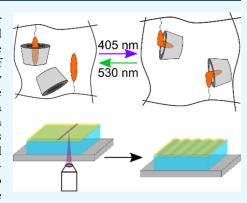


pubs.acs.org/acsapm Article

1 Visible Light-Triggered Microactuators and Dynamic Surfaces from 2 Hydrogels Containing Photoswitchable Host—Guest Complexes

3 Joseph C. Roback, Montana B. Minnis, Kesete Ghebreyessus,* and Ryan C. Hayward*

Cite This: https://doi.org/10.1021/acsapm.4c00917


ACCESS I

III Metrics & More

Article Recommendations

s Supporting Information

4 **ABSTRACT:** Light-responsive hydrogels garner considerable interest due to their s ability to undergo a wide variety of shape transformations that can be triggered 6 remotely and with fine spatiotemporal control. To this end, photoswitchable 7 supramolecular complexes offer a convenient route to tune hydrophilicity of 8 hydrogels; however, thus far, this approach has required the use of potentially 9 damaging ultraviolet light. To address this limitation, we introduce a light-responsive 10 supramolecular hydrogel that can be addressed entirely with visible light using a 11 hydrogel with pendant thiomethyl-substituted arylazopyrazole (SMe-AAP) in a 12 solution of beta-cyclodextrin (β -CD). Upon irradiation with purple light, trans-cis 13 isomerization triggers a swelling response in the hydrogels that is rapid, stable, and 14 reversible under green light. Remarkably, this result suggests stronger binding of β -15 CD to the cis isomer, which is opposite to the behavior for most reported azo 16 photoswitches. To shed further insights into this behavior, we characterize the

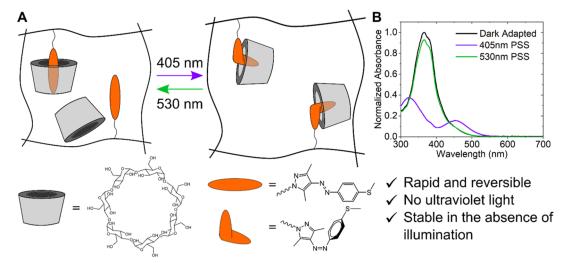
17 binding between SMe-AAP and β -CD using calorimetry and 2D-NOESY NMR spectroscopy. Finally, we demonstrate that the SMe-18 AAP hydrogels can be used to fabricate functional materials, including micron-scale bending actuators and surface wrinkles with 19 precisely patterned morphologies.

20 KEYWORDS: responsive hydrogels, host-guest complex, actuators, surface wrinkles

21 ■ INTRODUCTION

22 Stimuli-responsive hydrogels can offer a diverse range of 23 capabilities such as shape-morphing, 1,2 actuation, 3,4 and 24 locomotion^{5,6} and can function in biomedical applications 25 such as drug delivery and cell culture. 7-11 Generally, the 26 applied stimulus triggers a swelling or deswelling response of 27 the hydrated polymer network, and although there exist many 28 possible stimuli to address responsive hydrogels, light is 29 particularly attractive due to its remote delivery and the high 30 degree of spatiotemporal control it affords. A significant 31 amount of literature has leveraged photothermal effects in 32 temperature-sensitive hydrogels to drive volume change, an 33 approach which typically exhibits large response magnitude and operates under visible light. 12-16 However, photothermally 35 addressable materials require constant illumination to maintain 36 a volume change and suffer from decreased patterning 37 resolution due to thermal broadening.

Alternatively, incorporation of photochemical moieties such as spiropyran into hydrogels can generate significant volume change upon irradiation with blue light due to the large change in hydrophilicity between the ring-open merocyanine and ring-tological spiropyran isomers. However, the need to protonate the merocyanine isomer in an acidic environment to generate swelling limits their use in biological applications where materials must operate in narrow pH ranges, and the spiropyran isomer spontaneously ring-opens in 10s of minutes


in aqueous solutions, thus limiting the stability.²² Further 47 approaches involve the use of photodissociable molecules 48 or^{23,24} photoinduced dimerization²⁵ or leveraging photoredox 49 chemistry.²⁶ While these strategies can result in large volume 50 changes in response to irradiation and can be operated with 51 visible light, they are limited by rapid reversion kinetics or 52 harsh shape-reprogramming conditions.

Azobenzene and related photoswitches are widely used in 54 photoresponsive materials due to attractive properties 55 including highly tunable lifetimes and excellent photo- 56 stability; however, swelling in azobenzene-containing hydro- 57 gels is driven by the modest change in polarity between *cis* and 58 *trans* isomers, which typically limits the magnitude of light 59 response. To enhance this effect, our group has previously 60 studied photochemically driven shape changes in hydrogels 61 using host–guest interactions between azobenzene and α - 62 cyclodextrin (α -CD). Cyclodextrins (CDs) are macrocyclic 63 oligosaccharides that have a toroidal shape with a hydrophilic 64 exterior and a hydrophobic inner cavity, allowing them to 65

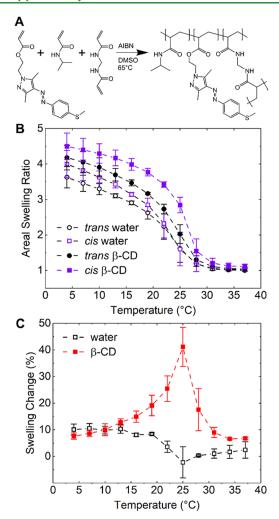
Received: March 25, 2024 Revised: May 15, 2024 Accepted: May 16, 2024

116

Figure 1. (A) Chemical structure and schematic showing hydrogels with SMe-AAP pendant groups that swell upon *trans-cis* isomerization. (B) UV-vis spectra of SMe-AAP-Ac (0.025 mg/mL in DMSO) after equilibration in the dark (black line), after irradiation with 405 nm light (purple line), and after irradiation with 530 nm light (green line).

