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ABSTRACT 
We consider the crowdsourcing setting where, in response to the 
assigned tasks, agents strategically decide both how much efort to 
exert (from a continuum) and whether to manipulate their reports. 
The goal is to design payment mechanisms that (1) satisfy limited 
liability (all payments are non-negative), (2) reduce the principal’s 
cost of budget, (3) incentivize efort and (4) incentivize truthful 
responses. In our framework, the payment mechanism composes a 
performance measurement, which noisily evaluates agents’ efort 
based on their reports, and a payment function, which converts the 
scores output by the performance measurement to payments. 

Previous literature suggests applying a peer prediction mecha-

nism combined with a linear payment function. This method can 
achieve either (1), (3) and (4), or (2), (3) and (4) in the binary ef-
fort setting. In this paper, we suggest using a rank-order payment 
function (tournament). Assuming Gaussian noise, we analytically 
optimize the rank-order payment function, and identify a sufcient 
statistic, sensitivity, which serves as a metric for optimizing the 
performance measurements. This helps us obtain (1), (2) and (3) 
simultaneously. Additionally, we show that adding noise to agents’ 
scores can preserve the truthfulness of the performance measure-

ments under the non-linear tournament, which gives us all four 
objectives. 

Our real-data estimated agent-based model experiments show 
that our method can greatly reduce the payment of efort elicitation 
while preserving the truthfulness of the performance measurement. 
In addition, we empirically evaluate several commonly used perfor-
mance measurements in terms of their sensitivities and strategic 
robustness. 
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1 INTRODUCTION 
Crowdsourcing, on platforms like Amazon Mechanical Turk, sufers 
from incentive problems. The requesters would like to pay the work-
ers to incentivize efortful reports. However, workers can increase 
their payments by spending less time on each task and completing 
more tasks, which could wastefully spend the requesters’ budgets. 
At the extreme, which has been extensively studied [4, 23], workers 
may answer with little efort or even randomly. 

Furthermore, in many crowdsourcing settings, it matters not 
just whether workers exert efort, but how much efort they exert. 
Lackadaisical workers may provide mediocre-efort work—enough 
to pass basic checks but still not of a high-quality standard. For 
example, while labeling tweets for content moderation, people can 
report whatever is in their minds after reading the frst sentence 
instead of carefully reading the whole tweet, or they can work on a 
fraction of tweets while skipping the rest. In these and many other 
cases, efort is not simply binary, but measured on a continuum. 
Evidence suggests that lackadaisical behaviors may be ubiquitous 
on crowdsourcing systems. In one study, 46% of Mechanical Turk 
workers failed at least one of the validity checks which was twice 
the percentage in student groups [2]. 

We study the design of payment mechanisms which determine 
how much the agents should be paid based on their reports. Specif-
ically, we focus on practical payment mechanisms that possess two 
key properties: limited liability (1), requiring the payments to be 
non-negative; and budget efciency (2), ensuring that the expected 
payments are not excessively larger than necessary. The former, as 
always preferred and often required in realistic settings, plays a cru-
cial role in encouraging participation, especially from risk-averse 
agents; while the latter is important in avoiding extravagant cost 
of the requester’s budget. 

The payment mechanism establishes a game between agents, 
where each agent strategically chooses an efort level to maximize 
her expected utility, such as the diference between the expected 
payment and the cost of efort. Therefore, a desired property of 
the mechanism is efort elicitation (3), which means that the 
mechanism induces an equilibrium where agents exert a desired 
level of efort. 

Making matters worse, the problem of efort is only one piece 
of the larger puzzle of strategic behavior. In addition to varying 
the amount of efort, agents can also manipulate their responses 
in an attempt to game the mechanism for higher rewards. For 
example, instead of reporting their true beliefs about the rating 
of a restaurant, agents may sometimes hedge their scores to align 
with what they believe to be the most popular answer. However, in 
any cases, we want agents to truthfully report their information, 
which is essential for collecting accurate and high-quality data via 
crowdsourcing. This property of a payment mechanism is called 
truthfulness (4). 

In this paper, we ask the following question: 

Can we design payment mechanisms that simultaneously 
satisfy all four objectives? 
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We provide a positive answer by proposing a two-stage approach 
for the design of payment mechanisms. First, given all agents’ re-
ports, a performance measurement assigns each agent a performance 
score. For example, both spot-checking mechanisms [11, 25] and 
peer prediction mechanisms [4, 16, 23] can be used as performance 
measurements. The former score agents based on their perfor-
mances on a subset of the tasks with known ground truth, while the 
latter score each agent according to the correlations in her reports 
and her peers’ reports which works in the absence of ground truth. 
However, these mechanisms are primarily proposed to guarantee 
truthfulness, while a careful characterization of efort elicitation 
has only been put forth in the binary efort setting [14, 17]. 

Second, to achieve limited liability (1) and budget efciency (2), 
the requester must carefully choose a payment function to convert 
the performance scores into fnal payments. For example, a linear 
payment function pays each agent an afne transformation of her 
performance score. The advantage of linear payment functions is 
that they trivially preserve the truthfulness of the performance 
measurement, as maximizing expected payment under linear trans-
formations is the same as maximizing expected score. However, as 
we will see, they are not efective in eliciting efort. Principal-agent 
literature [6, 7, 12] has been a major contributor to the understand-
ing of efort elicitation and budget efciency. Assuming agents are 
strategic in choosing their efort, the goal of the principal is to de-
sign a payment function which maps from the noisy observations of 
agents’ efort to payments, so as to maximize her utility. However, 
the optimal payment functions are usually non-linear, and thus do 
not preserve the truthfulness of the performance measurements. 

Although it is challenging to accomplish all four goals at the 
same time, we do have some intuition on how to achieve three 
of them. With the following example, we show how to use linear 
payment functions to elicit efort and truthful reporting, while 
sacrifcing at least one of the other two goals. Suppose a desired 
equilibrium (e.g. all agents working with full efort) scores an agent 
10 in expectation, a possible deviation (e.g. working with 90% of 
efort) scores her 9.9 in expectation, and (due to the variance) the 
minimum score is 0 in both cases. Suppose exerting full efort costs 
the agent $10 worth of efort while exerting 90% of efort costs the 
agent $9. In this example, to achieve (2), (3) and (4), the requester 
can frst subtract a constant, i.e. 9.9, from every agent’s performance 
score, and scale it by 10. In this way, full efort can be elicited and 
every agent is paid $10 in expectation, exactly the cost of efort. 
However, this violates limited liability. Instead, to achieve (1), (3) 
and (4), the requester has to directly scale the performance score 
by 10, which results in a payment of $100 for each agent, ten times 
more than necessary. Such a problem is especially troublesome for 
performance measurements whose scores are unbounded below.1 

Before we present our results, we frst note that to put forth 
theoretical analysis, we assume that the noise of the performance 
measurement follows the Gaussian distribution whose mean and 
standard deviation are functions of agents’ efort. Furthermore, our 
experiments using a real-data estimated agent-based model suggest 
that the Gaussian model is a good ft for most commonly used 
performance measurements. 

1
Because there does not exist an afne transformation to guarantee limited liability, 
(1) and (4) cannot the obtained at the same time. 

1.1 Our Results 
As we have seen, linear payment functions preserve the truthful-
ness of performance measurements, but are not efcient in eliciting 
efort. In this paper, we propose using a non-linear rank-order (RO) 
payment function. Such a payment function is particularly useful 
in the peer prediction setting where an agent’s performance score 
depends on others’ reports, making it unfair to base the payments 
solely on the absolute values of the performance scores. Further-
more, RO-payment functions are easier to implement and trivially 
bound the ex-post budget. We summarize our main results as fol-
lows. 

