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We study the voting game where agents’ preferences are endogenous decided by the information they receive,

and they can collaborate in a group. We show that strategic voting behaviors have a positive impact on leading

to the “correct” decision, outperforming the common non-strategic behavior of informative voting and sincere

voting. Our results give merit to strategic voting for making good decisions.

To this end, we investigate a natural model, where voters’ preferences between two alternatives depend on a

discrete state variable that is not directly observable. Each voter receives a private signal that is correlated with

the state variable. We reveal a surprising equilibrium between a strategy profile being a strong equilibrium

and leading to the decision favored by the majority of agents conditioned on them knowing the ground truth

(referred to as the informed majority decision) : as the size of the vote goes to infinity, every 𝜀-strong Bayes
Nash Equilibrium with 𝜀 converging to 0 formed by strategic agents leads to the informed majority decision

with probability converging to 1. On the other hand, we show that informative voting leads to the informed

majority decision only under unbiased instances, and sincere voting leads to the informed majority decision

only when it also forms an equilibrium.

1 INTRODUCTION
Today, voting is used to make an array of binary decisions permeating nearly every corner of life

including in recall/run-off public elections, adoption of decrees by religious institutions, decisions

by corporate boards on whether or not to pursue a new strategy/acquisition/etc, hiring and by-law

decisions at university, and public entertainments like talent shows. In most cases, the voting is

attempting to aggregate both the agents’ preferences and knowledge. A key aspect of this setting is

that agents have preferences over outcomes contingent on some underlying state that they cannot

directly observe, and the goal is to make a “good” decision that reflects the real preferences of the

agents.

Example 1. Suppose the voters vote to decide the policy towards the COVID-19 pandemic. The
two choices are to accept the more-restrictive policy (Accept) and to keep the status quo (Reject). The
consequence of the policy depends on the fact that the COVID virus is of high or low risk, and more
people tend to accept the policy when COVID is of high risk than when COVID is of low risk. The voters
do not know the risk level of the virus directly. Instead, every voter forms a private judgment on the
risk level based on his/her own information sources. voters may have different opinions on whether
to accept the policy which may or may not depend on the risk level. Can the voters achieve a good
decision via the majority vote?

Three different lines of work aim to address this problem under different models and with

different goals. The first line of work is axiomatic social choice [1, 29], where agents’ preferences

are exogenously given, and the goal is to design voting rules that satisfy desiderata, often called

axioms, especially when agents sincerely report their preferences. The second line of work is along

the extensions of the Condorcet Jury Theorem [8], where agents’ preferences are endogenous and

depend on the information structure and the signals they receive. The goal is to design mechanisms

to reveal the true state of the world, especially when agents vote informatively, i.e., their votes
honestly reflect the private signals they receive. The survey by Nitzan and Paroush [27] provides a

comprehensive overview. The third line of work originated from Feddersen and Pesendorfer [11],

where agents’ preferences are endogenous as in the second line of work, yet the goal is different.
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Instead of revealing the true state of the world, the goal is to achieve informed majority decision,
which is the decision favored by the majority of the agents if the world state were known to them.

Our paper is along the third line of work.

1.1 Strategic Behaviors
Previous work shows that a good decision can be reached when agents follow sincere or informative

behaviors. However, when agents are strategic, they may have incentives to deviate from sincere or

informative voting to achieve a preferred result with a higher probability. This is not a problem for

axiomatic social choice, as strategic agents will always vote for their preferred alternative in binary

voting [3]. However, when agents have preferences decided by uncertain world states, the surprising

result by Austen-Smith and Banks [2] shows that even in binary voting, informative voting may

fail to form a Nash equilibrium. The key insight is that an agent’s vote makes a difference only

when all other votes form a tie, which means that when an agent strategically thinks about his/her

vote, effectively he/she gains more information about the ground truth (by assuming that other

votes are tied). This is illustrated in the following example.

