

A. Bitstream Reverse Engineering
A bitstream establishes the configuration of an SRAM-based

field configurable device fabric into a specific functional logic
element. The device fabric is the static physical structure of the
device including all logic components and interconnect. The
bitstream contains the information necessary to configure the
device fabric to perform logic operations. Complete knowledge
of both the physical device fabric and a specific bitstream should
be sufficient to determine the complete configuration of the
SRAM-based field programmable device thus defined by the
bitstream.

Software RE is a more studied topic than bitstream or
firmware RE [11]. The conversion of a bitstream into a netlist is
more complicated because of limited available information
mapping bitstream segments into specific netlist configurations
[12]. The additional challenges to bitstream RE introduce
uncertainties into the extracted netlist [13], and these
uncertainties reduce the confidence in the correctness of the
results. While various tools are being developed to support
bitstream RE, these tools typically exhibit low accuracy while
demanding much computational time [14]. In addition, existing
tools target one device family at a time, and are not easily
modified to support other FPGA manufacturers and families
[15-24].

This paper identifies representative sources of uncertainty in
bitstream RE for generic and special FPGA architectures [26].
A more comprehensive description of the FPGA hardware is
found in [26]. This identification of uncertainty sources can be
used to inform the collection of evidence to support confidence
in the result.

II. CONFIGURATION OVERVIEW

For most FPGAs, configuration is performed by loading data
into a frame-based programming memory. This data is contained
in a bitstream. Typically, the device will include a serial path to
minimize the number of pins used for bitstream loading.
Alternately, parallel paths may be available to provide higher
performance or greater interface flexibility. For example, the
Xilinx® 7 series devices provide a serial interface and parallel
interfaces having widths of 8, 16, or 32 bits. The example devices
have fixed length bitstreams for each device type [27-28].

A. Generic Bitstream
The bitstream contains both the information for configuring

the fabric and the information on how to perform the
configuration. The bitstream format is specific to the
architecture, and this section provides information about the
type of information that would typically be found in a bitstream.
A bitstream is conveyed using a protocol defined by the device
manufacturer. A significant part of the bitstream RE process
involves the exposure of this protocol.

B. Configuration Packets
The parts of the bitstream that are logically interpreted are

configuration packets. Project X-Ray [29] found three types of
packets for the Xilinx bitstreams. Type O packets zero-fill
between rows. Type 1 packets are used for reads and writes.
Type 2 packets extend the number of words for type 1 packets.
All packets include a header that includes one of three

commands: NOP, READ, and WRITE. The header also includes
other information such as an address and a word count.
Bitstreams for different devices from different manufacturers
will follow different protocols.

C. Configuration Registers
The address field in the configuration packet selects a

particular configuration register. Data written to a configuration
register provides control over the device and the configuration
sequence.

D. Absence of Details
The documentation provided by the manufacturer provides a

high-level view of the device configuration process. This
documentation allows examination of the bitstream to determine
the general structure of the bitstream. Unfortunately, the
information provided is typically insufficient to determine the
device configuration defined by the bitstream.

III. CONFIDENCE IN REVERSE ENGINEERING

The objective of bitstream RE is to determine the
configuration of a configurable device based upon analysis of
the bitstream. This determination must be made starting with
incomplete information about the physical device fabric and
interpretation of the bitstream. The RE process must extract
additional information, and any uncertainties in this extraction
reduce confidence in the correctness and completeness of any
resulting configuration estimate.

The estimation of device configuration should be
accompanied by an estimation of the confidence that should be
accorded the result. Any process leading to an estimation of
confidence will depend significantly upon details of the RE
process itself. Therefore, a process for confidence estimation
cannot be defined fully in the abstract. However, the necessary
results from confidence estimation can be described in the
absence of any specific RE approach.

A. State and Configuration
The total state of a digital device is normally embodied by

the values present in all memory within the device. This effort
separates the total state of the device into two categories: the
configuration including all switch bit values that establish
parameters of logic elements and interconnections, and the
initialization state including all bit values held in registers that
do not directly establish logic element or interconnect
parameters. For example, the bits placed in a lookup table would
be configuration while the bits placed in a bitstream loader
address register would be state.

