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ABSTRACT

We consider the crowdsourcing setting where, in response to the
assigned tasks, agents strategically decide both how much effort to
exert (from a continuum) and whether to manipulate their reports.
The goal is to design payment mechanisms that (1) satisfy limited
liability (all payments are non-negative), (2) reduce the principal’s
cost of budget, (3) incentivize effort and (4) incentivize truthful
responses. In our framework, the payment mechanism composes a
performance measurement, which noisily evaluates agents’ effort
based on their reports, and a payment function, which converts the
scores output by the performance measurement to payments.

Previous literature suggests applying a peer prediction mecha-
nism combined with a linear payment function. This method can
achieve either (1), (3) and (4), or (2), (3) and (4) in the binary ef-
fort setting. In this paper, we suggest using a rank-order payment
function (tournament). Assuming Gaussian noise, we analytically
optimize the rank-order payment function, and identify a sufficient
statistic, sensitivity, which serves as a metric for optimizing the
performance measurements. This helps us obtain (1), (2) and (3)
simultaneously. Additionally, we show that adding noise to agents’
scores can preserve the truthfulness of the performance measure-
ments under the non-linear tournament, which gives us all four
objectives.

Our real-data estimated agent-based model experiments show
that our method can greatly reduce the payment of effort elicitation
while preserving the truthfulness of the performance measurement.
In addition, we empirically evaluate several commonly used perfor-
mance measurements in terms of their sensitivities and strategic
robustness.
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1 INTRODUCTION

Crowdsourcing, on platforms like Amazon Mechanical Turk, suffers
from incentive problems. The requesters would like to pay the work-
ers to incentivize effortful reports. However, workers can increase
their payments by spending less time on each task and completing
more tasks, which could wastefully spend the requesters’ budgets.
At the extreme, which has been extensively studied [4, 23], workers
may answer with little effort or even randomly.

Furthermore, in many crowdsourcing settings, it matters not
just whether workers exert effort, but how much effort they exert.
Lackadaisical workers may provide mediocre-effort work—enough
to pass basic checks but still not of a high-quality standard. For
example, while labeling tweets for content moderation, people can
report whatever is in their minds after reading the first sentence
instead of carefully reading the whole tweet, or they can work on a
fraction of tweets while skipping the rest. In these and many other
cases, effort is not simply binary, but measured on a continuum.
Evidence suggests that lackadaisical behaviors may be ubiquitous
on crowdsourcing systems. In one study, 46% of Mechanical Turk
workers failed at least one of the validity checks which was twice
the percentage in student groups [2].

We study the design of payment mechanisms which determine
how much the agents should be paid based on their reports. Specif-
ically, we focus on practical payment mechanisms that possess two
key properties: limited liability (1), requiring the payments to be
non-negative; and budget efficiency (2), ensuring that the expected
payments are not excessively larger than necessary. The former, as
always preferred and often required in realistic settings, plays a cru-
cial role in encouraging participation, especially from risk-averse
agents; while the latter is important in avoiding extravagant cost
of the requester’s budget.

The payment mechanism establishes a game between agents,
where each agent strategically chooses an effort level to maximize
her expected utility, such as the difference between the expected
payment and the cost of effort. Therefore, a desired property of
the mechanism is effort elicitation (3), which means that the
mechanism induces an equilibrium where agents exert a desired
level of effort.

Making matters worse, the problem of effort is only one piece
of the larger puzzle of strategic behavior. In addition to varying
the amount of effort, agents can also manipulate their responses
in an attempt to game the mechanism for higher rewards. For
example, instead of reporting their true beliefs about the rating
of a restaurant, agents may sometimes hedge their scores to align
with what they believe to be the most popular answer. However, in
any cases, we want agents to truthfully report their information,
which is essential for collecting accurate and high-quality data via
crowdsourcing. This property of a payment mechanism is called
truthfulness (4).

In this paper, we ask the following question:

Can we design payment mechanisms that simultaneously
satisfy all four objectives?
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We provide a positive answer by proposing a two-stage approach
for the design of payment mechanisms. First, given all agents’ re-
ports, a performance measurement assigns each agent a performance
score. For example, both spot-checking mechanisms [11, 25] and
peer prediction mechanisms [4, 16, 23] can be used as performance
measurements. The former score agents based on their perfor-
mances on a subset of the tasks with known ground truth, while the
latter score each agent according to the correlations in her reports
and her peers’ reports which works in the absence of ground truth.
However, these mechanisms are primarily proposed to guarantee
truthfulness, while a careful characterization of effort elicitation
has only been put forth in the binary effort setting [14, 17].

Second, to achieve limited liability (1) and budget efficiency (2),
the requester must carefully choose a payment function to convert
the performance scores into final payments. For example, a linear
payment function pays each agent an affine transformation of her
performance score. The advantage of linear payment functions is
that they trivially preserve the truthfulness of the performance
measurement, as maximizing expected payment under linear trans-
formations is the same as maximizing expected score. However, as
we will see, they are not effective in eliciting effort. Principal-agent
literature [6, 7, 12] has been a major contributor to the understand-
ing of effort elicitation and budget efficiency. Assuming agents are
strategic in choosing their effort, the goal of the principal is to de-
sign a payment function which maps from the noisy observations of
agents’ effort to payments, so as to maximize her utility. However,
the optimal payment functions are usually non-linear, and thus do
not preserve the truthfulness of the performance measurements.

Although it is challenging to accomplish all four goals at the
same time, we do have some intuition on how to achieve three
of them. With the following example, we show how to use linear
payment functions to elicit effort and truthful reporting, while
sacrificing at least one of the other two goals. Suppose a desired
equilibrium (e.g. all agents working with full effort) scores an agent
10 in expectation, a possible deviation (e.g. working with 90% of
effort) scores her 9.9 in expectation, and (due to the variance) the
minimum score is 0 in both cases. Suppose exerting full effort costs
the agent $10 worth of effort while exerting 90% of effort costs the
agent $9. In this example, to achieve (2), (3) and (4), the requester
can first subtract a constant, i.e. 9.9, from every agent’s performance
score, and scale it by 10. In this way, full effort can be elicited and
every agent is paid $10 in expectation, exactly the cost of effort.
However, this violates limited liability. Instead, to achieve (1), (3)
and (4), the requester has to directly scale the performance score
by 10, which results in a payment of $100 for each agent, ten times
more than necessary. Such a problem is especially troublesome for
performance measurements whose scores are unbounded below.!

Before we present our results, we first note that to put forth
theoretical analysis, we assume that the noise of the performance
measurement follows the Gaussian distribution whose mean and
standard deviation are functions of agents’ effort. Furthermore, our
experiments using a real-data estimated agent-based model suggest
that the Gaussian model is a good fit for most commonly used
performance measurements.