Example 2. Consider an instance of the COVID policy problem, where the utility of the agents and
signal distribution of different risk levels are shown in the tables below.

State High Signal Low Signal

High Risk 0.9 0.1
Low Risk 0.4 0.6

Table 1. Signal distributions.

State Accept Reject

High Risk 1 0
Low Risk 0 1
Table 2. Agents’ utilities.

Suppose all but one agents are informative and the remaining agent is strategic. Informative agents
vote for Accept when they receive a high signal and Reject when they receive a low signal. The strategic
agent only cares about the pivotal case where exactly half of the informative agents vote for Accept.
However, given that agents receive high signals with a probability of 0.9 given the risk level being high,
the pivotal case implies a high probability that the risk level is low, and the strategic agent will vote
for Reject even after receiving a high signal.

The above deviation of strategic binary voting with preferences endogenously affected by the

unobservable world state sharply contrasts with the axiomatic social choice where preferences

are exogenously given. In the latter case, the majority rule is strategy-proof while the former case

attracts a large literature to study the binary voting problem under game theoretical contexts,

studying the impact of strategic behavior. For the truth-revealing goal, Wit [38] and Myerson [24]

show that a selected equilibrium with mixed strategy reveals the world state with high probability.

Feddersen and Pesendorfer [12] show the existence of such equilibrium in any non-unanimous

voting, while in unanimous voting strategic voting has a constant probability to make amistake. And

for the informed majority decision, Feddersen and Pesendorfer [11] adopt a model with continuous

world states and an asymptotically large number of agents whose preferences are drawn from a

distribution with full support on a continuum and show that the equilibrium is unique and always

leads to the informed majority decision with high probability. Schoenebeck and Tao [32] proposes

a mechanism incentivizing informative voting from agents and leading to the informed majority

decision with high probability.

Nevertheless, there are two aspects not addressed by previous works. Firstly, previous works

(except for Schoenebeck and Tao [32]) focus on Nash equilibrium which allows only individual

manipulation. In real-world scenarios, on the other hand, such strategic manipulation often occurs
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in a coalition of agents. Coalitional manipulation is more powerful than individual manipulation as

it allows multiple agents to coordinate and deviate at the same time. The following example shows

that a Nash equilibrium is still prone to a group of manipulators in binary voting.

Example 3. Consider an instance with three agents, whose utility is shown as follows.

Agent (High, Accept) (High, Reject) (Low, Accept) (Low, Reject)

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
Table 3. The utility of three agents under different states and decisions.

The following strategy profile is a Nash equilibrium: agent 1 always votes for Accept, agent 2 votes
informatively, and agent 3 always votes for Reject. Here, agent 1 and 3 play their dominant strategies,
and, consequently, informative voting is the best strategy for agent 2. However, this strategy profile is
dominated by the profile where all agents vote informatively. Under informative voting, the decision in
accord with the state (Accept in High state, and Reject in Low state) is selected with a larger probability,
and the utility of agent 2 increases. On the other hand, the overall probability of choosing to Accept or
Reject does not change, so agent 1 and 3’s utilities remain the same.

Secondly, previous works focus on the existence of certain equilibria that achieves the goal

(revealing the world state or reaching the informed majority decision). However, the existence of

multiple equilibria [38], including “bad equilibria” that do not lead to the goal, makes the behavior

of strategic agents unpredictable, as it is uncertain which equilibrium agents will play. One response

to multiple equilibria is to select an equilibrium that is more “natural” or “reasonable” than others,

named equilibrium selection. However, equilibrium selection cannot guarantee that agents will play

the selected equilibrium, as it is unclear which equilibrium is more “natural” or “reasonable” in

many scenarios, and agents may not agree on a "more natural" equilibrium even if it exists.

As a consequence, the following research question remains unanswered: does binary voting
always lead to the informed majority decision with coalitional strategic agents?

