

 Our first assumption is that the target FPGA has an island
style architecture with frame-based configuration memory (Fig.
1). This is typical for most commercially available FPGAs, and
even while most FPGAs also have other programmable logic
structures (like built-in multipliers, clock-managers, phase-
locked loops, RAM components, ARM processors, etc.)
intermixed with the programmable logic LBs, we can still apply
our algorithms to just the LB LUTs. As a side note, with slight
modification, we have also successfully applied our algorithms
to determine the configuration bits for other programmable logic
structures, but this paper only describes the LUT configuration
bits. For the second and third assumptions, most commercial
CAD tools (like Xilinx Vivado and Intel/Altera Quartus) allow
generation of configuration files with these options.

Fig 1: FPGA island style architecture and routing topology.

III.METHODOLOGY
In general, FPGA configuration files (or bitstreams) are

loaded into FPGAs to program them. Our abstract methodology
for RE FPGA bitstreams has two primary components, each
with several parts.

• Mapping the bits in the FPGA configuration bitstream
to the programmable hardware in the FPGA.

• Obtaining a FPGA configuration file or bitstream to
reverse engineer.

The first component includes mapping the bits in the
bitstream to the FPGA hardware used for both the
programmable logic and programmable interconnect. The
second component can be accomplished by A) synthesizing a
configuration file using a commercially available CAD tool, B)
obtaining the configuration bitstream from a design house or
third-party vendor, C) reading the configuration file back from
an already programmed FPGA or FPGA flash memory chip, or
D) other method. Our other work, Memometer, can be used to
readback configuration files from programmed FPGAs or FPGA
flash memory chips [2-5].

The focus of this work is on the first component, mapping
the bits in the FPGA bitstream to the FPGA programmable

hardware, and more specifically, below is our abstract approach
to mapping bitstream configuration bits to FPGA LUTs.

Our abstract approach to mapping bitstream bits to FPGA
LUTs has two primary subtasks: A) creating a bitstream LUT
mask, and B) mapping individual bitstream bits to specific
LUTs and LUT bits. The first subtask creates a mask or filter
that identifies all LUT configuration bits in the bitstream. The
second subtask assigns every LUT bit from the bitstream to a
specific LUT configuration bit. The result of the two-step
process is an unconnected graph where each node represents a
FPGA LUT, and each node contains the value assigned to each
of the LUT memory cells. For future work, we will map the
programmable interconnect configuration bits in the bitstream to
create a connected graph of the FPGA LUT functions.

A. Creating LUT Mask
The first subtask in our abstract approach is to determine all

of the LUT configuration bits in the FPGA bitstream file or in
other words, create a LUT mask. We accomplish this using an
abstract HDL program, and there are three pieces to this HDL
program: i) a set of interconnected CASE statements that place
LUT functions in consistent locations for multiple configuration
file synthesis runs, ii) a set of CASE statement functions that we
use to program LUT bits first to one logic value and then to its
inverse for successive configuration file synthesis runs, and iii)
a bit-wise XOR function that we use to create the actual LUT
mask. We will describe each below.

1) Consistent LUT placement algorithm, B(N,K)
For the first part of our approach, we need to be able to

consistently place an arbitrary function in a specific LUT
location while we generate multiple FPGA configuration files.
For simplicity, we describe the process for generating two
FPGA configuration files, B and BI, where all of the LUT bits
in B are the inverse of the LUT bits in BI. To accomplish this
while not requiring any FPGA specific components or
configuration files, we use a set of connected HDL CASE
statements. There is one CASE statement for each LUT in the
target FPGA, and by connecting the CASE statements to each
other using special patterns, we (with a high degree of
probability) ensure the desired function is mapped to the same
LUT location for both B and BI.

We developed both row/column based patterns as well as
snake based patterns to connect the CASE statements in our
HDL code. The snake pattern worked best, and it is presented
here in Fig. 2. In Fig. 2, B(N,K) represents the code used to
generate FPGA configuration file B with N, K input LUTs.
Configuration file BI is generated by replacing the function LUT
with the function LUTn. The actual LUT functions (defined by
assigning memory cell (MC) values) in Fig. 2 for generating B
are described in subsubsection 2) below. Fig.3 below shows how
the CASE statement defined LUT functions are connected using
a snake pattern.