!Because there does not exist an affine transformation to guarantee limited liability,
(1) and (4) cannot the obtained at the same time.
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1.1 Our Results

As we have seen, linear payment functions preserve the truthful-
ness of performance measurements, but are not efficient in eliciting
effort. In this paper, we propose using a non-linear rank-order (RO)
payment function. Such a payment function is particularly useful
in the peer prediction setting where an agent’s performance score
depends on others’ reports, making it unfair to base the payments
solely on the absolute values of the performance scores. Further-
more, RO-payment functions are easier to implement and trivially
bound the ex-post budget. We summarize our main results as fol-
lows.

Optimizing the Payment Mechanism. We first assume agents are
honest. As a running example, suppose a principal wants to recover
the ground truth of a batch of tasks using the collected labels from a
group of homogeneous agents, who have the same utility function
and information structure.? The principal’s problem is to design a
payment mechanism to minimize the expected cost of budget for
eliciting a goal effort in the symmetric equilibrium, i.e. no unilateral
deviation in effort can increase an agent’s expected utility.3

First, given a performance measurement, we analytically opti-
mize the RO-payment functions. Although similar problems have
been studied as tournaments [8, 13], our results address a gap by
incorporating individual rationality (IR) as a hard constraint in the
optimization problem. Requiring the function to pay agents at least
their cost of effort, we find that IR, while binding, results in optimal
RO-payment functions that are more inclusive (rewarding more
agents).

Second, given a RO-payment function, we examine how to
optimize the performance measurement. Under an assumption that
any unilateral deviation in effort only shifts the score distribution
without changing its shape, we identify a sufficient statistic
called the sensitivity. The sensitivity serves as a new criterion for
evaluating a performance measurement: the higher the sensitivity,
the lower the required payment for eliciting a desired effort.

Truthfulness Under the Rank-Order Payment Function. Although
the optimized RO-payment function is effective in eliciting effort,
it does not preserve the truthfulness of the performance measure-
ment. As an example, under the winner-take-all tournament, an
untruthful reporting strategy that reduces the expected score but
increases its variance, can improve the chances of winning the top
prize. Therefore, a truthful payment function must penalize the in-
centive to increase variance at the cost of decreased expected score.
We prove that adding a zero-mean Gaussian noise can help guaran-
tee truthfulness in the winner-take-all tournament. However, the
added noise decreases the sensitivity of a performance measure-
ment. This observation suggests a new property of a performance
measurement — the viarational robustness — which quantifies how
much noise is required to guarantee truthfulness under the RO-
payment function. Our agent-based model experiments suggest that
most of the commonly used performance measurements have high

2 Although not without loss of generality, homogeneous agents are widely assumed in
the principle-agent literature [9, 20]. The selection process could result in increased
homogeneity among agents’ background. Furthermore, agents are homogeneous while
dealing with objective tasks with low dependence on experience.

3Symmetric equilibria are commonly used in economics literature [8, 13, 18] due to
their tractability and analytical insights. In the settings we envision these being used,
asymmetric equilibria are often closely approximated by symmetric equilibria. This is
because agents can play a random strategy from an asymmetric equilibrium and, as
the system grows, little changes.
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variational robustness. Compared with the linear payment func-
tions, we empirically show that the RO-payment functions require
a significantly smaller cost of budget even after adding noise.

Evaluating Realistic Performance Measurements. In practice, we
are curious about which performance measurement should be ap-
plied for rewarding agents. Our paper puts forward a new dimen-
sion of evaluation: the ability of a performance measurement to
incentivize a desired level of effort at a low cost. We show that
two properties matter: sensitivity, which measures how much the
performance score changes with respect to the change of effort, and
variational robustness, which captures the ability of a performance
measurement preventing untruthful strategies from increasing the
variance of the performance score. In this paper, we implement sev-
eral state-of-the-art spot-checking and peer prediction mechanisms,
and use real-world data estimated agent-based model to empirically
evaluate them in terms of sensitivity and variational robustness.
Our agent-based model results provide valuable insights into which
mechanisms are most suitable for practical crowdsourcing settings.

2 RELATED WORK

Tournament Design. While optimizing rank-order payment func-
tions, our paper is related to the principal-agent literature. The
winner-take-all tournament is proven to be optimal for neutral
agents in small tournaments with symmetrically distributed noise
[18], and in arbitrarily-sized tournament when the noise has in-
creasing hazard rate [8]. The follow-up work [7] shows in the
tournament setting that the equilibrium effort decreases as the
noise of the effort measurement becomes more dispersed, in the
sense of the dispersive order. Green and Stokey [12] compare tour-
naments with independent contracts which pay agents based on
their numerical outputs rather than the ranking of the outputs. In
their model where the outputs of agents depend not only on their
effort but also on an unknown common shock, they show that if
there is no common shock, the independent contracts dominant
tournaments. However, if the distribution of the common shock is
sufficiently diffuse, tournaments dominant independent contracts.

However, the principal-agent model does not consider the truth-
fulness of the mechanism. Furthermore, in the tournament litera-
ture, the IR constraint is buried into the sufficient conditions for
the existence of pure strategy symmetric equilibrium. However,
what the optimal payment function is while considering IR remains
unknown.

Spot-Checking And Peer Prediction. Literature on spot-
checking and peer prediction focuses on designing truthful mecha-
nisms mostly in the binary-effort case [4, 11, 17, 23]. Kong and
Schoenebeck [15] consider a discrete hierarchical effort model
where choosing higher effort is more informative but more costly.
With assumptions, the maximum effort is proven to be elicitable
and payments are optimized using a linear program. Recent works
mostly study how to obtain stronger truthful guarantee with fewer
samples [14, 21] and how to deal with different types of agents
[1, 22].

Our approach diverges sharply from previous peer prediction
work which focuses nearly entirely on strategic considerations
where linear rescaling is the only known technique available. In-
stead, we separate the agent choices of effort level from reporting
strategies, and use a principal-agent framework to study how to
elicit effort.
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3 MODEL

In section 3.1, we present a crowdsourcing model that is mainly used
to generate synthetic data for our agent-based model experiments.
Next, in section 3.2 and 3.3, we map the crowdsourcing problem
into a principal-agent problem using the Gaussian assumption.

3.1 Crowdsourcing

A requester has m tasks, [m] = {1,2,...,m}. Each task j € [m] has
a ground truth y; € Y (that the principal would like to recover)
which was sampled from a prior distribution w € Ay, where Y is
a discrete set and Ay is the set of all distributions over Y. To this
end, each task is assigned to ng agents and each agent i is assigned
a subset of tasks A; C [m]. Let n be the number of agents.

Effort and cost. Agents are strategic in choosing an effort level.
Let e; € [0, 1] denote the effort chosen by agent i. Let c(e) be a
non-negative, increasing and convex cost function.