Optimizing the Payment Mechanism. We frst assume agents are 
honest. As a running example, suppose a principal wants to recover 
the ground truth of a batch of tasks using the collected labels from a 
group of homogeneous agents, who have the same utility function 
and information structure.2 

The principal’s problem is to design a 
payment mechanism to minimize the expected cost of budget for 
eliciting a goal efort in the symmetric equilibrium, i.e. no unilateral 
deviation in efort can increase an agent’s expected utility.3 

First, given a performance measurement, we analytically opti-
mize the RO-payment functions. Although similar problems have 
been studied as tournaments [8, 13], our results address a gap by 
incorporating individual rationality (IR) as a hard constraint in the 
optimization problem. Requiring the function to pay agents at least 
their cost of efort, we fnd that IR, while binding, results in optimal 
RO-payment functions that are more inclusive (rewarding more 
agents). 

Second, given a RO-payment function, we examine how to 
optimize the performance measurement. Under an assumption that 
any unilateral deviation in efort only shifts the score distribution 
without changing its shape, we identify a sufcient statistic 
called the sensitivity. The sensitivity serves as a new criterion for 
evaluating a performance measurement: the higher the sensitivity, 
the lower the required payment for eliciting a desired efort. 

Truthfulness Under the Rank-Order Payment Function. Although 
the optimized RO-payment function is efective in eliciting efort, 
it does not preserve the truthfulness of the performance measure-

ment. As an example, under the winner-take-all tournament, an 
untruthful reporting strategy that reduces the expected score but 
increases its variance, can improve the chances of winning the top 
prize. Therefore, a truthful payment function must penalize the in-
centive to increase variance at the cost of decreased expected score. 
We prove that adding a zero-mean Gaussian noise can help guaran-
tee truthfulness in the winner-take-all tournament. However, the 
added noise decreases the sensitivity of a performance measure-

ment. This observation suggests a new property of a performance 
measurement — the viarational robustness — which quantifes how 
much noise is required to guarantee truthfulness under the RO-
payment function. Our agent-based model experiments suggest that 
most of the commonly used performance measurements have high 

2
Although not without loss of generality, homogeneous agents are widely assumed in 
the principle-agent literature [9, 20]. The selection process could result in increased 
homogeneity among agents’ background. Furthermore, agents are homogeneous while 
dealing with objective tasks with low dependence on experience.
3
Symmetric equilibria are commonly used in economics literature [8, 13, 18] due to 
their tractability and analytical insights. In the settings we envision these being used, 
asymmetric equilibria are often closely approximated by symmetric equilibria. This is 
because agents can play a random strategy from an asymmetric equilibrium and, as 
the system grows, little changes. 
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variational robustness. Compared with the linear payment func-
tions, we empirically show that the RO-payment functions require 
a signifcantly smaller cost of budget even after adding noise. 

Evaluating Realistic Performance Measurements. In practice, we 
are curious about which performance measurement should be ap-
plied for rewarding agents. Our paper puts forward a new dimen-

sion of evaluation: the ability of a performance measurement to 
incentivize a desired level of efort at a low cost. We show that 
two properties matter: sensitivity, which measures how much the 
performance score changes with respect to the change of efort, and 
variational robustness, which captures the ability of a performance 
measurement preventing untruthful strategies from increasing the 
variance of the performance score. In this paper, we implement sev-
eral state-of-the-art spot-checking and peer prediction mechanisms, 
and use real-world data estimated agent-based model to empirically 
evaluate them in terms of sensitivity and variational robustness. 
Our agent-based model results provide valuable insights into which 
mechanisms are most suitable for practical crowdsourcing settings. 

2 RELATED WORK 
Tournament Design. While optimizing rank-order payment func-
tions, our paper is related to the principal-agent literature. The 
winner-take-all tournament is proven to be optimal for neutral 
agents in small tournaments with symmetrically distributed noise 
[18], and in arbitrarily-sized tournament when the noise has in-
creasing hazard rate [8]. The follow-up work [7] shows in the 
tournament setting that the equilibrium efort decreases as the 
noise of the efort measurement becomes more dispersed, in the 
sense of the dispersive order. Green and Stokey [12] compare tour-
naments with independent contracts which pay agents based on 
their numerical outputs rather than the ranking of the outputs. In 
their model where the outputs of agents depend not only on their 
efort but also on an unknown common shock, they show that if 
there is no common shock, the independent contracts dominant 
tournaments. However, if the distribution of the common shock is 
sufciently difuse, tournaments dominant independent contracts. 

However, the principal-agent model does not consider the truth-
fulness of the mechanism. Furthermore, in the tournament litera-
ture, the IR constraint is buried into the sufcient conditions for 
the existence of pure strategy symmetric equilibrium. However, 
what the optimal payment function is while considering IR remains 
unknown. 

Spot-Checking And Peer Prediction. Literature on spot-
checking and peer prediction focuses on designing truthful mecha-

nisms mostly in the binary-efort case [4, 11, 17, 23]. Kong and 
Schoenebeck [15] consider a discrete hierarchical efort model 
where choosing higher efort is more informative but more costly. 
With assumptions, the maximum efort is proven to be elicitable 
and payments are optimized using a linear program. Recent works 
mostly study how to obtain stronger truthful guarantee with fewer 
samples [14, 21] and how to deal with diferent types of agents 
[1, 22]. 

Our approach diverges sharply from previous peer prediction 
work which focuses nearly entirely on strategic considerations 
where linear rescaling is the only known technique available. In-
stead, we separate the agent choices of efort level from reporting 
strategies, and use a principal-agent framework to study how to 
elicit efort. 

3 MODEL 
In section 3.1, we present a crowdsourcing model that is mainly used 
to generate synthetic data for our agent-based model experiments. 
Next, in section 3.2 and 3.3, we map the crowdsourcing problem 
into a principal-agent problem using the Gaussian assumption. 

3.1 Crowdsourcing 
A requester has � tasks, [�] = {1, 2, . . . ,�}. Each task � ∈ [�] has 
a ground truth � � ∈ Y (that the principal would like to recover) 
which was sampled from a prior distribution � ∈ ΔY , where Y is 
a discrete set and ΔY is the set of all distributions over Y. To this 
end, each task is assigned to �0 agents and each agent � is assigned 
a subset of tasks �� ⊆ [�]. Let � be the number of agents. 

Efort and cost. Agents are strategic in choosing an efort level. 
Let �� ∈ [0, 1] denote the efort chosen by agent � . Let � (�) be a 
non-negative, increasing and convex cost function. 

Signals and reports. Each agent � working on an assigned task 
� , receives a signal ��, � ∈ X, where X is the signal space. We assume 
that 0 ∉ X and let ��, � = 0 for any � ∉ �� . For tasks � ∈ �� , ��, � 
are i.i.d. sampled from a distribution that depends only the ground 
truth � � and agent �’s efort �� . 

Let Γ
work and Γ

shirk be |Y| by |X| matrices, where, for � ∈ Y 
and � ∈ X, the �, � entry of Γ

work and Γ
shirk denotes the probability 

that an agent who puts in full efort and no efort, respectively, will 
receive a signal � when the ground truth is �. 

Given �� , agent �’s signal ��, � for the �th task, where the ground 
truth is � � , is sampled using the � � th row of �� Γwork + (1 − �� )Γshirk . 
Let Γ

shirk be uniform in each column. This setup is a modifed 
version of the Dawid-Skene model [5] where we have added efort. 