1.2 Our contribution
We give a surprising confirmative answer to this question under mild conditions. We show that

coalitional strategic behaviors positively impact achieving the informed majority decision and

outperform non-strategic voting. We show that every equilibrium leads to the informed majority

decision, and every voting profile that leads to the informed majority decision is an equilibrium.

On the contrary, non-strategic behaviors lead to the informed majority decision only under certain

conditions. Our results give merit to strategic behaviors and extend Feddersen and Pesendorfer’s

results to settings with coalitional strategic agents.

We study the solution concept of 𝜀-strong Bayes Nash Equilibrium, which precludes groups of

agents from reaching higher expected utilities by coordinating. We show the equivalence of a

strategy profile being “good” (leading to the informed majority decision with high probability,

or, equivalently, of high fidelity) and being an 𝜀-strong Bayes Nash Equilibrium with 𝜀 = 𝑜 (1)
(Theorem 2). We also guarantee the existence of an 𝜀-strong Bayes Nash with 𝜀 = 𝑜 (1) in any

instance (Theorem 3).

On the other hand, we characterize the conditions where strategy profiles succeed and fail to

achieve the informedmajority decision. Applying these results, we study two common non-strategic

behavior – informative voting, where agents honestly reflect their private information in their votes,
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and sincere voting, where agents vote as if they are the only decision-maker. We show that (1)

informative voting leads to the informed majority decision only when the majority vote threshold

is unbiased compared with the signal distribution (Corollary 3), and (2) sincere voting leads to the

informed majority decision only when it is also an equilibrium (Corollary 4). These observations

indicate that strategic behavior “prevails” over non-strategic behaviors in binary voting!

The technical key for the probability analysis is to compute the excess expected vote share, i.e.,
the amount of expected vote share an alternative attracts that exceeds the threshold, and to upper

(or lower) bound the fidelity given different cases of excess expected vote shares. A strategy profile

has high fidelity if and only if its excess expected vote share is strictly positive (Theorem 4).

We follow the setting in Schoenebeck and Tao [33], which is an extension of the setting in

Austen-Smith and Banks [2], and consider agents with preferences contingent on underlying world

states in a single framework. Also, as in Example 1 and previous work, we assume that various

constraints in the real world prevent discussion after agents see their signals. Such constraints can

be of a time aspect (a quick decision must be made and there is no time for discussion), a procedural

aspect (a formal conference that prohibits participants from discussing privately before voting),

and/or a societal aspect (it is socially unsuitable to discuss some preferences), etc. Therefore, we

consider an ex-ante setting where the expected utilities are computed before agents receive their

signals.

1.3 Related Work
The famous Jury Theorem from Condorcet [8] has “formed the basis for the development of social

choice and collective decision-making as modern research fields” [27]. The theorem states that

a group of decision-makers could reveal the correct world state with a higher probability than

any individual in the group, and such probability converges to 1 as the number of group members

increases. A large literature on collective decision-making has followed Condorcet’s path trying to

extend the result into more general models [7, 16, 23, 28].

The game-theoretical study of the Condorcet Jury Theorem starts from Austen-Smith and

Banks [2]. Austen-Smith and Banks study a collaborative voting game where each agent shares

the same preference and receives a binary signal correlated with an unknown binary state of

the world. However, even in this case, they showed that sincere voting and informative voting

do not always form a Nash Equilibrium. As a consequence, the following works focus on the

effect of strategic behavior in the majority vote and propose equilibria that reveal the ground

truth [9, 12, 20, 24, 38]. Feddersen and Pesendorfer [11] adopt a similar information structure with

the game theoretical study of Condorcet Jury Theorem but aim to achieve a different goal of informed

majority decision. We distinguish our work from Feddersen and Pesendorfer’s in Appendix A.

Other generalizations of the Condorcet Jury Theorem include dependent agents [18, 26, 36], agents

with different competencies [4, 15, 25], and voting with more than two alternatives [14, 41].