Signals and reports. Each agent i working on an assigned task
Jj.receives a signal X; ; € X, where X is the signal space. We assume
that 0 ¢ X and let X; ; = 0 for any j ¢ A;. For tasks j € A;, X;j
are ii.d. sampled from a distribution that depends only the ground
truth y; and agent i’s effort e;.

Let Tyork and Typipie be | Y| by |X| matrices, where, for y € Y
and x € X, the y, x entry of I'y,; and Ighjgc denotes the probability
that an agent who puts in full effort and no effort, respectively, will
receive a signal x when the ground truth is y.

Given e;, agent i’s signal X; ; for the jth task, where the ground
truth is y, is sampled using the y;th row of e; ok + (1 — €i) Tshirk-
Let Tpjrc be uniform in each column. This setup is a modified
version of the Dawid-Skene model [5] where we have added effort.

Reporting strategy. We use x and x to denote the signal and
report profiles of all agents respectively. An agent first chooses a
task-independent reporting strategy 0; : X — Ay, then draw Xi, j
from the distribution 6;(Xj ;) as her report for every assigned jA
We assume agents have a compact strategy space ©. Specifically,
we use 7; to denote the truth-telling strategy, i.e. 7;(X) = X.

Mechanism. Given x, a payment mechanism M : ({0} U
X)™™M — RY | pays agent i a non-negative payment t;. We decom-
pose the payment mechanism into two parts. First, a performance
measurement ¥ : ({0} U X)™™ — R"™ maps agents’ reports to a
(possibly negative and random) score s; = i/(%); for each i.

Second, we apply a rank-order payment function that pays f;
to the j’th ranked agent according to performance score. WLOG,
suppose s1 > sz > - -+ > s,. Then, agent i’s payment is t; = f;. As a
comparison, in section 6.3, we consider a linear payment function
as a baseline that rewards each agent i a linear transformation of
her performance score, i.e. t; = a-s; +b where a and b are constants.

Definition 3.1. A RO-payment function is increasing if {; > #
for any j < k.

3.2 The Principal-Agent Model

We seek a payment mechanism that maximizes the principal’s pay-
off in a symmetric equilibrium. Now, we model this crowdsourcing
problem as a principal-agent problem.

First, the principal commits to a payment mechanism consisting
of ¢ and . Then, agents respond by choosing their effort according

4 A recent work [26] generalizes the design of peer prediction mechanisms to task-
dependent strategies.
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to a symmetric equilibrium. In this paper, we consider risk-neutral
agents, i.e. the utility function is u4(#;, €;) = t; — c(e;), while in the
full version, we also discuss loss-averse and risk-averse agents.

We focus on the solution concept of symmetric equilibrium. That
is, all agents exerting effort & is an equilibrium if any unilateral
deviation will decrease the expected utility, i.e. E[uq (ti (ej, £), €i)] <
Elug(ti (& &), 8)] for any e; € [0,1], where t;(e;, £) is a random
payment function on agent i’s effort and all the other agents’ effort
e = Eforany k # i.

The problem of the principal is to optimize the payment mecha-
nism such that a goal effort £ can be incentivized in a symmetric
equilibrium with the minimum payment. Then, additionally re-
quiring the payment to satisfy limited liability (LL) and individual
rationality (IR) leads us to the principal’s constraint optimization
problem.

To get a sense for the IR constraint, consider the following ex-
ample: The principal would like 10 agents to each exert $10 of
effort. Under a winner-take-all contest, the principal rewards the
top agent $80 which induces a symmetric equilibrium where each
agent contribute $10. This is not IR because each agent gets a utility
of $ — 2. However, simply increasing the payment of the top agent
changes the effort in equilibrium. So a different payment structure
is needed.

The Gaussian assumptions. However, the optimization prob-
lem over the space of all performance measurements is still too
hard to analyze. To make it theoretically tractable, as commonly
assumed in principal-agent literature, we apply the Gaussian noise
assumption. Again, let e; be agent i’s effort and & be all the other
agents’ effort.

Assumption 3.1. We assume the agent i’s performance score S; fol-

lows the Gaussian distribution with p.d.f. gg)‘f and c.d.f. Gg)g’ where

the mean p(e;, &) and standard deviation o(e;, &) are functions of
agents’ effort. Furthermore, let 92;;) and Gi;;) be the same notations
for all the other agents’ score distribution under the same effort profile.
We assume y and o to be differentiable.
(=0
eind

Assumption 3.2 implies that any unilateral deviation e; € [0,1]
from a symmetric effort profile will not change other agents’ score
=0 _ O
et ~IEE
holds for spot-checking mechanisms, where agents’ performance
scores are independent conditioned on the ground truth, and for
peer prediction mechanisms when the number of agents is large (in
which case, the influence of any one agent’s effort is diluted by the
number of agents). Our empirical results show that Assumption 3.2
holds for a reasonable number of agents in crowdsourcing settings,
e.g. n = 50. For simplicity, while fixing &, we use ge; to denote
agent i’s score distribution and g to denote other agents’ score
distribution.

We additionally make the following assumption which, at a high
level, ensures that a deviation to a higher effort does not harm the
upper confidence bound of the expected performance score.?

Assumption 3.2. The distribution g is independent of e;.

distribution. This implies g This assumption intuitively

5In our experiments, we observe that o‘é(e,-) is insignificant compared with /,l:;(e,-).
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Assumption 3.3. Fixing &, let ,ug,(ei) = %Z’g)

9o (i)
de;

and let aé(ei) =
. We assume ps’{(ei) + oé(ei) > 0 for anye;, £ € [0,1].

3.3 Truthful Guarantees

While considering strategic reporting, we fix agents’ effort. We first
note that the truthfulness of a performance measurement is defined
on the expected scores.

Definition 3.2. A performance measurement is (strongly) truth-
ful if every unilateral deviation from the truth-telling profile will
(strictly) decrease the agent’s expected score.

However, what we want is the truthfulness of a payment mecha-
nism, which should guarantee equilibrium in terms of the payments
(not scores). Let p;(0;, 6—;) be the probability that the indicative
agent’s performance score is ranked j. Then, the expected payment

under a strategy profile 0 is E[#;(6;, 0—;)] = Z;.lzl P (0, 6-7)i;.

Definition 3.3. A payment mechanism is truthful if no unilateral
deviation from the truth-telling profile can increase the agent’s
expected payment, i.e. E[#;(0;, 7—;)] < E[¢;(7;, 7—;)], for any agent
i and any strategy 6; € ©. Moreover, a payment mechanism is
strongly truthful if the above inequality is strict.

Note that linear payment functions trivially transfer the truthful-
ness of performance measurements to the truthfulness of payment
mechanisms. However, for non-linear RO-payment functions, this
property does not hold. We will study this issue in depth in section 5.

Again, to theoretically track the problem, we adopt the following
two assumptions which are analogous to Assumption 3.1 and 3.2
with respect to agents’ reporting strategies.