Reporting strategy. We use � and �̂ to denote the signal and 
report profles of all agents respectively. An agent frst chooses a 
task-independent reporting strategy �� : X → ΔX , then draw �ˆ�, �

4
from the distribution �� (��, � ) as her report for every assigned � . 
We assume agents have a compact strategy space Θ. Specifcally, 
we use �� to denote the truth-telling strategy, i.e. �� (� ) = � . 

Mechanism. Given �̂ , a payment mechanism M : ({0} ∪ 
X)�×� → R� 

≥0 pays agent � a non-negative payment �� . We decom-

pose the payment mechanism into two parts. First, a performance 
measurement � : ({0} ∪ X)�×� → R� 

maps agents’ reports to a 
(possibly negative and random) score �� = � (�̂)� for each � . 

Second, we apply a rank-order payment function that pays �̂ � 
to the � ’th ranked agent according to performance score. WLOG, 
suppose �1 ≥ �2 ≥ · · · ≥ �� . Then, agent �’s payment is �� = �̂� . As a 
comparison, in section 6.3, we consider a linear payment function 
as a baseline that rewards each agent � a linear transformation of 
her performance score, i.e. �� = � ·�� +� where � and � are constants. 

Defnition 3.1. A RO-payment function is increasing if �̂ � ≥ �̂� 
for any � ≤ � . 

3.2 The Principal-Agent Model 
We seek a payment mechanism that maximizes the principal’s pay-
of in a symmetric equilibrium. Now, we model this crowdsourcing 
problem as a principal-agent problem. 

First, the principal commits to a payment mechanism consisting 
of � and �̂ . Then, agents respond by choosing their efort according 

4
A recent work [26] generalizes the design of peer prediction mechanisms to task-
dependent strategies. 
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to a symmetric equilibrium. In this paper, we consider risk-neutral 
agents, i.e. the utility function is �� (�� , �� ) = �� − � (�� ), while in the 
full version, we also discuss loss-averse and risk-averse agents. 

We focus on the solution concept of symmetric equilibrium. That 
is, all agents exerting efort � is an equilibrium if any unilateral 
deviation will decrease the expected utility, i.e. E[�� (�� (�� , �), �� )] ≤ 
E[�� (�� (�, �), �)] for any �� ∈ [0, 1], where �� (�� , �) is a random 
payment function on agent �’s efort and all the other agents’ efort 
�� = � for any � ≠ � . 

The problem of the principal is to optimize the payment mecha-

nism such that a goal efort � can be incentivized in a symmetric 
equilibrium with the minimum payment. Then, additionally re-
quiring the payment to satisfy limited liability (LL) and individual 
rationality (IR) leads us to the principal’s constraint optimization 
problem. 

To get a sense for the IR constraint, consider the following ex-
ample: The principal would like 10 agents to each exert $10 of 
efort. Under a winner-take-all contest, the principal rewards the 
top agent $80 which induces a symmetric equilibrium where each 
agent contribute $10. This is not IR because each agent gets a utility 
of $ − 2. However, simply increasing the payment of the top agent 
changes the efort in equilibrium. So a diferent payment structure 
is needed. 

The Gaussian assumptions. However, the optimization prob-
lem over the space of all performance measurements is still too 
hard to analyze. To make it theoretically tractable, as commonly 
assumed in principal-agent literature, we apply the Gaussian noise 
assumption. Again, let �� be agent �’s efort and � be all the other 
agents’ efort. 

Assumption 3.1. We assume the agent �’s performance score �� fol-
(�) (�)lows the Gaussian distribution with p.d.f. � and c.d.f. � , where 
�� ,� �� ,� 

the mean � (�� , �) and standard deviation � (�� , �) are functions of 
(−�) (−�)agents’ efort. Furthermore, let � and � be the same notations
�� ,� �� ,� 

for all the other agents’ score distribution under the same efort profle. 
We assume � and � to be diferentiable. 

(−�)Assumption 3.2. The distribution � is independent of �� .�� ,� 

Assumption 3.2 implies that any unilateral deviation �� ∈ [0, 1]
from a symmetric efort profle will not change other agents’ score 

(−�) (�)
distribution. This implies � = � . This assumption intuitively 

�� ,� �,�

holds for spot-checking mechanisms, where agents’ performance 
scores are independent conditioned on the ground truth, and for 
peer prediction mechanisms when the number of agents is large (in 
which case, the infuence of any one agent’s efort is diluted by the 
number of agents). Our empirical results show that Assumption 3.2 
holds for a reasonable number of agents in crowdsourcing settings, 
e.g. � = 50. For simplicity, while fxing � , we use ��� to denote 
agent �’s score distribution and �� to denote other agents’ score 
distribution. 

We additionally make the following assumption which, at a high 
level, ensures that a deviation to a higher efort does not harm the 
upper confdence bound of the expected performance score.5 

5
In our experiments, we observe that � ′ (�� ) is insignifcant compared with � ′ (�� ) .� � 

Zhang and Schoenebeck 

�� (�� ,�)′ ′Assumption 3.3. Fixing � , let � (�� ) = and let � (�� ) = 
� ��� � 

�� (�� ,�) ′ ′ . We assume � (�� ) + � (�� ) ≥ 0 for any �� , � ∈ [0, 1].��� � � 

3.3 Truthful Guarantees 
While considering strategic reporting, we fx agents’ efort. We frst 
note that the truthfulness of a performance measurement is defned 
on the expected scores. 

Defnition 3.2. A performance measurement is (strongly) truth-
ful if every unilateral deviation from the truth-telling profle will 
(strictly) decrease the agent’s expected score. 

However, what we want is the truthfulness of a payment mecha-

nism, which should guarantee equilibrium in terms of the payments 
(not scores). Let � � (�� , �−� ) be the probability that the indicative 
agent’s performance score is ranked � . Then, the expected payment 
under a strategy profle � is E[�� (�� , �−�)] = 

Í� 
=1 � � (�� , �−� )�̂ � .� 

Defnition 3.3. A payment mechanism is truthful if no unilateral 
deviation from the truth-telling profle can increase the agent’s 
expected payment, i.e. E[�� (�� , �−� )] ≤ E[�� (�� , �−� )], for any agent 
� and any strategy �� ∈ Θ. Moreover, a payment mechanism is 
strongly truthful if the above inequality is strict. 

Note that linear payment functions trivially transfer the truthful-
ness of performance measurements to the truthfulness of payment 
mechanisms. However, for non-linear RO-payment functions, this 
property does not hold. We will study this issue in depth in section 5. 

Again, to theoretically track the problem, we adopt the following 
two assumptions which are analogous to Assumption 3.1 and 3.2 
with respect to agents’ reporting strategies. 

Assumption 3.4. We assume the agent �’s performance score �� 
(�) (�)follows the Gaussian distribution with p.d.f. � and c.d.f. � , where � � 

the mean �� (� ) and standard deviation �� (� ) are functions of agents’ 
strategy profle. Furthermore, we assume the domains of �� and �� are 

6compact for any � . 

Assumption 3.5. Let � be the initial strategy profle. Suppose 
′ agent � unilaterally deviates to an arbitrary strategy �
� . Let the 

corresponding change in the mean of the score distribution of an 
′ ′ agent � ∈ [�] be Δ� � (�� , � ) = � � (�� , �−� ) − � � (� ). We assume 

′ ′ ′ |Δ�� (�� , � ) | ≥ Δ� � (�� , � ) for any � ≠ � and � ∈ Θ.
� 

Assumption 3.5 says that if one agent unilaterally changes her 
reporting strategy, she will change the mean of her own score 
more than the mean of any other agent’s score.7 

Intuitively, this 
assumption holds for any spot-checking mechanisms and for any 
peer prediction mechanisms when the number of agents is relatively 
large. 

