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We study the voting game where agents’ preferences are endogenous decided by the information they receive,
and they can collaborate in a group. We show that strategic voting behaviors have a positive impact on leading
to the “correct” decision, outperforming the common non-strategic behavior of informative voting and sincere
voting. Our results give merit to strategic voting for making good decisions.

To this end, we investigate a natural model, where voters’ preferences between two alternatives depend on a
discrete state variable that is not directly observable. Each voter receives a private signal that is correlated with
the state variable. We reveal a surprising equilibrium between a strategy profile being a strong equilibrium
and leading to the decision favored by the majority of agents conditioned on them knowing the ground truth
(referred to as the informed majority decision) : as the size of the vote goes to infinity, every e-strong Bayes
Nash Equilibrium with ¢ converging to 0 formed by strategic agents leads to the informed majority decision
with probability converging to 1. On the other hand, we show that informative voting leads to the informed
majority decision only under unbiased instances, and sincere voting leads to the informed majority decision
only when it also forms an equilibrium.

1 INTRODUCTION

Today, voting is used to make an array of binary decisions permeating nearly every corner of life
including in recall/run-off public elections, adoption of decrees by religious institutions, decisions
by corporate boards on whether or not to pursue a new strategy/acquisition/etc, hiring and by-law
decisions at university, and public entertainments like talent shows. In most cases, the voting is
attempting to aggregate both the agents’ preferences and knowledge. A key aspect of this setting is
that agents have preferences over outcomes contingent on some underlying state that they cannot
directly observe, and the goal is to make a “good” decision that reflects the real preferences of the
agents.

ExXAMPLE 1. Suppose the voters vote to decide the policy towards the COVID-19 pandemic. The
two choices are to accept the more-restrictive policy (Accept) and to keep the status quo (Reject). The
consequence of the policy depends on the fact that the COVID virus is of high or low risk, and more
people tend to accept the policy when COVID is of high risk than when COVID is of low risk. The voters
do not know the risk level of the virus directly. Instead, every voter forms a private judgment on the
risk level based on his/her own information sources. voters may have different opinions on whether
to accept the policy which may or may not depend on the risk level. Can the voters achieve a good
decision via the majority vote?

Three different lines of work aim to address this problem under different models and with
different goals. The first line of work is axiomatic social choice [1, 29], where agents’ preferences
are exogenously given, and the goal is to design voting rules that satisfy desiderata, often called
axioms, especially when agents sincerely report their preferences. The second line of work is along
the extensions of the Condorcet Jury Theorem [8], where agents’ preferences are endogenous and
depend on the information structure and the signals they receive. The goal is to design mechanisms
to reveal the true state of the world, especially when agents vote informatively, i.e., their votes
honestly reflect the private signals they receive. The survey by Nitzan and Paroush [27] provides a
comprehensive overview. The third line of work originated from Feddersen and Pesendorfer [11],
where agents’ preferences are endogenous as in the second line of work, yet the goal is different.
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Instead of revealing the true state of the world, the goal is to achieve informed majority decision,
which is the decision favored by the majority of the agents if the world state were known to them.
Our paper is along the third line of work.

1.1 Strategic Behaviors

Previous work shows that a good decision can be reached when agents follow sincere or informative
behaviors. However, when agents are strategic, they may have incentives to deviate from sincere or
informative voting to achieve a preferred result with a higher probability. This is not a problem for
axiomatic social choice, as strategic agents will always vote for their preferred alternative in binary
voting [3]. However, when agents have preferences decided by uncertain world states, the surprising
result by Austen-Smith and Banks [2] shows that even in binary voting, informative voting may
fail to form a Nash equilibrium. The key insight is that an agent’s vote makes a difference only
when all other votes form a tie, which means that when an agent strategically thinks about his/her
vote, effectively he/she gains more information about the ground truth (by assuming that other
votes are tied). This is illustrated in the following example.

ExampLE 2. Consider an instance of the COVID policy problem, where the utility of the agents and
signal distribution of different risk levels are shown in the tables below.

State High Signal Low Signal State Accept Reject
High Risk 0.9 0.1 High Risk 1 0
Low Risk 0.4 0.6 Low Risk 0 1

Table 1. Signal distributions. Table 2. Agents’ utilities.

Suppose all but one agents are informative and the remaining agent is strategic. Informative agents
vote for Accept when they receive a high signal and Reject when they receive a low signal. The strategic
agent only cares about the pivotal case where exactly half of the informative agents vote for Accept.
However, given that agents receive high signals with a probability of 0.9 given the risk level being high,
the pivotal case implies a high probability that the risk level is low, and the strategic agent will vote
for Reject even after receiving a high signal.

The above deviation of strategic binary voting with preferences endogenously affected by the
unobservable world state sharply contrasts with the axiomatic social choice where preferences
are exogenously given. In the latter case, the majority rule is strategy-proof while the former case
attracts a large literature to study the binary voting problem under game theoretical contexts,
studying the impact of strategic behavior. For the truth-revealing goal, Wit [38] and Myerson [24]
show that a selected equilibrium with mixed strategy reveals the world state with high probability.
Feddersen and Pesendorfer [12] show the existence of such equilibrium in any non-unanimous
voting, while in unanimous voting strategic voting has a constant probability to make a mistake. And
for the informed majority decision, Feddersen and Pesendorfer [11] adopt a model with continuous
world states and an asymptotically large number of agents whose preferences are drawn from a
distribution with full support on a continuum and show that the equilibrium is unique and always
leads to the informed majority decision with high probability. Schoenebeck and Tao [32] proposes
a mechanism incentivizing informative voting from agents and leading to the informed majority
decision with high probability.

Nevertheless, there are two aspects not addressed by previous works. Firstly, previous works
(except for Schoenebeck and Tao [32]) focus on Nash equilibrium which allows only individual
manipulation. In real-world scenarios, on the other hand, such strategic manipulation often occurs
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in a coalition of agents. Coalitional manipulation is more powerful than individual manipulation as
it allows multiple agents to coordinate and deviate at the same time. The following example shows
that a Nash equilibrium is still prone to a group of manipulators in binary voting,.

ExampLE 3. Consider an instance with three agents, whose utility is shown as follows.

Agent (High, Accept) (High, Reject) (Low, Accept) (Low, Reject)

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1

Table 3. The utility of three agents under different states and decisions.

The following strategy profile is a Nash equilibrium: agent 1 always votes for Accept, agent 2 votes
informatively, and agent 3 always votes for Reject. Here, agent 1 and 3 play their dominant strategies,
and, consequently, informative voting is the best strategy for agent 2. However, this strategy profile is
dominated by the profile where all agents vote informatively. Under informative voting, the decision in
accord with the state (Accept in High state, and Reject in Low state) is selected with a larger probability,
and the utility of agent 2 increases. On the other hand, the overall probability of choosing to Accept or
Reject does not change, so agent 1 and 3’s utilities remain the same.

Secondly, previous works focus on the existence of certain equilibria that achieves the goal
(revealing the world state or reaching the informed majority decision). However, the existence of
multiple equilibria [38], including “bad equilibria” that do not lead to the goal, makes the behavior
of strategic agents unpredictable, as it is uncertain which equilibrium agents will play. One response
to multiple equilibria is to select an equilibrium that is more “natural” or “reasonable” than others,
named equilibrium selection. However, equilibrium selection cannot guarantee that agents will play
the selected equilibrium, as it is unclear which equilibrium is more “natural” or “reasonable” in
many scenarios, and agents may not agree on a "more natural” equilibrium even if it exists.

As a consequence, the following research question remains unanswered: does binary voting
always lead to the informed majority decision with coalitional strategic agents?

1.2  Our contribution

We give a surprising confirmative answer to this question under mild conditions. We show that
coalitional strategic behaviors positively impact achieving the informed majority decision and
outperform non-strategic voting. We show that every equilibrium leads to the informed majority
decision, and every voting profile that leads to the informed majority decision is an equilibrium.
On the contrary, non-strategic behaviors lead to the informed majority decision only under certain
conditions. Our results give merit to strategic behaviors and extend Feddersen and Pesendorfer’s
results to settings with coalitional strategic agents.

We study the solution concept of e-strong Bayes Nash Equilibrium, which precludes groups of
agents from reaching higher expected utilities by coordinating. We show the equivalence of a
strategy profile being “good” (leading to the informed majority decision with high probability,
or, equivalently, of high fidelity) and being an e-strong Bayes Nash Equilibrium with ¢ = o(1)
(Theorem 2). We also guarantee the existence of an e-strong Bayes Nash with ¢ = 0(1) in any
instance (Theorem 3).

On the other hand, we characterize the conditions where strategy profiles succeed and fail to
achieve the informed majority decision. Applying these results, we study two common non-strategic
behavior - informative voting, where agents honestly reflect their private information in their votes,
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and sincere voting, where agents vote as if they are the only decision-maker. We show that (1)
informative voting leads to the informed majority decision only when the majority vote threshold
is unbiased compared with the signal distribution (Corollary 3), and (2) sincere voting leads to the
informed majority decision only when it is also an equilibrium (Corollary 4). These observations
indicate that strategic behavior “prevails” over non-strategic behaviors in binary voting!

The technical key for the probability analysis is to compute the excess expected vote share, i.e.,
the amount of expected vote share an alternative attracts that exceeds the threshold, and to upper
(or lower) bound the fidelity given different cases of excess expected vote shares. A strategy profile
has high fidelity if and only if its excess expected vote share is strictly positive (Theorem 4).

We follow the setting in Schoenebeck and Tao [33], which is an extension of the setting in
Austen-Smith and Banks 2], and consider agents with preferences contingent on underlying world
states in a single framework. Also, as in Example 1 and previous work, we assume that various
constraints in the real world prevent discussion after agents see their signals. Such constraints can
be of a time aspect (a quick decision must be made and there is no time for discussion), a procedural
aspect (a formal conference that prohibits participants from discussing privately before voting),
and/or a societal aspect (it is socially unsuitable to discuss some preferences), etc. Therefore, we
consider an ex-ante setting where the expected utilities are computed before agents receive their
signals.

1.3 Related Work

The famous Jury Theorem from Condorcet [8] has “formed the basis for the development of social
choice and collective decision-making as modern research fields” [27]. The theorem states that
a group of decision-makers could reveal the correct world state with a higher probability than
any individual in the group, and such probability converges to 1 as the number of group members
increases. A large literature on collective decision-making has followed Condorcet’s path trying to
extend the result into more general models [7, 16, 23, 28].

The game-theoretical study of the Condorcet Jury Theorem starts from Austen-Smith and
Banks [2]. Austen-Smith and Banks study a collaborative voting game where each agent shares
the same preference and receives a binary signal correlated with an unknown binary state of
the world. However, even in this case, they showed that sincere voting and informative voting
do not always form a Nash Equilibrium. As a consequence, the following works focus on the
effect of strategic behavior in the majority vote and propose equilibria that reveal the ground
truth [9, 12, 20, 24, 38]. Feddersen and Pesendorfer [11] adopt a similar information structure with
the game theoretical study of Condorcet Jury Theorem but aim to achieve a different goal of informed
majority decision. We distinguish our work from Feddersen and Pesendorfer’s in Appendix A.
Other generalizations of the Condorcet Jury Theorem include dependent agents [18, 26, 36], agents
with different competencies [4, 15, 25], and voting with more than two alternatives [14, 41].

Another line of work related to collective decision-making focuses on designing mechanisms
that lead to the correct decision. Recent work shows the reliability of the “surprisingly popular”
answer when agents are sincere [17, 31] and strategic [33]. In particular, Schoenebeck and Tao [33]
adopt the “surprisingly popular” technique into a social choice context with strategic agents, and
propose a truthful mechanism to aggregate information. They show that even in a setting where
agents have subjective preferences contingent on an objective underlying state, their mechanism
reveals the informed majority decision with high probability and is an (ex-ante) e-strong Bayes
Nash Equilibrium with ¢ converging to 0 at an exponential rate. Our work follows the setting in
Schoenebeck and Tao’s work, but our work is different in that the aggregation happens implic-
itly because agents are acting strategically rather than because a mechanism explicitly selects a
surprisingly popular answer.
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Our work is also related to information elicitation, which aims to collect truthful and high-
quality information from agents under a noisy information structure. Information elicitation is well
developed with multiple lines of research focusing on different aspects of the problem, including
scoring rules [6, 13], peer prediction mechanisms [22, 34, 35], Bayesian Truth Serum [30, 39],
and prediction markets [21, 40]. Unfortunately, information elicitation is incompatible with the
voting scenario in our paper for two reasons. Firstly, information elicitation requires agents to be
indifferent to the outcome, while agents are incentivized by the outcome of the vote. Secondly,
information elicitation uses payments to reward the agents, while voting does not have monetary
rewards.

2 MODELS AND PRELIMINARIES

We first present our model and results with binary world states and binary private signals, which
convey the main ideas of this work while also hiding much of the complexity. The general extension
into the non-binary setting is in Section 5. We follow the setting in Schoenebeck and Tao [33] and
consider agents with subjective preferences contingent on an objective underlying state in one
framework.

Alternatives and World States. N agents vote for two alternatives A (standing for “accept”) and R
(standing for “reject”). There are K = 2 possible world states ‘W = {L, H} (standing for “low risk”
and “high risk” respectively), where A is more preferred in H, and R is more preferred in L. We
use k to denote a generic world state. The world state is not directly observable by the agents. Let
Py =Pr[W = H] and Py, = Pr[W = L] be the common prior of the world states. We assume Py > 0
and Pp > 0.

