


 Our first assumption is that the target FPGA has an island 
style architecture with frame-based configuration memory (Fig. 
1). This is typical for most commercially available FPGAs, and 
even while most FPGAs also have other programmable logic 
structures (like built-in multipliers, clock-managers, phase-
locked loops, RAM components, ARM processors, etc.) 
intermixed with the programmable logic LBs, we can still apply 
our algorithms to just the LB LUTs. As a side note, with slight 
modification, we have also successfully applied our algorithms 
to determine the configuration bits for other programmable logic 
structures, but this paper only describes the LUT configuration 
bits. For the second and third assumptions, most commercial 
CAD tools (like Xilinx Vivado and Intel/Altera Quartus) allow 
generation of configuration files with these options. 

 
Fig 1: FPGA island style architecture and routing topology. 

III.METHODOLOGY 
In general, FPGA configuration files (or bitstreams) are 

loaded into FPGAs to program them. Our abstract methodology 
for RE FPGA bitstreams has two primary components, each 
with several parts.  

• Mapping the bits in the FPGA configuration bitstream  
to the programmable hardware in the FPGA.  

• Obtaining a FPGA configuration file or bitstream to 
reverse engineer.  

The first component includes mapping the bits in the 
bitstream to the FPGA hardware used for both the 
programmable logic and programmable interconnect. The 
second component can be accomplished by A) synthesizing a 
configuration file using a commercially available CAD tool, B) 
obtaining the configuration bitstream from a design house or 
third-party vendor, C) reading the configuration file back from 
an already programmed FPGA or FPGA flash memory chip, or 
D) other method. Our other work, Memometer, can be used to 
readback configuration files from programmed FPGAs or FPGA 
flash memory chips [2-5].  

The focus of this work is on the first component, mapping 
the bits in the FPGA bitstream to the FPGA programmable 

hardware, and more specifically, below is our abstract approach 
to mapping bitstream configuration bits to FPGA LUTs. 

Our abstract approach to mapping bitstream bits to FPGA 
LUTs has two primary subtasks: A) creating a bitstream LUT 
mask, and B) mapping individual bitstream bits to specific 
LUTs and LUT bits. The first subtask creates a mask or filter 
that identifies all LUT configuration bits in the bitstream. The 
second subtask assigns every LUT bit from the bitstream to a 
specific LUT configuration bit. The result of the two-step 
process is an unconnected graph where each node represents a 
FPGA LUT, and each node contains the value assigned to each 
of the LUT memory cells. For future work, we will map the 
programmable interconnect configuration bits in the bitstream to 
create a connected graph of the FPGA LUT functions. 

A. Creating LUT Mask 
The first subtask in our abstract approach is to determine all 

of the LUT configuration bits in the FPGA bitstream file or in 
other words, create a LUT mask. We accomplish this using an 
abstract HDL program, and there are three pieces to this HDL 
program: i) a set of interconnected CASE statements that place 
LUT functions in consistent locations for multiple configuration 
file synthesis runs, ii) a set of CASE statement functions that we 
use to program LUT bits first to one logic value and then to its 
inverse for successive configuration file synthesis runs, and iii) 
a bit-wise XOR function that we use to create the actual LUT 
mask. We will describe each below. 

1) Consistent LUT placement algorithm, B(N,K) 
For the first part of our approach, we need to be able to 

consistently place an arbitrary function in a specific LUT 
location while we generate multiple FPGA configuration files. 
For simplicity, we describe the process for generating two 
FPGA configuration files, B and BI, where all of the LUT bits 
in B are the inverse of the LUT bits in BI. To accomplish this 
while not requiring any FPGA specific components or 
configuration files, we use a set of connected HDL CASE 
statements. There is one CASE statement for each LUT in the 
target FPGA, and by connecting the CASE statements to each 
other using special patterns, we (with a high degree of 
probability) ensure the desired function is mapped to the same 
LUT location for both B and BI. 

We developed both row/column based patterns as well as 
snake based patterns to connect the CASE statements in our 
HDL code. The snake pattern worked best, and it is presented 
here in Fig. 2. In Fig. 2, B(N,K) represents the code used to 
generate FPGA configuration file B with N, K input LUTs. 
Configuration file BI is generated by replacing the function LUT 
with the function LUTn. The actual LUT functions (defined by 
assigning memory cell (MC) values) in Fig. 2 for generating B 
are described in subsubsection 2) below. Fig.3 below shows how 
the CASE statement defined LUT functions are connected using 
a snake pattern.  