In section 4 and 5, we consider the “idealized setting” where 
Assumption 3.1 - 3.5 hold. We call a performance measurement that 
satisfy these assumptions an idealized performance measurement. 

6
Given the compact strategy space and the fnite signal space, this is a mild assumption. 

7
Note that this assumption is weaker than Assumption 3.2, as the latter requires all 
the other agents’ score distributions stay unchanged given an unilateral deviation. 
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4 OPTIMIZING PAYMENT MECHANISM IN 
THE IDEALIZED SETTING 

This section answers the question of how to reward agents optimally 
for a desired efort level in the idealized setting. The optimization 
consists of two parts: optimizing the rank-order payment function 
while fxing any idealized performance measurement, and opti-
mizing the idealized performance measurement given the optimal 
RO-payment function. 

4.1 Optimizing the RO-Payment Function 
We provide the analytical optimal RO-payment functions for risk-
neutral agents, while we note that we have discussions of loss-
averse and risk-averse agents in our full version. In particular, we 
show that the optimal RO-payment for neutral agents is winner-
take-all if the IR constraint is ignored. If IR is binding (the payment 
to maintain the efort equilibrium is not enough to compensate 
the cost of efort), more agents are rewarded under the optimal 
RO-payment function. 

We frst rewrite the principal’s problem given a performance 
measurement � . Suppose all the agents except � exert an efort � . 
Then, given � , agent � knows the probability that she ends up with 
each rank � when her efort is �� , which is denoted as � � (�� , �). Recall 
that by Assumption 3.1, ��� ,� is the c.d.f. of the score distribution of 
agent �; by Assumption 3.2, ��,� is the c.d.f. of the score distribution 
of all the other agents. Then, this probability is given by∫ ∞( ) � 
� � (�� , �) = �

� −
− 
1

1 
��,� (�)�−� 1 − ��,� (�) 

� �−1 
���� ,� (�) . (1) −∞ 

We then can write agent �’s expected utility under the RO-
payment function �̂ as �∑ ( )

E[�� (�� , �)] = � � (�� , �)�� �̂ � , �� . (2) 
� =1 

Maximizing the expected utility w.r.t. �� then leads to the frst 
order constraint (FOC) which is a necessary condition of symmetric 
equilibrium. For sufciency, additional conditions on the distribu-
tion of the performance score and the agents’ cost function are 
required. For example, it is shown that when the distribution of the 
noise is “dispersed enough”, the existence of symmetric equilibrium 
is guaranteed [19]. Again, in our theory sections, we assume this 
is true, while we empirically verify this assumption in section 6.2 
under the performance measurements and cost functions that we 
consider. For now, we assume FOC is also sufcient for symmetric 
equilibria. 

�� � (�� ,�)′
Let � (�) = denote the derivative of the probability 

� ��� �� =� 
an agent ranked � w.r.t. a unilateral deviation in efort when all 
agents’ efort is � , and let � ′(�) denote the derivative of the cost. 

1
Also, note that � � (�, �) = for any � due to symmetry. Now, given � 
� and � , we formally write down the principal’s problem. 

� � ∑ ∑ 
1 ( )

min �̂ � s.t. �̂ ≥ 0 (��), �� �̂ � , � ≥ 0 (��), 
�̂ � 

�=1 � =1 
�∑ ( )′ � � (�)�� �̂ � , � = 0 (���). (3) 
�=1 

Proposition 4.1. Suppose � → ∞, � ∈ [0, 1] and agents are neutral. 
� ′ (�)(1) IR is not binding: If lim�→∞ �� ′ 

1 (�)
≥ � (�), the optimal 

� ′ (�)RO-payment function is winner-take-all, i.e. �̂1 = is the 
�
1 
′ (�)

reward to the top one agent and �̂ � = 0 for 1 < � ≤ �; 

(2) IR is binding: Otherwise, the optimal RO-payment function 
is not unique and can be achieved by a threshold function 

� that rewards the top �̂ agents equally, i.e. �̂ � = � (�) for
�̂

1 ≤ � ≤ �̂ and 0 otherwise. The threshold �̂ is determined by 
� Í�̂ 

=1 � ′ (�)� (�) = � ′(�).
�̂ � � 

The proof is deferred to appendix A.1. As a sketch, the proposi-
′

tion holds because we can prove a lemma that � (�) is decreasing 
� 

in � (see appendix). This lemma implies that if IR is not binding, 
when we take the gradient of the total payment in (3) w.r.t. each 
�̂ � , the gradient reaches its maximum when � = 1. Thus, the most 
payment-saving RO-payment function is to put all of the budget 
on �̂1 to maximize the gain of any unilateral deviation to a higher 
efort. 

It is worth noting that except for the extreme cases where 
� ′ (�) → ∞, Proposition 4.1 implies that IR is always binding when 
�
1 
′ (�)
� → ∞. However, we emphasize that the condition � → ∞ in 

′
Proposition 4.1 is only needed because the lemma (� (�) is decreas-

� 
ing in � ) requires it in the proof. However, we empirically show that 
the implications of this lemma are still satisfed for a reasonably 
large group size, e.g. � = 50. This implies that IR binding constraint 
could be less strict in Proposition 4.1. 

4.2 Optimizing the Performance Measurement 
Now, under an additional assumption, we present a sufcient sta-
tistics of the efcacy of a performance measurement, called the 
sensitivity. A performance measurement can afect principal’s opti-
mal utility by afecting � � (�� , �). In the idealized setting, assuming 
all the other agents but � exert efort � , every performance mea-

surement maps agent �’s efort �� to a Gaussian distribution of her 
performance score with mean and std functions of �� . We denote 
these two functions as � (�� , �) and � (�� , �) respectively. Therefore, 
in the principal-agent problem that we care about, � (�� , �) and 
� (�� , �) determine how good a performance measurement is. 

′Assumption 4.1. We assume � ′ (�� ) ≫ � (�� ) for any �� , � ∈ [0, 1].
� � 

The above assumption says that fxing all the other agents’ efort, 
varying the efort of one agent only shifts her score distribution 
without changing its shape. Although the assumption is non-trivial, 

′ ′
we empirically fnd that the ratio between � (�� ) and � (�� ) is typ-� � 
ically less than 0.1. Now, we introduce the key concept, sensitivity. 

Defnition 4.2. The sensitivity of a performance measurement 
whose score distribution has mean � (�� , �) and standard deviation 

� ′ (�)
� (�� , �) is defned as � (�) = � 

�� (�) . 

The sensitivity of a performance measurement is defned under 
the symmetric equilibrium concept and depends on the efort in the 
symmetric equilibrium. At a high level, a performance measurement 
is more sensitive if it can generate scores that are more sensitive in 
efort change and have high accuracy. Also note that � (�) ≥ 0 by 
Assumption 3.2. 

Proposition 4.3. Suppose Assumption 3.1 and 3.2 hold. Let � be 
the sensitivity of the performance measurement and let �̂ be any RO-
payment function that is increasing. Then, fxing any � ∈ [0, 1], the 
minimum total payment 

Í� 
=1 �̂ � is (weakly) decreasing in � (�).� 

The proof is shown in appendix A.2. The intuition is that if an 
agent slightly increases her efort, it becomes easier for her to be 
ranked in higher places. This efect is amplifed by a performance 
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measurement with higher sensitivity. Therefore, with a more sensi-
tive performance measurement, the frst order constraint in eq. (3) 
can be satisfed with lower payment. Because both of the other 
constraints are independent of performance measurements, we can 
conclude that higher sensitivity implies (at least weakly) lower 
payment from the principal. 