The storage of configuration and state bits may be volatile or
persistent. Volatile storage loses its value when power is
removed from the device. Values must be loaded into volatile
storage after power is applied and before the device can be used
to realize the design embodied in the bitstream. Most or all bits
will be volatile for SRAM-based configurable devices.
Persistent storage maintains its values when power is removed
from the device. Values loaded into persistent storage continue
to be available when power is restored and until the values are
explicitly changed. FPGAs with Flash memory allows for
persistent bitstream storage.

153

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:08:06 UTC from IEEE Xplore. Restrictions apply.

While volatile storage does lose its values when power is
removed, some volatile storage may be designed to provide
default initial values when power is applied. This volatile
storage will always contain the same value when power is first
applied, but this initial value will be independent of any value
that might have been in the storage when power was removed.
Uninitialized volatile storage should be assumed to contain
unknown values when power is applied.

Proposition 1: All state and configuration bits in the device
should be known along with their purpose and volatility. The
mechanism for establishing the value of both volatile and
persistent bits should be known. Any default initial values
should be known.

B. Bitstream Protocol
The raw bitstream is just a sequence of bits, but this sequence

is logically divided into fields for interpretation. Thus, bits have
meaning based upon their positions in the stream. If the stream
is packetized, each packet will have a header or address that may
be followed by data. The first step to understanding the bitstream
is understanding of the bitstream protocol. Additional inputs to
the device might be used to exert control over bitstream loading.
For example, the logical value applied to physical device pins
may establish where and how the bitstream is transferred into
the device; whether through serial, parallel, or JT AG ports.

Proposition 2: The division of the raw bitstream into fields
and the protocol used to organize information in the bitstream
should be known. Further, any mechanism that influences the
transfer path and associated format should be known.

C. Foundations for Mapping
The bitstream establishes the state and the configuration of

the device. The state of the bitstream loader determines how the
configuration bits will be interpreted and where they will be
loaded in the device fabric. Therefore, confidence must be
established in the purpose of each bitstream loader state as
established by the values assigned to each loader "register" or
equivalent.

The Xilinx example used registers that were written to
establish modes, constraints, addresses, and other operational
factors for the bitstream loader. The purpose and operation of
each of these registers must become known as part of the RE
process. The device manufacturer may make available
information about these registers, and this information is likely
to be correct but incomplete. For example, the manufacturer may
provide names for most of these registers and provide additional
register descriptions for some of these registers. Other registers
may not be described or even identified.

Proposition 3: The purpose, format, and access of each
bitstream loader state register (or equivalent) should be known.
Mappings between bitstream elements (such as packets) and
resulting changes to bitstream loader state registers should be
known.

The bitstream loader state influences the interpretation of
bitstream elements used to configure the device fabric. For
example, an "address" value in the bitstream loader state may be
used to indicate the starting point in the device fabric for loading
bits from bitstream elements. As another example, an "order"

value in the bitstream loader state might indicate the order of
interpretation of data words such as big endian or little endian.

Proposition 4: The aggregate bitstream loader behavior as
controlled by the bitstream loader state should be known. The
bitstream loader will interpret some bitstream elements as data
to be used to configure the device fabric. This data will establish
logic structure within the fabric and interconnection among
logic devices. Each data bit will be sent by the bitstream loader
to a specific location within the fabric. This transfer effectively
configures the fabric to realize a specific design.

Proposition 5: The mapping between fabric configuration
data in the bitstream and specific switch element addresses in
the fabric should be known.

Specific switch elements in the fabric serve specific
purposes. For example, the switch element at address "A" might
establish the value of the third bit in the lookup table found in
logic block "B" that is part of logic block group "C" in logic
block group array "D" in frame "E." This mapping provides the
correspondence between the bitstream and the fabric
configuration.

Proposition 6: The mapping between switch elements
addresses and corresponding switch elements in the fabric
should be known.

D. Configuration Complexity
With complete knowledge of device details and state, the

bitstream provides a unique and deterministic device
configuration. Absent or obscured knowledge introduces
uncertainty into the interpretation of the bitstream to determine
the device configuration.