Another line of work related to collective decision-making focuses on designing mechanisms

that lead to the correct decision. Recent work shows the reliability of the “surprisingly popular”

answer when agents are sincere [17, 31] and strategic [33]. In particular, Schoenebeck and Tao [33]

adopt the “surprisingly popular” technique into a social choice context with strategic agents, and

propose a truthful mechanism to aggregate information. They show that even in a setting where

agents have subjective preferences contingent on an objective underlying state, their mechanism

reveals the informed majority decision with high probability and is an (ex-ante) 𝜀-strong Bayes

Nash Equilibrium with 𝜀 converging to 0 at an exponential rate. Our work follows the setting in

Schoenebeck and Tao’s work, but our work is different in that the aggregation happens implic-

itly because agents are acting strategically rather than because a mechanism explicitly selects a

surprisingly popular answer.
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Our work is also related to information elicitation, which aims to collect truthful and high-

quality information from agents under a noisy information structure. Information elicitation is well

developed with multiple lines of research focusing on different aspects of the problem, including

scoring rules [6, 13], peer prediction mechanisms [22, 34, 35], Bayesian Truth Serum [30, 39],

and prediction markets [21, 40]. Unfortunately, information elicitation is incompatible with the

voting scenario in our paper for two reasons. Firstly, information elicitation requires agents to be

indifferent to the outcome, while agents are incentivized by the outcome of the vote. Secondly,

information elicitation uses payments to reward the agents, while voting does not have monetary

rewards.

2 MODELS AND PRELIMINARIES
We first present our model and results with binary world states and binary private signals, which

convey the main ideas of this work while also hiding much of the complexity. The general extension

into the non-binary setting is in Section 5. We follow the setting in Schoenebeck and Tao [33] and

consider agents with subjective preferences contingent on an objective underlying state in one

framework.

Alternatives and World States. 𝑁 agents vote for two alternatives A (standing for “accept”) and R
(standing for “reject”). There are 𝐾 = 2 possible world statesW = {𝐿, 𝐻 } (standing for “low risk”

and “high risk” respectively), where A is more preferred in 𝐻 , and R is more preferred in 𝐿. We

use 𝑘 to denote a generic world state. The world state is not directly observable by the agents. Let

𝑃𝐻 = Pr[𝑊 = 𝐻 ] and 𝑃𝐿 = Pr[𝑊 = 𝐿] be the common prior of the world states. We assume 𝑃𝐻 > 0

and 𝑃𝐿 > 0.

Private Signals. Every agent receives a signal in S = {𝑙, ℎ}. We use𝑚 to denote a generic signal,

and 𝑆𝑛 to denote the random variable representing the signal that agent 𝑛 receives. We assume the

signals agents receive are independent and have identical distributions conditioned on the world

state. Let 𝑃𝑚𝑘 = Pr[𝑆𝑛 =𝑚 |𝑊 = 𝑘] be the probability that an agent receives signal𝑚 under world

state 𝑘 . The signal distributions ((𝑃ℎ𝐻 , 𝑃𝑙𝐻 ), (𝑃ℎ𝐿, 𝑃𝑙𝐿)) are also common knowledge. We assume

that the signals are positively correlated to the world states. Specifically, we have 𝑃ℎ𝐻 > 𝑃ℎ𝐿 and

𝑃𝑙𝐻 < 𝑃𝑙𝐿 . On the other hand, we allow biased signals and DO NOT assume 𝑃ℎ𝐻 > 𝑃𝑙𝐻 or 𝑃ℎ𝐿 < 𝑃𝑙𝐿 .

Majority Vote. This paper considers the majority vote with threshold 𝜇. Each agent 𝑛 votes for A
or R. If at least 𝜇 ·𝑁 agents vote for A, A is announced to be the winner; otherwise, R is announced

to be the winner.