Assumption 3.4. We assume the agent i’s performance score S;

follows the Gaussian distribution with p.d.f. gg) and c.df. Gél), where
the mean p;(0) and standard deviation c;(0) are functions of agents’
strategy profile. Furthermore, we assume the domains of y1; and o; are
compact for any i.5

Assumption 3.5. Let 6 be the initial strategy profile. Suppose
agent i unilaterally deviates to an arbitrary strategy 0;. Let the
corresponding change in the mean of the score distribution of an
agent j € [n] be Ap;j(0],0) = p;j(0],6-;) — pj(6). We assume
|Ap; (0], 0)] = Ap;(0;,0) forany j # i and 0] € ©.

Assumption 3.5 says that if one agent unilaterally changes her
reporting strategy, she will change the mean of her own score
more than the mean of any other agent’s score.” Intuitively, this
assumption holds for any spot-checking mechanisms and for any
peer prediction mechanisms when the number of agents is relatively
large.

In section 4 and 5, we consider the “idealized setting” where
Assumption 3.1 - 3.5 hold. We call a performance measurement that
satisfy these assumptions an idealized performance measurement.

®Given the compact strategy space and the finite signal space, this is a mild assumption.
"Note that this assumption is weaker than Assumption 3.2, as the latter requires all
the other agents’ score distributions stay unchanged given an unilateral deviation.
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4 OPTIMIZING PAYMENT MECHANISM IN
THE IDEALIZED SETTING

This section answers the question of how to reward agents optimally
for a desired effort level in the idealized setting. The optimization
consists of two parts: optimizing the rank-order payment function
while fixing any idealized performance measurement, and opti-
mizing the idealized performance measurement given the optimal
RO-payment function.

4.1 Optimizing the RO-Payment Function

We provide the analytical optimal RO-payment functions for risk-
neutral agents, while we note that we have discussions of loss-
averse and risk-averse agents in our full version. In particular, we
show that the optimal RO-payment for neutral agents is winner-
take-all if the IR constraint is ignored. If IR is binding (the payment
to maintain the effort equilibrium is not enough to compensate
the cost of effort), more agents are rewarded under the optimal
RO-payment function.

We first rewrite the principal’s problem given a performance
measurement 1. Suppose all the agents except i exert an effort &.
Then, given ¥/, agent i knows the probability that she ends up with
eachrank j when her effort is e;, which is denoted as p  (e;, £). Recall
that by Assumption 3.1, G, ¢ is the c.d.f. of the score distribution of
agent i; by Assumption 3.2, G ¢ is the c.d f. of the score distribution
of all the other agents. Then, this probability is given by

pitent) = () [ e [1= el dGiy (). 1)

We then can write agent i’s expected utility under the RO-
payment function # as

E[Ua(es O] = ), pjler Hua (B er) @
j=1

Maximizing the expected utility w.r.t. e; then leads to the first
order constraint (FOC) which is a necessary condition of symmetric
equilibrium. For sufficiency, additional conditions on the distribu-
tion of the performance score and the agents’ cost function are
required. For example, it is shown that when the distribution of the
noise is “dispersed enough”, the existence of symmetric equilibrium
is guaranteed [19]. Again, in our theory sections, we assume this
is true, while we empirically verify this assumption in section 6.2
under the performance measurements and cost functions that we
consider. For now, we assume FOC is also sufficient for symmetric
equilibria.

Letp’ (&) = M _, denote the derivative of the probability

J €i ei=¢
an agent ranked j w.r.t. a unilateral deviation in effort when all
agents’ effort is &, and let ¢’(£) denote the derivative of the cost.
Also, note that p; (£, &) = % for any j due to symmetry. Now, given
n and &, we formally write down the principal’s problem.

n
m}n Z tj
4

n

st £>0 (LD), %Zua(fj,g)zo (IR),

Jj=1

n
D pj(Oua (€)= 0 (FOO). 3)

j=1
Proposition 4.1. Supposen — oo, £ € [0, 1] and agents are neutral.
(1) IR is not binding: If lim, e % > c(&), the optimal
RO-payment function is winner-take-all, i.e. f; = l% is the

reward to the top one agent and i; =0 for1 < j < n;
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(2) IR is binding: Otherwise, the optimal RO-payment function
is not unique and can be achieved by a threshold function
that rewards the top A agents equally, i.e. {; = 2c(&) for
1 < j < 1 and 0 otherwise. The threshold i is determined by

LY ph(Ee(E) = (D).

The proof is deferred to appendix A.1. As a sketch, the proposi-
tion holds because we can prove a lemma that p;.(§) is decreasing
in j (see appendix). This lemma implies that if IR is not binding,
when we take the gradient of the total payment in (3) w.r.t. each
3 'j, the gradient reaches its maximum when j = 1. Thus, the most
payment-saving RO-payment function is to put all of the budget
on #; to maximize the gain of any unilateral deviation to a higher
effort.

It is worth noting that except for the extreme cases where
o
pi((?)
n — oco. However, we emphasize that the condition n — oo in

Proposition 4.1 is only needed because the lemma (p;(g) is decreas-

— o0, Proposition 4.1 implies that IR is always binding when

ing in j) requires it in the proof. However, we empirically show that
the implications of this lemma are still satisfied for a reasonably
large group size, e.g. n = 50. This implies that IR binding constraint
could be less strict in Proposition 4.1.

4.2 Optimizing the Performance Measurement

Now, under an additional assumption, we present a sufficient sta-
tistics of the efficacy of a performance measurement, called the
sensitivity. A performance measurement can affect principal’s opti-
mal utility by affecting p;(e;, £). In the idealized setting, assuming
all the other agents but i exert effort &, every performance mea-
surement maps agent i’s effort e; to a Gaussian distribution of her
performance score with mean and std functions of e;. We denote
these two functions as u(e;, &) and o(e;, £) respectively. Therefore,
in the principal-agent problem that we care about, p(e;, £) and
o(ej, &) determine how good a performance measurement is.

Assumption 4.1. We assume yé(ei) > a‘g(ei)for anye;, £ € [0,1].

The above assumption says that fixing all the other agents’ effort,
varying the effort of one agent only shifts her score distribution
without changing its shape. Although the assumption is non-trivial,
we empirically find that the ratio between O'é(ei) and y%(ei) is typ-

ically less than 0.1. Now, we introduce the key concept, sensitivity.

Definition 4.2. The sensitivity of a performance measurement
whose score distribution has mean pu(e;, ¢) and standard deviation

o(e;, ©) is defined as 8(¢) = = £ Eg :

The sensitivity of a performance measurement is defined under
the symmetric equilibrium concept and depends on the effort in the
symmetric equilibrium. At a high level, a performance measurement
is more sensitive if it can generate scores that are more sensitive in
effort change and have high accuracy. Also note that §(¢) > 0 by
Assumption 3.2.