Functional Equivalence Insufficiency: A single design can
be realized in a large device using many different configurations.
That is, the mapping of a design to a device is a one-to-many
process. Typical toolchains used to convert design descriptions
to bitstreams provide options to favor speed or area. Different
design realizations may perform identical functions with very
different performance, area, and possibly power requirements.
Thus, a RE approach that determines functionality without
additional implementation details may be insufficient for some
applications.

Proposition 7: The RE approach should determine the
actual configuration of the device instead of just the
functionality of the device.

Significance of Unused Areas: Very few designs use all of
the resources available in a configurable device. The remaining
device resources are not needed for the design and may remain
unused. However, every switch bit in the fabric will have some
value whether the bit is needed for the design or not. The RE
process should determine the configuration that exists in those
unused areas to detect unnecessary power-consuming structures
or malicious additions.

Proposition 8: The RE process should determine the
structure of the entire device including both areas used by the
design and unused areas.

Significance of Power Distribution: Large configurable
devices can have complex systems of distribution providing

154

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:08:06 UTC from IEEE Xplore. Restrictions apply.

power to different areas of the device. The location of different
parts of the design relative to this power distribution system can
influence the design behavior.

Proposition 9: The RE process should determine the
locations of the various design parts with respect to the power
distribution system.

Significance of Clock Distribution: Large configurable
devices can have complex systems of distribution providing
clock signals to different areas of the device. The location of
different parts of the design relative to this clock distribution
system can influence the design behavior.

Proposition 10: The RE process should determine the
locations of the various design parts with respect to the clock
distribution system.

E. Establishing Confidence
Most of these RE objectives will be difficult to achieve

because device manufacturers limit the information that they
provide about their devices. In fact, limitation or denial of access
to this information creates the need for RE. Fortunately,
extraction of useful configuration data from the bitstream in the
absence of complete information should be possible. The value
of the extracted configuration will typically be influenced by the
confidence in the correctness of the configuration.

Confidence in the result may be estimated by assembling
evidence supporting the correctness of each RE objective. For
example, the engineer might assume that information provided
by the manufacturer is correct, and thus assign a perfect
confidence score to this information. Other information may be
extracted by performing tests on the device. Information thus
extracted will depend upon analysis of the tests performed and
the information exposed by those tests in aggregate. Confidence
values for information obtained through tests depends upon the
design of the tests and the results obtained.

Some information may not be obtainable from tests and will
require assumptions. These assumptions may reduce confidence
in the result, but a sensitivity analysis may be applied to
determine the impact. For example, the purpose of register "A"
may be completely unknown, but register "A" may never be
written in a particular bitstream. While register "A" was likely
included in the device for some purpose, that purpose was either
not relevant to the design represented in the analyzed bitstream
or a default value was used. In this case, the absence of
knowledge about register "A" should reduce the confidence in
the results, but any reduction may be minimal.

Assessment of confidence in results depends upon the
process used to obtain those results. Thus, the assessment of
confidence critically depends upon the process used to reverse
engineer the bitstream. Methods to quantify the "weight of
evidence" could potentially be used to assess the cumulative
strength of various lines of evidence for or against a particular
hypothesis or claim [30-32].

IV. CONCLUSIONS

This paper presents issues for consideration to establish
confidence in the results ofbitstream RE. A generic RE problem
was considered without reference to any specific configurable

device or RE approach. Several categories of information were
identified that should be extracted by the RE process.
Information in these categories is unlikely to be extracted with
perfect confidence, so confidence values should be assigned to
the results obtained. The confidence values for each category
should be determined based upon the tests performed and
information gathered through the RE process.

There should be significant opportunity to develop measures
for confidence in specific bitstream engineering techniques.
These measures will need to be developed in the context of those
specific techniques, and the categories of information described
in this paper can be used to guide confidence measure
development. Future work should include the development of
confidence scores in concert with the development of bitstream
RE approaches and risk-based standards [33].