Now, we have optimized the performance measurement and the 
RO-payment function separately. The following corollary fts the 
optimization results together. 
Corollary 4.4. Fixing a goal efort, let � ′ be a performance measure-
ment with higher sensitivity than� . Let ̂� ′ and ̂� be their corresponding 
optimal RO-payment functions, respectively. Then the payment mech-
anism consisting of � ′ and �̂ ′ has lower minimal total payment than 
the payment mechanism consisting of � and �̂ . 

The proof follows by comparing three payment mechanisms: 
mechanism 1 consists of � ′ and �̂ ′, mechanism 2 consists of � ′ and 
�̂ and mechanism 3 consists of � and �̂ . First, by Proposition 4.1, 
both �̂ ′ and �̂ are increasing. Then, by proposition 4.3, mechanism 
2 should be cheaper to implement than mechanism 3. Furthermore, 
mechanism 1 must be cheaper than mechanism 2 because �̂ ′ is the 
optimal RO-payment function for � ′ which completes the proof. 

5 TRUTHFUL WINNER-TAKE-ALL 
TOURNAMENT 

So far, we have shown how to optimize a payment mechanism to in-
centivize a desired efort level. In this section, we further investigate 
the problem of how to preserve the truthfulness of a performance 
measurement under the non-linear RO-payment function. In partic-
ular, we focus on the winner-take-all tournament and assume the 
efort (and thus the cost) of agents is fxed. In the idealized setting, 
we show that adding a large noise to agents’ performance scores 
can discourage untruthful deviations even when the non-linear pay-
ment function is applied. We note that the analysis in this section 
generally holds for all three types of agents. 

5.1 Adding Noise Helps Truthfulness 
We start by understanding why a truthful performance measure-

ment does not imply a truthful payment mechanism under the tour-
nament setting. Recall that a truthful performance measurement 
can guarantee that any untruthful strategy decreases the expected 
performance score. However, under the RO-payment function, not 
only the expected score matters, but also the distribution of the 
score. If an untruthful strategy can increase the variance of the 
performance score, though it decreases the expected score, it can 
potentially help the agent to be ranked frst in the winner-take-all 
tournament. 

We propose a solution. The key is to reduce the diference be-
tween the variance of the score distribution of truth-telling and 
that of an untruthful strategy. We proposing a method of adding 
noise to every agent’s performance score and then apply the rank-
order payment function. We wrap this idea into a modifed payment 
mechanism called the manipulation-robust payment mechanism. 

First, a manipulation-robust performance measurement is con-
structed based on a truthful performance measurement with an ad-
ditional step. Let � be the vector of performance scores output by the 
original performance measurement. The new performance scores 
output by the manipulation-robust performance measurement are 
′ � = � + � , where every term of the vector � is drawn i.i.d. from 

�� = N(0, �� ). Then, the mechanism rewards agents by applying 
′

a rank-order payment function on � . A manipulation-robust pay-
ment mechanism consists of a manipulation-robust performance 
measurement and a rank-order payment function. 

Proposition 5.1. For any payment mechanism consisting of a 
strongly truthful performance measurement and a winner-take-all 
tournament with � ≥ 2 agents, there exists a threshold value, �̄ , such 
that if the standard deviation of the noise is �� > �̄ , the corresponding 
manipulation-robust payment mechanism is strongly truthful. 

The proof is shown in appendix A.3. At a high level, the proof 
follows because in terms of the expected payment of the untruthful 
deviation, adding a large noise weakens the tradeof between the 
gain from enlarging the variance and the detriment from decreasing 
the mean. We emphasize that the efectiveness of manipulation-

robust payment mechanisms is premised on the assumption that the 
initial performance measurement is strongly truthful.8 

Otherwise, 
untruthful deviations may increase the expected score or increase 
the variance without decreasing the mean of the performance score, 
in which cases adding noise cannot guarantee truthfulness. 

We emphasize that adding noise to the performance score will 
not change any results in section 4 as all proofs trivially generalize. 

5.2 The Variational Robustness 
We now show that there is a tradeof between the truthfulness 
and the sensitivity. Intuitively, as the sensitivity, represented by 
� = � ′ 

, is inversely proportional to the variance of the performance � 
score, the added noise will decrease the sensitivity, resulting in an 
increase in the total payment to incentivize a desired efort. 

Proposition 5.2. The sensitivity of the manipulation-robust perfor-
mance measurement is decreasing in �� , the standard deviation of the 
added noise. 

The proof straightforwardly follows as adding noise does not 
afect the numerator of the sensitivity while it increases the de-
nominator. Our discussions lead to a new aspect of the strategic 
robustness of the performance measurement. Under the tournament 
setting, a truthful performance measurement, which can punish 
any untruthful deviation by decreasing its expected score, is not 
enough. A robust performance measurement should also prevent 
untruthful strategies from increasing the variance of the perfor-
mance score. We name this property of a performance measurement 
the variational robustness 

The concept of variational robustness is important as it relates to 
both the truthfulness of the payment mechanism and its ability to 
efciently elicit a goal efort at a low cost. As explained in the pre-
vious section, ensuring the truthfulness of a payment mechanism 
may require adding noise tp the performance score, which can de-
crease the sensitivity of the performance measurement. Therefore, 
performance measurements with lower variational robustness will 
have to sacrifce more of their sensitivity in order to achieve the 
truthfulness of the corresponding manipulation-robust payment 
mechanisms. 

Defnition 5.3. Given a strongly truthful performance measure-

ment � and a fxed efort level � , let �� be the standard deviation 
8
The requirement of strongly truthfulness can be relaxed to require that a performance 
measurement is truthful and it can guarantee no unilateral deviation can increase the 
variance without decreasing the mean of the performance score. 
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of the score distribution at the truth-telling strategy profle. Let 
�� be the minimum standard deviation of the common noise that 
makes the manipulation-robust payment mechanism consisting 
of � and the winner-take-all RO-payment function truthful. Then, 
the variational robustness of � (at the efort level �) is defned as 
�� = √ �� 

. 
�� 
2 +�2 

� 
We measure the variational robustness as the ratio between �� √ 

and �� 
2 + �� 

2 
which is the s.t.d. of the scoring distribution after 

adding noise. A �� of 1 implies that under the payment mechanism 
consisting of � and the winner-take-all tournament, no unilateral 
deviation can be benefcial even without adding noise. Note that 
although � is defned for truthful performance measurements under 
the winner-take-all tournament, it can be generalized to untruthful 
performance measurements and other RO-payment functions by 
empirically measuring the minimum required noise �� (section 6.4). 

6 AGENT-BASED MODEL EXPERIMENTS 
In this section, we setup our agent-based model (ABM) experiments 
and use them to justify our theoretical assumptions. Then, we show 
that empirically, the RO-payment function is much more efective 
than linear payment functions in eliciting a goal efort with low 
cost. Finally, we use the metrics in our setting to evaluate the per-
formance of several commonly used performance measurements.

9 

6.1 Experiment Setup 
We use two crowdsourcing datasets to estimate the prior of ground 
truth � and agents’ signal matrix Γ, called world 1 (� 1) [3] and 
world 2 (� 2) [24] respectively. � 1 has a signal space with size 5 
and a ground truth space with size 2. For � 2, the sizes are both 4. 

We implement two types of performance measurement: spot-
checking and peer prediction. Among the former we implement: SC-
Acc which measures the accuracy of agents’ reports given ground 
truth; and SC-DG which measures a correlations with ground truth 
[4]. Included in the latter we implement: OA which measures agree-
ment with a peer; PTS [10] which is a weighted version of OA; 
� -MMI[17] which measures the mutual information between peers 
with the empirical frequencies; � -PMI [21] which measures a mu-

tual information between peers with a pairing technique; and DMI 
[14] which measures a novel determinant mutual information. For 
� -MMI and � -PMI, we test four commonly used � functions: Total 
variation distance (TVD), KL-divergence (KL),Pearson �2 

(Sqr) and 
Squared Hellinger (Hlg). 