2) Case state functions
In subsubsection 1) above, we describe the inter-CASE

statement connectivity used to drive consistent LUT placement
for successive FPGA configuration file synthesis runs. In this
section we describe the actual LUT functions used to program
the memory cells (MCs) in B(N,K). Our LUT functions are

148

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:11:00 UTC from IEEE Xplore. Restrictions apply.

based on XOR, XNOR, or Hamming functions of the LUT’s
input address bits. We use XOR, XNOR, or Hamming functions
of the LUT’s input address bits for two primary reasons: first
they require use of all LUT inputs, so none of them are
optimized away, and second, because the LUT inputs are not
transposed during successive FPGA configuration file synthesis
runs. Even with optimization turned off, other functions can
have inputs optimized away (because they are not needed) or
allow LUT input signals to be transposed (or moved to different
LUT input locations).

Fig 2: Generic HDL code for generating consistent LUT
placement in multiple FPGA configuration files B and BI.

XOR and XNOR functions programmed into LUTs do not
require additional explanation. However, we do further describe
Hamming functions of the LUT input address bits. Simply
stated, we define the Hamming weight of a MC in a LUT as the
sum of the ‘1’ values in its input address. Hamming functions of
the LUT’s input address bits are functions that place ‘1’ (or
conversely ‘0’) only in LUT MCs whose input address bits have
the same Hamming weight. For example, a K=4 input LUT has
address bits, A = 0000, 0001, 0010, 0011, 0100, 0101, 0110,
0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, or 1111. The
address with Hamming weight of 0 is A= 0000. The addresses
with Hamming weight of 1 are 0001, 0010, 0100, and 1000. The
addresses with Hamming weight of 2 are 0011, 0101, 0110,
1001, 1010, and 1100. The addresses with Hamming weight of
3 are 0111, 1011, 1101, and 1110. The only address with

Hamming weight of 4 is 1111. Given a K input LUT with even
K, Hamming weight of K/2 works best.

To generate the inverse version of B, BI, we just invert the
MC values described above.

Fig 3: Snake pattern connections in B(N,K) used to drive
consistent placement of LUT locations for successive
configuration file generation synthesis runs.

3) XOR for mask creation
The last step in mask creation is to XOR the B and BI

configuration files. By leveraging the snake like connections
between our interconnected LUT CASE statements (to drive
consistent placement) and our XOR, XNOR, or Hamming
functions (to define the MC values in the FPGA LUTs), we can
create multiple FPGA configuration files where the only
difference between the files is the values in the MCs. This allows
us to do a bitwise XOR of the two files (B and BI) to create a
mask that provides the location of each LUT in the FPGA
configuration file. Using this mask, we further process to
determine relative locations of LUT configuration bits.

B. Mapping Specific LUT MC Bits
Once we have the LUT mask, we use a combination of

marching 1’s and 0’s, random functions, and a log based
application algorithm to narrow down and determine specific
LUT bits. With minimal human intervention, we successfully
mapped all of the FPGAs we have tested. After applying our
algorithms and functions, we have an unconnected graph with

Linear Snake MAP B (N, K):

 // N = # of K input LUTs on the FPGA

 // note: initial LUTs (LUT
j
 for j < K)

 // are handled as special cases

 // note: to generate BI,

 // replace all LUT() with LUTn()

 for j = K+1 to N

 LUT
j
(LUT

j-K
(), …, LUT

j-2
(), LUT

j-1
());

 end loop;

end;

Function: LUT(AK, …, A2, A1)

 // AK, …, A2, A1 = K address bits to address 2
K
-1 MCs

 let A = binary2integer(AK, …, A2, A1);

 case A = 0: Out <= MC(0) value;

 case A = 1: Out <= MC(1) value;

 case A = 2: Out <= MC(2) value;

 …

 case A = 2
K
-1: Out <= MC(2

K
-1) value;

 return;

Function: LUTn(AK, …, A2, A1)

 Out <= NOT(LUT(AK, …, A2, A1));

 return;

149

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:11:00 UTC from IEEE Xplore. Restrictions apply.

relative (mapped to the bits in the configuration file) locations
of all LUT programming bits. Our future work includes further
processing the configuration file to include LUT connectivity in
order to generate a connected graph of LUT functions for further
processing and Trojan detection.