Private Signals. Every agent receives a signal in S = {I, h}. We use m to denote a generic signal,
and S, to denote the random variable representing the signal that agent n receives. We assume the
signals agents receive are independent and have identical distributions conditioned on the world
state. Let P, = Pr[S, = m | W = k] be the probability that an agent receives signal m under world
state k. The signal distributions ((Ppg, Pig), (Pnr, Piz)) are also common knowledge. We assume
that the signals are positively correlated to the world states. Specifically, we have Py > Py and
Py < Pjp. On the other hand, we allow biased signals and DO NOT assume Py > Py or P < Py

Majority Vote. This paper considers the majority vote with threshold u. Each agent n votes for A
or R. If at least p - N agents vote for A, A is announced to be the winner; otherwise, R is announced
to be the winner.

Utility and Types of Agents. Each agent n has a utility which is a function of the true world state
and the outcome of the vote. Formally, we have v, : W x {A,R} — {0,1,..., B}, where B is the
positive integer upper bound. We assume that A is more preferable in H than in L, and R is the
opposite: for every agent n, v,(H, A) > v,(L,A) and v,,(H,R) < v,(L,R).

The different endogenous preferences of agents are reflected by different utility functions.
Predetermined agents always prefer the same alternative, and contingent agents have preferences
depending on the world state. Predetermined agents can be further divided into friendly and
unfriendly agents based on the alternative they prefer. For an agent n, if n is a friendly agent,
on(H,A) > v,(L,A) > v,(L,R) > v,(H,R); if n is an unfriendly agent, v,(L,R) > v,(H,R) >
on(H,A) > v,(L,A); and if n is a contingent agent, v,(H, A) > v,(H,R) and v, (L,R) > v,(L, A).

Let aF, ay, and a¢ be the approximated fraction of each type of agent. Formally, given N agents,
Nr = |ar - N| is the number of friendly agents, Ny = |ay - N is the number of unfriendly agents,
and Nc = N — Np — Ny is the number of contingent agents. ar, ay, and a¢ are common knowledge
and do not depend on N.
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Informed Majority Decision. The goal of the voting is to output the informed majority decision,
which is the alternative favored by the majority of the agents if the world state were known. The
informed majority decision shares the same threshold p as the majority vote threshold. If A is
preferred by at least p - N agents, then A is the informed majority decision; otherwise, R is the
informed majority decision.

In this paper, we assume that neither friendly agents nor unfriendly agents can dominate the
vote. Otherwise, the informed majority decision does not depend on the state and one coalition can
always enact it via a dominant strategy. As a result, A is the informed majority decision when the
world state is H, and R is the informed majority decision when the world state is L.

ExampLE 4. Consider the COVID policy-making scenario. N = 20 voters decide whether to accept
(denoted as A) or reject (denote as R) the more-restrictive policy. The world state {L, H} describes the
real risk level of the virus. W = H means high risk level, and W = L means low risk level. The voters’
beliefs form a common prior based on some preliminary reports. Suppose Py = 0.4 and P, = 0.6, which
means the risk level has a prior probability of 0.4 to be high.

Every voter receives a private signal l or h from his/her information sources. The signals somehow
reflect the risk level but are noisy. Suppose this is a biased scenario (for example, there has been a boost
of positive cases in the past week), and members are always more likely to receive the high signal. For
example, Py = 0.8 and P, = 0.6, i.e., a voter will receive an h signal with probability 0.8 if the risk
level is high and receive an h signal with probability 0.6 if the risk level is low.

(Winner, World State) (A,H) (A,L) (R.H) (RL)

Friendly agent 8 6 2 4
Unfriendly agent 3 1 5 8
Contingent agent 3 2 1 8

Table 4. Utility of agents in Example 4.

The majority vote threshold is u = 0.6. Therefore, A is the winner if and only if at least 12 voters
vote for it. There are 4 friendly voters, 6 unfriendly voters, and 10 contingent voters. The informed
majority decision depends on the world state: “accept” is the informed majority decision if the world
state is H, and “reject” is the informed majority decision if the world state is L.

We assume that agents of the same type share the same utility function (which may not be true in
general) shown in Table 4.

Strategy. A (mixed) strategy is a mapping from the agent’s private signal to a distribution on
{A,R}. For a set S, let A(S) be the set of all possible distributions on S. Formally, an agent n’s
strategy o, : S — A({A,R}). A strategy can be represented as a vector o = (f, f,), where S, is
the probability that the agent votes for A when receiving signal m. A strategy profile is the vector
of strategies of all agents. X = (01, 0, ..., on). We call a strategy profile ¥ a symmetric strategy
profile induced by strategy o if all agents play the same strategy o in X.

Definition 1. An informative strategy is o = (0, 1), i.e. voting for A when receiving h and voting
for R when receiving I. A strategy profile is informative when every agent votes informatively.

In this paper, we focus on regular strategy profiles.

Definition 2. A strategy profile ¥ is regular if all friendly agents always vote for A, and all
unfriendly agents always vote for Rin 3.
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We believe this restriction is mild and natural since “always vote for A” is the dominant strategy
for a friendly agent, and “always vote for R” is the dominant strategy for an unfriendly agent in
the majority vote.

Fidelity and Expected Utility. Given a strategy profile %, let /12(2) (AE(Z), respectively) be the
(ex-ante, before agents receiving their signals) probability that A (R, respectively) becomes the
winner when the world state is k.

Definition 3 (Fidelity). Fidelity is the likelihood that the informed majority decision is reached.
In our setting, the fidelity when agents play strategy profile ¥ is

A(Z) =P - AR(Z) + Py - A5 (D).

We use the word fidelity to distinguish the notion from accuracy, which usually denotes the
likelihood that the correct world state is revealed.
The (ex-ante) expected utility of an agent n exclusively depends on /1;:’(2) and /15(2):

Un(2) = PL(AL (2) - 0a(L, A) + A7 (2) - 02(L,R)) + P (A (2) - 0, (H, A) + A5(2) - 0,(H, R)).

Instance and Sequence of Strategy Profiles. We define an instance J of a voting game on the
agent number N, the majority vote threshold p, the world state prior distribution (P, Py), the
signal distributions ((Png, Pigr), (Pnr, Pir)), the utility functions of all the agents {z),.,}ln\’= 1> and the
approximated fraction of each type (ar, au, ac). Let {IN}y_, (or {Ix} for short) be a sequence of
instances, where each Jy is an instance of N agents. The instances in a sequence share the same
parameters {y, (Pr, Pg), ((Pry, Pig), (Pnr, Pir)), (@r, au, ac)}. We do not regard agents in different
instances as related and have no additional assumption on the utility functions of agents.

We define a sequence of strategy profiles {3n}3_; on an instance sequence {Zy}. Similarly,
we do not have additional assumptions about the agents. Therefore, for different instances in the
sequence, the strategies and utility functions of agents can be drastically different. A strategy profile
sequence {Xx} is symmetric and induced by strategy o if every strategy profile Xy in the sequence
is a symmetric strategy profile induced by o. A sequence of strategy profiles is regular if every
strategy profile in the sequence is a regular profile.

e-strong Bayes Nash Equilibrium. In this paper, we use the solution concept of e-strong Bayes
Nash Equilibrium, an approximation of strong Bayes Nash Equilibrium where no group of agents

can increase their utilities by more than ¢ through deviation. A strategy profile ¥ = (o4, 03, - - , oN)
is an e-strong Bayes Nash Equilibrium (e-strong BNE) if there does not exist a subset of agents D
and a strategy profile 3’ = (o7, 0,,- - -, O'J/V) such that

(1) op =0y, forall n ¢ D;

(2) up(2’) = uy(2) for all n € D; and

(3) there exists n € D such that u,(2') > u,(3) +¢.

By definition, when ¢ = 0, the equilibrium is a strong Bayes Nash Equilibrium where no group
of agents can strictly increase their utilities through deviation. Unfortunately, a strong BNE does
not always exist, as shown in the following theorem. Therefore, we seek e-strong BNE as an
approximation.

THEOREM 1. For any Ny € N, there exists an instance of N > Ny agents, in which a strong Bayes
Nash Equilibrium does not exist.

Proor SKeTcH. For any N € N, we construct an instance of N = 2N + 3 agents. The agents
consist of three parts: F is a set of Ny + 1 friendly agents. C is a set of two contingent agents. And
U is a set of Ny unfriendly agents. Agents in the same set share the same utility, which is shown in
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Table 5. The threshold is p = 0.5. The prior distribution is P;, = Py = 0.5. The signal distribution is
Prg = P = 0.8 and Pjg = Ppp = 0.2.

Agents o(H,A) o(L,A) o(L,R) 9(H,R) Agents 21 p) Y3
F 100 99 1 0 F 50.396 66.14 50.3
C 90 0 100 0 C 85.12  75.2 76
U 1 0 100 99 U 50.396 34.46 50.3
Table 5. Utility of three groups Table 6. Expected utility under three profiles

Consider the following three strategy profiles, under which the expected utility of each group is
shown in Table 6.

e X;: Ny agents in F always vote for A, and one agent votes informatively. C vote informatively.
U always vote for R.

e X,: F always vote for A. C vote informatively. U always vote for R.

e 3: F always vote for A. One C agent votes informatively, and the other always votes for R.
U always vote for R.

These three strategy profiles form a cycle 3; — 3, — 33 — X of deviation, where a group of
agents has incentives to deviate to the next profile.

For any other strategy profile %, there exists a group of agents with incentives to deviate to
one of the three profiles. Firstly, F agents and U agents would like to deviate from their dominant
strategy of always voting for A (R, respectively) whenever it can increase the probability that their
preferred candidate wins. Given F and U agents play dominant strategies, the best strategy for two
C agents is to play the strategy in X3 (one agent votes informatively, the other votes for R). Then
we know that an F agent and two C agents have incentives to deviate from X3 to 3;. Therefore,
there does not exist a strong Bayes Nash in this instance. The full proof is in Appendix C. O

3 EQUIVALENCE BETWEEN HIGH FIDELITY AND STRONG EQUILIBRIUM

In this section, we show that strategic behaviors indeed have a positive impact on leading to
the informed majority decision. Theorem 2 states that if the fidelity of a regular (Definition 2)
strategy profile sequence {3y} _,,i.e., A(2n), converges to 1 as N goes to infinity, every X in the
sequence will be an e-strong Bayes Nash Equilibrium where ¢ converges to 0. On the other hand, if
A(ZN) does not converge to 1, then we can find infinitely many Xy that are not e-strong BNE with
a constant ¢. Moreover, Theorem 3 guarantees that there always exists a regular strategy profile
whose fidelity converges to 1, which leads to an &-strong BNE with ¢ = 0(1). The two theorems
together indicate that strategic voting leads to the informed majority decision in any sequence of
instances.

THEOREM 2. Given an arbitrary sequence of instances and an arbitrary regular strategy profile
sequence {En}y_;, let {A(EN)}y_, be the sequence of the fidelities of XN
o Iflimy_,00 A(ZN) = 1, then for every N, E is an e-strong BNE with ¢ = o(1).
o Iflimn_,c0 A(EN) = 1 does not hold, then there exist infinitely many N such that 3y is NOT
an e-strong BNE for some constant ¢.

THEOREM 3. Given any arbitrary sequence of instances, there always exists a sequence of regular
strategy profiles {X;}_, such that A(3};) converges to 1.

We first give a concrete example to illustrate Theorem 2, in which we show an instance for each
case in the theorem.
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ExaMPLE 5. We follow the setting of Example 4 except for two differences. First, there is a series
of N = 20,30,...,500. For each N, the ratio of friendly, unfriendly, and contingent agents is fixed at
2 :3: 5. Second, we consider two different cases of signal distributions that fall into different cases of
Theorem 2. They share the same signal distribution in world state L: P, = 0.8, Py = 0.2, but the signal
distribution for H is different. In case (1), Pjy = 0.1, Ppy = 0.9; and in case (2), Py = 0.25, Py = 0.75.

We focus on regular strategy profiles where all contingent agents vote informatively (Definition 1).
For case (2), we also consider another series of regular strategy profiles X}, where contingent agents
play ¢’ = (0.48,0.96). In Example 7 and Theorem 4 later, we verify that the fidelity of the regular
informative voting converges to 1 in case (1) but does not converge to 1 in case (2). On the other hand,
the fidelity of the deviating strategy profile ¥}, in case (2) converges to 1. Figure 1(a) illustrates these

trends of fidelity.
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Fig. 1. Fidelity and expected utilities of informative voting.

The expected utilities of contingent agents in different cases and strategies are shown in Figure 1(b).
Note the maximum expected utility that a contingent agent can get is 0.4 X 3 + 0.6 X 8 = 6.0. In
accordance with the fidelity, the expected utility of X in case (1) converges to the maximum. In case
(2), on the other hand, 3 is dominated by ¥}, by a utility gain of at least 0.4. Therefore, the group of
contingent agents has no incentive to deviate in case (1) but has an incentive to deviate to X}, in case

2).

3.1 Proof Sketch of Theorem 2
To show the relationship between A(Zy) and ¢, we have the following lemma.

LEMMA 1. For every N, a regular strategy profile X is an e-strong BNE with ¢ = 2B(B+ 1)(1 -
A(ZN)), where B is the upper bound of utility function vy,.

Lemma 1 is an extension of Theorem 3.3 in Schoenebeck and Tao [33]. It shows that every 2 is
an e-strong BNE with ¢ proportional to 1 — A(Zn). To prove Lemma 1, we show that, for any other
strategy profile X/, a group of agents with incentives to deviate does not exist.

There are two cases of 2. In the first case, the fidelity 3}, is bounded by the fidelity of Xx. More
precisely, (1 — A(2})) < (B+1) - (1 - A(Zn)). Then two profiles do not make a big difference,
and no agent can gain more than ¢ = 2B(B + 1)(1 — A(Zy)) after deviation (Claim 1).