 
2) Case state functions 
In subsubsection 1) above, we describe the inter-CASE 

statement connectivity used to drive consistent LUT placement 
for successive FPGA configuration file synthesis runs. In this 
section we describe the actual LUT functions used to program 
the memory cells (MCs) in B(N,K). Our LUT functions are 
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based on XOR, XNOR, or Hamming functions of the LUT’s 
input address bits. We use XOR, XNOR, or Hamming functions 
of the LUT’s input address bits for two primary reasons: first 
they require use of all LUT inputs, so none of them are 
optimized away, and second, because the LUT inputs are not 
transposed during successive FPGA configuration file synthesis 
runs. Even with optimization turned off, other functions can 
have inputs optimized away (because they are not needed) or 
allow LUT input signals to be transposed (or moved to different 
LUT input locations). 

 
Fig 2: Generic HDL code for generating consistent LUT 
placement in multiple FPGA configuration files B and BI. 

XOR and XNOR functions programmed into LUTs do not 
require additional explanation. However, we do further describe 
Hamming functions of the LUT input address bits. Simply 
stated, we define the Hamming weight of a MC in a LUT as the 
sum of the ‘1’ values in its input address. Hamming functions of 
the LUT’s input address bits are functions that place ‘1’ (or 
conversely ‘0’) only in LUT MCs whose input address bits have 
the same Hamming weight. For example, a K=4 input LUT has 
address bits, A = 0000, 0001, 0010, 0011, 0100, 0101, 0110, 
0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, or 1111. The 
address with Hamming weight of 0 is A= 0000. The addresses 
with Hamming weight of 1 are 0001, 0010, 0100, and 1000. The 
addresses with Hamming weight of 2 are 0011, 0101, 0110, 
1001, 1010, and 1100. The addresses with Hamming weight of 
3 are 0111, 1011, 1101, and 1110. The only address with 

Hamming weight of 4 is 1111. Given a K input LUT with even 
K, Hamming weight of K/2 works best.  

To generate the inverse version of B, BI, we just invert the 
MC values described above. 

 
Fig 3: Snake pattern connections in B(N,K) used to drive 
consistent placement of LUT locations for successive 
configuration file generation synthesis runs. 

3) XOR for mask creation 
The last step in mask creation is to XOR the B and BI 

configuration files. By leveraging the snake like connections 
between our interconnected LUT CASE statements (to drive 
consistent placement) and our XOR, XNOR, or Hamming 
functions (to define the MC values in the FPGA LUTs), we can 
create multiple FPGA configuration files where the only 
difference between the files is the values in the MCs. This allows 
us to do a bitwise XOR of the two files (B and BI) to create a 
mask that provides the location of each LUT in the FPGA 
configuration file. Using this mask, we further process to 
determine relative locations of LUT configuration bits.  

B. Mapping Specific LUT MC Bits 
Once we have the LUT mask, we use a combination of 

marching 1’s and 0’s, random functions, and a log based 
application algorithm to narrow down and determine specific 
LUT bits. With minimal human intervention, we successfully 
mapped all of the FPGAs we have tested. After applying our 
algorithms and functions, we have an unconnected graph with 

Linear Snake MAP B (N, K):  

 // N = # of K input LUTs on the FPGA 

 // note: initial LUTs (LUT
j
 for j < K)  

 //   are handled as special cases 

 // note: to generate BI,  

 //  replace all LUT() with LUTn() 

 for j = K+1 to N 

  LUT
j
(LUT

j-K
(), …, LUT

j-2
(), LUT

j-1
()); 

 end loop; 

end; 

Function: LUT(AK, …, A2, A1) 

 // AK, …, A2, A1 = K address bits to address 2
K
-1 MCs 

 let A = binary2integer(AK, …, A2, A1); 

 case A = 0: Out <= MC(0) value; 

 case A = 1: Out <= MC(1) value; 

 case A = 2: Out <= MC(2) value; 

 … 

 case A = 2
K
-1: Out <= MC(2

K
-1) value; 

 return; 

Function: LUTn(AK, …, A2, A1)  

 Out <= NOT(LUT(AK, …, A2, A1)); 

 return; 
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relative (mapped to the bits in the configuration file) locations 
of all LUT programming bits. Our future work includes further 
processing the configuration file to include LUT connectivity in 
order to generate a connected graph of LUT functions for further 
processing and Trojan detection.  