66 encapsulate appropriately sized hydrophobic molecules. 30 67 When an azobenzene monomer in the trans configuration is 68 incorporated into a hydrogel network and immersed in a 69 solution of α -CD, a host–guest complex is formed, increasing 70 the hydrophilicity of the network and driving swelling. 71 However, when the azobenzene is isomerized to the cis 72 configuration using ultraviolet (UV) light, the molecule is no 73 longer compatible with the CD cavity, and the complex is 74 destroyed, resulting in shrinking of the network. Photo-75 reversible complexation between azobenzene and CDs has also 76 been widely employed to trigger sol-gel transitions, to alter network mechanical properties through tuning of cross-link density,31-33 and to drive actuation using slide-ring-based designs in both hydrated and dry materials.^{34,35} While these approaches have the benefit of rapid, reversible, and stable shape change, the need for UV light limits light penetration 82 into the material and may lead to issues in future biomaterials applications due to the potential for large doses of UV light to 84 inflict cellular damage.

Several other azobenzene derivatives have also been 86 reported to form photoreversible complexes with CDs and 87 can offer other attractive properties such as red-shifted 88 absorption spectra, higher conversion at the photostationary 89 state (PSS), and greater thermal stability of the cis isomer. 36-40 These properties can allow for greater penetration depth of 91 light, improved compatibility with materials for cell and tissue 92 culture, and more persistent shape changes. In this work, we 93 specifically focus on a methyl thioether-substituted arylazopyr-94 azole (SMe-AAP), first reported by Bhunia, Dolai, and 95 Samata. 41 This molecule was chosen for a number of 96 interesting photophysical properties including high photoconversion using visible light (96% cis reported at the 400 nm 98 PSS and 96% trans reported at the 530 nm PSS) and a high 99 thermal half-life of the cis isomer (2.8 d). Additionally, while 100 the method of preparation of the SMe-AAP has been described 101 in the literature, its potential applications particularly with 102 regard to host-guest chemistry have not yet been explored. 103 We demonstrate that hydrogels containing SMe-AAP undergo 104 rapid and reversible light-triggered swelling upon trans-cis 105 isomerization in a solution of β -CD (Figure 1A), a result 106 opposite to that of our previously reported supramolecular


hydrogels using azobenzene and α -CD. We then characterize 107 the binding behavior between the SMe-AAP and β -CD to 108 elucidate the swelling mechanism. Finally, we show that these 109 hydrogels can be used for the fabrication of light-responsive 110 trilayer microactuators and as a method to program patterned 111 surface wrinkles into bilayer hydrogels. Due to their operation 112 exclusively under visible light (Figures 1B and S2, S3), these 113 materials open the door for functional devices with improved 114 biocompatibility.

RESULTS AND DISCUSSION

To characterize the light-induced swelling response of the 117 AAP-containing host-guest hydrogel, we first prepared thin 118 sheets of hydrogels by free radical polymerization of N- 119 isopropylacrylamide (NIPAM), N,N'-methylenebis- 120 (acrylamide) (BIS), and an acrylate-functionalized thiomethyl 121 AAP (SMe-AAP-Ac, Schemes S1-S3, Figure 2A). Gelation is 122 conducted between two glass slides separated by 25 μ m-thick 123 Kapton spacers to set the thickness of the sheets. The gels are 124 cut into discs and, following equilibration in the dark in water 125 overnight, imaged under an optical microscope on a variable- 126 temperature stage to measure the areal swelling ratio, which is 127 calculated as the ratio of the area of the swollen gel to the area 128 of the gel equilibrated at 37 °C, at which point the gels had 129 reached a plateau in the swelling ratio. The gels are assumed to 130 swell isotopically in all directions; thus, the areal swelling ratio 131 is directly translatable to both the linear and volumetric 132 swelling ratios. The swelling change, which is defined as the 133 percent change of the area of the disc upon trans to cis 134 isomerization, is given by eq 1, where SR₄₀₅ and SR₅₃₀ are the 135 areal swelling ratios at the PSS under 405 and 530 nm light, 136 respectively.

swelling change =
$$\frac{\rm SR_{405} - SR_{530}}{\rm SR_{530}} \times 100\%$$
 (1) $_{138}$

As seen in Figure 2B,C, the gels demonstrate modest 139 f2 swelling in response to 405 nm irradiation when in water, 140 which we attribute to the higher polarity of the *cis* isomer and 141 is consistent with previous reports on azobenzene-containing 142 gels. When the disc is moved to a solution of 8.8 mM β - 143 CD, and the experiment repeated, a much more substantial 144

Figure 2. (A) Synthetic scheme for free-radical polymerization of SMe-AAP hydrogels. (B) Equilibrium areal swelling ratio versus temperature of SMe-AAP hydrogels in pure water (open symbols) and in 8.8 mM β -CD solution (filled symbols) in the 530 nmirradiated, *trans*-rich configuration (black) and in the 405 nmirradiated, *cis*-rich configuration (purple). (C) Swelling change as a function of temperature in water (black line) and in 8.8 mM β -CD solution (red line). Error bars represent standard deviations over 3 samples.

145 response is observed, with a change of up to \approx 40% in area 146 upon irradiation at 25 °C. In all cases, the gels exhibit lower 147 critical solution temperature behavior that is characteristic of 148 PNIPAM. Importantly, the deswelling transition is shifted to 149 slightly higher temperatures in the β -CD solution when the 150 gels are exposed to 405 nm light. The light-triggered swelling 151 response of the SMe-AAP gels is opposite to that of our 152 previously reported host—guest hydrogels, where, upon trans—153 cis isomerization, the azobenzene decomplexes from the CD, 154 resulting in a more hydrophobic network and subsequent 155 deswelling. From these results, we hypothesize that the SMe-156 AAP binds more strongly to the CD in the cis configuration 157 than in the trans configuration, resulting in a more hydrophilic 158 network in the cis-rich state, which drives higher swelling 159 ratios.