Utility and Types of Agents. Each agent 𝑛 has a utility which is a function of the true world state

and the outcome of the vote. Formally, we have 𝑣𝑛 : W × {A,R} → {0, 1, . . . , 𝐵}, where 𝐵 is the

positive integer upper bound. We assume that A is more preferable in 𝐻 than in 𝐿, and R is the

opposite: for every agent 𝑛, 𝑣𝑛 (𝐻,A) > 𝑣𝑛 (𝐿,A) and 𝑣𝑛 (𝐻,R) < 𝑣𝑛 (𝐿,R).
The different endogenous preferences of agents are reflected by different utility functions.

Predetermined agents always prefer the same alternative, and contingent agents have preferences
depending on the world state. Predetermined agents can be further divided into friendly and

unfriendly agents based on the alternative they prefer. For an agent 𝑛, if 𝑛 is a friendly agent,

𝑣𝑛 (𝐻,A) > 𝑣𝑛 (𝐿,A) > 𝑣𝑛 (𝐿,R) > 𝑣𝑛 (𝐻,R); if 𝑛 is an unfriendly agent, 𝑣𝑛 (𝐿,R) > 𝑣𝑛 (𝐻,R) >

𝑣𝑛 (𝐻,A) > 𝑣𝑛 (𝐿,A); and if 𝑛 is a contingent agent, 𝑣𝑛 (𝐻,A) > 𝑣𝑛 (𝐻,R) and 𝑣𝑛 (𝐿,R) > 𝑣𝑛 (𝐿,A).
Let 𝛼𝐹 , 𝛼𝑈 , and 𝛼𝐶 be the approximated fraction of each type of agent. Formally, given 𝑁 agents,

𝑁𝐹 = ⌊𝛼𝐹 · 𝑁 ⌋ is the number of friendly agents, 𝑁𝑈 = ⌊𝛼𝑈 · 𝑁 ⌋ is the number of unfriendly agents,

and 𝑁𝐶 = 𝑁 −𝑁𝐹 −𝑁𝑈 is the number of contingent agents. 𝛼𝐹 , 𝛼𝑈 , and 𝛼𝐶 are common knowledge

and do not depend on 𝑁 .
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Informed Majority Decision. The goal of the voting is to output the informed majority decision,

which is the alternative favored by the majority of the agents if the world state were known. The

informed majority decision shares the same threshold 𝜇 as the majority vote threshold. If A is

preferred by at least 𝜇 · 𝑁 agents, then A is the informed majority decision; otherwise, R is the

informed majority decision.

In this paper, we assume that neither friendly agents nor unfriendly agents can dominate the

vote. Otherwise, the informed majority decision does not depend on the state and one coalition can

always enact it via a dominant strategy. As a result, A is the informed majority decision when the

world state is 𝐻 , and R is the informed majority decision when the world state is 𝐿.

Example 4. Consider the COVID policy-making scenario. 𝑁 = 20 voters decide whether to accept
(denoted as A) or reject (denote as R) the more-restrictive policy. The world state {𝐿, 𝐻 } describes the
real risk level of the virus.𝑊 = 𝐻 means high risk level, and𝑊 = 𝐿 means low risk level. The voters’
beliefs form a common prior based on some preliminary reports. Suppose 𝑃𝐻 = 0.4 and 𝑃𝐿 = 0.6, which
means the risk level has a prior probability of 0.4 to be high.
Every voter receives a private signal 𝑙 or ℎ from his/her information sources. The signals somehow

reflect the risk level but are noisy. Suppose this is a biased scenario (for example, there has been a boost
of positive cases in the past week), and members are always more likely to receive the high signal. For
example, 𝑃ℎ𝐻 = 0.8 and 𝑃ℎ𝐿 = 0.6, i.e., a voter will receive an ℎ signal with probability 0.8 if the risk
level is high and receive an ℎ signal with probability 0.6 if the risk level is low.

(Winner, World State) (A, 𝐻 ) (A, 𝐿) (R, 𝐻 ) (R, 𝐿)
Friendly agent 8 6 2 4

Unfriendly agent 3 1 5 8
Contingent agent 3 2 1 8

Table 4. Utility of agents in Example 4.