REFERENCES

[I] Yahoo News, "China, Russia could be reverse engineering US military
equipment left behind in Afghanistan: Trump," Yahoo News, [online],
Available: https://sg.news. yahoo.com/china-russia-could-reverse-
engineering-074456314 .html. [Accessed 20 October 2021].

[2] M. Fyrbiak, S. Straull, C. Kison, S. Wallat, M. Elson, N. Rummel , and C.
Paar, "Hardware reverse engineering: Overview and open challenges,"
2017 IEEE 2nd International Verification and Security Workshop
(IVSW), 2017, pp. 88-94.

[3] J. Kumagai, "Chip detectives [reverse engineering] ," IEEE Spectrum, vol.
37, no. 11 , pp. 43-48, 2000.

[4] M. G. Rekoff, "On reverse engineering," IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-15, no. 2, pp. 244-252, 1985.

[5] E. J. Chikofsky and J. H. Cross, "Reverse engineering and design
recovery: a taxonomy," IEEE Software, vol. 7, no. I , pp. 13-17, 1990.

[6] P. Samuelson and S. Scotchmer, "The Law and Economics of Reverse
Engineering," Yale Law Journal, vol. 111, no. 7, pp. 1575-1664, 2002.

[7] M. Fyrbiak, S. Walla!, P. Swierczynski, M. Hoffmann, and S. Hoppach,
"HAL- The Missing Piece of the Puzzle for Hardware Reverse
Engineering, Trojan Detection and Insertion," IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 3, pp. 498-510, 2019.

[8] C. Bao, D. Forte, and A. Srivastava, "On Reverse Engineering-Based
Hardware Trojan Detection," IEEE Transactions on Computer-Aided
Design oflntegrated Circuits and Systems, vol. 35 , no. I , pp. 49-57, 2016.

[9] S. Wallat, M. Fyrbiak, M. Schlogel, and C. Paar, "A look at the dark side
of hardware reverse engineering - a case study," 2017 IEEE 2nd
International Verification and Security Workshop (IVSW), pp. 95-100,
2017.

[10] W. Danesh, J. Banago, and M. Rahman, "Turning the Table: Using
Reverse Engineering Techniques to Detect FPGA Trojans," in
Proceedings of ACM Woodstock conference (WOODSTOCK' l8).
ACM, New York, NY, USA.

[11] S. Walla!, N. Albartus, S. Becker, M. Hoffmann, and M. Ender, "Highway
to HAL: Open-Sourcing the First Extendable Gate-Level Netlist Reverse
Engineering Framework," in Proceedings of the 16th ACM International
Conference on Computing Frontiers, Alghero, Italy, 2019.

[12] D. J. Celebucki, Methods of Reverse Engineering a Bitstream for Field
Programmable Gate Array Protection, Wright-Patterson Air Force Base,
Ohio: Air Force Institute of Technology, 2018, p. 106.

[13] M. Ender, P. Swierczynski, S. Wallat, M. Wilhelm, P. M. Knopp, and C.
Paar, "Insights into the Mind of a Trojan Designer: The Challenge to
Integrate a Trojan into the Bitstream," in Proceedings of the 24th Asia and
South Pacific Design Automation Conference, Tokyo, 2019.

[14] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, "Recent Advances in
FPGA Reverse Engineering," Electronics, vol. 7, no. 10, 2018.

[15] E. Bergeron, L.D. Perron, M. Feeley, and J.P. David, "Logarithmic-Time
FPGA Bitstream Analysis: A Step Towards JIT Hardware Compilation,"
TRETS, 201 I , 4.

155

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:08:06 UTC from IEEE Xplore. Restrictions apply.

[16] H. Yu, H. Lee, Y. Shin, and Y. Kim, "FPGA reverse engineering in
Vivado design suite based on X-ray project," In Proceedings of the 2019
International SoC Design Conference (ISOCC), 2019, 239-240.

[17] S. Choi, J. Park, and H. Yoo, "Reverse Engineering for Xilinx FPGA
Chips using ISE Design Tools," J. Integr. Circuits Syst. 2020, 6, I.

[18] S. Choi and H. Yoo, "Fast Logic Function Extraction of LUT from
Bitstream in Xilinx FPGA," Electronics 2020, 9, 1132.