In the second case, the fidelity X}; is unbounded and much worse than the fidelity of 2. Then
any contingent agent has no incentives to deviate, as their expected utilities are most positively
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correlated with fidelity (Claim 2). Next, we show that a deviating group cannot contain both friendly
and unfriendly agents, because if the expected utility of one side increases by more than ¢, the other
side’s will decrease (Claim 3). Therefore, a deviating group contains either only friendly agents or
only unfriendly agents. Finally, we show that in neither case can the deviation succeed, because
pre-determined agents have already played their dominant strategies in a regular profile (Claim 4).

Now we are ready to propose the proof for Theorem 2. We will actually use Lemma 1 and
Theorem 3 to prove Theorem 2. We will discuss the two cases separately.

When limy_,.o A(Zn) = 1, we apply Lemma 1 to each X, and get that every Xy is an ¢-strong
BNE where ¢ = 2B(B+ 1) - (1 — A(ZN)). Then ¢ will converge to 0 as N — co.

When limy_,. A(Zn) = 1 does not hold, there are infinitely many N with Xy being of low
fidelity. By Theorem 3 there exists a regular strategy profile sequence {},} with fidelity converging
to 1. Because of the difference in fidelity, there are infinitely many N such that 3y # X;. Then
we show that, for all sufficiently large N where Xy is of low fidelity, if all contingent agents turn
to play 2}, from Xy, every contingent agent will gain at least a constant amount of extra utility.
Therefore, for infinitely many N, Xy is NOT an e-strong BNE for some constant ¢. The full proof
of Theorem 2 is in Appendix E.3, and the full proof of Lemma 1 is in Appendix E.1.

3.2 Proof Sketch of Theorem 3

In the proof of Theorem 3, we construct a strategy ¢’ and show that the regular strategy profile
sequence {X},} where all contingent agents play ¢’ has fidelity that converges to 1. It suffices to
construct ¢’ such that

(1) if H is the actual world state, the expected fraction of the voters voting for A is more than y
by a constant;

(2) if L is the actual world state, the expected fraction of the voters voting for A is less than p by
a constant.

If this is true, A(2};) converges to 1 due to the Hoeffding Inequality. It remains to construct ¢’
such that (1) and (2) hold.

We first construct o, such that the expected fraction of the voters voting for A is exactly p,
where in o), the contingent voter votes for A with a probability that is independent to the signal
she receives. This can be done by setting o), = (8", f*) where " satisfies ar + ac - f* = p (notice
that, given the fraction ar of the friendly voters who always vote for A, the fraction ay; of the
unfriendly voters who never vote for A, and the fraction a¢ of the contingent voters who vote for
A with probability %, the expected fraction of votes for A is ap + ac - ).

Next, we will adjust o), to ¢’ = (f, f) that satisfies (1) and (2). Naturally, we would like to
increase the probability for voting A if an h signal is received, and we would like to decrease this
probability if I is received. That is, we have f; = f* — §; and f, = f* + &}, for some 6, 6, > 0, and
we need to show the existences of §; and §y, that make (1) and (2) hold.

When H is the actual world, comparing with o, the probability that each contingent agent votes
for A is increased by Py - 5, — Pig - 6; in ¢’. Thus, the total expected fraction of votes for A is
increased by

ac - (Ppy - Op — Pig - 61) -

Similarly, when L is the actual world, similar calculations reveal that the total expected fraction of
votes for A is increased by

ac - (Ppr - 6p—Pip - 8y).
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Since the expected fraction of votes for A is exactly y for o, we need to choose 5, and &; such that

{ ac - (Ppp - Op — Pig - 61) > 0
ac - (Ppr - 6p—Pip - 61) <0

This can always be done due to the positive correlation Pyy > Py and Pjy < Pjr. In particular,
if we set 8, = 9; - 1},3]’1—’:[, the first inequality would become equality, while the second inequality
holds due to the positive correlation. By slightly increasing 8y, we can make both inequalities hold.
During these adjustments, we just need to make sure the two constants d, and §; are small enough
such that f and f; are valid probabilities.

EXAMPLE 6. In this example, we follow the setting of case (2) in Example 5 to illustrate the construction
of the strategy o’. Recall that ap = 0.2, ay = 0.3, and ac = 0.5. The signal distribution P, = 0.75
and Pj; = 0.8. The threshold 1 = 0.6.

In the first step, let o,, = (0.8,0.8). We could verify that ar + ac - 0.8 =0.2+0.5x 0.8 =0.6 = .

In the second step, let 5 = 0.3. Then &y = J; - IIZ,I,_I;; =0.1. Then ¢’ = (0.5,0.9). Then we have

Py -8 — P - 61 =0.75% 0.1 — 0.25 X 0.3 = 0.
Py -8, — P -6, =02%x0.1-0.8x%0.3=-0.22 <0.

Finally, we increase 8, by 0.06. Then &; = 0.3, 5, = 0.16, and ¢’ = (0.5,0.96). We have

Pupr - 8 — P - 8, = 0.75 % 0.16 — 0.25 X 0.3 = 0.05 > 0.
Py 8p —Pip -8, =0.2X0.16 — 0.8 X 0.3 = —0.208 < 0.

Therefore, o’ = (0.5,0.96) satisfies the condition.

4 PROBABILITY ANALYSIS ON FIDELITY

In this section, we analyze the condition that a strategy profile is of high fidelity and apply the
analysis to the most common forms of non-strategic voting: informative voting and sincere voting.
We show that neither informative nor sincere voting can lead to the informed majority decision
in every instance, and we characterize the conditions where they lead to the informed majority
decision. Our results give merit to strategic voting.

In order to characterize the fidelity, we introduce the notion of the excess expected vote share.
Given a world state k, the excess expected vote share is the expected vote share the informed
majority decision alternative attracts under state k minus the threshold of the alternative.

Definition 4 (Excess expected vote share). Given an instance of N agents, and a strategy profile
%, let random variable XV be "agent n votes for A": X = 1 if agent n votes for A, and X = 0if n
votes for R. Then the excess expected vote share is defined as follows:

1 N
il =5 ;E[xﬁ’ | H] - p M
2= S XY - @
L _N o n p'

Specifically, fé\’ is the excess expected vote share of A condition on world state H, and fLN is the
excess expected vote share of R condition on world state L. For technical convenience, we define

N = min(fIfIV,fLN).
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Our next result shows that we can judge whether the fidelity of a strategy profile sequence
converges to 1 with the tendency of its excess expected vote share (or more precisely, the lower
limit of VN - fN).If VN - fN has a lower limit of +co, Then the fidelity of the profiles in the sequence
converges to 1. Otherwise, the fidelity is likely not to converge to 1.

THEOREM 4. Given an arbitrary sequence of instances and arbitrary sequence of strategy profiles
{EntNoy let N be the excess expected vote share for each 3.

o Ifliminfn_e VN - fN = +co, the fidelity of Sn converges to 1, i.e., limy_e A(SN) = 1.

e Ifliminfy_e VN - fN < 0 (including —c0), A(Sx) does NOT converge to 1.

o Ifliminfy_e VN - fN > 0 (not including +oo), and the variance of ¥, XN is at least
proportional to N, A(Zn) does NOT converge to 1.

REMARK. Although Theorem 4 does not cover the case when liminfy_. VN - fN > 0 and the
variance of YN, XN is not large enough, we argue that this case is very special and rare. In this case,
(inf fN) converges to 0 at the rate ofO(\LW), which means the expected vote share of an alternative

is almost equal to the threshold. Moreover, the strategies of the agents have low randomness in total.
Therefore, we believe that Theorem 4 covers the most interesting cases of a sequence of strategy profiles.

Proor SKeTCH. Recall that A(X) = Py, - AE(Z) + Py - /1?1(2)' Note that /12(2) is the probability
that the total vote share on A exceeds the threshold y when the world state is H. Therefore, we can
write /1?1(2) using the following formula. )LE(Z) can be written using a similar formula.

N
M(EN) = PrIZX};’ 2/1~N|Hl =Pr

n=1

N N
DX =Y E[XY | H] = —f) N |H
n=1 n=1

For the first and the second case, we apply the Hoeffding Inequality. For the first case, we show that
both AI"_‘I(Z) and ALR(E) are lower bounded by a function of N that converges to 1. For the second
case, we show that either /1?[(2) and Ag(Z) is upper bounded by a constant smaller than 1.

For the third case, we apply the Berry-Esseen Theorem [5, 10], which bounds the difference
between the distribution of the sum of independent random variables and the normal distribution.
Therefore, for some constant § and infinitely many N, /1?1(2 ~N) (or AE(E ~)) will not deviate from
1 — ®(J) too much and is bounded away from 1 by a constant. @ is the CDF of the standard normal
distribution. The requirements for the variance in the third case are from the Berry-Esseen Theorem.

The full proof of Theorem 4 is in Appendix E.4, and the detailed definition of the Berry-Esseen
Theorem is in Appendix D.2. O

Theorem 4 provides a criterion for judging whether a strategy profile sequence is of high fidelity.
If we apply Theorem 2 to each case of Theorem 4, we directly get a criterion for judging whether a
regular strategy profile sequence is an ¢-strong equilibrium.

CoROLLARY 1. Given an arbitrary sequence of instances and an arbitrary regular sequence of
strategy profiles {Zn}y_;, let N be defined for each 3.

o Ifliminfn_ VN - fN = +0o, then for every N, Sy is an e-strong BNE with ¢ = o(1).

e Ifliminfy_o VN - fN < 0 (including —co), there are infinitely many N such that Sy is NOT
an e-strong BNE with constant e.

o Ifliminfy_e VN - fN > 0 (not including +oo), and the variance of ¥\, XN is at least
proportional to N, there are infinitely many N such that 3y is NOT an e-strong BNE with
constant .
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ExXAMPLE 7. In this example, we use Theorem 4 to bound the fidelity of different cases in Example 5.
Note that in each N the ratio of friendly, unfriendly, and contingent agents is fixed to be 2 : 3 : 5, and
agents of the same type play the same strategy for different N. Therefore, the excess expected vote
share of profile X.n and X, is independent of N.

Case 1: Pjy = 0.1, Py = 0.9. In both world states, we have E[XY | H] = 1 for friendly agents and
E[X)N | H] = 0 for unfriendly agents. Contingent agents vote for A with probability Ppyy = 0.9 in H
state and for R with probability Pj; = 0.8 in L state. Therefore, fN > 0, and VN - fN goes to +co.

£ =02+05%x09-06=005 fN=03+05%0.8-0.4=03.

Case 2: Pjy = 0.25, Py = 0.75. For 3y, we have fN < 0, and VN - N goes to —co.
Y =02+05x075-0.6=-0.025  fN=03+05x0.8-0.4=0.3.
And for the the deviating strategy profile 3.};, we have N >0, and VN - fN goes to +co.
fb]I\[ =0.2+0.5- (0.75 X 0.96 + 0.25 X 0.48) — 0.6 = 0.02
fLN =0.3+0.5- (0.8 X 0.52+0.2 X 0.04) — 0.4 = 0.112.

In Case 1, the regular strategy profile 3 lies in the first case of Theorem 4, has an fidelity converging
to 1, and is an e-strong BNE with ¢ = 0(1). In Case 2, 3 lies in the second case of Theorem 4 and is
dominated by the deviating strategy profile 3. This is in accordance with our observation in Figure 1
and Example 5.

Although Theorem 4 (and Corollary 1) do not cover all the strategy profile sequences, the
following result provides a dichotomy for symmetric profile sequences to judge fidelity. Given
a symmetric strategy profile ¥y induced by strategy o = (f, fn), we can compute the excess
expected vote share of 2. Recall the definition of excess expected vote share:

N
1
fi = 5 DL EIXY [ H] = p
n=1

In H state, an agent with signal h votes for A with probability S, and an agent with signal [
votes for A with probability f;. Therefore, E[X | H] = Ppg - B + Pipg - f1. Then we have

N
1
fé\[:NZ(PhH'ﬂh'*‘PlH'ﬁl)_ﬂ:PhH'ﬂh"'PlH'ﬁl_lL

n=1

With similar reasoning, we can compute ;N and f:

R =P =)+ P (1= p)) = (1=, N =min (Y, £Y).

An interesting observation for the symmetric strategy profiles is that its excess expected vote
share is independent of the number of agents N. This is because when every agent plays the same
strategy, the expectation of every X is the same. For simplicity, given a sequence of symmetric
strategy profiles {3y}, we write its excess expected vote share as fy, f1, and f.

COROLLARY 2. For an arbitrary strategy o and an arbitrary sequence of instances, let {Zn} be the
sequence of symmetric strategy profile X induced by o, and f be the excess expected vote share of
{En}

o Iff >0, A(ZN) converges to 1.
o If f <0, A(Zn) does not converge to 1.
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Proor SKeTcH. The proof of Corollary 2 works by showing that each case of a symmetric
strategy profile falls into some case of Theorem 4. When f > 0, VN - fN — +co. When f < 0,
VN - fN — —co. And when f = 0,and VN - fN = 0. The variance requirement is also satisfied.
(Otherwise, the strategy o must be always voting for the same candidate. This directly implies
f <0, which is a contradiction.) The full proof of the Corollary 2 is in Appendix E.5 O

4.1 Case Study: Informative Voting and Sincere Voting

In this section, we study the two most common non-strategic voting schemes - informative voting
and sincere voting under our information structure. We show that both voting schemes lead to the
informed majority decision if and only if certain conditions are satisfied.

In informative voting, all agents play the strategy o = (0,1). When the world state is H, an
agent receives signal h and votes for A with probability Pyy. Therefore, the excess expected vote
share in the H state is fi = Ppy — p. Similarly, the excess expected vote share in the L state is
fo =Py — (1 —p) =p— Ppr. Applying Corollary 2, we get the following statement.

COROLLARY 3. For an arbitrary sequence of instances, let {2} be the sequence of informative
voting profile. Then, the fidelity A(Xn) converges to 1 if and only if Py > p > Pyy.

Failure Success Failure

H Py Py

L Py, Py

0 Pu1 Py 1

Fig. 2. Illustration of Corollary 3.