C. Fingerprinting FPGAs
Once we know which bits in the FPGA programming bit-file

map to FPGA LUT memory cell bits, we can perform JTAG
READBACK on the uncommitted FPGA LUT memory cells to
determine their values at FPGA powerup [2-5]. The signatures
provided by these memory cells can be applied to the Memory
PUF used in Memometer to quickly and uniquely fingerprint the
FPGA for HW metering purposes. More details on Memometer
are found in [2-5].

IV. OBSTACLES
Before we describe our test results, we provide some detail

on some of the obstacles we overcame in our approach described
above.

A. Obstacle: Input Pin Reordering
For consistent placement of LUT functions, the connected

CASE statement approach worked perfectly. However, as part
of the place and route process, many compilers reorder the LUT
input pin assignments to improve or reduce timing delays, even
with logic optimization turned off. Input reordering changes the
addresses of the bits used to program the LUTs, and if it occurs,
interferes with LUT mask generation. In other words, the LUT
bits in B and BI won’t line up, so in that case, step 3) XOR for
mask creation does not always work. As described above, we
overcame this obstacle by using Hamming functions of the
LUT’s input address. This solved the problem, and prevented
LUT input address bits from being transposed during generation
of B and BI.

B. Obstacle: LUT Reduction via Input Elimination
Another obstacle we encountered was logic reduction due to

input pin elimination. For example, even with logic optimization
disabled, some compilers still perform optimizations on any
LUT equations that can be reduced to fewer than K inputs. For
example, the K = 4 input LUT function = “0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1” can be reduced to a function of just it’s least significant
address bit. Again, this interferes with mask creation since the
LUT bits in B and BI may not line up. To overcome this in our
approach described above, we made sure we only use functions
(like XOR, XNOR, and Hamming) that require all input address
bits.

C. Obstacle: LUT Merging
In our original implementation of the snake pattern

described above, to initialize the start of the pattern (LUTj for j
< K), we used external inputs to drive the LUT inputs. This
meant that initial LUTs next to each other in the chain shared
all but one of their inputs. Some (but not all) compilers merged
those LUTs into a single LUT. This was done by decomposing
the shared inputs to drive several smaller LUTs whose outputs

connected to multiplexers driven by the non-shared inputs to
the two separate LUTs. Therefore, a different method was
developed to connect the initial LUTs which guaranteed that
none of the initial LUTs shared multiple inputs. This resolved
the issue regardless of the synthesis compiler.

D. Obstacle: FPGAs That Leverage Partially Decomposable
LUTs
While we were able to successfully use our approach on all

FPGAs we explored, at least one family had issues. The
Cyclone V from Intel/Altera uses a decomposable K = 6 input
LUT structure that shares a common K = 4 input component. In
other words, it is not completely decomposable. To overcome
this, we had to slightly modify our generic code shown above
to include multiple outputs from this K = 6 input LUT. The
modification to the algorithm (shown in Fig. 2) was applied
directly to all of the other FPGAs we tested with consistent,
good results.

V.TEST RESULTS AND ANALYSIS
To test our approach we chose several Xilinx and

Intel/Altera FPGAs. We directly applied the algorithm above to
generate the mask files that define the LUT programming bits
in the FPGA configuration files. The only time we slightly
modified the algorithm was for the Cyclone V (as described in
Obstacle IV.D above).
Table 1. Test Results for FPGA LUT Mask Generation

Once the LUT mask was found for each device, it took

O(logN) additional configurations to determine the location of
each specific programming bit in the FPGA configuration file.

VI.CONCLUSIONS AND FUTURE WORK
We have developed a generic, abstract approach to mapping

FPGA configuration file bits to LUT programming bits. It is
simple and the user is not required to be an FPGA expert. Our
method does not require any vendor specific CAD tools,
proprietary information, languages, configuration files or
macros. Our work is directly applicable to FPGA HW metering
and fingerprinting. Future work entails extending to Trojan
detection for 3rd party IP.