[19] T. Zhang, J. Wang, S. Guo, and Z. Chen, "A Comprehensive FPGA
Reverse Engineering Tool-Chain: From Bitstream to RTL Code," IEEE
Access 2019, 7, 38379- 38389.

[20] J. Yoon, Y. Seo, J. Jang, M. Cho, J. Kim, H. Kim, and T. Kwon, "A
Bitstream Reverse Engineering Tool for FPGA Hardware Trojan
Detection," In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, ON, Canada, 15- 19
October 2018.

[21] Y. Seo, J. Yoon, J. Jang, M. Cho, H. Kim, and T. Kwon, "Poster: Towards
reverse engineering FPGA bitstreams for hardware trojan detection," In
Proceedings of the Network Distribution System Security Symposium
(NDSS), San Diego, CA, USA, 18- 21 February 2018.

[22] M. Jeong, J. Lee, E. Jung, Y.H. Kim, and K. Cho, "Extract LUT Logics
from a Downloaded Bitstream Data in FPGA," In Proceedings of the 2018
IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 27- 30 May 2018.

[23] Z. Ding, Q. Wu, Y. Zhang, and L Zhu, "Deriving an NCD file from an
FPGA bitstream: Methodology, architecture and evaluation,"
Microprocess. Microsyst. 2013 , 37, 299- 312.

[24] F. Benz, A. Seffrin, and S.A. Huss, "Bil: A tool-chain for bitstream
reverse-engineering," In Proceedings of the 22nd International
Conference on Field Programmable Logic and Applications (FPL), Oslo,
Norway, 29- 31 August 2012.

[25] J.B. Note and E. Rannaud, "From the bitstream to the netlist." In
Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, New York, NY, USA, 24-26 February 2008.

[26] J. Andina, E. de la Torre Arnanz, and M. Valdes Pena, "FPGAs:
Fundamentals, Advanced Features, and Applications," in Industrial
Electronics (I st ed.), CRC Press, 2017.

[27] Xilinx, "7 Series FPGAs Configuration - User Guide," 20 Aug 2018.
[Online]. Available:
https:/ /www .xilinx.com/support/documentation/user _guides/ug4 70 _ 7Ser
ies_Config.pdf. [Accessed 24 Aug 2021].

[28] Xilinx, "Spartan-6 FPGA Configuration - User Guide," Xilinx, 22 Mar
2019. [Online]. Available:
http s :/ /www .xii inx. com/ support/ do cum en ta ti on/user _gui des/ug3 80. pdf.
[Accessed 24 Aug 2021].

[29] "SymbiFlow Project X-Ray Xilinx 7-series Architecture Bitstream
format," [Online]. Available:
https://symbiflow.readthedocs.io/en/latest/prjxray/docs/architecture/bitst
ream_format.html. [Accessed 23 Aug 2021].

[30] Z. A. Collier, K. A. Gust, B. Gonzalez-Morales, P. Gong, M. S. Wilbanks,
I. Linkov, and E. J. Perkins, "A weight of evidence assessment approach
for adverse outcome pathways," Regulatory Toxicology and
Pharmacology, vol. 75, pp. 46-57, 2016.

[31] I. Linkov, D. Loney, S. Cormier, F. K. Satterstrom, and T. Bridges,
"Weight-of-evidence evaluation in environmental assessment: review of
qualitative and quantitative approaches," Science of the Total
Environment, vol. 407, pp. 5199-5205, 2009.

[32] D. Gough, "Weight of evidence: a framework for the appraisal of the
quality and relevance of evidence," Research Papers in Education, vol.
22, no.2 , pp.213-228, 2007.

[33] Z.A. Collier, I. Linkov, D. DiMase, S. Walters, M. Tehranipoor, and J.H.
Lambert, "Cybersecurity standards: managing risk and creating
resilience," IEEE Computer, vol. 47, no. 9, pp. 70-76, 2014.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. , vol. 2.
Oxford: Clarendon, 1892, pp.68- 73.

156

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:08:06 UTC from IEEE Xplore. Restrictions apply.