Corollary 3 forms a comparison with Theorem 2. Strategic behavior always leads to the informed
majority decision, while non-strategic informative voting achieves the same only when the majority
vote threshold is “unbiased” compared with the signal distribution.

In sincere voting, an agent votes as if she is making the decision individually. A sincere agent
chooses the alternative that maximizes the expected utility conditioned on the signal. The expected
utility of an agent making an individual decision conditioned on signal m is

up(A | m)=Pr[W=L|m]- 0,(A,L)+Pr[W=H | m]-v,(A H).
up(R| m) =Pr[W =L |m]- -0,(R,L)+Pr[W =H | m]-v,(R, H).

Definition 5. A strategy profile X is sincere if for any agent i, conditioned that i receives signal m,
i votes for A if u, (A | m) > u, (R | m) and votes for R otherwise.

A sincere strategy profile is not always symmetric, because the sincere behavior of agents
not only depends on his/her signal but also on his/her utility. Therefore, sincere agents with
different utility functions may play different strategies. Given the assumption of Ppg > Py, we
have Pr[W = L | I] > Pr[W =L | hl and Pr[W = H | I[] < Pr[W = H | h]. As a result,
un(A | 1) <u,(A|h)and u,(R| 1) > u,(R | h). Therefore, a sincere voter would play one of the
five strategies below based on her utility function v,,.

(1) Fu,(A|l) <u,(R|I),and u,(A | h) < u,(R| h), an agent always votes for R.



Qishen Han, Grant Schoenebeck, Biaoshuai Tao, and Lirong Xia 14

(2) Hu,(A|l) <u,(R|1),and u,(A | h) = uy(R | h), an agent votes for R under signal [ and
votes arbitrarily under signal h.
(3) Hu,(A]l) <up(R|1),and u,(A | h) > u,(R | h), an agent votes informatively.
4) Hu,(A D) =u,(R|1]),and u,(A | h) > u,(R | h), an agent votes arbitrarily under signal I,
and vote for A under signal h.
(5) fup(A 1) > u,(R| 1), and u, (A | h) > u,(R | h), an agent always votes for A.
A sincere profile is also a regular profile, as friendly agents always vote for A, and unfriendly
agents always vote for R in their individual decisions. Therefore, applying Theorem 2, we have the
following statement.

COROLLARY 4. For an arbitrary sequence of instances, let {Xn} be the sequence of sincere strategy
profiles. Then the fidelity A(XN) converges to 1 if and only if Xx is an e-strong Bayes Nash with
e=o0(1).

Corollary 4 tells us that sincere voting performs as well as strategic voting if and only if itself is also
strategic. The following example illustrates different behaviors of sincere voters by “manipulating”
their utility functions under the same world state and signal distribution and gives examples where
sincere voting succeeds and fails.

ExampLE 8. Consider the following scenario. The world state prior Py = Py = 0.5. The signal
distribution Pyyy = Pyp = 0.8, and Py = Ppp = 0.2. By the Bayes Theorem, we compute the probability
of a world state conditioned on a private signal as follows.

Pr[W=L|I]=08  Pr[W=H]|I]=02
Pr[W=L|hl=02  Pr[W=H|h =08.

We assume all agents are contingent and share the same utility function, and consider three different
cases as shown in Table 7. Suppose X is a strategy profile where all agents vote sincerely.

(Winner, World State) (A,H) (A,L) (R,H) (RL)

Case 1 1 0 0 1
Case 2 5 1 0 2
Case 3 4 1 0 2

Table 7. Utility functions for three cases.

Incase 1, up(A | h) =u,(R| 1) =0.8, and u,(A | I) = u,(R | h) = 0.2. Therefore, every sincere
voter votes informatively, and ¥ is also informative voting. By corollary 3, ¥ leads to the informed
majority decision if and only if the threshold 0.2 < p < 0.8.

In case 2, uy(A | 1) = 1.8,un,(R | 1) = 1.6, un(A | h) = 4.2, and u,(R | h) = 0.4. Therefore, all
sincere agents always vote for A even if they are contingent. In this case, A is always the winner, and
A(Z) does not converge to 1.

Incase 3, uy(A|l) =u,(R| 1) =1.6,u,(A | h) = 3.4, and u,(R | h) = 0.4. In this case, a sincere
agent votes A under signal h, and votes arbitrarily under signal . Then for any 0.2 < p < 1, ¥ induced
by strategy o = (f;, 1) leads to the informed majority decision with high probability, where f; > 0
satisfies f; > 5p — 4 and By < 1.25u — 0.25. These conditions guarantee the excess expected vote share
of X to be strictly positive.

As shown in Example 8, sincere agents can have drastically different behaviors in different
scenarios. Nevertheless, once we know the strategy of each agent, we can apply Theorem 4 to
analyze the probability of a sequence of sincere voting leading to the informed majority decision.
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5 NON-BINARY WORLD STATES AND NON-BINARY SIGNALS

In this section, we discuss how we extend our model and results to a setting with non-binary world
states and non-binary signals. We follow the setting of Schoenebeck and Tao [33]. The largest
difference in the non-binary setting is that the preferences of agents form a spectrum along multiple
world states. Different agents have different thresholds of world states in which they switch the
preferred alternatives.

World State. There are K possible world states ‘W = {1,2,-- -, K}. The higher the world state is,
the more A is preferred to R. We use k to denote a generic world state. Let Py = Pr[W = k] be the
common prior of the world state. We assume P > 0 for every k € ‘W.

Signal. Every agent receives a signal from S = {1,2,--- , M}. We use m to denote a generic signal.
Signals are i.i.d conditioned on the world state. Let P,z = Pr[S, = m | W = k] be the probability
that an agent receives signal m given world state is k. The assumption of P,y > Ppy in the binary
state is extended to the following assumption of stochastic dominance, which requires signals to be
positively correlated to world states.

AssUMPTION 1 (STocHASTIC DOMINANCE). For any agent n and any world states ky > ka,
Pr(S,>m|W=k{] >Pr[S, >m| W =ky].

Utility. Every agent n has a utility function v, : ‘W x {A,R} — {0, 1,---, B}, where B is the
positive integer upper bound. We assume that A is more preferable in a higher world state than
in a lower state, and R is the opposite: for any k; and k; with k; > kj, v,(k1, A) > v,(k2, A), and
on(k1, R) < v,,(ko, R). We also assume v, (k, A) # v,,(k,R) for any k and any n.

Fraction of agents. Given a world state k, let a,‘:‘ and a}: be the approximated fraction of agents
prefer A (R, respectively) in world state k. We assume a]’:‘ and a}} are independent from N. Formally,
given N, let N(k,A) = {n | v,(k,A) > v,(k,R)} be the set of agents preferring A in k (N(k,R)
defined similarly). We have |[N(k,R)| = [0{]13 - N| and [N(k,A)| = N — [N(k,R)|. Naturally, a,?
increases, and a,Ij decreases as k increases. We assume that a,‘? and a}: are common knowledge.

Majority vote and informed majority decision. We study the majority vote with threshold p. If at
least y1 - N agents vote for A, A is announced to be the winner; otherwise, R is announced to be the
winner. The informed majority decision is defined on each world state k. Given a world state k, if
0{? > pu, we say A is the informed majority decision; otherwise, we say R is the informed majority
decision. We assume that a? # pfor all k € W, and the rounding between a,’? and [N(k,A)| (a,lj
and |N (k, R)|, respectively) does not flip the informed majority decision.

Types of agents. Let L = {k € W | af <pland H = {k € W | a,‘? > u} be the sets of
world states where R (A, respectively) is the informed majority decision. We only consider the
case where both £ and H are non-empty. (Otherwise, an alternative is unanimously the informed
majority decision, and there is no uncertainty.) There is a threshold partitioning ‘W into two sets.
Let L = max{k € L} to be the largest world where R is the informed majority decision, and
H = min{k € H} to be the smallest world where A is the informed majority decision. We have
H=L+1.

Similarly, for an agent n, let £,, = {k € W | v,(k,R) > v,(k,A)} and H,, = {k € W | v,(k,R) <
on(k, A)}. Ly, (H,, respectively) is the set of world states where R (A, respectively) is preferred by n.
For a agent n, let L, = max{k € L,} be the largest world where n prefers R, and H,, = min{k € H,}
to be the smallest world where n prefers A. Specifically, let L, = 0if £, = 0 and H, = K + 1 if
H, = 0. We have H,, = L, + 1.
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(1) We say an agent n is (candidate) friendly if L N H, # 0. This says that there exists a world
state k where n prefer A while the informed majority decision is R.

(2) Similarly, an agent n is (candidate) unfriendly if H N L, # 0. This says that there exists a
world state k where n prefers R while the informed majority decision is A.

(3) Finally, an agent n is contingent if £, = L. or equivalently, H, = H.

Unlike the binary setting, friendly/unfriendly agents in the non-binary setting do not always prefer
one alternative. They just have thresholds above or below the majority.

ExAMPLE 9. We extend the COVID policy-making scenario in Example 4 to the non-binary setting.
N = 20 voters decide whether to accept or reject the more-restrictive policy. The world states W =
{1, 2,3} describe the risk level of the virus, whereas a larger state represents a higher risk. Suppose
P1 = Pg =0.3, andP3 =0.4.

Every voter receives a private signal from S = {1, 2,3,4}. The larger the signal is, the higher the
risk is likely to be. Table 8 is the signal distribution given the world state.

World State  Signal 1 Signal 2 Signal 3 Signal 4

1 0.6 0.2 0.1 0.1
2 0.4 0.2 0.2 0.2
3 0.1 0.2 0.3 0.4

Table 8. Signal distribution.

The majority threshold is i = 0.6. Therefore, A is the informed majority decision if and only if at
least 12 agents prefer A to R. The voters are categorized into four different groups. Each group has five
voters, and voters in the same group share the same utility shown in Table 9. The larger the group
index is, the more voters prefer A toR.

Table 10 shows the preferences of each group and the informed majority decision under each world
state. The preference of each group comes from the comparison of utilities in Table 9. The informed
majority decision is the aggregation of group preferences. Since each group has five voters, and the
majority threshold is 12 agents, A needs to be preferred by at least three groups to become the informed
majority decision. Therefore, A is the informed majority decision only in state 3. By comparing the
preferences of each group and the informed majority decision, we know that group 1 voters are
unfriendly agents, group 2 voters are contingent agents, and group 3 and 4 voters are friendly agents.

Winner A R World State 1 2 3
World State 1 2 3 1 2 3 Group 1 R R R
Group 1 1 2 3 8 6 4 Group 2 R R A
Group2 2 3 4 6 4 2 Group 3 R A A
Group 3 2 5 8 4 3 2 Group 4 A A A
Group4 4 6 9 3 2 1 Informed Majority R R A
Table 9. Utility function of each group Table 10. Preference of each group and the majority.
Strategy. In the non-binary setting, a strategy can be represented as a vector o = (f1, B2, - - - , Bm)»
where f,, is the probability that the agent votes for A when receiving signal m. A strategy profile
is the vector of strategies of all agents. ¥ = (01,02, -+ , ON).

The definition of the regular strategy profile remains the same as in the binary setting: friendly
agents always vote for A, and unfriendly agents always vote for R.
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Fidelity and Expected Utility. Given a strategy profile 3, let /12(2) (A}:(Z), respectively) be the
probability that A (R, respectively) becomes the winner when world state is k. We can define the
fidelity and the expected utility in the same manner as in the binary setting.

A(Z) = Z Pe-2R(3) + Z P - A2(3).

kel keH

K
(%) = ) Pe(A(3) - oa(k, A) + 1X(3) - 0n(k,R)).
k=1
Excess Expected Vote Share. Similarly, the excess expected vote share is the expected vote share
that an alternative attracts under state k minus the threshold of the alternative. In different instances,
the informed majority decision may change in different world states. Therefore, we define the
excess expected vote share for both A and R in every world state.

N
1
fx =y 2 EXY 1K =
n=1

N
1
N N
A :NZE[I - XNkl - (- p).

n=1
For world states k € H where A is the informed majority decision, we care about kIX; and for
states k € L, we care about ka' Therefore, we define fN to be the smallest excess expected vote
share among those we care about.

N . . oNY s oN
= min | min , Min .
f (ke’/—{(ka) keL(fkR)

For symmetric profile sequences where excess expected vote share is independent of N, we use
fxas fir, and f to denote them.

Instance and Sequence of Strategy Profiles. Let {In}y_, (or {Zx} for short) be a sequence of
instances, where each Zy is an instance of N agents. The instances in a sequence share the same
majority threshold y, world state prior distribution {P}, signal prior distribution {P,}, and
approximated type fractions (a,’:, a}:). Same to the binary setting, we do not regard agents in
different instances as related and have no additional assumption on the utility functions of agents.
We define a sequence of strategy profile {3y}y_, based on the instance sequence, where for each
N, Zy is a strategy profile in Zy.

Our positive results on strategic voting can be extended to the non-binary setting. Theorem 5
states the equivalence of fidelity converging to 1 and the ¢-strong Bayes Nash with ¢ = o(1).
Theorem 6 guarantees the existence of the regular profile sequence with fidelity converging to 1.

THEOREM 5. Given an arbitrary sequence of instance and an arbitrary regular strategy profile
sequence {En}y_,, let {A(EN)}y_, be the sequence of the fidelities of 2.
o Iflimy_,00 A(ZN) =1, then for every N, E is an e-strong BNE with ¢ = o(1).
o Iflimn_,c0 A(EN) = 1 does not hold, then there exist infinitely many N such that 3y is NOT
an e-strong BNE for some constant ¢.

THEOREM 6. Given any arbitrary sequence of instances, there always exists a sequence of regular
strategy profiles {X},}§_, such that A(Z};) converges to 1.