150

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:11:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] Koushanfar, F., Hardware Metering: A Survey, eds. by M. Tehranipoor

and C. Wang, Springer 2012.
[2] Perumalla, A.; Emmert, J.M. Memometer: Passive Memory-Based

Metering System for Integrated Circuits. GOMACTech-19, 2019.
[3] Perumalla, A. and Emmert, J.M., Memometer: Memory PUF-Based

Hardware Metering Methodology for FPGAs, ACM Electronic Device
Failure Analysis, vol. 24, no. 2, November 2022.

[4] Perumalla, A. and Emmert, J. M., Memometer: Passive and Active
Memory PUF-Based Hardware Metering Methodology for FPGA Supply
Chain Security. GOMACTech-23, 2023.

[5] Emmert, J.M. and Perumalla, A., Memometer, Provisional US Patent
63/231,048.

[6] Emmert, J.M., Stowasser, H., Perumalla, A., Reverse Enginereing
Methodology for FPGA Bitstreams, Provisional US Patent 63,270,874.

[7] Bergeron, E.; Perron, L.D.; Feeley, M; David, J.P. Logarithmic-Time
FPGA Bitstream Analysis: A Step Towards JIT Hardware Compilation.
TRETS, 2011, 4.

[8] Project X-Ray. Available online:
https://symbiflow.readthedocs.io/projects/prjxray/en/latest/ (accessed on
31 August 2021).

[9] Yu, H.; Lee, H.; Shin, Y.; Kim, Y. FPGA reverse engineering in Vivado
design suite based on X-ray project. In Proceedings of the 2019
International SoC Design Conference (ISOCC), 2019, 239-240.

[10] Choi, S.; Park, J.; Yoo, H. Reverse Engineering for Xilinx FPGA Chips
using ISE Design Tools. J. Integr. Circuits Syst. 2020, 6, 1.

[11] Choi, S.; Yoo, H. Fast Logic Function Extraction of LUT from Bitstream
in Xilinx FPGA. Electronics 2020, 9, 1132.

[12] Zhang, T.; Wang, J.; Guo, S.; Chen, Z. A Comprehensive FPGA Reverse
Engineering Tool-Chain: From Bitstream to RTL Code. IEEE Access
2019, 7, 38379–38389.

[13] Yu, H.; Lee, H.; Lee, S.; Kim, Y.; Lee, H.-M. Recent Advances in FPGA
Reverse Engineering. Electronics 2018, 7, 246.

[14] Yoon, J.; Seo, Y.; Jang, J.; Cho, M.; Kim, J.; Kim, H.; Kwon, T. A
Bitstream Reverse Engineering Tool for FPGA Hardware Trojan
Detection. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, ON, Canada, 15–19
October 2018.

[15] Seo, Y.; Yoon, J.; Jang, J.; Cho, M.; Kim, H.; Kwon, T. Poster: Towards
reverse engineering FPGA bitstreams for hardware trojan detection. In
Proceedings of the Network Distribution System Security Symposium
(NDSS), San Diego, CA, USA, 18–21 February 2018.

[16] Jeong, M.; Lee, J.; Jung, E.; Kim, Y.H.; Cho, K. Extract LUT Logics from
a Downloaded Bitstream Data in FPGA. In Proceedings of the 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), Florence,
Italy, 27–30 May 2018.

[17] Wallat, S.; Fyrbiak, M.; Schlögel, M.; Paar, C. A Look at the Dark Side
of Hardware Reverse Engineering—A Case Study. In Proceedings of the
2017 IEEE 2nd International Verification and Security Workshop
(IVSW), Thessaloniki, Greece, 3–5 July 2017.

[18] Ding, Z.; Wu, Q.; Zhang, Y.; Zhu, L. Deriving an NCD file from an FPGA
bitstream: Methodology, architecture and evaluation. Microprocess.
Microsyst. 2013, 37, 299–312.

[19] Benz, F.; Seffrin, A.; Huss, S.A. Bil: A tool-chain for bitstream reverse-
engineering. In Proceedings of the 22nd International Conference on Field
Programmable Logic and Applications (FPL), Oslo, Norway, 29–31
August 2012.

[20] Note, J.B.; Rannaud, E. From the bitstream to the netlist. In Proceedings
of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, New York, NY, USA, 24–26 February 2008.

151

Authorized licensed use limited to: University of Cincinnati. Downloaded on August 28,2024 at 14:11:00 UTC from IEEE Xplore. Restrictions apply.

