header also includes 
other information such as an address and a word count. 
Bitstreams for different devices from different manufacturers 
will follow different protocols. 

C. Configuration Registers 
The address field in the configuration packet selects a 

particular configuration register. Data written to a configuration 
register provides control over the device and the configuration 
sequence. 

D. Absence of Details 
The documentation provided by the manufacturer provides a 

high-level view of the device configuration process. This 
documentation allows examination of the bitstream to determine 
the general structure of the bitstream. Unfortunately, the 
information provided is typically insufficient to determine the 
device configuration defined by the bitstream. 

III. CONFIDENCE IN REVERSE ENGINEERING 

The objective of bitstream RE is to determine the 
configuration of a configurable device based upon analysis of 
the bitstream. This determination must be made starting with 
incomplete information about the physical device fabric and 
interpretation of the bitstream. The RE process must extract 
additional information, and any uncertainties in this extraction 
reduce confidence in the correctness and completeness of any 
resulting configuration estimate. 

The estimation of device configuration should be 
accompanied by an estimation of the confidence that should be 
accorded the result. Any process leading to an estimation of 
confidence will depend significantly upon details of the RE 
process itself. Therefore, a process for confidence estimation 
cannot be defined fully in the abstract. However, the necessary 
results from confidence estimation can be described in the 
absence of any specific RE approach. 

A. State and Configuration 
The total state of a digital device is normally embodied by 

the values present in all memory within the device. This effort 
separates the total state of the device into two categories: the 
configuration including all switch bit values that establish 
parameters of logic elements and interconnections, and the 
initialization state including all bit values held in registers that 
do not directly establish logic element or interconnect 
parameters. For example, the bits placed in a lookup table would 
be configuration while the bits placed in a bitstream loader 
address register would be state. 

The storage of configuration and state bits may be volatile or 
persistent. Volatile storage loses its value when power is 
removed from the device. Values must be loaded into volatile 
storage after power is applied and before the device can be used 
to realize the design embodied in the bitstream. Most or all bits 
will be volatile for SRAM-based configurable devices. 
Persistent storage maintains its values when power is removed 
from the device. Values loaded into persistent storage continue 
to be available when power is restored and until the values are 
explicitly changed. FPGAs with Flash memory allows for 
persistent bitstream storage. 
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While volatile storage does lose its values when power is 
removed, some volatile storage may be designed to provide 
default initial values when power is applied. This volatile 
storage will always contain the same value when power is first 
applied, but this initial value will be independent of any value 
that might have been in the storage when power was removed. 
Uninitialized volatile storage should be assumed to contain 
unknown values when power is applied. 

Proposition 1: All state and configuration bits in the device 
should be known along with their purpose and volatility. The 
mechanism for establishing the value of both volatile and 
persistent bits should be known. Any default initial values 
should be known. 

B. Bitstream Protocol 
The raw bitstream is just a sequence of bits, but this sequence 

is logically divided into fields for interpretation. Thus, bits have 
meaning based upon their positions in the stream. If the stream 
is packetized, each packet will have a header or address that may 
be followed by data. The first step to understanding the bitstream 
is understanding of the bitstream protocol. Additional inputs to 
the device might be used to exert control over bitstream loading. 
For example, the logical value applied to physical device pins 
may establish where and how the bitstream is transferred into 
the device; whether through serial, parallel, or JT AG ports. 

Proposition 2: The division of the raw bitstream into fields 
and the protocol used to organize information in the bitstream 
should be known. Further, any mechanism that influences the 
transfer path and associated format should be known. 

C. Foundations for Mapping 
The bitstream establishes the state and the configuration of 

the device. The state of the bitstream loader determines how the 
configuration bits will be interpreted and where they will be 
loaded in the device fabric. Therefore, confidence must be 
established in the purpose of each bitstream loader state as 
established by the values assigned to each loader "register" or 
equivalent. 

The Xilinx example used registers that were written to 
establish modes, constraints, addresses, and other operational 
factors for the bitstream loader. The purpose and operation of 
each of these registers must become known as part of the RE 
process. The device manufacturer may make available 
information about these registers, and this information is likely 
to be correct but incomplete. For example, the manufacturer may 
provide names for most of these registers and provide additional 
register descriptions for some of these registers. Other registers 
may not be described or even identified. 

Proposition 3: The purpose, format, and access of each 
bitstream loader state register (or equivalent) should be known. 
Mappings between bitstream elements (such as packets) and 
resulting changes to bitstream loader state registers should be 
known. 

The bitstream loader state influences the interpretation of 
bitstream elements used to configure the device fabric. For 
example, an "address" value in the bitstream loader state may be 
used to indicate the starting point in the device fabric for loading 
bits from bitstream elements. As another example, an "order" 

value in the bitstream loader state might indicate the order of 
interpretation of data words such as big endian or little endian. 