Theorem 5 and Theorem 6 preserves the same reasoning as Theorem 2 and Theorem 3. More
details as well as the characterization of the fidelity in the non-binary setting are in Appendix E.
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6 CONCLUSION AND FUTURE WORK

We study the binary voting game where agents can coordinate in groups. We show that strategic
voting always leads to the informed majority decision, while non-strategic behaviors sometimes
fail. In particular, we show that a strategy profile is an e-strong Bayes Nash Equilibrium with small
¢ if and only if it leads to the “correct” decision with high probability. Moreover, we analyze the
fidelity of the strategy profile and provide criteria for judging whether a strategy profile is an
equilibrium based on excess expected vote share. Applying the analysis to non-strategic voting,
we characterize the conditions that informative and sincere voting lead to the informed majority
decision. Our results stand on the framework where agents have endogenous preferences over
outcomes contingent on some underlying state.

One limitation of our work is that our results are restricted to a setting with two alternatives. An
interesting yet challenging future direction is to study the impact of strategic behavior in a setting
with more than two alternatives. We expect more complicated results as Goertz and Maniquet [14]
show that informative voting may be an equilibrium but leads to the wrong alternative in a model
of three alternatives.

Another interesting direction is to explore strategic iterative voting with information uncertainty.
We expect iterative voting to be more powerful in aggregating information and able to simulate
some sophisticated mechanisms. For example, the mechanism in Schoenebeck and Tao [33] can
be regarded as a two-round voting game where only the second round counts, and every agent
votes informatively in the first round and plays a surprisingly popular strategy in the second round.
Kavner and Xia [19] show a surprising result that strategic behaviors increase the social welfare of
agents in iterative voting on average. Nevertheless, the behavior of strategic agents is even more
complicated in iterative voting, and the analysis of equilibria will be highly challenging.
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A COMPARISON WITH FEDDERSEN AND PESENDORFER’S WORK

Feddersen and Pesendorfer [11] consider a two-alternative setting and present a (unique) class
of equilibria that leads to the decision favored by the majority. We argue that Fedderson and
Pesendorfer’s work is drastically different from our work in many aspects.

Setting. The most important and fundamental difference between Fedderson and Pesendorfer’s
work and ours is the setting. Feddersen and Pesendorfer [11] adopt a model with continuous
world states and an asymptotically large number of voters whose preferences are drawn from
a distribution with full support on a continuum. Most of their results (the uniqueness of their
equilibrium, for example) require continuity. We, on the other hand, consider discrete and finite
world states and private signals. The solution concepts in their work is also different from ours.
Fedderson and Pesendorfer consider symmetric Nash Equilibrium with no weakly dominated
strategies. We, on the other hand, consider e-strong Bayes Nash Equilibrium which precludes
agents from coordinating with each other.

Equilibrium. Due to different settings and different solution concepts, the equilibria are also
different from each other. In Fedderson and Pesendorfer’s work, a Nash equilibrium consists of
only three types of strategies: always vote for A, always vote for R, and vote informatively. In our
work, on the other hand, a voting instance may have multiple distinct equilibria. Example 3 shows
scenarios where a Bayes Nash Equilibrium fails to be a strong Bayes Nash. Moreover, Fedderson
and Pesendorfer only show that the equilibrium will lead to the informed majority decision, while
we also show that non-equilibrium strategy profiles will not lead to the informed majority decision.

Types of agents. Although agents in Fedderson and Pesendorfer’s work can also be classified into
three groups based on their strategy, we argue, as Schoenebeck and Tao [33] argued, that there
is “fundamental difference in the motivation behind this classification”. As we follow the setting
of Reference [33], our agent types reflect the preferences of agents among two alternatives. In
Fedderson and Pesendorfer’s work, however, agents choose their type by playing different strategies
in some specific scheme so that the mechanism outputs the “correct” alternative. Therefore, the
motivation of their classifying agents is to aggregate information and make a good decision, but
not to reflect the preferences of agents.

B FREQUENTLY USED NOTATIONS IN THE BINARY SETTING

Table 11 provides a list of frequently used notation in the main paper (binary setting).

C PROOF OF PROPOSITION 1

ProrosITION 1. For any Ny € N, there exists an instance of N > Ny agents, which does not exist a
strong Bayes Nash equilibrium.

Proor. For any N, we construct an instance of N = 2N + 3 agents. The agents consist of three
parts: F is a set of Ny + 1 friendly agents. C is a set of two contingent agents. And U is a set of N
unfriendly agents. The valuation function of each set is shown in the table. The threshold p = 0.5.
The prior distribution Py, = Py = 0.5. The signal distribution Py = Pjp = 0.8, and Py = Ppp = 0.2.

Still, consider three strategy profiles:

e ¥;:In F, N, agents always vote for A, and one agent votes informatively. Two agents of C
vote informatively. Ny agents of U always vote for R.

e X,: Ny + 1 agents of F always vote for A. Two agents of C vote informatively. Ny agents of U
always vote for R.
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Notation Meaning

N the total number of agents

AR alternatives

W ={L,H} the set of world states

S={Lh} the set of private signals

Py the prior belief on the probability of world state being k

Pk the probability of receiving signal m under world state k

i threshold of the majority vote

on(A k), v, (R k)  the utility of agent n

B the upper bound of the utility function

ar, ay, oc the approximated fraction of three types of agents

0,2 strategy and strategy profile

Br, Bi the probability of voting for A when receiving signal h (I)

1033 Sva a sequence of strategy profiles

/1]‘:(2), /15(2) the probability that A (R) becomes the winner under world state k
A(Z) fidelity: probability that ¥ leads to the informed majority decision
up (%) the (ex-ante) expected utility of agent n

f}IIV , fLN , fN the excess expected vote share

Table 11. Frequently used notation in the binary setting

agents v(H,A) o(L,A) o(L,R) o(H,R)

F 100 99 1 0
C 90 0 100 0
U 1 0 100 99

e 33: Ny + 1 agents of F always vote for A. One C agent votes informatively, and the other
agent always votes for R. Ny agents of U always vote for R.

The expected utility of each type of agents in three profiles is in the table as follows. The three

agents % % 23

F 50.396 66.14 50.3
C 8512 752 76
U 50.396 34.46 50.3

profiles form a deviating cycle of ¥; — X, — 33 — 3;.In 34, the F agent who votes informatively
has the incentive to always vote for A, and the profile becomes ;. In ¥, a C agent has the incentive
to always vote for R, and the profile becomes ¥3. And in X3, the group of a F agent and two C
agents have the incentives to turn to informative voting, and the profile becomes ;.

Now we show that for any other strategy profile 3, there exists a group of agents with incentives
to deviate.
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Case 1: A is always the winner. In this case, at least Ny + 2 agents always vote for A, the expected
utility of U agents is 0.5, and the expected utility of C agents is 45. If there exists a group of U
agents such that A is not always the winner after they deviate to always votes for R, their expected
utility will increase. Otherwise, there are still at least Ny + 2 agents who always vote for A even if
all U agents always vote for R. Therefore, at least one C agent always votes for A. Now consider
the deviating group C U U, where all agents in the group turn to always voting for R. Then R will
always be the winner. The expected utility of U agents increases to 99.5, and the expected utility of
C agents increases to 50. Therefore, in this case, X is not a strong BNE.

Case 2: R is always the winner. In this case, at least Ny + 2 agents always vote for R, the expected
utility of F agents is 0.5, and the expected utility of C agents is 50. Similarly, if all agents in F voting
for A can reverse the decision, their expected utility will increases. Otherwise, all agents in U and
C always vote for R. Then, the group F U C has incentives to deviate, where F agents always vote
for A, and C agents vote informatively. The profile after the deviation is ¥;, in which both F and C
agents have high expected utilities. Therefore, in this case, X is not a strong BNE.

Case 3: Neither of the alternatives is always the winner. In this case, any F agent not always
voting for A and U agent not always voting for R has incentives to deviate to get a higher probability
that their preferred alternative to be selected. Now suppose all F agents always vote for A, and U
agents always vote for R. In this case, we show that the expected utility of C agents is uniquely
maximized by one agent voting informatively and the other agent always voting for R, just as 2.
Therefore, for any X # 23, C agents have incentives to deviate to ¥3. And X5 itself is dominated by
b 1.

Now without loss of generality, we index the two agents in C as agent 1 and agent 2. Suppose
the strategy of agent 1 is o1 = (f], ), and the strategy of agent 2 is o, = (7, f;). Since there
are Ny + 1 votes for A and Nj votes for R, R is the winner only when both two agents vote for R.
Let X; and X; be the random variable that denotes the vote of agent 1 and agent 2 respectively.
X; = 1 stands for “agent i votes for A”, and X; = 0 stands for “agent i votes for R”. Therefore, the
probability of A being winner under H state is

M () =1-Pr[X; =0A X, =0 | W =H]
=1-Pr[X;=0|W=H] -Pr[X,=0| W =H]
=1-(0.8-(1—B;)+0.2- (1= B))(0.8- (1= ) +0.2- (1 - B)).
Similarly,
RE) =Pr[X; =0AX, =0 | W =1L]
=(0.8- (1= B))+0.2- (1= B;))(0.8- (1= ) +0.2- (1-B7)).
And
U (%) = up(2) = 0.5- (90 - A5 (2) + 100 - AR()).
Letx; =1— ,B}l, Yy =1- ﬁll,xz =1- ,B}Zl, andy, =1— ﬁlz, and expand the expected utility, we get
u1 () = —26.8x1x2 + 0.8x1y2 + 0.8x2y; + 30.2y1y, + 45.

We consider the variables to maximize the expected utility. Note that given x; and y;, if at least
one of x; and y; does not equal to zero, y; = 1 is a necessary condition for u,(X) to be maximized,
and vice versa. In the special case where four variables are all 0, ¥ stands for both C agents always
vote for A. In this case, A is always the winner, and C agents have incentives to deviate to always
vote for R as shown in Case 1. Now, given at least one of four values is non-zero, we must have
y; = Y2 = 1 to maximize the expected utility. Then the expected utility turns to

ul(Z) = —26.8x1x2 + 0.8x1 + 0.8x5 + 75.2.
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Then it’s not hard to see that u; (X) is uniquely maximized when one of x; and x; takes 0 and the
other takes 1. Then X is exactly X5. Therefore, the expected utility of C agents is maximized on Xs.

Consequently, we show that in every case a strategy profile is not a strong BNE. Therefore, a
strong BNE does no exist in the instance. O

D NON-BINARY SETTING
D.1 Additional Setting
In this section, we propose notions in non-binary settings that are used in technical proofs and not

mentioned in the main paper.

Fraction of Agents. Given a specific N, we use N, N¢, and Ny to denote the number of each type
of agents, and use &r = % ac = % and ay = % to denote the fraction of each type of agents.
Note that @r, dc, and ay is dependent to N.

In the non-binary setting, we have @ < pand ay < p for all sufficiently large N, which means
that neither friendly nor unfriendly agents can dominate the vote. Note that this is guaranteed by
the assumption that both £ and H are non-empty.

PROPOSITION 1. There exists a constant N, > 0, s.t. for all N > N,,, @r < pp and ay < p.

Proor. First, we show that @r < p. For a candidate-friendly agent, we have £, C L. Therefore,
L, < L, and n prefer A if the world state is L. On the other hand, an agent vote for A in L is a
friendly agent according to the definition. Therefore, the set of friendly agents is exactly the set of
agents who will vote A in world state L. Therefore we have

N =[N(L,A)]
=N - |a} - T]
<(1-af)-N+1

=a}N +1
1
=N(a®+ =).
(aL T)

According to the definition of L, we know that a’L\ < pand a’L\ is independent from N. Therefore,
there must exist a N, > 0 s.t. forall N > N,, a}} + ﬁ < y1, and therefore dp < p.
Then we show that &y < 1 — p. Similarly, the set of unfriendly agents is exactly the set of agents
who will vote R in world state H. Therefore,
Ny =|N(H,R)|

=Laj; - N

Socg -N

<(1—p)-N.
The last inequality is due to the definition of H. Therefore, we have ¢y < 1 — p. O

For the non-binary results we all assume that N > N, therefore &r < pand ay < p.

Then we define the approximate fraction of each type of agents ar, ac, and ay that are indepen-
dent of N. As we have shown in Proposition 1, the set of friendly agents is exactly the set of agents
who will vote A in L, and the set of unfriendly agents is exactly the set of agents who will vote R
in H. Therefore, we define af, ac, and ay as follows:

_ A
(1) ar = aj.
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(2) ay = a}}.

B)ac=1-ar —ay.
According to the definition we have ar < pand ay < 1 — p. And it’s not hard to verify that
Nrp=N-[(1-af)-N|,Ny =lav-N],and Nc = [(1 —aF) - N| - lav - N]|.

Error Rate. Error rate is complimentary of the fidelity. Given a strategy profile 3, let Af(Z) (/12( %),
respectively) be the probability that A (R, respectively) becomes the winner when world state is k.
We can define the error rate I of the mechanism:

1(3) = Z P - M) + Z P - AR(3). 3)
kel keH
Note that A(Z) + I(Z) = 1.

D.2 Berry-Esseen Theorem

In this section, we recall the technical theorem which will be used in the proof of our result. Berry-
Esseen Theorem [5, 10] bounds the difference between the distribution of the sum of independent
variables and the normal distribution.

Definition 6 (Berry-Esseen Theorem). Let X1, X5, - - - , X, be n independent variables with E[X;] =
0, Var(X;) = 07 > 0, and E[|X;|*] = p; < oo. Let

Xi1+Xo 4+ X,

2 2 2
\Joi+ P+t ol

Denote F,, to be the CDF of S,;, and ® to be the CDF of the standard normal distribution. Then there
exists an absolute constant C s.t. for all n,

Sp =

pl+p2+...+pn
sup |F,(x) = ®(x)| < Cy - .
up [Falx) - 2() < Go (0P + 02+t a2)2

The upper bound of C, is estimated to be 0.5600 by Reference [37].