Proposition 4.3. Suppose Assumption 3.1 and 3.2 hold. Let § be
the sensitivity of the performance measurement and let t be any RO-
payment function that is increasing. Then, fixing any & € [0, 1], the
minimum total payment 27:1 fj is (weakly) decreasing in 5(£).

The proof is shown in appendix A.2. The intuition is that if an
agent slightly increases her effort, it becomes easier for her to be
ranked in higher places. This effect is amplified by a performance
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measurement with higher sensitivity. Therefore, with a more sensi-
tive performance measurement, the first order constraint in eq. (3)
can be satisfied with lower payment. Because both of the other
constraints are independent of performance measurements, we can
conclude that higher sensitivity implies (at least weakly) lower
payment from the principal.

Now, we have optimized the performance measurement and the
RO-payment function separately. The following corollary fits the
optimization results together.

Corollary 4.4. Fixing a goal effort, let )’ be a performance measure-
ment with higher sensitivity than . Lett’ andt be their corresponding
optimal RO-payment functions, respectively. Then the payment mech-
anism consisting of ' and t’ has lower minimal total payment than
the payment mechanism consisting of / and t.

The proof follows by comparing three payment mechanisms:
mechanism 1 consists of ¢ and £/, mechanism 2 consists of {/” and
t and mechanism 3 consists of ¢/ and £. First, by Proposition 4.1,
both # and # are increasing. Then, by proposition 4.3, mechanism
2 should be cheaper to implement than mechanism 3. Furthermore,
mechanism 1 must be cheaper than mechanism 2 because #’ is the
optimal RO-payment function for ¢/’ which completes the proof.

5 TRUTHFUL WINNER-TAKE-ALL
TOURNAMENT

So far, we have shown how to optimize a payment mechanism to in-
centivize a desired effort level. In this section, we further investigate
the problem of how to preserve the truthfulness of a performance
measurement under the non-linear RO-payment function. In partic-
ular, we focus on the winner-take-all tournament and assume the
effort (and thus the cost) of agents is fixed. In the idealized setting,
we show that adding a large noise to agents’ performance scores
can discourage untruthful deviations even when the non-linear pay-
ment function is applied. We note that the analysis in this section
generally holds for all three types of agents.

5.1 Adding Noise Helps Truthfulness

We start by understanding why a truthful performance measure-
ment does not imply a truthful payment mechanism under the tour-
nament setting. Recall that a truthful performance measurement
can guarantee that any untruthful strategy decreases the expected
performance score. However, under the RO-payment function, not
only the expected score matters, but also the distribution of the
score. If an untruthful strategy can increase the variance of the
performance score, though it decreases the expected score, it can
potentially help the agent to be ranked first in the winner-take-all
tournament.

We propose a solution. The key is to reduce the difference be-
tween the variance of the score distribution of truth-telling and
that of an untruthful strategy. We proposing a method of adding
noise to every agent’s performance score and then apply the rank-
order payment function. We wrap this idea into a modified payment
mechanism called the manipulation-robust payment mechanism.

First, a manipulation-robust performance measurement is con-
structed based on a truthful performance measurement with an ad-
ditional step. Let s be the vector of performance scores output by the
original performance measurement. The new performance scores
output by the manipulation-robust performance measurement are

s’ = s + €, where every term of the vector € is drawn ii.d. from
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ge = N (0, o¢). Then, the mechanism rewards agents by applying
a rank-order payment function on s’. A manipulation-robust pay-
ment mechanism consists of a manipulation-robust performance
measurement and a rank-order payment function.

Proposition 5.1. For any payment mechanism consisting of a
strongly truthful performance measurement and a winner-take-all
tournament with n > 2 agents, there exists a threshold value, &, such
that if the standard deviation of the noise is ¢ > &, the corresponding
manipulation-robust payment mechanism is strongly truthful.

The proof is shown in appendix A.3. At a high level, the proof
follows because in terms of the expected payment of the untruthful
deviation, adding a large noise weakens the tradeoff between the
gain from enlarging the variance and the detriment from decreasing
the mean. We emphasize that the effectiveness of manipulation-
robust payment mechanisms is premised on the assumption that the
initial performance measurement is strongly truthful.® Otherwise,
untruthful deviations may increase the expected score or increase
the variance without decreasing the mean of the performance score,
in which cases adding noise cannot guarantee truthfulness.

We emphasize that adding noise to the performance score will
not change any results in section 4 as all proofs trivially generalize.

5.2 The Variational Robustness

We now show that there is a tradeoff between the truthfulness
and the sensitivity. Intuitively, as the sensitivity, represented by

d= %, is inversely proportional to the variance of the performance
score, the added noise will decrease the sensitivity, resulting in an
increase in the total payment to incentivize a desired effort.

Proposition 5.2. The sensitivity of the manipulation-robust perfor-
mance measurement is decreasing in oe, the standard deviation of the
added noise.

The proof straightforwardly follows as adding noise does not
affect the numerator of the sensitivity while it increases the de-
nominator. Our discussions lead to a new aspect of the strategic
robustness of the performance measurement. Under the tournament
setting, a truthful performance measurement, which can punish
any untruthful deviation by decreasing its expected score, is not
enough. A robust performance measurement should also prevent
untruthful strategies from increasing the variance of the perfor-
mance score. We name this property of a performance measurement
the variational robustness

The concept of variational robustness is important as it relates to
both the truthfulness of the payment mechanism and its ability to
efficiently elicit a goal effort at a low cost. As explained in the pre-
vious section, ensuring the truthfulness of a payment mechanism
may require adding noise tp the performance score, which can de-
crease the sensitivity of the performance measurement. Therefore,
performance measurements with lower variational robustness will
have to sacrifice more of their sensitivity in order to achieve the
truthfulness of the corresponding manipulation-robust payment
mechanisms.

Definition 5.3. Given a strongly truthful performance measure-
ment § and a fixed effort level ¢, let o, be the standard deviation

8The requirement of strongly truthfulness can be relaxed to require that a performance
measurement is truthful and it can guarantee no unilateral deviation can increase the
variance without decreasing the mean of the performance score.
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of the score distribution at the truth-telling strategy profile. Let
o¢ be the minimum standard deviation of the common noise that
makes the manipulation-robust payment mechanism consisting
of / and the winner-take-all RO-payment function truthful. Then,

the variational robustness of ¢ (at the effort level &) is defined as
Or

We measure the variational robustness as the ratio between o,

Oy =

and /02 + o2 which is the s.t.d. of the scoring distribution after
adding noise. A J;, of 1 implies that under the payment mechanism
consisting of ¢ and the winner-take-all tournament, no unilateral
deviation can be beneficial even without adding noise. Note that
although & is defined for truthful performance measurements under
the winner-take-all tournament, it can be generalized to untruthful
performance measurements and other RO-payment functions by
empirically measuring the minimum required noise o¢ (section 6.4).