Then, we apply our agent-based model to generate the reports 
for � = 52 agents on � = 1000 tasks, each agent answers 100 tasks 
and each task is answered by at least 5 agents. For each parameter 
setting, we input the reports to each of the performance measure-

ments and generate 5000 samples of performance scores. With these 
samples, we estimate the performance score distributions assum-

ing the Gaussian model. Finally, we are able to estimate � ′(�) and 
derive the optimal RO-payment functions given the cost functions. 
We defer the details to our full version. 

6.2 Assumption Justifcations 
Now, we justify the assumptions made in the theory sections with 
ABM experiments. 

First, for the Gaussian assumption, our experiments show that 
the Gaussian distribution can ft the score distributions of all of 
9
The datasets and code for our experiments are available at https://github.com/ 
yichiz97/High-Efort-Crowds. 

the considered performance measurements well with exceptions of 
DMI, ��-PMI and ���-PMI, whose performance score distributions 
tend to be heavy-tailed. 

Second, as is common, we assume that the frst order condition 
(FOC) is sufcient for the existence and uniqueness of equilibrium. 
For the optimal RO-payment functions and the cost functions that 
we considered, we observe that the expected utility (eq. (2)) is 
concave w.r.t. �� in our setting. Therefore, there exists a unique 
�� that maximizes the expected utility, implying the sufciency of 
FOC. 

Finally, although � is assumed to be sufciently large to prove 
our theoretical results, we observe that the solutions of the optimal 
RO-payment functions still hold when � = 50, a reasonable number 
of agents in crowdsourcing settings. 

6.3 Rank-Order vs Linear Payment Functions 
Here, we empirically compare the payment of the linear function 
with the payment of the rank-order function, while in both cases, 
we require the payment mechanism satisfying limited liability (1), 
efort elicitation (3) and truthfulness (4). 

Parameters of Linear Payment Functions. A linear payment 
function rewards an agent �� = � · �� +� where �� is the performance 
score and � and � are constants. To incentivize a certain efort 

� ′ (�)
level � in equilibrium, we set � as 

� ′ (�) , where � ′(�) and � ′(�) are 
the derivatives of the cost function and the expected score at the 
goal efort � . We then set � to satisfy limited liability. However, for 
performance measurements with unbounded performance scores, 
no constant factor � can guarantee limited liability. To address this 
issue, we modify the linear payment function by treating � as a 
variable, denoted as �˜, that is computed by ensuring a minimum 
payment of zero. This modifcation makes �˜ depend on agents’ 
reporting strategies and thus does not preserve the truthfulness of 
the performance measurement. However, �˜ is a lower bound of �. 
Therefore, the payment of the modifed linear payment function 
lower bounds the payment of the “real” payment function. We will 
show that even compared with its lower bound, the RO-payment 
function induces much smaller payments than the linear payment 
function. 

Adding Noise to RO-payment Functions. Next, we apply 
the idea of the manipulation-robust payment mechanism to make 
rank-order payments truthful. For every goal efort, we estimate 
the largest required noise which guarantees that no unilateral devi-
ation (in the strategy space that we consider) will result in a larger 
expected payment. As the added noise will decrease the sensitivity, 
it will increase the minimum payment to incentivize the goal efort. 
Our comparison is between the modifed linear payment function 
and the manipulation-robust RO-payment function after adding 
the noise. 

Results. Fig. 1 shows three examples of the payments of the 
modifed linear payment function and the optimal RO-payment 
function which are winner-take-all. Our frst observation is that 
the linear payment functions experience much larger payments 
almost for every goal efort. This is especially signifcant for the 
performance measurements whose scores are unbounded below 
(e.g. the ��-PMI shown in fg. 1 (b)). 

The second takeaway is that the RO-payment function is very 
efective in eliciting the goal efort. This can be observed from the 
fgures: solid curves (RO-payments) are much more closer to black 
dashed curves compared with dash-dotted curves (linear payments). 
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(a) Matrix mutual information mechanism with the 
Hellinger divergence (���-MMI). 

(b) Pairing mutual information mechanism with the 
Hellinger divergence (���-PMI). 

(c) Spot-checking mechanism with accuracy score 
(SC-Acc). 

Figure 1: The comparison between the total payments of the modifed linear payment functions and the manipulation-robust rank-order 
payment functions. All three examples are in the case of risk-neutral agents (and thus the corresponding optimal RO-payment function when 
IR is not binding is winner-take-all by theorem 4.1), and use the cost function of � (�) = �2 . The dashed curves in three examples correspond to 
the minimum payment which equals to � · � (�) , and thus are identical in all three fgures. 

We note that although fg. 1 is based on the winner-take-all 
tournament, similar pattern can be observed for more inclusive RO-
payment functions. Furthermore, we obverse that a more inclusive 
RO-payment function is more robust against strategic reporting: 
the deviating agent needs a larger increase in the variance of the 
performance score to beneft. 

Our observations warn that linear payment functions may not 
be practical in real-world scenarios. When budget efciency is a 
big concern, the rank-order payment function is a good choice. 

6.4 Evaluating Realistic Performance 
Measurements 

Now, we empirically evaluate the performance measurements in-
troduced in section 6.1. Note that our comparisons include some 
performance measurements that are not (strongly) truthful, namely, 
OA, PTS and spot-checking mechanisms.

10 
For these performance 

measurements, some untruthful strategies may increase the ex-
pected score, in which case adding noise will not preserve the 
truthfulness. However, in order to present a comparison of the 
variational robustness of diferent performance measurements, we 
ignore the strategies that increase the expected score while estimat-

ing their variational robustness. In fg. 2, we present the results of 
our comparisons of sensitivity and variational robustness for vari-
ous performance measurements. Although both properties depend 
on the goal efort � , the following patterns generally hold. 

First, the higher the goal efort is, the more sensitive and robust 
the performance measurements are, especially for peer prediction 
mechanisms. Intuitively, this is because a higher efort implies more 
information in agents’ reports which can help the performance 
measurements to distinguish deviations. 

Second, the pairing mutual information mechanisms (PMI) are 
dominated by the matrix mutual information mechanisms (MMI), 
except �� �-PMI which tends to perform well. The MMI mecha-

nisms, especially ��-MMI and ���-MMI, are consistently robust 
when � ≥ 0.5. The output agreement mechanism (OA), though 
it is not truthful, is both sensitive and variationally robust when 
� ≥ 0.5. However, we emphasize that a mechanism that is not theo-
retically truthful may result in positive gain in expected score after 
an untruthful deviation. 

10
Spot-checking mechanisms are not truthful when the ground truth space is smaller 

than the signal space (for example, in � 1).
11
Note that the matrix mutual information mechanisms (MMI) are actually approxi-

mately truthful (a slightly weaker version of truthfulness) and the error vanishes as � 
the number of tasks is large enough. 

Figure 2: The sensitivity and the variational robustness of diference 
performance measurements in � 1. The goal efort is fxed at � = 0.8. 
Performance measurements that are theoretically truthful have 
markers with black edges while those are not truthful have no edge.11 

Combining the comparisons on both dimensions, we recommend 
using ���-MMI which has both high sensitivity and high variational 
robustness and is (approximately) strongly truthful. 