E NON-BINARY RESULTS

In this section, we present our theoretical results in the non-binary setting. All the theorems are
natural extensions from the binary setting to the non-binary setting, and the proofs also hold for
the binary setting. We’ll give remarks to show how the convert the proofs into the binary setting.

E.1 Lemma 2 (Lemma 1 for binary setting)

First, we show that a strategy profile with high fidelity will lead to an e-strong BNE with a sufficiently
small e.

LEMMA 2. Let e(N) be a function of N. For any N > N, and any regular strategy profile %" with
N agents, if X* satisfies A(X*) > 1 — e(N) (equivalently, I(*) < e(N)), then X" is an e-strong Bayes
Nash where e = KB((K —1)B+1) - e(N).

Lemma 2 is a natural extension of Theorem B.4 in Schoenebeck and Tao [33].

Proor. Since we have &r < pand dy < 1—p, we do not need to consider the friendly/unfriendly
agent dominating case. Consider a deviating strategy profile ', there are two possible cases:

(1) I(X') < ((K-1)B+1) -e(N)

() I(3") 2 (K-1)B+1) - e(N)
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Case 1. In the first case, the error rate of X’ is small. Since both strategy profile has high fidelity,
we show that agents cannot gain large utility from deviating.

Cramm 1. IfI(2) < ((K—-1)B+1)-e(N), then u,(X’') — un,(¥) < ¢ for all agents.

We know that I(2) = Yge s Pr /1;3(2) + Yker Pr - /15(2). Therefore, we have 0 < AQ(Z') <
w forallk € L and 0 < AE(Z’) < %:wa for all k € H. At the same time,
since I(2*) < e(N), we have 0 < A?(Z*) < % forallk € L and 0 < /1}:(2*) < %]Z) for all
k € H. Therefore, for every k € L, we have
((K=1)B+1)-e(N)

Py

AR () = R EN] = A2 (E) = A2 (59| <max(Ag (2), 48 (21) <

And for every k € H, we have
((K-=1)B+1)-e(N)
Py '

A2 (E) = 2 (E] = 1A2(E) = AA(ED)] s max(A(5), A8 (21) <

Therefore, for any k € ‘W, I/IQ(Z’) - AQ(E*)I < %;w. Now for an arbitrary agent n, we
consider her gain in deviation:

un (') = un(X)

K
= Z P((2(2) = A2 (E9) - valk, A) + (I (E) = A(E9) - 0a(k,R))

k=1

= D Pi(on(kR) =0, (k, AN AR (E") = AE())
keLy

+ > Pe(on(kA) =0, (kR (AR (3) = A2 (3)
keH,

(K=1)B+1)-e(N)

< Z P (on(k,R) — v, (k, A))

keLl, Py
* Z Pi(vn(k,A) = v,(k,R)) (K- 1)BP+ 1) - e(N)
keH, 3
(K-DB+1)-e(N) (K= DB+1)-e(N)
SZPk.B. B +ZPI<‘B- >
kel, &
=KB((K-1)B+1)-e(N)

=E£.

Case 2. In the second case, we show that X’ cannot be a successful deviating strategy in the
following steps:

(1) Contingent agents get strictly less utility in X’ than in =" and thus have no incentive to
deviate.

(2) For a friendly agent t; and an unfriendly agent t,, if one of them gain more than A = B- e(N)
from deviation, the other will get strictly less utility. Therefore, D contains either only friendly
agents or only unfriendly agents.

(3) D with only one type of pre-determined agents cannot gain utility more than e.

Cramm 2. IfI(3') = ((K—1)B+1) - e(N), thenu,(2") — u,(X*) < 0 for contingent agents.
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Firstly, we have A(X*) > A(2’) + (K — 1)B - e(N). This is because I(X’) > ((K—-1)B+1) - e(N)
and I(2*) < e(N). Then we consider the utility difference of an arbitrary contingent agent n:

1y () = n (") = 3" Pe(0a(k, R) = va (k, A) (AR (3) = AR(37))
kel
+ 3 Pr(on(k, A) — 0 (R (AR(E) = AA(E))
keH
Recall that v,,(k,R) — v,(k,A) > 0 for all k € £ and v,(k,A) — v,(k,R) > 0 for all k € H. We
consider two cases:
(1) For all world state k, =* leads to the informed majority decision with a higher probability than
>’. That is, for all k € L, /1]1:(2’) - /1}:(2*) <0, and for all k € H, AQ(Z’) - /1]’:(2*) < 0. In this case,
there is at least one k such that the inequality is strict. Therefore we have u,(2") — u, (%) < 0.
(2) There exists a world state k in which ¥’ leads to the informed majority decision with a higher
probability than X*. That is, there exists L' € Land H’ € H s.t. L7 UH’ # 0, and for k € L/,
/IE(Z’) - /15(2*) > 0; for k € H’, AQ(Z’) - /12(2*) > 0. Note that £’ U H’ # W always holds,
otherwise we will have A(2’) > A(2*) which is a contradiction. Then we have
DU RRE) -REN+ Y POEEN -2 (E)
keL\L’ keH\'H'
=AY - AR = D PORED - RE)) = D) PR E) - A8 (3)
kel keH'
>A(ZY) — A(Z)
>(K - 1)B-e(N).

At the same time, for all k € £, we have /15(2’) - /IE(Z*) < eg:), and for all k € H’, A?(Z’) -
/1;3(2*) < %. Therefore, the difference of utility will have

un(2') — un(2)

<-(K-DB-e(N)+ po SN g
ke L'TUH Pk
<—(K-1)B-e(N)+ (K- 1)B-e(N)

=0.
In the second line, the first term comes from the sum of all terms for k € W \ (L' U H’):
DT PORE) = 1K) 0k R) = vy (k, A))

ke L\L
+ ) PORE) = AR EN) @n(k A) - 0(k,R))
keH\H'
== > PRE) = R ED) (0n(kR) — 0a(k, A))
keL\L'
= D BORE) =2 (3)) (on(k, A) = 0a (K, R))
keH\'H'
<= D BRE) -RE) 1= 0 PORE) - ) -1
keL\L' keH\H'

<~ (K-1)B-e(N).
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And the second term comes from the sum of all terms for k € £’UH’. Note that since L'UH" € W,
we have | L”UH'| < K- 1.

After excluding contingent agents from the deviating group, we show that any deviating group
D cannot contain both friendly and unfriendly agents.

Cram 3. Suppose ny is an arbitrary friendly agent, and n; is an arbitrary unfriendly agent. For
A=K -B(B+1)-e(N), we have

1) Ifun, (Z) —up, (T) > A, up, (Z") — up, (%) < 0.

@) Ifun,(E') = un, () > A, un, (£') = upn, (£¥) <0.

We will only prove (1) since the reasoning of (1) and (2) are similar. Without loss of generality, let
ny = 1 and n, = 2. Suppose u; (X') — u;(Z*) > A, we’'ll show that u,(X") — u2(2*) < 0. According
to the definition of friendly and unfriendly agents, we have £; € £ € Ly, and Hy, € H € H;.

We’ll mainly use three facts in the proof:

(1) forall k € £, M(2*) - 22(x") < <90 - 2A(x) < & forall k € H, A2 (3') — 1A(2") <

M) - (1-40) < <),
(2) for both n =1 and n = 2, v,,(k, A) — v,(k,R) is negative for all k € £L;, and positive for all
ke '7’{2.
(3) for both n =1and n = 2, v,(k, A) — v,(k,R) is increasing in k.
We first consider the difference of 1’s expected utility:

K
A<u(3)-u(2) = Z Pre(o1(k, A) =01 (K, R) (A2 (Z') = A2 (27))
k=1

We can categorize k into three parts:
e k € L. For these k, v,,(k,A) —v,(k,R) < 0 and AQ(Z*) - /IQ(Z’) < %]Z). Therefore, we have

Z Pr(v1(k, A) = 01(k,R) (A2 () — 22 (Z9)
kel

= > Pe(1(kR) — 01 (k A) (AR (37) = A2 (3)
kel

e k € H,. For these k, v, (k,A) —v,(k,R) > 0 and A?(Z’) - /12(2*) < %]Z). Therefore, we have

D Pelo1(k A) =01 (k R) (AL (X)) = AR (2))

keH,

N
< Pk -B e(P )
kE(I’{z k
= Z B-e(N)

keH,

o k € W\ (L1 UH,). Note that this part can be divided into two parts: k € L N H; and
Lo N H. We'll deal with this part later.
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Therefore,

A <ui(37) —ui (3)

K
= Z Pr(o1(k, A) = 01 (k,R) (A () = 22 (2")
k=1

IA

Pe(o1(k,A) =0, (b R)AE(E) - AL E)+ > B-e(N)
keW\(L1UH;) ke L1UH,

= > Ploi(kA) —oi(kR) (AL () = A4 ()
ke LnH,

- D, Pk A) o (K R)ORED) - E N+ Y e(N)-B.

ke LonH ke LiUH,

Now we start deal with the first two terms with fact 1 and 3.

(1) For the first term Y ic pngy, Px(01(k, A) — vy (k, R))(A?(Z’) - AQ(Z*)), we have (v;(k,A) —
v1(k,R)) > 0 and (/12(2’) - /1‘,:’(2*)) > —%IZ). we want to replace the k in v into L, which
will make (v;(k, A) — v1(k,R)) larger. At the same time, we want the whole term to become

larger as well. Therefore, we add some term into (/1?(2’) - /1;3(2*)) as follows:

D Peoi(k A) - o1 (K R)(AR(E) = A2 (5")

ke LNH,
= ) Rk A) - o (L RDGAE) ~ 243 + L)
ke LNH, Pe
- 3 PwrlkA) -0k Ry - SR
ke LnH, Pr
< Y RE@A) -a@R)EE) - e + OY)
ke LUH, k
= ), (@(kA) -o(kR)-e(N)
ke LNH;
= > Pl A) — ol (LR)(AR(E) - AE(E)
ke LnH,
£ 3 (@ LA - o (LR) - (@1(k A) -0 (K R)) - e(N)
ke LNH,

< D P@(LA) — o (LRDAFE) - AL E)) + DL B-e(N).

ke LnH, ke LnH;



Qishen Han, Grant Schoenebeck, Biaoshuai Tao, and Lirong Xia 30

(2) For the second term — Y r,ng Pi(v1(k, A) — 01(k,R))(A2(S*) — A2(2')), we use similar
technique to replace k into L:

= D Pk A) = o1 (k R) (AR () = A8 ()

ke LoNnH

== 3 Bk A) - o (L R)(AAE) — 203 + E,)
ke LoNnH Py

+ ) (ei(kA) —01(kR) - e(N)
ke LoNH

<= 3 R A) - o LR - 1) + )
ke LonH Pi

+ ) (kA —01(kR) - e(N)
ke LoNH

== > Poi(LA) -0 (LR)AL(E) - ()
ke LoNnH

+ > (((@i(kA) =01 (kR)) = (01(L,A) = 02(LR))) - e(N)
ke LoNnH

<= D) P@(LA) —u(LR)YAME) - AL EN+ D B-e(N).
ke LonH ke LonH

Note that the first inequality comes from fact 3 that 0 < v;(L, A)—v; (L, R) < v1(k, A)—0v;(k,R)
forallk e Ly NH.

Now we put everything together and get

A <ur(3) - (3%
< D0 Pe(oi(kA) = 01 ( R)AE () = A2 ()

ke LNH,
- D, Pk A) o (kR)AEE) - EN+ D, B-e(N)
ke LonH ke LiUH,
< DL Poi(LA) — o (LR)ARE) - AL ()
ke LNH;
- D P(@i(LA) —u(LR)L(E) - A ()
ke LoNnH
+ Z B-e(N)+ Z B-e(N)+ Z B-e(N)
ke L1UH, ke LUH, ke LUH
= D P(oi(LA) - o(LR)AEE) - 22 ()
ke LN0H;

- Z Pi(01(L,A) — 0, (L R)(AA(Z") = 22(3)) + K - B - e(N).
ke LoNH
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Note that B > v;(L, A) — v1(L,R) > 0. Therefore, we have

DOREE) -RE) - Y POEE) - ()

ke LNH, ke LoNH
JA-K-B-e(N)
B
_K-B(B+1)-¢(N)—K-B-e(N)
- B
=K -B-e(N)

Now we consider agent 2’s side. We show that u;(X") —u2(2*) < 0. Most calculations will be the
same as those of agent 1. Note that one main difference is for agent 2, v2(k, A) — v2(k,R) < 0 for all

kE(W\(£1U7’{2).

(%) - up(3")
K

=" Pel(oa(k, A) = 05 (k, R) (AR (X)) = 2£())
k=1

< D PekA) -0k RDOFE) - AEN+ Y, Bre(N)
keW\(L1UH,) ke L1UH,

= Z Pi(v2(k, A) = 05(k, R) (A2 (Z) — 22 (Z1))
ke LOH,

= Y Rk A) -k R)ARE) -GN+ Y, Bre(N)

ke LoNnH ke LIUH,
< Y Ploa(LA) - 0a(LR) (A () = 42 (2Y)
ke LNH,
- D, P(eALA) - w(LR)(ALE) - AL () +K - B-e(N)
keLoNnH
<(v3(L,A) —vs(L,R))-K-B-e(N)+K-B-e(N)
<-1-K-B-e(N)+K-B-e(N)
=0.

Therefore, we show that u,(2") — u2(Z’) < 0, which implies the claim.

REMARK. Note that in the binary setting, this part of proof can be largely simplified. Note that
.£1 27‘{2 =@,.£U7’{1 = {L}, and‘HULz = {H}

Now we come to the final step of Case 2. We’ll show that a deviating group D that contains only
friendly or only unfriendly agents cannot gain utility more than ¢.