Proposition 4: The aggregate bitstream loader behavior as 
controlled by the bitstream loader state should be known. The 
bitstream loader will interpret some bitstream elements as data 
to be used to configure the device fabric. This data will establish 
logic structure within the fabric and interconnection among 
logic devices. Each data bit will be sent by the bitstream loader 
to a specific location within the fabric. This transfer effectively 
configures the fabric to realize a specific design. 

Proposition 5: The mapping between fabric configuration 
data in the bitstream and specific switch element addresses in 
the fabric should be known. 

Specific switch elements in the fabric serve specific 
purposes. For example, the switch element at address "A" might 
establish the value of the third bit in the lookup table found in 
logic block "B" that is part of logic block group "C" in logic 
block group array "D" in frame "E." This mapping provides the 
correspondence between the bitstream and the fabric 
configuration. 

Proposition 6: The mapping between switch elements 
addresses and corresponding switch elements in the fabric 
should be known. 

D. Configuration Complexity 
With complete knowledge of device details and state, the 

bitstream provides a unique and deterministic device 
configuration. Absent or obscured knowledge introduces 
uncertainty into the interpretation of the bitstream to determine 
the device configuration. 

Functional Equivalence Insufficiency: A single design can 
be realized in a large device using many different configurations. 
That is, the mapping of a design to a device is a one-to-many 
process. Typical toolchains used to convert design descriptions 
to bitstreams provide options to favor speed or area. Different 
design realizations may perform identical functions with very 
different performance, area, and possibly power requirements. 
Thus, a RE approach that determines functionality without 
additional implementation details may be insufficient for some 
applications. 

Proposition 7: The RE approach should determine the 
actual configuration of the device instead of just the 
functionality of the device. 

Significance of Unused Areas: Very few designs use all of 
the resources available in a configurable device. The remaining 
device resources are not needed for the design and may remain 
unused. However, every switch bit in the fabric will have some 
value whether the bit is needed for the design or not. The RE 
process should determine the configuration that exists in those 
unused areas to detect unnecessary power-consuming structures 
or malicious additions. 

Proposition 8: The RE process should determine the 
structure of the entire device including both areas used by the 
design and unused areas. 

Significance of Power Distribution: Large configurable 
devices can have complex systems of distribution providing 
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power to different areas of the device. The location of different 
parts of the design relative to this power distribution system can 
influence the design behavior. 

Proposition 9: The RE process should determine the 
locations of the various design parts with respect to the power 
distribution system. 

Significance of Clock Distribution: Large configurable 
devices can have complex systems of distribution providing 
clock signals to different areas of the device. The location of 
different parts of the design relative to this clock distribution 
system can influence the design behavior. 

Proposition 10: The RE process should determine the 
locations of the various design parts with respect to the clock 
distribution system. 

E. Establishing Confidence 
Most of these RE objectives will be difficult to achieve 

because device manufacturers limit the information that they 
provide about their devices. In fact, limitation or denial of access 
to this information creates the need for RE. Fortunately, 
extraction of useful configuration data from the bitstream in the 
absence of complete information should be possible. The value 
of the extracted configuration will typically be influenced by the 
confidence in the correctness of the configuration. 

Confidence in the result may be estimated by assembling 
evidence supporting the correctness of each RE objective. For 
example, the engineer might assume that information provided 
by the manufacturer is correct, and thus assign a perfect 
confidence score to this information. Other information may be 
extracted by performing tests on the device. Information thus 
extracted will depend upon analysis of the tests performed and 
the information exposed by those tests in aggregate. Confidence 
values for information obtained through tests depends upon the 
design of the tests and the results obtained. 

Some information may not be obtainable from tests and will 
require assumptions. These assumptions may reduce confidence 
in the result, but a sensitivity analysis may be applied to 
determine the impact. For example, the purpose of register "A" 
may be completely unknown, but register "A" may never be 
written in a particular bitstream. While register "A" was likely 
included in the device for some purpose, that purpose was either 
not relevant to the design represented in the analyzed bitstream 
or a default value was used. In this case, the absence of 
knowledge about register "A" should reduce the confidence in 
the results, but any reduction may be minimal. 

Assessment of confidence in results depends upon the 
process used to obtain those results. Thus, the assessment of 
confidence critically depends upon the process used to reverse 
engineer the bitstream. Methods to quantify the "weight of 
evidence" could potentially be used to assess the cumulative 
strength of various lines of evidence for or against a particular 
hypothesis or claim [30-32]. 

IV. CONCLUSIONS 

This paper presents issues for consideration to establish 
confidence in the results ofbitstream RE. A generic RE problem 
was considered without reference to any specific configurable 

device or RE approach. Several categories of information were 
identified that should be extracted by the RE process. 
Information in these categories is unlikely to be extracted with 
perfect confidence, so confidence values should be assigned to 
the results obtained. The confidence values for each category 
should be determined based upon the tests performed and 
information gathered through the RE process. 