6 AGENT-BASED MODEL EXPERIMENTS

In this section, we setup our agent-based model (ABM) experiments
and use them to justify our theoretical assumptions. Then, we show
that empirically, the RO-payment function is much more effective
than linear payment functions in eliciting a goal effort with low
cost. Finally, we use the metrics in our setting to evaluate the per-
formance of several commonly used performance measurements.”

6.1 Experiment Setup

We use two crowdsourcing datasets to estimate the prior of ground
truth w and agents’ signal matrix T, called world 1 (W1) [3] and
world 2 (W2) [24] respectively. W1 has a signal space with size 5
and a ground truth space with size 2. For W2, the sizes are both 4.

We implement two types of performance measurement: spot-
checking and peer prediction. Among the former we implement: SC-
Acc which measures the accuracy of agents’ reports given ground
truth; and SC-DG which measures a correlations with ground truth
[4]. Included in the latter we implement: OA which measures agree-
ment with a peer; PTS [10] which is a weighted version of OA;
f-MMI[17] which measures the mutual information between peers
with the empirical frequencies; f-PMI [21] which measures a mu-
tual information between peers with a pairing technique; and DMI
[14] which measures a novel determinant mutual information. For
f-MMI and f-PMI, we test four commonly used f functions: Total
variation distance (TVD), KL-divergence (KL),Pearson y? (Sqr) and
Squared Hellinger (Hlg).

Then, we apply our agent-based model to generate the reports
for n = 52 agents on m = 1000 tasks, each agent answers 100 tasks
and each task is answered by at least 5 agents. For each parameter
setting, we input the reports to each of the performance measure-
ments and generate 5000 samples of performance scores. With these
samples, we estimate the performance score distributions assum-
ing the Gaussian model. Finally, we are able to estimate p’(¢) and
derive the optimal RO-payment functions given the cost functions.
We defer the details to our full version.

6.2 Assumption Justifications

Now, we justify the assumptions made in the theory sections with
ABM experiments.

First, for the Gaussian assumption, our experiments show that
the Gaussian distribution can fit the score distributions of all of

°The datasets and code for our experiments are available at https://github.com
yichiz97/High-Effort-Crowds.
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the considered performance measurements well with exceptions of
DML, KL-PMI and Hlg-PMI, whose performance score distributions
tend to be heavy-tailed.

Second, as is common, we assume that the first order condition
(FOC) is sufficient for the existence and uniqueness of equilibrium.
For the optimal RO-payment functions and the cost functions that
we considered, we observe that the expected utility (eq. (2)) is
concave w.r.t. e; in our setting. Therefore, there exists a unique
e; that maximizes the expected utility, implying the sufficiency of
FOC.

Finally, although n is assumed to be sufficiently large to prove
our theoretical results, we observe that the solutions of the optimal
RO-payment functions still hold when n = 50, a reasonable number
of agents in crowdsourcing settings.

6.3 Rank-Order vs Linear Payment Functions

Here, we empirically compare the payment of the linear function
with the payment of the rank-order function, while in both cases,
we require the payment mechanism satisfying limited liability (1),
effort elicitation (3) and truthfulness (4).

Parameters of Linear Payment Functions. A linear payment
function rewards an agent t; = a- s; + b where s; is the performance
score and a and b are constants. To incentivize a certain effort
level & in equilibrium, we set a as :m where ¢’ (¢) and p’ (¢) are
the derivatives of the cost function and the expected score at the
goal effort £ We then set b to satisfy limited liability. However, for
performance measurements with unbounded performance scores,
no constant factor b can guarantee limited liability. To address this
issue, we modify the linear payment function by treating b as a
variable, denoted as b, that is computed by ensuring a minimum
payment of zero. This modification makes b depend on agents’
reporting strategies and thus does not preserve the truthfulness of
the performance measurement. However, b is a lower bound of b.
Therefore, the payment of the modified linear payment function
lower bounds the payment of the “real” payment function. We will
show that even compared with its lower bound, the RO-payment
function induces much smaller payments than the linear payment
function.

Adding Noise to RO-payment Functions. Next, we apply
the idea of the manipulation-robust payment mechanism to make
rank-order payments truthful. For every goal effort, we estimate
the largest required noise which guarantees that no unilateral devi-
ation (in the strategy space that we consider) will result in a larger
expected payment. As the added noise will decrease the sensitivity,
it will increase the minimum payment to incentivize the goal effort.
Our comparison is between the modified linear payment function
and the manipulation-robust RO-payment function after adding
the noise.

Results. Fig. 1 shows three examples of the payments of the
modified linear payment function and the optimal RO-payment
function which are winner-take-all. Our first observation is that
the linear payment functions experience much larger payments
almost for every goal effort. This is especially significant for the
performance measurements whose scores are unbounded below
(e.g. the KL-PMI shown in fig. 1 (b)).

The second takeaway is that the RO-payment function is very
effective in eliciting the goal effort. This can be observed from the
figures: solid curves (RO-payments) are much more closer to black
dashed curves compared with dash-dotted curves (linear payments).
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(SC-Acc).

Figure 1: The comparison between the total payments of the modified linear payment functions and the manipulation-robust rank-order
payment functions. All three examples are in the case of risk-neutral agents (and thus the corresponding optimal RO-payment function when
IR is not binding is winner-take-all by theorem 4.1), and use the cost function of c(e) = ¢%. The dashed curves in three examples correspond to
the minimum payment which equals to n - c¢(£), and thus are identical in all three figures.

We note that although fig. 1 is based on the winner-take-all
tournament, similar pattern can be observed for more inclusive RO-
payment functions. Furthermore, we obverse that a more inclusive
RO-payment function is more robust against strategic reporting:
the deviating agent needs a larger increase in the variance of the
performance score to benefit.

Our observations warn that linear payment functions may not
be practical in real-world scenarios. When budget efficiency is a
big concern, the rank-order payment function is a good choice.

6.4 Evaluating Realistic Performance
Measurements

Now, we empirically evaluate the performance measurements in-
troduced in section 6.1. Note that our comparisons include some
performance measurements that are not (strongly) truthful, namely,
OA, PTS and spot-checking mechanisms.!? For these performance
measurements, some untruthful strategies may increase the ex-
pected score, in which case adding noise will not preserve the
truthfulness. However, in order to present a comparison of the
variational robustness of different performance measurements, we
ignore the strategies that increase the expected score while estimat-
ing their variational robustness. In fig. 2, we present the results of
our comparisons of sensitivity and variational robustness for vari-
ous performance measurements. Although both properties depend
on the goal effort &, the following patterns generally hold.

First, the higher the goal effort is, the more sensitive and robust
the performance measurements are, especially for peer prediction
mechanisms. Intuitively, this is because a higher effort implies more
information in agents’ reports which can help the performance
measurements to distinguish deviations.