Cram 4. If D contains only friendly agents (or only unfriendly agents), then for everyn € D,
up (X)) —un(2%) < e

With the loss of generality, suppose D contains only friendly agents. The calculation for D
contains only unfriendly agents will be the same. Note that in X* every friendly agent always
votes for A. Therefore, when friendly agents in D deviate, the probability of A being the winner
will decrease. Formally, for any k = 1,2, --- , K, we have AI’:(Z’) < /11‘:(2*). Now we consider the
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difference in the expected utility of an arbitrary friendly agent in D:

un (%) —u,(2%) = Z Pe(va(k,R) — 0, (k, A)) (A2 (Z) = A2 (Z))
kel,
+ > Pe(oa(k, A) = oa(k RDOAL () = A2 ().
keH,
Note that for all k € H,, we have v,(k,A) — v,(k,R) > 0. Therefore, the second sum is non-
positive. At the same time, since £, € L, we have /IQ(Z*) - /1;3(2’) < AQ(Z*) < % and
vn(k,R) — 0, (k, A) > 0. Therefore,

N
Un(Z7) = up(Z*) < Z P-B- S ) <K-B-e(N) <e.
Py
keLl,
Therefore, we show that 3* is an e-strong BNE where ¢ = KB((K — 1)B+1) - e(N). O

E.2 Theorem 6 (Thorem 3 for binary setting)
Then we show that there always exists a sequence of regular strategy profiles with high fidelity.

THEOREM 6. For an arbitrary sequence of instances, there exists a series of regular strategy profiles
{=\ Y%, and constants Ny > 0, ¢ > 0 such that for all N > Ny, A(Z},) = 1 — 2exp(—2¢°N).

ProoF. Let B(n, p) denote a random variable of binomial distribution with n experiments and
probability p. Given N and a regular strategy profile =5 where all contingent agents play strategy
o= (p1, P2+, Pm), We can write up Af and /12 for each k.

A?(ZN) =Pr[#number of votes for A > uN | W = k]
M
=Pr[Np +B(NG, ) Pk - fm) = iN]

m=1

M M
=Pr[B(Ne, ) Pk - fm) = Ne ) Pk - fm = —fix(0) - N1,
m=1 m=1

where we define

M
Nr  Nc
fae) =7+ Z]lpmk P = 1

M
=0?F+0?czpmk “Pm—
m=1

Similarly,

M M
RN = Pr[B(Ne, D Pk (1= Bm)) =N D Pk (1= Bm) = —fii (o) - N],
m=1 m=1

where

M
iy =2+ ZE Y P (1= ) = (1= )
m=1

M
=qy +dc ) Pk (1= Bn) = (1= p1)
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If we can find a ¢/, and constant Ny > 0, ¢ > 0 s.t. for every N > Ny, for every k € H we have
ﬁ(lX(a’) > ¢ and for every k € L we have fkf‘é(a') > ¢, then we can directly apply the Hoeffding
Inequality and show that for every N > Nj, 2}; has high fidelity.

Now we start constructing strategy o”’. First we define the "approximated version" of kaX and fk]z
which are independent from N. Given a strategy o, let

M

fia(0) =06F+0€czpmk'/3m—ﬂ 4)
m=1

) M

fer(0) =ay +ac D P+ (1= Bm) = (1= p). (5)
m=1

The rest of the proof will go as follows:

(1) First, we construct a strategy o’ s.t. for every k € H we have ka(a’) > 0 and for every
k € L we have ﬂR(a’) > 0.

(2) Then we find out Ny and show that for every N > N, ﬁCJX(o") will not deviate from ﬂA(G’)
too much, thus will larger than some constant ¢. Similarly we show that for every N > Np,
(@) > ¢.

(3) Finally, we show that for all N > Ny, A(Z},) > 1 -2 exp(—2¢42T) by applying the Hoeffding
inequality.

Part 1. Constructing ¢’. The construction of ¢ has three steps. We start from a simple strategy
and then modify it to the target step by step.

Step 1. Consider a simple strategy oy = (8%, f*, -+, f*). That is, the agent always votes for A
with probability f* and votes for R with probability 1 — f* no matter what signal she receives. §*
satisfies ap + a¢ - f* — = 0. Since af < pand ay < 1 — p, we have f* € (0, 1). Moreover, we have
fea(oo) = 0 and fyr(co) = 0 for all k € W.

Step 2. Let m* = L%J. m* will serve as a threshold, as we regard signals not larger than m* as
"low signals" and those exceeding m* as "high signals". Specifically, for a world state k, define
Py = Zﬁ;l Pk, and Py = Z%:m* +1 Pmk. According to the stochastic dominance assumption, we
have 0 < Py, < Pk, and Ppg, > Ppy, > 0 for all ky > ky. Let f; = * — &;, and f, = f* + Oy, where
8; > 0 and 8y, > 0 are constant satisfying 8, = & - }%’{. We can carefully select and fix 8}, and §;
to make fj, and f; inside (0, 1). Then we construct strategy o7: if the agent receives a low signal
m < m*, she votes for A with probability §; and R with probability 1 — f;; if she receives a high
signal m > m*, she votes for A with probability f, and R with probability 1 — fj,. Then we show
that

o forall k € H, fia(o1) > 0, and

o forallk € L, fyir(o1) > 0.
For the H side, we’ll first show that fHA(al) = 0. Then we show that for all k € H, ﬂA(ol) >
fua(o1). For k = H, we have

fira(o1) =ar + ac(Pigr - B+ Phrr - ) —
=ar +ac(Pi - (B =6) + Pry - (B +6p)) — 1t
P
=ac (=P - 61+ Pppr - 01 - PI—H)
hH
=0.

For other k € H, because f; < B, Pix < Pig,and P > Pyy, we have ﬂA(al) > fHA(crl) > 0.
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For the L side, similarly, we’ll first show that fLR(O'l) > 0. Then we show that for all k € L,
fir(01) > fir(01). For k = L we have
fir(01) =ay +ac(Pu - (1= B1) +Pu - (1= Bp) = (1= p)
=ay +ac(Py - (1= B +3) + Py - (1= " =) — (1 - p)

Py
=ac - (P, -6 — Ppr - 61 - &—Z)

(Xc'51

(Prr - Pne — Prr - Prg)
hH

>0.

The final inequality comes that Pjy < Pjp,and Ppy > Py since L < H. For other k € L, because
(1=p1) > (1= Bu), Pk 2 Pp,and Ppi < Ppr, we have fia(o1) > fra(o1) > 0.

REMARK. In the binary setting, we just let o1 = (B}, Pr). And we will find that fHA(al) =0 and
fLR(O-l) > 0.
Step 3. In step 3, we modify fj, to make both sides strictly positive. Let 8] = B, and §, = S, + 6},

where &, > 0 is a constant satisfying ac - §; < M and fj, + 9, < 1. Therefore, 0 < f/ < B, < 1.
Now we are ready to construct our final strategy ¢’: if the agent receives a low signal m < m*, she
votes for A with probability f;, = f and R with probability 1 — f/; if she receives a high signal
m > m", she votes for A with probability f;, = f, and R with probability 1 — f;. Then we show that

e forall k € H, ﬁA(o’) > 0, and
o forallk € L, fir(c’) > 0.
For the H side, we still consider H first:
fua(o”) =ar + ac(Py - B+ Py - By) — 1
=ar +ac(P - fr+ Pru - (Pr+8,)) — it
=fua(o1) +ac - P - 5,
=qc - PhH . 5;1
>0.
For other k € H, because ] < f;, Pix < Py,and Pyg > Ppyr, we have ﬂA(U’) > fHA(cr’) > 0.
For the L side, we consider L first:
fir(o") =ay +ac(Pi - (1= ) +Par - (1= Bf)) = (1 - p)
ay +ac(PiL- (1= ) +Ppp - (1= B —6;)) — (1 - p)
=fir(c’) — ac - Pp. - 5,
fir(a")
2

>

>0.

For other k € £, because (1-)) > (1-p,), Pix = Pjr,and Ppx < Py, we have ﬁA(o') > fLA(o’) >
0.

REMARK. In the binary setting, similarly, let o’ = (B}, f;). We will find that fra(c’) > 0 and
fir(c’) >0
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Part 2 Determine N and ¢. In this part, we’ll show that for all k € H, (k € L, respectively),
_ﬁCJX(a') (ﬁg(o’), respectively) will not deviate from fia (0”) (fir(0”), respectively) too much. Since

f;cA(O',) and ﬁCR(O',) do not depend on N, we can determine constant Ny and ¢, s.t. for all N > Np,
kaX(o') > ¢, and fkjﬁ(o’) > ¢. We start from the H side. Recall that

And recall that Np. = N — |[(1—aF) - N|, Ny = lay - N],and Nc = [(1 —aF) - N| — lay - N|.
Therefore, for all k € H, we have

M
o= - LUZ N Lme) Nl NI §hy

m=1

M
21_(1_05F)+((1_‘XF)_%_QU)ZPmk'ﬁ;n_.u

M M
1
=0{F+aC‘ZPmk'ﬂrln_,u_szmk‘ﬁrln
m=1

m=1

>fial0) -

. , 1

2 fua(o’) — N

Since fHA(o") > 0 is independent from N, there exists a Ngy > 0, s.t. for all N > Ngyand all k € H,
f}cl\/;(o-l) > fHAZ(O' ) .
For the L side, similarly for all k € £, we have

M
YN =24 2E S P (1= ) = (1= )

_lew-NJ L(1-ap)-N] - lay - N]

M
N 5 2 Pk (L= Br) = (1= p)

m=1

M
say -+ (1= ap) = 1 —aw) Y P (1= ) = (1= p)

M M
=ay+act Y P (1= ) = (1= ) = £ (14 Y P (1= )
m=1 m=1

A 2
> fir(0') - N
> fir(0') - =
>fILR N
Since fLR(G’) > 0 is independent from N, there existsa Ny > 0, s.t. forall N > Ny and allk € £,

f]‘(}\é(al) > fLRéG/) .

REMARK. This part is different in the binary setting due to the different rounding method. However,
we can still show thathfIVA(cf’) > fua(o’) — % andfg(o”) > fir(o’) - % by the same reasoning.
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Therefore, putting H and L sides together, let ¢ = min(f”AT(”/), M), and Ny = max(Nqy, Ng),
we have for all N > N, forall k € H, kaX(U’) > ¢,andallk € L, fkl\li(a’) > @.
Part 3. Bound the fidelity. Now we come back to the fidelity and bound it by the Hoeffding
Inequality. For all N > N, for the H side we have

M M
AR () =Pr[B(Ne, ) Pk - Bru) = Ne ) Pk - B = =i (0) - N]

m=1 m=1

M M
> Pr[B(NC, ) Pk Bjs) = Ne . Pk - B = = - N]
m=1 m=1

>1 - 2exp(—24°N).
Similarly, for the £ side we have

M M
IR(EN) =Pr[B(Ne, D Pk - (1= Bu)) = N D Pk - (1= ) = —fi(0) - N]

M M
> Pr[B(Ne, ) Pk (1= 1)) = Ne ) Pric - (1= ) = =¢ - N
m=1 m=1

>1 - 2exp(—2¢°N).
Therefore for all N > Nj,
AGR) = Y P ARCR) + Y P M CR)

kel keH
> Z Pr(1 - 2exp(—2¢°N)) + Z Pe(1 — 2exp(~2¢%N))
kel keH

=1 - 2exp(—24°N).

E.3 Theorem 5 (Theorem 2 for binary setting)

Then we give the theorem of the equivalence between fidelity and strong equilibrium.

THEOREM 5. Given an arbitrary sequence of instances and an arbitrary sequence of regular strategy
profiles {Zn} , let {A(ZN)}N_, be the sequence of fidelity of >.
o Iflimyec A(EN) = 1, for every N > N, 3y is an e-strong BNE with € = o(1).
o Iflimyeow A(EN) = 1 does NOT hold, there exists infinitely many N such that Xy is not an
e-strong BNE with constant ¢

Proor. Let e(N) = (1 — A(2N)), and we can directly apply Lemma 2, and get that for every N,
3N is an e-strong BNE where ¢ = KB((K —1)B+1) - (1 - A(ZN)).
Case 1:limyec A(ZN) = 1. For this case, Since A(Z ) converges to 1, &, which is positive proportion
to 1 — A(Zn), will converge to 0 as N — co.
Case 2: limyeoo A(Zn) = 1 does not hold. Then there exist a constant § > 0 and a infinite set
N C R st.forall N € N, A(SNy) < 1 — 6. From Theorem 6 we know that we can construct
a series of symmetric deviating strategies {3},}, and find constants Ny > 0,¢ > 0, s.t. for all
N > No, A(Z)) < 1—2exp(—2¢*N). Note that in both {y} and {2}, } every friendly (unfriendly,
respectively) agent always votes for A (R, respectively). Therefore, the deviating group contains
only contingent agents, and we only need to consider the expected utility of contingent agents.
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Given an arbitrary (N > Np) A (N € N), recall the difference of expected utility for an agent
between Xy and X};:

tn(S7) = n(Sn) = ), Pi(on(k,R) = 0, (k, A) (A (33) = A (En))
keL

+ ) Pelon(k,A) =0, (K, R) (AR (B3) = AR (E).
keH

And recall the definition of fidelity:

AG) = Y P IR + D P ().
kel keH
For X}, we flave A(Z}) = 1 - 2exp(—2¢°N). Therefore, for2 every k € H we have AQ(E;V) >
1- %}f‘ﬁm, and for every k € L, /12(2}\]) >1- %}(wm. For X, on the other hand, we
have A(Zn) < 1 -6 for all N € N. Therefore, there exists some k* € W, s.t.
(1) if k* € H, A@(ZN) <1-6, or
(2) ifk* € £, 2. (Sn) <1-6.