To investigate the binding behavior of the SMe-AAP with β 161 CD, a linear, water-soluble copolymer containing N,N162 dimethylacrylamide (DMAM) and SMe-AAP-Ac was synthe163 sized (Scheme S4 and Figure S1) and isothermal titration

calorimetry (ITC) was conducted to determine the binding 164 constants in the trans and the cis configurations. DMAM was 165 chosen because a PNIPAM copolymer with equivalent AAP 166 loading was not water-soluble at room temperature. ITC 167 curves fitted to a 1:1 independent binding model are shown in 168 Figure S4. The ITC confirms the somewhat tighter binding of 169 the cis isomer to the β -CD, with a binding constant of 240 M⁻¹ 170 in the *trans* configuration and 450 M^{-1} in the *cis* configuration. 171 We additionally conducted NMR titration as an alternative 172 method to measure the association constants and found good 173 agreement with the ITC data; however, poorer fit quality 174 resulted in significantly larger errors (Figure S5). Generally, 175 substitution of the phenyl ring has a significant impact on the 176 supramolecular complexation of AAPs with β -CD; however, to 177 our knowledge, no other AAPs have been reported to show 178 stronger binding affinity for the cis isomer over the trans 179 isomer, leading us to infer that the methyl thioether substituent 180 is responsible for the binding behavior observed here. For 181 example, AAP derivatives with methyl, methoxy, isopropyl, and 182 isopropoxy, and tert-butyl groups installed in the para position, 183 as well as the unsubstituted version, have been shown to bind 184 to β -CD more strongly in the *trans* isomer by factors of 185 approximately 2-9.36,3

The host-guest complex was further investigated via nuclear 187 Overhauser effect spectroscopy (NOESY), a 2D NMR 188 experiment that probes cross-relaxation between nuclei that 189 are close in space. To enhance water solubility of the SMe-AAP 190 for the NOESY experiment, a pyridinium salt derivative (SMe- 191 AAP-Py) was synthesized (Scheme S5). We note that a similar 192 strategy was used to conduct NOESY on tetra-ortho-methoxy 193 azobenzene.³⁷ Selected regions of NOESY spectra for dark 194 adapted and cis-rich SMe-AAP-Py are shown in Figure 2A,B, 195 respectively. Cross peaks between AAP protons and CD 196 protons in the NOESY spectra indicate that those protons are 197 close in space and thus binding is occurring. Specifically, in the 198 trans configuration, cross peaks are seen between the interior 199 protons near the wide rim of the CD (H₃) and the methyl 200 protons on the pyrazole ring of the AAP (H_b and H_c). 201 Additionally, a weak cross peak is observed between the 202 narrow rim protons of the CD (H₆) and the methyl thioether 203 protons of the AAP (Ha). In the cis configuration, cross peaks 204 are still present between H₃ and H_b and H_c (H_b is shifted out 205 of the range of chemical shifts shown in the spectrum); 206 however, the thiomethyl protons H_a now display a strong cross 207 peak with the interior protons near the narrow end of the CD 208 (H₅), indicating that the CD now sits further away from the 209 pyrazole end of the AAP. In both isomers, strong peaks are 210 observed between the aromatic protons of the AAP and both 211 interior H₃ and H₅ of the CD (Figure S6). Importantly, no 212 cross peaks were observed between the CD and any of the 213 protons on the chain linking the AAP to the pyridinium ring, 214 which is consistent with previous work that suggests that the 215 CD cannot pass entirely over the dimethylpyrazole group due 216 to steric bulk. 42 We hypothesize that the bulkiness of both the 217 thiomethyl group and the dimethylpyrazole group is 218 unfavorable to binding, as suggested by the lower binding 219 constants in both isomers compared to similar AAPs. However, 220 in the cis configuration, we hypothesize that the rotation of the 221 pyrazole ring out of plane allows for the CD to better 222 accommodate the bulky thiomethyl group, as evidenced by the 223 shift away from the dimethylpyrazole ring, resulting in more 224 favorable binding. We note that a more in-depth study is 225 necessary to elucidate a detailed binding mechanism.

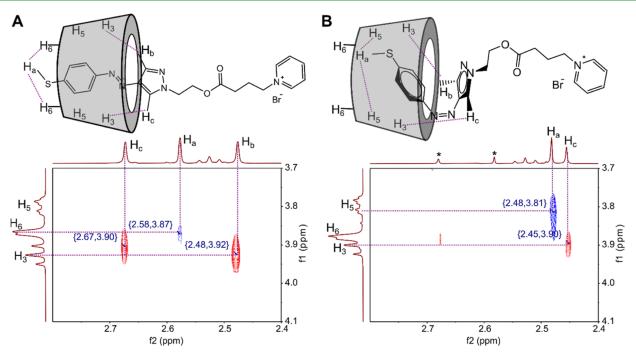


Figure 3. Schematics and selected region of 2D-NOESY spectra of SMe-AAP-Py and β-CD for (A) dark adapted, *trans* configuration and (B) 405 nm-irradiated, *cis*-rich configuration. Purple dashed lines indicate through-space correlations of nearby protons. Asterisks denote residual *trans* peaks in the *cis* spectrum due to incomplete switching.