There should be significant opportunity to develop measures 
for confidence in specific bitstream engineering techniques. 
These measures will need to be developed in the context of those 
specific techniques, and the categories of information described 
in this paper can be used to guide confidence measure 
development. Future work should include the development of 
confidence scores in concert with the development of bitstream 
RE approaches and risk-based standards [33]. 

REFERENCES 

[I] Yahoo News, "China, Russia could be reverse engineering US military 
equipment left behind in Afghanistan: Trump," Yahoo News, [online], 
Available: https://sg.news. yahoo.com/china-russia-could-reverse-
engineering-074456314 .html. [Accessed 20 October 2021]. 

[2] M. Fyrbiak, S. Straull, C. Kison, S. Wallat, M. Elson, N. Rummel , and C. 
Paar, "Hardware reverse engineering: Overview and open challenges," 
2017 IEEE 2nd International Verification and Security Workshop 
(IVSW), 2017, pp. 88-94. 

[3] J. Kumagai, "Chip detectives [reverse engineering] ," IEEE Spectrum, vol. 
37, no. 11 , pp. 43-48, 2000. 

[4] M. G. Rekoff, "On reverse engineering," IEEE Transactions on Systems, 
Man, and Cybernetics, vol. SMC-15, no. 2, pp. 244-252, 1985. 

[5] E. J. Chikofsky and J. H. Cross, "Reverse engineering and design 
recovery: a taxonomy," IEEE Software, vol. 7, no. I , pp. 13-17, 1990. 

[6] P. Samuelson and S. Scotchmer, "The Law and Economics of Reverse 
Engineering," Yale Law Journal, vol. 111, no. 7, pp. 1575-1664, 2002. 

[7] M. Fyrbiak, S. Walla!, P. Swierczynski, M. Hoffmann, and S. Hoppach, 
"HAL- The Missing Piece of the Puzzle for Hardware Reverse 
Engineering, Trojan Detection and Insertion," IEEE Transactions on 
Dependable and Secure Computing, vol. 16, no. 3, pp. 498-510, 2019. 

[8] C. Bao, D. Forte, and A. Srivastava, "On Reverse Engineering-Based 
Hardware Trojan Detection," IEEE Transactions on Computer-Aided 
Design oflntegrated Circuits and Systems, vol. 35 , no. I , pp. 49-57, 2016. 

[9] S. Wallat, M. Fyrbiak, M. Schlogel, and C. Paar, "A look at the dark side 
of hardware reverse engineering - a case study," 2017 IEEE 2nd 
International Verification and Security Workshop (IVSW), pp. 95-100, 
2017. 

[10] W. Danesh, J. Banago, and M. Rahman, "Turning the Table: Using 
Reverse Engineering Techniques to Detect FPGA Trojans," in 
Proceedings of ACM Woodstock conference (WOODSTOCK' l8). 
ACM, New York, NY, USA. 

[11] S. Walla!, N. Albartus, S. Becker, M. Hoffmann, and M. Ender, "Highway 
to HAL: Open-Sourcing the First Extendable Gate-Level Netlist Reverse 
Engineering Framework," in Proceedings of the 16th ACM International 
Conference on Computing Frontiers, Alghero, Italy, 2019. 

[12] D. J. Celebucki, Methods of Reverse Engineering a Bitstream for Field 
Programmable Gate Array Protection, Wright-Patterson Air Force Base, 
Ohio: Air Force Institute of Technology, 2018, p. 106. 

[13] M. Ender, P. Swierczynski, S. Wallat, M. Wilhelm, P. M. Knopp, and C. 
Paar, "Insights into the Mind of a Trojan Designer: The Challenge to 
Integrate a Trojan into the Bitstream," in Proceedings of the 24th Asia and 
South Pacific Design Automation Conference, Tokyo, 2019. 

[14] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, "Recent Advances in 
FPGA Reverse Engineering," Electronics, vol. 7, no. 10, 2018. 

[15] E. Bergeron, L.D. Perron, M. Feeley, and J.P. David, "Logarithmic-Time 
FPGA Bitstream Analysis: A Step Towards JIT Hardware Compilation," 
TRETS, 201 I , 4. 

155

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:08:06 UTC from IEEE Xplore.  Restrictions apply. 



[16] H. Yu, H. Lee, Y. Shin, and Y. Kim, "FPGA reverse engineering in 
Vivado design suite based on X-ray project," In Proceedings of the 2019 
International SoC Design Conference (ISOCC), 2019, 239-240. 