Second, the pairing mutual information mechanisms (PMI) are
dominated by the matrix mutual information mechanisms (MMI),
except TV D-PMI which tends to perform well. The MMI mecha-
nisms, especially KL-MMI and Hlg-MMI, are consistently robust
when ¢ > 0.5. The output agreement mechanism (OA), though
it is not truthful, is both sensitive and variationally robust when
& > 0.5. However, we emphasize that a mechanism that is not theo-
retically truthful may result in positive gain in expected score after
an untruthful deviation.

198pot-checking mechanisms are not truthful when the ground truth space is smaller
than the signal space (for example, in W1).

Note that the matrix mutual information mechanisms (MMI) are actually approxi-
mately truthful (a slightly weaker version of truthfulness) and the error vanishes as m
the number of tasks is large enough.
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Figure 2: The sensitivity and the variational robustness of difference
performance measurements in W1. The goal effort is fixed at £ = 0.8.
Performance measurements that are theoretically truthful have
markers with black edges while those are not truthful have no edge.!!

Combining the comparisons on both dimensions, we recommend
using Hlg-MMI which has both high sensitivity and high variational
robustness and is (approximately) strongly truthful.

7 CONCLUSION AND FUTURE WORK

We propose a two-stage payment mechanism to incentivize crowd-
sourcing workers who are strategic in both exerting effort from a
continuum and manipulating their reports. Our mechanism com-
bines the techniques from information elicitation and tournaments
which can simutanuously achieve four objectives: 1) limited lia-
bility, 2) budget eficiency, 3) effort elicitation and 4) truthfulness.
With agent-based model experiments, we show that our mechanism
can elicit truthful reports and incentivize a goal effort with much
lower payment than linear-payment mechanisms. Furthermore,
we evaluate several commonly used performance measurements
and suggest using the matrix mutual information mechanism with
Hellinger divergence in realistic settings.

Several promising future directions exist. First, heterogeneous
agents that have different cost functions and confusion matrices
could serve as a potential generalization of this paper. Second, we
use symmetric equilibrium (which is a common assumption) to gain
some insights of the problem while generalizations to asymmetric
equilibrium is an open question. Finally, we focus on rank-based
payments in this paper, but our insights might be generalized to
other contracts, e.g. the independent contract [12].
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A PROOFS AND MORE THEORY RESULTS

A.1 Proof of Proposition 4.1
We first prove the following result.

Lemma A.1. Fixing ¢ € [0,1], ifn — oo, p}(f) is decreasing in j
forany1 < j<n.

Proor. Fixing & we simply let go ~ N(u(e, &), 0(e, £)) be the
p.d.f. of the scores when agent i’s effort is e and all the other agents’
effort is £, and let G, be the c.d.f.. Let S be a random variable
with p.d.f. ge. Let ge(p) be the quantile function of S such that
/15‘0) ge(x)dx = p.

Because p;(¢ &) = %, it’s equivalent to show that p; (&, ¢) is
decreasing in j, where £’ = £+Ae. Note that pj (&', &) is the jth order
statics, which concentrates to its expectation when n is sufficiently
large. Therefore, p;(£’,£) can be approximated by the quantile
function, i.e. pj(¢’, &) = Gg (qéz (1 - %)) -Gy (q_f( - ]%1)) Let
p=p(E &) and Ap = p(&, &) — u(& €). Let o and Ao be the similar
notations for std. Note that Ae — 0 implies Ay — 0 and Ao — 0
since u(e) and o(e) is differentiable (Assumption 3.1). O

We first prove the following intermediate step.
Lemma A.2. Gg(x) = (1—Ac/0) Gg(x) — (Ap + Ao)gg(x).

Proor.

Gé:f (x) =

x s—p=Ap\?
;/ e_%( a‘iAo’”) ds
V2 (o + Ao)
When Ao < o, o‘+1AO' = U‘;:ﬁgz ~ ";@” = é(l - AF"), Therefore,
% ~ (1- Aff % - AF‘H. We can rewrite the integrand by
omitting the second-order infinitesimals.

x o\ s—u  Aup\?

~ 1 / (1_£)6_%((1_% Tﬂ_#) ds
\/ﬁa o

By utilizing the Taylor expansion of e* and disregarding higher-

order infinitesimals, we can arrive at the approximation that e =

1-42) (s=p) Dp
o o o,

—00

—00

1+ x when x — 0. We apply this property on el

e [ )

c o
We repeat the above process to eliminate the infinitesimal term Ac
from the exponential term.

x s _
1 / e_%(%)2<1_£+AO'+A,U(S ,U))ds
O'@ —00 o o o

= (1-Ac/0) Gg(x) = (A + Ao)gg(x).

=~

Then,

piE.5) =Gy (qs‘ (1 - é)) ~ % <q§ (1 ) %))
~ % +(Ap+ Ao) (gg (% (1 - %)) ~ 9% (q-f (1 - %)))

4
By assumption 3.3, (Au + Ao) is positive. Then, it’s sufficient

j+1 i\ . N,
to show g (q§ (1 - %)) -9 (qg (1 - ﬁ)) is decreasing in j. To
make our life easier, we consider this in the continuous scale. Let p =
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1= 5% and Ap = . Then,let f(p) = g¢ (¢ (p)) = g¢ (4¢ (p + Ap))
with p € (0,1). We want to show that f(p) is increasing in p.

First note that L qoi(P ) g¢(x)dx = p. Taking the derivative of p of
both sides, we have g¢ (q§ (p)) = ¢4 (p)~!. Thus, we want to show
that £(p) = q4(p)™* — qL(p + Ap)~! is increasing in p.

We know that the quantile of the Gaussian distribution can
be represented by the inverse error function, i.e. g(p) = V2o -
erf~1(2p—1) + for a Gaussian with mean p and std o, where erf !
is the inverse error function. Furthermore, we know the derivative
of the inverse error function is % erf 1(x) = % ﬁe(erf_l(x))z.
Combining these,

%f(p) = g (—erf ' (2p— 1) +erf 1 (2(p + Ap) — 1))

Because erf ~!(x) is increasing in x, we know % f(p) is positive
which completes the proof.

Proor oF 4.1. We start with solving the principal’s optimization
problem 3. Note that p(&,&,i) = % due to symmetry. We write down
the KKT conditions.

D ai=1- @+y-p(§’,§,i) forany i € [n];

@ a;t; =0 forany i € [n];

® - (c() - g Ly li) =0

@ T p(&ED) b= £ X b= e(E) = e(9);

® a,f>0;

©® 1. (c(&) -y Iy B) <.