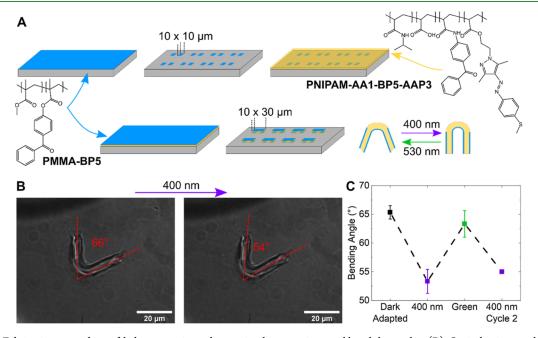


Figure 4. (A) Fabrication procedure of light-responsive trilayer microhinges using maskless lithography. (B) Optical micrographs showing the change in bending angle of the hinges upon light irradiation (400 nm, 25 mW/cm^2). (C) Bending angle of the hinges plotted against the irradiation cycle.

Next, we demonstrate that the reversible host—guest complexation between the AAP and β -CD can be used to 229 create microactuators using a trilayer fabrication scheme. First, 230 two linear polymers containing 5 mol % of photo-cross-231 linkable benzophenone derivative as a comonomer were 232 synthesized: a poly(methyl methacrylate) (PMMA-BP5) and 233 a poly(N-isopropylacrylamide), which also contains SMe-AAP-234 Ac at 3 mol % to impart light responsiveness and acrylic acid at 235 1 mol % to increase swelling (PNIPAM-AA1-BP5-AAP3) 236 (synthetic details are given in Schemes S8 and S9). The

polymer structures, as well as the trilayer fabrication scheme, ²³⁷ are shown in Figure 3A. In short, a thin (\sim 100 nm) film of ²³⁸ f3 PMMA-BP5 was spin-coated onto a poly(vinyl alcohol) release ²³⁹ layer on a silicon substrate, and pairs of 10 μ m by 10 μ m ²⁴⁰ squares with a gap of 10 μ m were fabricated using maskless ²⁴¹ lithography. Following development, a thick (\sim 1 μ m) layer of ²⁴² PNIPAM-AA1-BP5-AAP3 and another thin (\sim 100 μ m) film of ²⁴³ PMMA-BP5 were spin-coated, and rectangles connecting the ²⁴⁴ pairs of squares were fabricated and developed. Upon ²⁴⁵ development and release into dilute phosphate-buffered saline ²⁴⁶

Figure 5. (A) Fabrication procedure of wrinkling bilayers using a photo-cross-linkable and light-responsive thin film on a passive, soft layer, which is attached to a glass substrate. (B) Photopatterning scheme of wrinkling bilayers wherein 400 nm light (25 mW/cm^2) is projected off a digital micromirror array and through a 10x microscope objective focused onto the bilayer. (C) Optical micrographs of bilayer films after being cooled to room temperature to induce wrinkling. Insets show the pattern of light projected onto the bilayer. Scale bars represent 80 μ m.

247 with 8.8 mM β -CD, the particles bend into a "hinge" shape, 248 since the PMMA layers prevent in-plane expansion of the 249 PNIPAM layer. This strategy has been previously employed by 250 our group to fabricate a self-folding origami. 43

The hinges are imaged under an inverted microscope 252 equipped with a 100x objective lens and digital micromirror 253 array to project light onto the sample, as well as a 400 nm LED 254 and a white light source that passes through a 520-540 nm 255 filter cube to produce green light (the equipment setup is 256 described in detail elsewhere). Figure 4B illustrates the 257 bending behavior of the hinge in response to illumination. The 258 dark equilibrated hinges bend to an internal angle of 66°, and upon irradiation with 400 nm light (25 mW/cm^2) , the bending 260 angle decreases to 54°. Irradiation with green light reverts the 261 hinge nearly back to the original bending angle (Figure 4C). 262 Importantly, since the PNIPAM layers are thin, these responses occur in only a few seconds, since the process is 264 limited by poroelastic diffusion of water through the polymer 265 network. 45 Videos of the actuation behavior in response to 400 nm light and green light are shown in Videos S1 and S2, respectively. Although further optimization of geometry and 268 material parameters is necessary to improve the magnitude of the light response, this approach represents a proof-of-concept design for hydrogel-based photoactuators on the micron scale. Finally, the AAP-containing hydrogel was used in a bilayer construction to generate photochemically patterned surface wrinkles by leveraging a swelling-induced mechanical insta-274 bility. When a thin, hard layer is fixed to a thick, soft layer and the bilayer is subjected to a compressive stress that exceeds a

276 critical value, the structure will undergo a mechanical

277 instability and form periodic wrinkles. 46 The critical strain

278 for wrinkle formation $\varepsilon_{\rm c}$ and the wavelength λ of the resulting

279 wrinkles are given by eqs 2 and 3, respectively, where $\overline{E}_{\rm h}$ and $\overline{E}_{\rm s}$

280 are the plane strain moduli of the hard and soft layer,

281 respectively, and t_h is the thickness of the hard layer.⁴

$$\varepsilon_{\rm c} = \frac{1}{4} \left(\frac{3\overline{E}_{\rm s}}{\overline{E}_{\rm h}} \right)^{2/3} \tag{2}_{282}$$

$$\lambda = 2\pi t_{\rm h} \left(\frac{\overline{E}_{\rm h}}{3\overline{E}_{\rm s}}\right)^{1/3} \tag{3}$$