7 CONCLUSION AND FUTURE WORK 
We propose a two-stage payment mechanism to incentivize crowd-
sourcing workers who are strategic in both exerting efort from a 
continuum and manipulating their reports. Our mechanism com-

bines the techniques from information elicitation and tournaments 
which can simutanuously achieve four objectives: 1) limited lia-
bility, 2) budget efciency, 3) efort elicitation and 4) truthfulness. 
With agent-based model experiments, we show that our mechanism 
can elicit truthful reports and incentivize a goal efort with much 
lower payment than linear-payment mechanisms. Furthermore, 
we evaluate several commonly used performance measurements 
and suggest using the matrix mutual information mechanism with 
Hellinger divergence in realistic settings. 

Several promising future directions exist. First, heterogeneous 
agents that have diferent cost functions and confusion matrices 
could serve as a potential generalization of this paper. Second, we 
use symmetric equilibrium (which is a common assumption) to gain 
some insights of the problem while generalizations to asymmetric 
equilibrium is an open question. Finally, we focus on rank-based 
payments in this paper, but our insights might be generalized to 
other contracts, e.g. the independent contract [12]. 
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A PROOFS AND MORE THEORY RESULTS 
A.1 Proof of Proposition 4.1 
We frst prove the following result. 

′Lemma A.1. Fixing � ∈ [0, 1], if � → ∞, � (�) is decreasing in � 
� 

for any 1 ≤ � ≤ �. 

Proof. Fixing � , we simply let �� ∼ � (� (�, �), � (�, �)) be the 
p.d.f. of the scores when agent �’s efort is � and all the other agents’ 
efort is � , and let �� be the c.d.f.. Let � be a random variable 
with p.d.f. �� . Let �� (�) be the quantile function of � such that ∫ � (�) 

�� (�)�� = � .−∞ 
1

Because � � (�, �) = � , it’s equivalent to show that � � (� ′ , �) is 
′

decreasing in � , where � = � +Δ� . Note that � � (� ′ , �) is the � th order 
statics, which concentrates to its expectation when � is sufciently 
large. Therefore, � � (� ′ , �) can be approximated by the quantile ( ( )) ( ( ))

1 − � 1 − �+1function, i.e. � � (� ′ , �) = �� ′ �� − �� ′ �� . Let� � 
� = � (�, �) and Δ� = � (� ′ , �) − � (�, �). Let � and Δ� be the similar 
notations for std. Note that Δ� → 0 implies Δ� → 0 and Δ� → 0 
since � (�) and � (�) is diferentiable (Assumption 3.1). □ 

We frst prove the following intermediate step. 

Lemma A.2. �� ′ (�) ≈ (1 − Δ�/�) �� (�) − (Δ� + Δ�)�� (�). 

Proof. ∫ ( )
2� � −�−Δ� 

1 − 1 
2 �+Δ� �� ′ (�) = √ � �� 

2� (� + Δ�) −∞ 
( )

1 �−Δ� ≈ �−Δ� 1
1 − Δ� 

When Δ� ≪ � , = = . Therefore, 
�+Δ� �2−Δ�2 �2 � � ( )�−�−Δ� 

1 − Δ� �−� Δ� ≈ − . We can rewrite the integrand by 
�+Δ� � � � 

omitting the second-order infnitesimals. 
� 

1− Δ� �−� − Δ� 
1 Δ� − 1 

2 � � � ≈ √ 
∫ 

(1 − ) � 
(( ) )

2 

�� 
2�� −∞ � 

By utilizing the Taylor expansion of �� 
and disregarding higher-

order infnitesimals, we can arrive at the approximation that �� ≈( )
1− Δ� (� −� ) Δ� 

1 + � when � → 0. We apply this property on � � � � . ∫
1

1− Δ� � −� 2 Δ� (� − �) Δ� ≈ √ 
� 
�− 1

2 
(( 

� 
) 

� 
)
(1 + (1 − ) )�� 

� 2� −∞ � � � 
We repeat the above process to eliminate the infnitesimal term Δ� 
from the exponential term. 

1 
∫ � 

2 ( � −� )2 Δ� Δ� + Δ� (� − �)≈ √ �− 1 
� (1 − + )�� 

� 2� −∞ � � � 
= (1 − Δ�/�) �� (�) − (Δ� + Δ�)�� (�). 

□ 
Then, 

� � + 1 
� � (� ′ , �) = �� ′ (�� (1 − )) − �� ′ (�� (1 − ))

� � 
1 � + 1 � ≈ + (Δ� + Δ�) (�� (�� (1 − )) − �� (�� (1 − )))
� � � 

(4) 

By assumption 3.3, (Δ� + Δ�) is positive. Then, it’s sufcient ( ( )) ( ( ))
1 − � +1 1 − � to show �� �� − �� �� is decreasing in � . To � � 

make our life easier, we consider this in the continuous scale. Let � = 

Zhang and Schoenebeck 

( ) ( )
1− � +1 1

and Δ� = � . Then, let � (�) = �� �� (�) −�� �� (� + Δ�)� 
with � ∈ (0, 1). We want to show that � (�) is increasing in � .∫ �� (�)

First note that �� (�)�� = � . Taking the derivative of � of−∞ ( ) ′
both sides, we have �� �� (�) = �� (�)−1. Thus, we want to show 
that � (�) = �� 

′ (�)−1 − �� 
′ (� + Δ�)−1 

is increasing in � . 
We know that the quantile of the Gaussian distribution√ can 

be represented by the inverse error function, i.e. �(�) = 2� · 
erf

−1 (2� − 1) + � for a Gaussian with mean � and std � , where erf−1 

is the inverse error function. Furthermore, we know the derivative
√ 2

� 1
of the inverse error function is erf

−1 (�) = �� (erf−1 (�)) 
.

�� 2 
Combining these, 

√ 
� 2 ( )
� (�) = − erf−1 (2� − 1) + erf−1 (2(� + Δ�) − 1)

�� � 

� 
Because erf−1 (�) is increasing in � , we know � (�) is positive 

�� 
which completes the proof. 

Proof of 4.1. We start with solving the principal’s optimization

1
problem 3. Note that � (�, �, �) = due to symmetry. We write down � 
the KKT conditions. 

= 1 − �+� 
1 �� + � · � (� ′ , �, �) for any � ∈ [�];� 
2 �� �̂� = 0 for any � ∈ [�];( )
3 � · � (�) − 1 Í 

�
� 
=1 �̂� = 0;� 

4 
Í 
�
� 
=1 � (� ′ , �, �) · �̂� − 1 Í 

�
� 
=1 ·�̂� = � (� ′) − � (�);� 

5 � , � ≥ 0; 
6 −�̂, (� (�) − 1 Í 

�
� 
=1 �̂� ) ≤ 0.� 

′
Let � (�) = � ′(�)/�

1 (�). Now, we show that if IR is not binding, 
the solution to this problem is �̂1 = � (�) and �̂� = 0 for any � > 1. 
IR is not binding impels � = 0 (condition ○3 ). Then, we look at 
condition ○1 . Note that �� ≥ 0 for any � and at least one of the 
�� is equal to zero, otherwise �̂� = 0 for any � (condition ○2 ), and 
condition ○4 is violated. There are two possible cases: if � > 0, 
�� = 0 if and only if � (� ′ , �, �) · �̂� ) reaches its minimum; If � < 0, 
�� = 0 if and only if � (� ′ , �, �) · �̂� ) reaches its maximum. 