The majority vote threshold is 𝜇 = 0.6. Therefore, A is the winner if and only if at least 12 voters
vote for it. There are 4 friendly voters, 6 unfriendly voters, and 10 contingent voters. The informed
majority decision depends on the world state: “accept” is the informed majority decision if the world
state is 𝐻 , and “reject” is the informed majority decision if the world state is 𝐿.

We assume that agents of the same type share the same utility function (which may not be true in
general) shown in Table 4.

Strategy. A (mixed) strategy is a mapping from the agent’s private signal to a distribution on

{A,R}. For a set 𝑆 , let Δ(𝑆) be the set of all possible distributions on 𝑆 . Formally, an agent 𝑛’s

strategy 𝜎𝑛 : S → Δ({A,R}). A strategy can be represented as a vector 𝜎 = (𝛽𝑙 , 𝛽ℎ), where 𝛽𝑚 is

the probability that the agent votes for A when receiving signal𝑚. A strategy profile is the vector

of strategies of all agents. Σ = (𝜎1, 𝜎2, . . . , 𝜎𝑁 ). We call a strategy profile Σ a symmetric strategy
profile induced by strategy 𝜎 if all agents play the same strategy 𝜎 in Σ.

Definition 1. An informative strategy is 𝜎 = (0, 1), i.e. voting for A when receiving ℎ and voting

for R when receiving 𝑙 . A strategy profile is informative when every agent votes informatively.

In this paper, we focus on regular strategy profiles.

Definition 2. A strategy profile Σ is regular if all friendly agents always vote for A, and all

unfriendly agents always vote for R in Σ.
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We believe this restriction is mild and natural since “always vote for A” is the dominant strategy

for a friendly agent, and “always vote for R” is the dominant strategy for an unfriendly agent in

the majority vote.

Fidelity and Expected Utility. Given a strategy profile Σ, let 𝜆A
𝑘
(Σ) (𝜆R

𝑘
(Σ), respectively) be the

(ex-ante, before agents receiving their signals) probability that A (R, respectively) becomes the

winner when the world state is 𝑘 .

Definition 3 (Fidelity). Fidelity is the likelihood that the informed majority decision is reached.

In our setting, the fidelity when agents play strategy profile Σ is

𝐴(Σ) =𝑃𝐿 · 𝜆R𝐿 (Σ) + 𝑃𝐻 · 𝜆A𝐻 (Σ).

We use the word fidelity to distinguish the notion from accuracy, which usually denotes the

likelihood that the correct world state is revealed.

The (ex-ante) expected utility of an agent 𝑛 exclusively depends on 𝜆A
𝑘
(Σ) and 𝜆R

𝑘
(Σ):

𝑢𝑛 (Σ) = 𝑃𝐿 (𝜆A𝐿 (Σ) · 𝑣𝑛 (𝐿,A) + 𝜆R𝐿 (Σ) · 𝑣𝑛 (𝐿,R)) + 𝑃𝐻 (𝜆A𝐻 (Σ) · 𝑣𝑛 (𝐻,A) + 𝜆R𝐻 (Σ) · 𝑣𝑛 (𝐻,R)).

Instance and Sequence of Strategy Profiles. We define an instance I of a voting game on the

agent number 𝑁 , the majority vote threshold 𝜇, the world state prior distribution (𝑃𝐿, 𝑃𝐻 ), the
signal distributions ((𝑃ℎ𝐻 , 𝑃𝑙𝐻 ), (𝑃ℎ𝐿, 𝑃𝑙𝐿)), the utility functions of all the agents {𝑣𝑛}𝑁𝑛=1, and the

approximated fraction of each type (𝛼𝐹 , 𝛼𝑈 , 𝛼𝐶 ). Let {I𝑁 }∞𝑁=1
(or {I𝑁 } for short) be a sequence of

instances, where each I𝑁 is an instance of 𝑁 agents. The instances in a sequence share the same

parameters {𝜇, (𝑃𝐿, 𝑃𝐻 ), ((𝑃ℎ𝐻 , 𝑃𝑙𝐻 ), (𝑃ℎ𝐿, 𝑃𝑙𝐿)), (𝛼𝐹 , 𝛼𝑈 , 𝛼𝐶 )}. We do not regard agents in different

instances as related and have no additional assumption on the utility functions of agents.