We use the AAP-containing, photo-cross-linkable polymer 284 PNIPAM-AA1-BP5-AAP3 as the thin, hard layer by first drop- 285 casting the polymer onto a glass slide and uniformly curing the 286 film with 365 nm light. The slide and film are then made into a 287 cell with a second glass slide, which has been treated with the 288 adhesion promoter 3-(trimethoxysilyl)propyl methacrylate to 289 form covalent bonds between the hydrogel and the glass 290 substrate, and 125 μ m-thick Kapton spacers. A solution of 291 DMAM, BIS, ammonium persulfate, and tetramethylethylene- 292 diamine is then infiltrated into the cell and allowed to gel to 293 form the soft layer. This process is illustrated in Figure 5A and 294 f5 described in greater detail in the Supporting Information. 295 Upon infiltration, the DMAM pregel solution swells into the 296 hard film layer and forms an interpenetrating network structure 297 that facilitates adhesion between the layers; however, this 298 swelling is not extensive enough to delaminate the film from 299 the slide it was cast on. We found that when the PNIPAM 300 polymer film instead contained 5 mol % acrylic acid, the high 301 degree of swelling following infiltration caused complete 302 delamination of the film from the glass. The bilayer samples 303 are allowed to gel and are then immersed in 45 °C deionized 304 water for ≈3 days to fully delaminate from the glass substrate. 305 Warm water is used to prevent the bilayer from wrinkling 306 before light patterning can be conducted.

We estimate that the hard PNIPAM layer has a plane strain 308 modulus of \approx 400 kPa, ⁴⁸ and the thickness of this film is 309 approximately 1–2 μ m. The monomer and cross-linker 310 concentration of the DMAM layer was tailored to target a 311

372

373

389

390

391

392

393

394

395

397

398

399

401

402

409

410

411

415

416

417

424

312 plane strain modulus of \approx 90 kPa. ^{49,50} These moduli result in a 313 calculated critical strain of approximately 19% from eq 2, 314 which would enable a transition from flat to wrinkled during 315 cooling of the bilayer due to the swelling of the 316 thermoresponsive hard layer to a linear strain of around 30% 317 at room temperature. The calculated wavelength of the 318 resulting wrinkles from eq 3 is 7–14 μ m. When the bilayers 319 are released and allowed to swell in room temperature water in 320 the absence of light, a mixture of herringbone and disordered wrinkles with a wavelength of $\approx 13 \ \mu m$ develops (Figure S7). 322 Both wrinkle morphologies are possible under biaxial compression.⁵¹

We then employ the inverted microscope and digital 324 325 micromirror array described above to project patterned 400 326 nm light onto the bilayers before cooling. Because the cis-rich gels display a shift of the deswelling transition to slightly higher temperatures, cooling of the bilayer will cause the illuminated 329 regions to cross the critical threshold for wrinkling before the 330 rest of the sample, thus creating patterned wrinkles. These 331 initial wrinkles then direct the pattern of the nonpatterned 332 regions when they cross the wrinkling threshold (Figure 5B). 333 Several patterns are used, as indicated in Figure 5C, where the 334 inset shows the projected 400 nm light pattern, and the image shows the wrinkled bilayer after cooling to room temperature. 336 Images of the entire field of view are given in Figure S8. We 337 found that the pattern from the illuminated regions was able to 338 direct pattern formation in the nonilluminated regions within a 339 range of \approx 20–30 μ m in each direction. Therefore, patterns were designed with a line-to-line distance of 40 μ m. When a large spacing was used, the pattern failed to fully propagate 342 between illuminated regions (Figure S9). Importantly, the 343 wrinkles could be erased by immersion in warm water again, allowing the same sample to be reused multiple times for a variety of patterns. Videos of cooling and wrinkle formation as 346 well as heating and wrinkle erasure are given in Videos S3-S5. 347 Although photochemically patterned surface wrinkles have 348 been demonstrated previously using mechanisms such as 349 anthracene dimerization, 52,53 and azobenzene isomerization 54 350 in polymeric systems, this approach represents a straightfor-351 ward method for photochemical patterning of surface wrinkles 352 in a hydrogel, which has potential for biological applications 353 such as dynamic cell culture substrates.

CONCLUSIONS

355 In conclusion, we have developed light-responsive supra-356 molecular hydrogels that operate entirely under visible light by 357 using the photoreversible host-guest complexation between thiomethyl-substituted AAP and β -CD. We found that this 359 AAP exhibits stronger binding to the β -CD in the cis 360 configuration than in the trans configuration, a result opposite 361 to previously reported systems. This binding behavior results 362 in swelling of the hydrogel under trans to cis isomerization 363 using purple light that is rapid and reversible. We then employ 364 the hydrogels in a trilayer construction to demonstrate light-365 induced bending as well as in a bilayer construction to 366 demonstrate patterned surface wrinkles using light. Given the 367 high degree of biocompatibility afforded by hydrogels and the 368 absence of cytotoxic UV light, these design concepts are 369 anticipated to assist in future creation of advanced, dynamic 370 materials that can be interfaced with cells and biological 371 tissues.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 374 https://pubs.acs.org/doi/10.1021/acsapm.4c00917.

Materials, equipment, detailed experimental methods, 376 photoswitching data of the AAP monomer, ITC, NMR 377 titration study, full NOESY spectra of AAP/ β -CD 378 complexes, and optical micrographs of the bilayer film 379 of PNIPAM and PDMAM and of wrinkles patterned 380 with 10 μ m-thick horizontal lines with a line-to-line 381 spacing of 110 μ m and full field of view optical 382 micrographs of wrinkled bilayers (PDF) 383 400 nm exposure of the trilayer microhinge (MP4) Green-light exposure of the trilayer microhinge (MP4) 385 Straight-line wrinkle formation during cooling (MP4) 386 Concentric-ring wrinkle formation during cooling 387

Heating and erasure of straight-line wrinkles (MP4)

AUTHOR INFORMATION

Corresponding Authors

Kesete Ghebreyessus – Department of Chemistry and Biochemistry, Hampton University, Hampton, Virginia 23668, United States; orcid.org/0000-0003-4273-7556; Email: Kesete.Ghebreyessus@hamptonu.edu