In lemma A.1, we show that � (� ′ , �, �) is decreasing in � . This 
property implies that the frst case, i.e. � > 0, is not feasible. Because 
� (� ′ , �, �) · �̂� ) reaches its minimum when � = �. However, if �� = 0 
and �̂� > 0, condition ○4 is violated given that � is increasing (RHS of 

1○4 is positive) and � (� ′ , �, �) < (LHS of ○4 is negative). Therefore, � 
the only possible solution is �1 = 0 and �̂1 > 0. By condition ○4 , 
�̂1 = � (�) as Δ� → 0+. □ 

A.2 Proof of Proposition 4.3 
While fxing � and � ′, we view � � (� ′ , �) as a function of � (�) and 
� (�), denoted as � � (�, �, � ′ , �). 

The intuition is as follows. suppose ̂�∗ 
is the optimal RO-payment 

function when performance measurement Ψ is applied. Now, fxing 
� , if � (�) increases, we show that the FOC constraint is easier to be 
satisfed, i.e. FOC can be satisfed with strictly lower total payment. 
This implies that with a performance measurement that has higher 
sensitivity, the principal is at least not worse-of. To see this, when 
IR is not binding, it is straightforward that the principal can reduce 
the payments to satisfy FOC without violating IR and LL. When IR 
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is not binding, the principal can reduce �̂1 by �1 and increase �̂� by 
�� ≤ �1 such that FOC is satisfed and IR is still binding. 

With this intuition, our goal is to show that FOC can be 
satisfed with strictly lower payment as � increases. Let � � =( )
�� �̂ � − � (� (� ′) − �̂ � )+. Note that the FOC constraint says that Í� 

=1 (� � (�, �, � ′ , �) − 1 ) · � � = � ′(�). Because the only term that � � 
depends on � (�) is � � (�, �, � ′ , �). The rest of the proof can be sum-

marized in Lemma A.3, which shows that the left-hand-side of the 
FOC constraint is increasing in � while fxing the payment, or equiv-
alently, FOC can be satisfed with lower payment as � increases. ( )

We then complete the proof by showing � � = �� �̂ � − � (� (� ′) − 
�̂ � )+ 

is decreasing in � under the optimal RO-payment function 
for any type of agents which is exactly the case by our results in 
section 4.1. 

Lemma A.3. For any � ∈ [0, 1], Í� 
=1 � � (�, �, � ′ , �) ·� � is increasing � 

� ′ (�)in � (�) = 
� (�) if 0 < � � ≤ �� for any 1 ≤ � ≤ � ≤ �. 

Proof. Let �, � , Δ� and Δ� be the same defnitions as in appen-
dix A.1. Note that by Assumption 4.1, Δ� ≪ Δ�. With the same ap-
proach in Lemma A.2, we can rewrite the probability � (�, �, � ′ , �, �)
as 

� � (�, �, � ′ , �)∫ ∞ ( )�−1
= �(� + Δ�, �) (� (�, �))�−� (1 − � (�, �)) �−1 �� �−1 −∞ ∫ ∞ 

2 �
2 �−1≈√ 

1 (1 + 
Δ� 
�) �− 1 

· 
( )

�0 (�)�−� (1 − �0 (�)) �−1 ��. �−1
2� −∞ � 

Δ�+Δ� 
Let � = . We have, � 

� 
�Δ� � ∑ 

� � 
�� 

�=1 ∫ � ∞ ∑ 
1 ( ) ( )

= √ ��− 
2

1 �2 
� � 

�−1 
�0 (�)�−� (1 − �0 (�)) �−1 �� �−1

2� −∞ �=1 

Then, by reordering the summation and breaking the integral into 
two pieces (from −∞ to 0 and from 0 to ∞), we can rewrite the 
derivative. We refer the readers to our full version for more detials. ∫ � 

1 ∞ 
2 �

2 ∑ 
= √ ��− 1 

(� � − ��−�+1)
2� 0 �=1
( ) ( )�−1 · (�0 (�))�−� (1 − �0 (�)) �−1 �� ≥ 0� −1 

□ 

A.3 Proof of Proposition 5.1 
We frst present the following intermediate result. 

Proposition A.4. Under a truthful performance measurement and 
the winner-take-all tournament, if a unilateral untruthful deviation 
(weakly) decreases the variance of the performance score, it (weakly) 
decreases the expected payment. 

We leave the proof of Proposition A.4 to the full version of 
this paper. At a high level, the proposition holds because under 
the truthful performance measurement, every untruthful deviation 
weakly decreases the expected score. Then, if the deviation also 
decreases the variance of the score, we can show that it will never 
increase the probability of being ranked frst. 
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Let agent � deviate from the truth-telling profle by playing � . 
We frst normalize the score distributions such that all agents but 
� has a score follows N(0, �� ). Then, we bound the probability of 
being ranked frst, �1, by identifying the “worst” possible devia-
tion with the largest �1. Recall that we assume the strategy space 
is compact and the mean and standard deviation domains of the 
score distributions of all strategy profle are compact (see Assump-

tion 3.4). Suppose the maximum mean of a unilateral untruthful 
deviation is �̃ = max� ∈Θ\{� } � (�, � ), and the maximum standard 
deviation is �̃ = max� ∈Θ\{� } � (�, � ). Because the performance mea-

surement is strongly truthful (Defnition 3.2) and any unilateral 
deviation changes the deviating agent’s expected score more than 
other agents’ expected score (Assumption 3.5), �̃ < 0. Then, by 
Proposition A.4, no strategy � ∈ Θ can bring a higher �1 than the 
one that induces a score distribution of �̃ = N(�,˜ �̃ ). Then, the proof 
follows by showing that after adding a sufciently large noise, even 
in the worst case, truth-telling still leads to the largest �1. 

There are two cases. First, if �̃ ≤ �� , by Proposition A.4, no un-
truthful unilateral deviation can outperform truthful-telling. There-
fore, in the proof that follows, we consider the case where �̃ > �� . 

Note that the sum of two Gaussian variables also follows the 
Gaussian distribution. Therefore, when agents are truthful, the 

′ ′
modifed performance score follows � ′ = N(0, �� ) where � = 

′ 
� � √ 

�� 
2 + �� 

2
. We denote the c.d.f. of this distribution as �� . Further-

more, for the worst possible deviation, the modifed performance√ 
′

score follows �̃′ = N(�,˜ �̃ ′) where �̃ = �̃2 + �� 
2
. Then, we rewrite 

the probability of winning the frst prize into the integral of stan-
dard Gaussian distributions. 

∫ ∫ 
�0 (�)�0 (

� ′ 
)
�−1+∞ +∞ � � 

�1 = �� (�)�� (�)�−1�� = � − ��, ′ ′ � � −∞ −∞ � � 

where �0 is the p.d.f. of the standard Gaussian. We want to show that 
if �� is large enough, �1 is smaller than 1 

, which is the probability � 
of winning while being truthful in the symmetric equilibrium. First 
note ∫ 

�0 (
�
� 
′ 

)
�−1+∞ ⎛ ⎞

1 � 
�1 − = �0 (�) ⎜ � − − �0 (�)�−1⎟ �� . ′ ′ � � � −∞ � � ⎝ ⎠ 

� 
Then, by setting � = � − and using the property that 

� ′ −�� 
′ 

� 
�� ≫ �� , the above equation can be rewritten as ∫

1 +∞ 
2�� � 

�1 − ≈ �0 (� + )
� −∞ �2 − �2 

� 

′ 
)
�−1 

)
�−1 

� 

⎛ ⎞
2�� � 2�� � 

�0 (
�
� 
� + − �0 (� + �� ⎜ ′ ⎟�� �2 − �� 

2 �2 − �� 
2 

� � ⎝ ⎠ 
The right-hand-side of the above equation is negative. Because 

when �� is large enough, the integration over the space of � > 0 
is trivial compared with the integration over � < 0. Then, because 
′ ′ � > �� , the integrated function is negative when � < 0 which 
�
means the integral is negative. This completes the proof. 
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