[17] S. Choi, J. Park, and H. Yoo, "Reverse Engineering for Xilinx FPGA 
Chips using ISE Design Tools," J. Integr. Circuits Syst. 2020, 6, I. 

[18] S. Choi and H. Yoo, "Fast Logic Function Extraction of LUT from 
Bitstream in Xilinx FPGA," Electronics 2020, 9, 1132. 

[19] T. Zhang, J. Wang, S. Guo, and Z. Chen, "A Comprehensive FPGA 
Reverse Engineering Tool-Chain: From Bitstream to RTL Code," IEEE 
Access 2019, 7, 38379- 38389. 

[20] J. Yoon, Y. Seo, J. Jang, M. Cho, J. Kim, H. Kim, and T. Kwon, "A 
Bitstream Reverse Engineering Tool for FPGA Hardware Trojan 
Detection," In Proceedings of the 2018 ACM SIGSAC Conference on 
Computer and Communications Security, Toronto, ON, Canada, 15- 19 
October 2018. 

[21] Y. Seo, J. Yoon, J. Jang, M. Cho, H. Kim, and T. Kwon, "Poster: Towards 
reverse engineering FPGA bitstreams for hardware trojan detection," In 
Proceedings of the Network Distribution System Security Symposium 
(NDSS), San Diego, CA, USA, 18- 21 February 2018. 

[22] M. Jeong, J. Lee, E. Jung, Y.H. Kim, and K. Cho, "Extract LUT Logics 
from a Downloaded Bitstream Data in FPGA," In Proceedings of the 2018 
IEEE International Symposium on Circuits and Systems (ISCAS), 
Florence, Italy, 27- 30 May 2018. 

[23] Z. Ding, Q. Wu, Y. Zhang, and L Zhu, "Deriving an NCD file from an 
FPGA bitstream: Methodology, architecture and evaluation," 
Microprocess. Microsyst. 2013 , 37, 299- 312. 

[24] F. Benz, A. Seffrin, and S.A. Huss, "Bil: A tool-chain for bitstream 
reverse-engineering," In Proceedings of the 22nd International 
Conference on Field Programmable Logic and Applications (FPL), Oslo, 
Norway, 29- 31 August 2012. 

[25] J.B. Note and E. Rannaud, "From the bitstream to the netlist." In 
Proceedings of the 16th international ACM/SIGDA symposium on Field 
programmable gate arrays, New York, NY, USA, 24-26 February 2008. 

[26] J. Andina, E. de la Torre Arnanz, and M. Valdes Pena, "FPGAs: 
Fundamentals, Advanced Features, and Applications," in Industrial 
Electronics ( I st ed.), CRC Press, 2017. 

[27] Xilinx, "7 Series FPGAs Configuration - User Guide," 20 Aug 2018. 
[Online]. Available: 
https:/ /www .xilinx.com/support/documentation/user _guides/ug4 70 _ 7Ser 
ies_Config.pdf. [Accessed 24 Aug 2021]. 

[28] Xilinx, "Spartan-6 FPGA Configuration - User Guide," Xilinx, 22 Mar 
2019. [Online]. Available: 
http s :/ /www .xii inx. com/ support/ do cum en ta ti on/user _gui des/ug3 80. pdf. 
[Accessed 24 Aug 2021]. 

[29] "SymbiFlow Project X-Ray Xilinx 7-series Architecture Bitstream 
format," [Online]. Available: 
https://symbiflow.readthedocs.io/en/latest/prjxray/docs/architecture/bitst 
ream_format.html. [Accessed 23 Aug 2021]. 

[30] Z. A. Collier, K. A. Gust, B. Gonzalez-Morales, P. Gong, M. S. Wilbanks, 
I. Linkov, and E. J. Perkins, "A weight of evidence assessment approach 
for adverse outcome pathways," Regulatory Toxicology and 
Pharmacology, vol. 75, pp. 46-57, 2016. 

[31] I. Linkov, D. Loney, S. Cormier, F. K. Satterstrom, and T. Bridges, 
"Weight-of-evidence evaluation in environmental assessment: review of 
qualitative and quantitative approaches," Science of the Total 
Environment, vol. 407, pp. 5199-5205, 2009. 

[32] D. Gough, "Weight of evidence: a framework for the appraisal of the 
quality and relevance of evidence," Research Papers in Education, vol. 
22, no.2 , pp.213-228, 2007. 

[33] Z.A. Collier, I. Linkov, D. DiMase, S. Walters, M. Tehranipoor, and J.H. 
Lambert, "Cybersecurity standards: managing risk and creating 
resilience," IEEE Computer, vol. 47, no. 9, pp. 70-76, 2014.J. Clerk 
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. , vol. 2. 
Oxford: Clarendon, 1892, pp.68- 73. 

156

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:08:06 UTC from IEEE Xplore.  Restrictions apply. 