Ryan C. Hayward - Department of Chemical and Biological 396 Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States; Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States; o orcid.org/0000-400 0001-6483-2234; Email: ryan.hayward@colorado.edu

Authors

Joseph C. Roback - Department of Chemical and Biological 403 Engineering, University of Colorado Boulder, Boulder, 404 Colorado 80303, United States 405

Montana B. Minnis – Department of Chemical and Biological 406 Engineering, University of Colorado Boulder, Boulder, 407 Colorado 80303, United States 408

Complete contact information is available at: https://pubs.acs.org/10.1021/acsapm.4c00917

Author Contributions

The manuscript was written through contributions of all 412 authors. All authors have given approval to the final version of 413 the manuscript.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Brandeis MRSEC through 418 grant DMR-2011846 and by the National Science Foundation 419 Hampton-Brandeis Partnership for Research and Education in 420 Materials (PREM) through grant 1827820. M.B.M. acknowl- 421 edges support from the National Defense Science and 422 Engineering (NDSEG) Fellowship Program.

REFERENCES

(1) Jeon, S.-J.; Hauser, A. W.; Hayward, R. C. Shape-Morphing 425 Materials from Stimuli-Responsive Hydrogel Hybrids. Acc. Chem. Res. 426 **2017**, *50* (2), 161–169.

- 428 (2) Kim, J.; Hanna, J. A.; Byun, M.; Santangelo, C. D.; Hayward, R. 429 C. Designing Responsive Buckled Surfaces by Halftone Gel 430 Lithography. *Science* **2012**, 335 (6073), 1201–1205.
- 431 (3) Ionov, L. Hydrogel-Based Actuators: Possibilities and 432 Limitations. *Mater. Today* **2014**, *17* (10), 494–503.
- 433 (4) Li, C.; Kazem-Rostami, M.; Seale, J. S. W.; Zhou, S.; Stupp, S. I. 434 Macroscopic Actuation of Bisazo Hydrogels Driven by Molecular
- 435 Photoisomerization. *Chem. Mater.* **2023**, *35* (10), 3923–3930. 436 (5) Li, C.; Lau, G. C.; Yuan, H.; Aggarwal, A.; Dominguez, V. L.; 437 Liu, S.; Sai, H.; Palmer, L. C.; Sather, N. A.; Pearson, T. J.; Freedman,
- 438 D. E.; Amiri, P. K.; de la Cruz, M. O.; Stupp, S. I. Fast and 439 Programmable Locomotion of Hydrogel-Metal Hybrids under Light 440 and Magnetic Fields. *Sci. Robot.* **2020**, *5* (49), No. eabb9822.
- 441 (6) Zhao, Y.; Xuan, C.; Qian, X.; Alsaid, Y.; Hua, M.; Jin, L.; He, X. 442 Soft Phototactic Swimmer Based on Self-Sustained Hydrogel 443 Oscillator. *Sci. Robot.* **2019**, *4* (33), No. eaax7112.
- 444 (7) Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. 445 Photodegradable Hydrogels for Dynamic Tuning of Physical and 446 Chemical Properties. *Science* **2009**, 324 (5923), 59–63.
- 447 (8) Käpylä, E.; Delgado, S. M.; Kasko, A. M. Shape-Changing 448 Photodegradable Hydrogels for Dynamic 3D Cell Culture. *ACS Appl.* 449 *Mater. Interfaces* **2016**, 8 (28), 17885–17893.
- 450 (9) Hoffman, A. S. Hydrogels for Biomedical Applications. *Adv.* 451 *Drug Delivery Rev.* **2012**, 64, 18–23.
- 452 (10) Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. 453 Stimulus-Responsive Hydrogels: Theory, Modern Advances, and 454 Applications. *Mater. Sci. Eng.: R: Rep.* **2015**, 93, 1–49.
- 455 (11) Stowers, R. S.; Allen, S. C.; Suggs, L. J. Dynamic Phototuning 456 of 3D Hydrogel Stiffness. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112* (7), 457 1953–1958.
- 458 (12) Hauser, A. W.; Evans, A. A.; Na, J.-H.; Hayward, R. C. 459 Photothermally Reprogrammable Buckling of Nanocomposite Gel 460 Sheets. *Angew. Chem., Int. Ed.* **2015**, *54* (18), 5434–5437.
- 461 (13) Shi, Q.; Xia, H.; Li, P.; Wang, Y.-S.; Wang, L.; Li, S.-X.; Wang, 462 G.; Lv, C.; Niu, L.-G.; Sun, H.-B. Photothermal Surface Plasmon 463 Resonance and Interband Transition-Enhanced Nanocomposite 464 Hydrogel Actuators with Hand-Like Dynamic Manipulation. *Adv.* 465 *Opt. Mater.* **2017**, *5* (22), 1700442.
- 466 (14) Zhu, Z.; Senses, E.; Akcora, P.; Sukhishvili, S. A. Programmable 467 Light-Controlled Shape Changes in Layered Polymer Nanocompo-468 sites. *ACS Nano* **2012**, *6* (4), 3152–3162.
- 469 (15) Kim, H.; Kang, J.-H.; Zhou, Y.; Kuenstler, A. S.; Kim, Y.; Chen, 470 C.; Emrick, T.; Hayward, R. C. Light-Driven Shape Morphing, 471 Assembly, and Motion of Nanocomposite Gel Surfers. *Adv. Mater.* 472 **2019**, 31 (27), 1900932.
- 473 (16) Kim, D.; Lee, H. S.; Yoon, J. Highly Bendable Bilayer-Type 474 Photo-Actuators Comprising of Reduced Graphene Oxide Dispersed 475 in Hydrogels. *Sci. Rep.* **2016**, *6* (1), 20921.
- 476 (17) Kuenstler, A. S.; Hayward, R. C. Light-Induced Shape 477 Morphing of Thin Films. *Curr. Opin. Colloid Interface Sci.* **2019**, 40, 478 70–86.
- 479 (18) Satoh, T.; Sumaru, K.; Takagi, T.; Kanamori, T. Fast-Reversible 480 Light-Driven Hydrogels Consisting of Spirobenzopyran-Function-481 alized Poly(N-Isopropylacrylamide). *Soft Matter* **2011**, 7 (18), 8030– 482 8034.
- 483 (19) Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-484 Driven Expansion of Spiropyran Hydrogels. *J. Am. Chem. Soc.* **2020**, 485 *142* (18), 8447–8453.
- 486 (20) Kuksenok, O.; Balazs, A. C. Modeling the Photoinduced 487 Reconfiguration and Directed Motion of Polymer Gels. *Adv. Funct.* 488 *Mater.* **2013**, 23 (36), 4601–4610.
- 489 (21) Ziółkowski, B.; Florea, L.; Theobald, J.; Benito-Lopez, F.; 490 Diamond, D. Self-Protonating Spiropyran- Co -NIPAM- Co -Acrylic 491 Acid Hydrogel Photoactuators. *Soft Matter* **2013**, *9* (36), 8754–8760.
- 492 (22) Kortekaas, L.; Browne, W. R. The Evolution of Spiropyran: 493 Fundamentals and Progress of an Extraordinarily Versatile Photo-
- 494 chrome. Chem. Soc. Rev. 2019, 48 (12), 3406–3424. 495 (23) Chen, J.; Huang, J.; Zhang, H.; Hu, Y. A Photoresponsive 496 Hydrogel with Enhanced Photoefficiency and the Decoupled Process