We define a sequence of strategy profiles {Σ𝑁 }∞𝑁=1
on an instance sequence {I𝑁 }. Similarly,

we do not have additional assumptions about the agents. Therefore, for different instances in the

sequence, the strategies and utility functions of agents can be drastically different. A strategy profile

sequence {Σ𝑁 } is symmetric and induced by strategy 𝜎 if every strategy profile Σ𝑁 in the sequence

is a symmetric strategy profile induced by 𝜎 . A sequence of strategy profiles is regular if every

strategy profile in the sequence is a regular profile.

𝜀-strong Bayes Nash Equilibrium. In this paper, we use the solution concept of 𝜀-strong Bayes

Nash Equilibrium, an approximation of strong Bayes Nash Equilibrium where no group of agents

can increase their utilities by more than 𝜀 through deviation. A strategy profile Σ = (𝜎1, 𝜎2, · · · , 𝜎𝑁 )
is an 𝜀-strong Bayes Nash Equilibrium (𝜀-strong BNE) if there does not exist a subset of agents 𝐷

and a strategy profile Σ′ = (𝜎 ′
1
, 𝜎 ′

2
, · · · , 𝜎 ′

𝑁
) such that

(1) 𝜎𝑛 = 𝜎 ′
𝑛 for all 𝑛 ∉ 𝐷 ;

(2) 𝑢𝑛 (Σ′) ≥ 𝑢𝑛 (Σ) for all 𝑛 ∈ 𝐷 ; and
(3) there exists 𝑛 ∈ 𝐷 such that 𝑢𝑛 (Σ′) > 𝑢𝑛 (Σ) + 𝜀.
By definition, when 𝜀 = 0, the equilibrium is a strong Bayes Nash Equilibrium where no group

of agents can strictly increase their utilities through deviation. Unfortunately, a strong BNE does

not always exist, as shown in the following theorem. Therefore, we seek 𝜀-strong BNE as an

approximation.

Theorem 1. For any 𝑁0 ∈ N, there exists an instance of 𝑁 > 𝑁0 agents, in which a strong Bayes
Nash Equilibrium does not exist.

Proof Sketch. For any 𝑁0 ∈ N, we construct an instance of 𝑁 = 2𝑁0 + 3 agents. The agents

consist of three parts: 𝐹 is a set of 𝑁0 + 1 friendly agents. 𝐶 is a set of two contingent agents. And

𝑈 is a set of 𝑁0 unfriendly agents. Agents in the same set share the same utility, which is shown in
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Table 5. The threshold is 𝜇 = 0.5. The prior distribution is 𝑃𝐿 = 𝑃𝐻 = 0.5. The signal distribution is

𝑃ℎ𝐻 = 𝑃𝑙𝐿 = 0.8 and 𝑃𝑙𝐻 = 𝑃ℎ𝐿 = 0.2.

Agents 𝑣 (𝐻,A) 𝑣 (𝐿,A) 𝑣 (𝐿,R) 𝑣 (𝐻,R)
𝐹 100 99 1 0

𝐶 90 0 100 0

𝑈 1 0 100 99

Table 5. Utility of three groups

Agents Σ1 Σ2 Σ3

𝐹 50.396 66.14 50.3

𝐶 85.12 75.2 76

𝑈 50.396 34.46 50.3

Table 6. Expected utility under three profiles

Consider the following three strategy profiles, under which the expected utility of each group is

shown in Table 6.