W.Lo.g we assume k* € H. The reasoning for k* € £ will be almost the same. Then in the difference
of expected utility, we have

tn(S) = ttn (Sn) =Pee (0 (K", A) = 0, (K", R) (A () = A8 (En))
+ D Pe(oa(k,R) = 0, (k, A)) (AR (33) = A ()

kel
+ D Peloa(kA) = oa(k R)(AR(ZY) = A2 (Zn))
keH\{n*}
—_9242 o042
ZPk*.l.(l_%:d)N)_(l_(g))_ Z Pi-B- zeXP(Pk2¢ N)

keW\{k*}
=6P;- — ((K = 1)B+1) - 2exp(—24°N).
>6- lfrelgall(Pk) — ((K=1)B+1) - 2exp(—24°N).

Note that the first term § - mingcqy (Py) is a constant, while the second term ((K — 1)B+ 1) -
2exp(—2¢%N) converge to 0 as N — oo. Therefore, there exists a Ns > Nj s.t. for all (N >
Ns) A (N € N), un(2) —un(En) > %5 - mingcqy (Py). Therefore, for every such N, Xy is NOT
an e-strong BNE for all ¢ < %5 - ming ey (Py). O

E.4 Theorem 7 (Theorem 4 for binary setting)

Then we give the theorem based on the probability analysis of the fidelity and provide a criterion
for judging whether a profile sequence is of high fidelity.

Consider a strategy profile sequence {2y }. For every N, we define random variable XY as "agent
n votes for A". That is, in the instance of N agents, X,]:] = 1if agent n votes for A, X,Il\] = 0 if n votes
for R. Then we can write AQ(ZN) and AE(ZN):



Qishen Han, Grant Schoenebeck, Biaoshuai Tao, and Lirong Xia 38

N
AN =Pr[ Y XY > - N | k]

n=1

N N N
=Pr[) XY~ D UEIXN [kl 2 p- N = 3 EIXY | k]| K]

n=1 n=1 n=1

N
AREN) =Pr[ Y (1-XN) > (1= )N | k]

n=1

N N N
=P (=X = D E[-XY [k > (1= pN = 3 E[1-XY | k] | K]

n=1 n=1 n=1

Let the excess expected vote share be

N
fin =37 2, EL 1K=
N_1X N
fkRZN;E[l—Xn |kl = (1-p)

Then, for every N, let
N _ - o eNy e oN
S =min (kmelqg(ﬁcA), ﬂl.?(ﬁd‘) :

THEOREM 7. Given an arbitrary sequence of instances and arbitrary sequence of strategy profiles
{En}N., let fN is defined for every SN.

o Ifliminfy_ o \/JT]fN = +00, limy 00 A(ZN) = 1.

e Ifliminfy_e VN - fN < 0 (including —), i.e., there exists a constantyj < 0 and an infinite
set N, s.t. for every N € N, VN - fN < 1), then there exists a constant N, > 0 such that for all
(N € N) A (N > Ny), A(EN) has a constant distance with 1.

e Ifliminfy_,c VN - fN > 0 (not including +c0), i.e., there exists a constantn > 0 and an infinite
set N, s.t. for every N € N, VN - fN < 1, and there exists a constant y s.t. for every N € N
and everyk € ‘W, Var(Zf:]:1 XN | k) > ¢ - N, then there exists a constant N, > 0 such that
forall (N € N) A (N > Ny), A(EN) has a constant distance with 1.

ProOF. Case 1: liminfy e VN - fV = +c0. In this case we use the Hoeffding Inequality to give
each /IQ(ZN) (or AE(ZN)) a lower bound. For all k € H, according to the definition of f:

N
AREN) =Pr[ Y XN = S EIXN | k] =~ - N | k]

>Pr[y XN N E[XN |kl =-fN-N|k].

= 1=
M= 1

]
—-

1l
—

n n
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Let Nj satisfies that for all N > Ny, VN - f¥ > 0. Then for all N > Ny, we can directly apply the
Hoeffding Inequality:

N N
RN 2Pl ) XY = 3 EIXY [kl 2 ~fY N | K]
n=1 n=1

>1 - 2exp(=2(fN)?N).

Similarly, for all k € L, we have
N N
AREN) =Pr[ Y (1=XN) = > E[1=XN | k] = —f - N | k]
n=1 n=1

N N

ZPr[Z(l -xN) - 25[1 ~XN k] > -fN Nk
n=1 n=1

>1 - 2exp(—2(fN)?N).

Therefore, the fidelity of Xy satisfies

AGN) = D P RGN+ ) P A GN) (6)
kel keH
> Z (1-2exp(-2(fN)2N) (7)
keW
=1-2exp(-2(fN)’N). (8)

Case 2: liminfy_,., VN - fV < 0. In this case, there exists a constant 7 < 0 and an infinite set N,
s.t. for every N € N, VN - fN < 5. For every N, we define ky as follows:

kn = arg min [ min(£Y), min(£N)| .
N = (ke‘H(ka) n(iw)

That is, ky is the world state whose fkljv\, A (if keH) or fkljv\, R (if ky € L) reach the minimum fV.
Note that for different N, ky may be different, and some of them will be in H while others may
be in L. However, the reasoning for different kx will be the same. Consider the fidelity of Xy For
some N € N when world state W = ky, and w.Lo.g suppose ky € H:

N

XN = S EIXY [kl 2 —fY 5 N | k]
1

M=

i, ) =Pi|

S
I
-
S
I

XN _

n
1 n

<Pr| E[XN | kn] = —nVN | ky].

||MZ
M=

Il
—

n

In this case we have < 0, thus —7VN > 0. Therefore, we can directly apply the Hoeffding
Inequality and get

N N
A En) <Prly X = 3 EIX) | k] = —nVN | ky]

n=1 n=1

<exp(-2n?).
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For every N € N, we can prove A?N(ZN) < exp(=2n?) if ky € H, or AEN(ZN) < exp(=2n?) if
kn € L. Therefore, for every N € N, the fidelity
A(ZN) £1=Piy (1 - exp(=21°))
<1 - (1 - exp(~27%)) min (Py).
Case 3: liminfy_. VN - fN > 0. In this case, we apply the Berry-Esseen Theorem, which bounds

the difference between the sum of random variables and normal distribution. We define N and
kn similarly as in Case 2. Suppose ky € H. First we rewrite the form of A‘,;‘N (EN). Let YN =

XY —E[XY | kn]. and sy = N, Var(YY | kn) = /20, Var(XY | ky). We have

N N
A () <Pr[Y XN = STEIXY [ k] = VN | ky]
n=1 n=1

Let N’ be the number of agents whose Var(XY | ky) > 0. Wlo.g, let Var(XY | ky) > 0 for
n=12---,N’ and Var(X,Il\’ | kn) = 0forn = N+ 1,N’+2,---,N. From the assumption

nN:1 Var(XY | ky) > ¢ - N we know that N’ > ¢ - N (because Var(XY | kx) < 1). Since
Var(XY | kn) =0forn=N’+1,N'+2,--- ,N, we have X) = E[XY | ky] condition on ky for
these n. Therefore, we have

N N
A (En) <Pr[Y XY = STEIXY [ k] = -nVN | ky]
n=1 n=1

N’ N’
=Pr[) XY = > EIXY [ knl 2 VN | ky]
n=1 n=1

Then we rewrite the formula in YN and sy:

N’ N’
AN <Prl Y XN = 3 EIXY | k] = —nVN | ky]
n=1 n=1

Z]r)il vy > _U‘/N

=Pr

kN] |

mfﬁ) ¢y —Znea ELGYP L]
s , 3/2
v (20 var(e | v

SN SN

Then we apply the Berry-Esseen Theorem and get

>

g (GN) <1- q>(—

where @ is the CDF of standard normal distribution, and Cy < 1 is a constant from the theorem.
We deal with this inequality term by term to show that /IQN (2N) has a constant difference with 1.

First, we show
o M)_Q(_M):q)(_i).
(SN ) W

This is because s2, = Y., Var(Y,N | kn) > ¢ - N. The following table reveals how things works.
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SN > WY N

nVN <« mN

SN - \/I/I_N

_W‘/N > _M
SN - \/W_N
_mN _mN

o(-2¥) » CD( W_N)

Table 12. Comparison on the left and the right side.

Secondly, we start to deal with
Sl ELYNT | k]

(220, var(r 1))

Firstly, since —1 < Y, < 1, we have E[|YN|* | ky] < 1. Therefore,
Sa ELYNP Thnl N’

(Ea v k) (200 var(RY 1 kv)

3/2°

Then, notice that since 0',% =0forn=N +1,N +2,--- N, we have ZnN;I Var(Y,ﬁV | kn)
N Var(YN | ky) = - N. Therefore,

ShLELNYYP Tkv] N’ LN
, 3/2 — , 3/2 — . N)3/2°
(SN VarN Th)) (SN Ve k) N

Finally, since N’ < N, and N¢ > acN — 1,
o ELYN | ew] N
, 3/2 = CN)3/2 T 3
(S0 var¥ 1 ky)) WA

Now we are ready to wrap things up:

AQN(ZN) <1-|® —n‘/_)_co, 2 ENY, P | k]

(220, var( 1))

RIRE

The last inequality comes from that Cy < 0.5600 [37].

41
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VW

exists a Ny, s.t. forall (N > Ng) A (N € N), AQN(ZN) <1- %(/5 Therefore, A(ZN) < 1— %PkN P <
1— 2 mingew (Py) - ¢. o

Similarly to the binary setting, if we apply Theorem 5 to each case of Theorem 7, we get a
criterion for judging whether a profile sequence is an equilibrium.

The same reasoning also works for other N € N. Therefore, let ¢ = ® (—i) then there must

COROLLARY 5. Given an arbitrary sequence of instances and arbitrary sequence of regular strategy
profiles {Zn}N_; let fN is defined for every =N.

e Ifliminfy_, VN - fN = +oo, then for all sufficiently large N, Sy is an e-strong BNE with
e=o0(1).

e Ifliminfy e VN - fN < 0 (including —co), there exists infinitely many N such that Sy is not
an e-strong BNE with some constant ¢.

e Ifliminfy_,e VN - fN > 0 (not including +c0), and there exists a constant / s.t. for every
N e N and everyk € ‘W, Var(ZflV:1 XN | k) > ¢ - N, there exists infinitely many N such that
>N is not an e-strong BNE with some constant e.

E.5 Corollary 6 (Corollary 2 for binary setting)

Finally, we can directly get a dichotomy for symmetric strategy profiles from Theorem 7, by showing
that every case of symmetric profiles falls into some case.

Given arbitrary N and a symmetric strategy profile induced by o = (f1, f2. - - - , Bm) the excess
expected vote share is

N 1 N M M
Fx = 20 Pk B) == D Pk =
m=1

n=1 m=1

N 1 N M M
fir =5 250 Pt (U= ) = (1= ) = 3" P (1= i) = (1= ),
m=1

n=1 m=1
N . L eN N
=min (min f_,, min .
f (ke(Hﬁ‘A kel ﬁ‘R)
An interesting observation is that the excess expected vote share of symmetric profiles is inde-

pendent of N. Therefore, for simplicity, we use fia, fkr, and f to denote the excess expected vote
share for symmetric profiles.

COROLLARY 6. For an arbitrary strategy o = (f1, 2. - - - , Pm) and an arbitrary sequence of instances,
let {3N} be the sequence of strategy profile 3N induced by o, and f be the excess expected vote share
of the strategy profiles.

o Iff > 0, then there exists a constant Ny > 0, s.t. for all N > Ny, A(Sy) > 1 - 2exp(—1 f2N).
o If f <0, then there exist constants Ny > 0 and n’ > 0, s.t. for every N > Ny. A(CN) <1-7'.

Proor. For f > 0, we have liminf N — coVN - f = +co. Therefore, we can apply Case 1 of
Theorem 5 (Inequality 8), and have

A(ZN) 2 1-2exp (—2f%N).

For f < 0, we have liminf N — coVN - f = —co. Therefore, we can apply Case 2 of Theorem 5
with any constant 5 < 0. Then there exists a Ny such that for all N > N, we have A(Zy) <
1 — (1 — exp(—25?)) mingcqy (Py). Therefore, let n” = (1 — exp(—27%)) mingcqy (Px), we have
ACEN) <1-7.
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For f = 0, we have liminf N — coVN - f = 0. Therefore, we need to consider the variance.
Z%:l Var(XY | k). For a single contingent agent n, given W = k, we have

M
PrXY =01 k] =) Pk - (1= fim)
m=1

M
PrXY =11k = Pk .
m=1

Therefore, we have

M M
Var(X,IlV | k): (mek'(l_ﬂm)) (mek'ﬂm)

is a constant. Let ¥ = mingeqy (Zﬁ\n/le P - (1= ﬂm)) (an/lzl P - ﬁm) and we get for every k €
W, YN_ Var(X) | k) > ¢ - N.

We show by contradiction that i = 0 will not happen. Suppose it is not the case and = 0. Let
ky = arg mingcqy (an'le P - (1— ﬂm)) (Z%:l Pk ﬂm) Then we have

M M
(Z Pk, - (1 —ﬁm>) (Z Pk, ~ﬁm) =o.

W.lo.g, assume (an'le Pk, - ﬁm) = 0. Then we consider ﬁch, and have

M
_ﬁc,/,A:aCZPmk‘/, 'ﬁm_ﬂ:_ﬂ<0a
m=1
which contradict with f = 0. Therefore, ¥ = 0 will not happen.

Since we have guaranteed that ¥ > 0, we can apply Theorem 7. Let n > 0 be any positive
constant, We can apply Case 3 of Theorem 7 and get that there exists a Ny, s.t. for all N > N,
ACN) € 1-31min Pi)? - & |—-L|. Therefore, let n” = 1 — 4 min P)? - o |-L|, we

(EN) 5 Mingeqy (Px) ( N n 5 mingcqy (Px) v
have A(En) < p’forall N > N;,. O
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