- of Light Activation and Shape Changing for Precise Geometric 497 Control. ACS Appl. Mater. Interfaces 2020, 12 (34), 38647–38654. 498 (24) Xiang, S.-L.; Su, Y.-X.; Yin, H.; Li, C.; Zhu, M.-Q. Visible-Light- 499
- Driven Isotropic Hydrogels as Anisotropic Underwater Actuators. 500 Nano Energy 2021, 85, 105965.
- (25) Jiang, Z.; Tan, M. L.; Taheri, M.; Yan, Q.; Tsuzuki, T.; 502 Gardiner, M. G.; Diggle, B.; Connal, L. A. Strong, Self-Healable, and 503 Recyclable Visible-Light-Responsive Hydrogel Actuators. *Angew.* 504 *Chem.* 2020, 132 (18), 7115–7122.
- (26) Amir, F.; Li, X.; Gruschka, M. C.; Colley, N. D.; Li, L.; Li, R.; 506 Linder, H. R.; Sell, S. A.; Barnes, J. C. Dynamic, Multimodal Hydrogel 507 Actuators Using Porphyrin-Based Visible Light Photoredox Catalysis 508 in a Thermoresponsive Polymer Network. *Chem. Sci.* **2020**, *11* (40), 509 10910–10920.
- (27) Barrett, C. J.; Mamiya, J.; Yager, K. G.; Ikeda, T. Photo- 511 Mechanical Effects in Azobenzene-Containing Soft Materials. *Soft* 512 *Matter* **2007**, 3 (10), 1249–1261.
- (28) Matsubara, K.; Watanabe, M.; Takeoka, Y. A Thermally 514 Adjustable Multicolor Photochromic Hydrogel. *Angew. Chem., Int. Ed.* 515 **2007**, 46 (10), 1688–1692.
- (29) Kuenstler, A. S.; Lahikainen, M.; Zhou, H.; Xu, W.; Priimagi, 517 A.; Hayward, R. C. Reconfiguring Gaussian Curvature of Hydrogel 518 Sheets with Photoswitchable Host-Guest Interactions. *ACS Macro* 519 Lett. **2020**, 9 (8), 1172–1177.
- (30) Harada, A. Cyclodextrin-Based Molecular Machines. *Acc. Chem.* 521 *Res.* **2001**, *34* (6), 456–464. 522
- (31) Tomatsu, I.; Hashidzume, A.; Harada, A. Photoresponsive 523 Hydrogel System Using Molecular Recognition of α -Cyclodextrin. 524 *Macromolecules* **2005**, 38 (12), 5223–5227.
- (32) Zhao, Y.-L.; Stoddart, J. F. Azobenzene-Based Light-Responsive 526 Hydrogel System. *Langmuir* **2009**, 25 (15), 8442–8446.
- (33) Rosales, A. M.; Rodell, C. B.; Chen, M. H.; Morrow, M. G.; 528 Anseth, K. S.; Burdick, J. A. Reversible Control of Network Properties 529 in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. *Bio-* 530 conjugate Chem. **2018**, 29 (4), 905–913.
- (34) Iwaso, K.; Takashima, Y.; Harada, A. Fast Response Dry-Type 532 Artificial Molecular Muscles with [C2]Daisy Chains. *Nat. Chem.* 533 **2016**, 8 (6), 625–632.
- (35) Ma, W.; Fang, H.; Tian, D.; Zheng, L.; Xie, M.; Sun, R. Solvent- 535 Free Stretchable Photo-Responsive Supramolecular Actuator Topo- 536 logically Cross-Linked by Azobenzene-Cyclodextrin Based Slide-Ring 537 System. *Dyes Pigm.* **2022**, 200, 110120. 538
- (36) Stricker, L.; Bockmann, M.; Kirse, T.; Doltsinis, N.; Ravoo, B. 539 Arylazopyrazole Photoswitches in Aqueous Solution: Substituent 540 Effects, Photophysical Properties, and Host-Guest Chemistry. 541 Chemistry 2018, 24, 8639–8647.
- (37) Wang, D.; Wagner, M.; Butt, H.-J.; Wu, S. Supramolecular 543 Hydrogels Constructed by Red-Light-Responsive Host-Guest Inter- 544 actions for Photo-Controlled Protein Release in Deep Tissue. *Soft 545 Matter* **2015**, *11* (38), 7656–7662.
- (38) Lamping, S.; Stricker, L.; Ravoo, B. J. Responsive Surface 547 Adhesion Based on Host-Guest Interaction of Polymer Brushes with 548 Cyclodextrins and Arylazopyrazoles. *Polym. Chem.* **2019**, *10* (6), 683–549 690.
- (39) Lee, D. C.; Guye, K. N.; Paranji, R. K.; Lachowski, K.; Pozzo, L. 551 D.; Ginger, D. S.; Pun, S. H. Dual-Stimuli Responsive Single-Chain 552 Polymer Folding via Intrachain Complexation of Tetramethoxyazo-553 benzene and β -Cyclodextrin. Langmuir 2021, 37 (33), 10126–10134. 554
- (40) Yan, H.; Qiu, Y.; Wang, J.; Jiang, Q.; Wang, H.; Liao, Y.; Xie, X. 555 Wholly Visible-Light-Responsive Host–Guest Supramolecular Gels 556 Based on Methoxy Azobenzene and β -Cyclodextrin Dimers. *Langmuir* 557 **2020**, 36 (26), 7408–7417.
- (41) Bhunia, S.; Dolai, A.; Samanta, S. Robust Bi-Directional 559 Photoswitching of Thiomethyl Substituted Arylazopyrazoles under 560 Visible Light. *Chem. Commun.* **2020**, 56 (70), 10247–10250.
- (42) Stricker, L.; Fritz, E.-C.; Peterlechner, M.; Doltsinis, N. L.; 562 Ravoo, B. J. Arylazopyrazoles as Light-Responsive Molecular Switches 563 in Cyclodextrin-Based Supramolecular Systems. *J. Am. Chem. Soc.* 564 **2016**, 138 (13), 4547–4554.