Let w(£) = ¢’(£)/p](&). Now, we show that if IR is not binding,
the solution to this problem is {; = w(¢) and #; = 0 for any i > 1.
IR is not binding impels f = 0 (condition (3)). Then, we look at
condition (D. Note that @; > 0 for any i and at least one of the
a; is equal to zero, otherwise #; = 0 for any i (condition (2)), and
condition @) is violated. There are two possible cases: if y > 0,
a; = 0 if and only if p(&, &, i) - £;) reaches its minimum; If y < 0,
a; = 0 if and only if p(&, &, i) - 1;) reaches its maximum.

In lemma A.1, we show that p(&’, i) is decreasing in i. This
property implies that the first case, i.e. y > 0, is not feasible. Because
p(&, &) - #;) reaches its minimum when i = n. However, if a,, = 0
and #, > 0, condition (@) is violated given that c is increasing (RHS of
@ is positive) and p(&’, &, n) < % (LHS of @ is negative). Therefore,
the only possible solution is @; = 0 and #; > 0. By condition @),
t1 = w(&) as Ae — 0%, ]

A.2 Proof of Proposition 4.3

While fixing £ and &', we view p;(¢’, ) as a function of p(¢) and
o(£), denoted as p;(p, 0, &, &).

The intuition is as follows. suppose * is the optimal RO-payment
function when performance measurement ¥ is applied. Now, fixing
&, if §(&) increases, we show that the FOC constraint is easier to be
satisfied, i.e. FOC can be satisfied with strictly lower total payment.
This implies that with a performance measurement that has higher
sensitivity, the principal is at least not worse-off. To see this, when
IR is not binding, it is straightforward that the principal can reduce
the payments to satisfy FOC without violating IR and LL. When IR
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is not binding, the principal can reduce #; by €] and increase #, by
€n < €1 such that FOC is satisfied and IR is still binding.

With this intuition, our goal is to show that FOC can be
satisfied with strictly lower payment as § increases. Let 1; =
Ta (fj) — p(c(&') — ij)*. Note that the FOC constraint says that
Z;.‘:l (pj(p,o, &8 - %) - Aj = ¢/(£). Because the only term that
depends on §(&) is p;(p, 0, &, £). The rest of the proof can be sum-
marized in Lemma A.3, which shows that the left-hand-side of the
FOC constraint is increasing in § while fixing the payment, or equiv-
alently, FOC can be satisfied with lower payment as § increases.

We then complete the proof by showing A; = r4 (fj) —p(e(&) -
£)* is decreasing in j under the optimal RO-payment function
for any type of agents which is exactly the case by our results in
section 4.1.

Lemma A.3. Forany¢ € [0,1], Z;’:l pj(p,0,&,8)-Aj is increasing

i"5(§>=%) if0 <2j < A forany1 <k <j<n.

Proor. Let y1, o, Ay and Ao be the same definitions as in appen-
dix A.1. Note that by Assumption 4.1, Ac < Ap. With the same ap-
proach in Lemma A.2, we can rewrite the probability p(u, o, £, &, j)
as

P08 8)

= / g+ Ae,x)(7}) (G(£ )" (1= G(¢ %)) dx

%\/% /—oo (1 * %z) e (?:%)GO(Z)n_j (1=Go(z)) 1 dz.

(o2

_ Ap+Ac
Let 6 = Y

. We have,

Jj=1
:L /‘oo ze_%zz illl(;l:ll) (GO(Z)n—j (l _ G()(Z))j_l)dz
V2r J-co 2

Then, by reordering the summation and breaking the integral into
two pieces (from —oo to 0 and from 0 to o0), we can rewrite the
derivative. We refer the readers to our full version for more detials.

1 ® 12 “
=— ze 2 (Aj = An—ij+1)

(1) ((Go(2)" (1= Go(2)! ™) dz 2 0

A.3 Proof of Proposition 5.1

We first present the following intermediate result.

Proposition A.4. Under a truthful performance measurement and
the winner-take-all tournament, if a unilateral untruthful deviation
(weakly) decreases the variance of the performance score, it (weakly)
decreases the expected payment.

We leave the proof of Proposition A.4 to the full version of
this paper. At a high level, the proposition holds because under
the truthful performance measurement, every untruthful deviation
weakly decreases the expected score. Then, if the deviation also
decreases the variance of the score, we can show that it will never
increase the probability of being ranked first.
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Let agent i deviate from the truth-telling profile by playing 6.
We first normalize the score distributions such that all agents but
i has a score follows N (0, o). Then, we bound the probability of
being ranked first, p1, by identifying the “worst” possible devia-
tion with the largest p;. Recall that we assume the strategy space
is compact and the mean and standard deviation domains of the
score distributions of all strategy profile are compact (see Assump-
tion 3.4). Suppose the maximum mean of a unilateral untruthful
deviation is /i = maxgeg\ {r} #(0, 7), and the maximum standard
deviation is ¢ = maxgce\ {7} 0(0, 7). Because the performance mea-
surement is strongly truthful (Definition 3.2) and any unilateral
deviation changes the deviating agent’s expected score more than
other agents’ expected score (Assumption 3.5), fi < 0. Then, by
Proposition A.4, no strategy 6 € © can bring a higher p; than the
one that induces a score distribution of § = N'(f1, ). Then, the proof
follows by showing that after adding a sufficiently large noise, even
in the worst case, truth-telling still leads to the largest p;.

There are two cases. First, if & < o, by Proposition A.4, no un-
truthful unilateral deviation can outperform truthful-telling. There-
fore, in the proof that follows, we consider the case where ¢ > 0.

Note that the sum of two Gaussian variables also follows the
Gaussian distribution. Therefore, when agents are truthful, the
modified performance score follows g, = N(0,0]) where o =

02 + o2. We denote the c.d.f. of this distribution as G.. Further-
more, for the worst possible deviation, the modified performance

score follows §' = N(fi, 5") where 6’ = /62 + 2. Then, we rewrite
the probability of winning the first prize into the integral of stan-
dard Gaussian distributions.

+o00 400 o n—1
p1= / 9o (x)Gr ()" 1dx = / 90(x)Go <—?x - ﬂ) dx,

o0 —00 o o
where g is the p.d.f. of the standard Gaussian. We want to show that
if o is large enough, p; is smaller than %, which is the probability
of winning while being truthful in the symmetric equilibrium. First
note
’

-1
1 +00 o n 3
p1— - = / go(x)| Go (0—?x - ﬁ,) - Gp ()" dx.

00 T T

Then, by setting z = x — —£— and using the property that

0p—07
0e > 0y, the above equation can be rewritten as

1 +oo 20¢p
P1——z/ go(z+ )
noJ- oo -0

(o) 9 - T
O'/ 2 n-1 9 n—1
o o
Go —€z+ 5 eﬂz -Golz+ 5 ellz dz
or 0y~ 07 0y~ 07

The right-hand-side of the above equation is negative. Because
when o is large enough, the integration over the space of z > 0
is trivial compared with the integration over z < 0. Then, because
o, > o7, the integrated function is negative when z < 0 which

means the integral is negative. This completes the proof.
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