C. Fingerprinting FPGAs 
Once we know which bits in the FPGA programming bit-file 

map to FPGA LUT memory cell bits, we can perform JTAG 
READBACK on the uncommitted FPGA LUT memory cells to 
determine their values at FPGA powerup [2-5]. The signatures 
provided by these memory cells can be applied to the Memory 
PUF used in Memometer to quickly and uniquely fingerprint the 
FPGA for HW metering purposes. More details on Memometer 
are found in [2-5]. 

IV. OBSTACLES 
Before we describe our test results, we provide some detail 

on some of the obstacles we overcame in our approach described 
above.  

A. Obstacle: Input Pin Reordering 
For consistent placement of LUT functions, the connected 

CASE statement approach worked perfectly. However, as part 
of the place and route process, many compilers reorder the LUT 
input pin assignments to improve or reduce timing delays, even 
with logic optimization turned off. Input reordering changes the 
addresses of the bits used to program the LUTs, and if it occurs, 
interferes with LUT mask generation. In other words, the LUT 
bits in B and BI won’t line up, so in that case, step 3) XOR for 
mask creation does not always work.  As described above, we 
overcame this obstacle by using Hamming functions of the 
LUT’s input address. This solved the problem, and prevented 
LUT input address bits from being transposed during generation 
of B and BI.  

B. Obstacle: LUT Reduction via Input Elimination 
Another obstacle we encountered was logic reduction due to 

input pin elimination. For example, even with logic optimization 
disabled, some compilers still perform optimizations on any 
LUT equations that can be reduced to fewer than K inputs. For 
example, the K = 4 input LUT function = “0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1” can be reduced to a function of just it’s least significant 
address bit. Again, this interferes with mask creation since the 
LUT bits in B and BI may not line up. To overcome this in our 
approach described above, we made sure we only use functions 
(like XOR, XNOR, and Hamming) that require all input address 
bits.  

C. Obstacle: LUT Merging 
In our original implementation of the snake pattern 

described above, to initialize the start of the pattern (LUTj for j 
< K), we used external inputs to drive the LUT inputs. This 
meant that initial LUTs next to each other in the chain shared 
all but one of their inputs. Some (but not all) compilers merged 
those LUTs into a single LUT. This was done by decomposing 
the shared inputs to drive several smaller LUTs whose outputs 

connected to multiplexers driven by the non-shared inputs to 
the two separate LUTs. Therefore, a different method was 
developed to connect the initial LUTs which guaranteed that 
none of the initial LUTs shared multiple inputs. This resolved 
the issue regardless of the synthesis compiler. 

D. Obstacle: FPGAs That Leverage Partially Decomposable 
LUTs 
While we were able to successfully use our approach on all 

FPGAs we explored, at least one family had issues. The 
Cyclone V from Intel/Altera uses a decomposable K = 6 input 
LUT structure that shares a common K = 4 input component. In 
other words, it is not completely decomposable. To overcome 
this, we had to slightly modify our generic code shown above 
to include multiple outputs from this K = 6 input LUT. The 
modification to the algorithm (shown in Fig. 2) was applied 
directly to all of the other FPGAs we tested with consistent, 
good results. 

V.TEST RESULTS AND ANALYSIS 
To test our approach we chose several Xilinx and 

Intel/Altera FPGAs. We directly applied the algorithm above to 
generate the mask files that define the LUT programming bits 
in the FPGA configuration files. The only time we slightly 
modified the algorithm was for the Cyclone V (as described in 
Obstacle IV.D above).  
Table 1. Test Results for FPGA LUT Mask Generation 

 
Once the LUT mask was found for each device, it took 

O(logN) additional configurations to determine the location of 
each specific programming bit in the FPGA configuration file. 

VI.CONCLUSIONS AND FUTURE WORK 
We have developed a generic, abstract approach to mapping 

FPGA configuration file bits to LUT programming bits. It is 
simple and the user is not required to be an FPGA expert. Our 
method does not require any vendor specific CAD tools, 
proprietary information, languages, configuration files or 
macros. Our work is directly applicable to FPGA HW metering 
and fingerprinting. Future work entails extending to Trojan 
detection for 3rd party IP.  
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