- 566 (43) Na, J.-H.; Evans, A. A.; Bae, J.; Chiappelli, M. C.; Santangelo, 567 C. D.; Lang, R. J.; Hull, T. C.; Hayward, R. C. Programming 568 Reversibly Self-Folding Origami with Micropatterned Photo-Cross-569 linkable Polymer Trilayers. Adv. Mater. 2015, 27 (1), 79—85. 570 (44) Limberg, D. K.; Kang, J.-H.; Hayward, R. C. Triplet-Triplet 571 Annihilation Photopolymerization for High-Resolution 3D Printing. J. 572 Am. Chem. Soc. 2022, 144 (12), 5226—5232. 573 (45) Yoon, J.; Cai, S.; Suo, Z.; Hayward, R. C. Poroelastic Swelling 574 Kinetics of Thin Hydrogel Layers: Comparison of Theory and 575 Experiment. Soft Matter 2010, 6 (23), 6004—6012.
- 575 Experiment. Soft Matter 2010, 6 (23), 6004–6012.
 576 (46) Yang, S.; Khare, K.; Lin, P.-C. Harnessing Surface Wrinkle
 577 Patterns in Soft Matter. Adv. Funct. Mater. 2010, 20 (16), 2550–2564.
 578 (47) Chen, C.-M.; Yang, S. Wrinkling Instabilities in Polymer Films
 579 and Their Applications. Polym. Int. 2012, 61 (7), 1041–1047.
 580 (48) Bae, J.; Ouchi, T.; Hayward, R. C. Measuring the Elastic
 581 Modulus of Thin Polymer Sheets by Elastocapillary Bending. ACS
 582 Appl. Mater. Interfaces 2015, 7 (27), 14734–14742.
- 583 (49) Gundogan, N.; Okay, O.; Oppermann, W. Swelling, Elasticity 584 and Spatial Inhomogeneity of Poly(N,N-Dimethylacrylamide) Hydro-585 gels Formed at Various Polymer Concentrations. *Macromol. Chem.* 586 *Phys.* **2004**, 205 (6), 814–823.
- 588 (50) Ikeda-Fukazawa, T.; Ikeda, N.; Tabata, M.; Hattori, M.; Aizawa, S88 M.; Yunoki, S.; Sekine, Y. Effects of Crosslinker Density on the S89 Polymer Network Structure in Poly-N,N-Dimethylacrylamide Hydros90 gels. J. Polym. Sci., Part B: Polym. Phys. 2013, 51 (13), 1017–1027. 591 (51) Lin, P.-C.; Yang, S. Spontaneous Formation of One-592 Dimensional Ripples in Transit to Highly Ordered Two-Dimensional S93 Herringbone Structures through Sequential and Unequal Biaxial 594 Mechanical Stretching. Appl. Phys. Lett. 2007, 90 (24), 241903. 595 (52) Hou, H.; Yin, J.; Jiang, X. Smart Patterned Surface with
- 596 Dynamic Wrinkles. Acc. Chem. Res. 2019, 52 (4), 1025–1035.
 597 (53) Chen, S.; Hu, K.; Yan, S.; Ma, T.; Deng, X.; Zhang, W.; Yin, J.;
 598 Jiang, X. Dynamic Metal Patterns of Wrinkles Based on Photo599 sensitive Layers. Sci. Bull. 2022, 67, 2186–2195.
- 600 (54) Zong, C.; Zhao, Y.; Ji, H.; Han, X.; Xie, J.; Wang, J.; Cao, Y.; 601 Jiang, S.; Lu, C. Tuning and Erasing Surface Wrinkles by Reversible 602 Visible-Light-Induced Photoisomerization. *Angew. Chem., Int. Ed.* 603 **2016**, 55 (12), 3931–3935.