• Σ1: 𝑁0 agents in 𝐹 always vote for A, and one agent votes informatively.𝐶 vote informatively.

𝑈 always vote for R.
• Σ2: 𝐹 always vote for A. 𝐶 vote informatively.𝑈 always vote for R.
• Σ3: 𝐹 always vote for A. One 𝐶 agent votes informatively, and the other always votes for R.
𝑈 always vote for R.

These three strategy profiles form a cycle Σ1 → Σ2 → Σ3 → Σ1 of deviation, where a group of

agents has incentives to deviate to the next profile.

For any other strategy profile Σ, there exists a group of agents with incentives to deviate to

one of the three profiles. Firstly, 𝐹 agents and 𝑈 agents would like to deviate from their dominant

strategy of always voting for A (R, respectively) whenever it can increase the probability that their

preferred candidate wins. Given 𝐹 and𝑈 agents play dominant strategies, the best strategy for two

𝐶 agents is to play the strategy in Σ3 (one agent votes informatively, the other votes for R). Then
we know that an 𝐹 agent and two 𝐶 agents have incentives to deviate from Σ3 to Σ1. Therefore,

there does not exist a strong Bayes Nash in this instance. The full proof is in Appendix C. □

3 EQUIVALENCE BETWEEN HIGH FIDELITY AND STRONG EQUILIBRIUM
In this section, we show that strategic behaviors indeed have a positive impact on leading to

the informed majority decision. Theorem 2 states that if the fidelity of a regular (Definition 2)

strategy profile sequence {Σ𝑁 }∞𝑁=1
, i.e.,𝐴(Σ𝑁 ), converges to 1 as 𝑁 goes to infinity, every Σ𝑁 in the

sequence will be an 𝜀-strong Bayes Nash Equilibrium where 𝜀 converges to 0. On the other hand, if

𝐴(Σ𝑁 ) does not converge to 1, then we can find infinitely many Σ𝑁 that are not 𝜀-strong BNE with

a constant 𝜀. Moreover, Theorem 3 guarantees that there always exists a regular strategy profile

whose fidelity converges to 1, which leads to an 𝜀-strong BNE with 𝜀 = 𝑜 (1). The two theorems

together indicate that strategic voting leads to the informed majority decision in any sequence of

instances.

Theorem 2. Given an arbitrary sequence of instances and an arbitrary regular strategy profile
sequence {Σ𝑁 }∞𝑁=1

, let {𝐴(Σ𝑁 )}∞𝑁=1
be the sequence of the fidelities of Σ𝑁 .

• If lim𝑁→∞𝐴(Σ𝑁 ) = 1, then for every 𝑁 , Σ𝑁 is an 𝜀-strong BNE with 𝜀 = 𝑜 (1).
• If lim𝑁→∞𝐴(Σ𝑁 ) = 1 does not hold, then there exist infinitely many 𝑁 such that Σ𝑁 is NOT
an 𝜀-strong BNE for some constant 𝜀.

Theorem 3. Given any arbitrary sequence of instances, there always exists a sequence of regular
strategy profiles {Σ′

𝑁
}∞
𝑁=1

such that 𝐴(Σ′
𝑁
) converges to 1.

We first give a concrete example to illustrate Theorem 2, in which we show an instance for each

case in the theorem.
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Example 5. We follow the setting of Example 4 except for two differences. First, there is a series
of 𝑁 = 20, 30, . . . , 500. For each 𝑁 , the ratio of friendly, unfriendly, and contingent agents is fixed at
2 : 3 : 5. Second, we consider two different cases of signal distributions that fall into different cases of
Theorem 2. They share the same signal distribution in world state 𝐿: 𝑃𝑙𝐿 = 0.8, 𝑃ℎ𝐿 = 0.2, but the signal
distribution for 𝐻 is different. In case (1), 𝑃𝑙𝐻 = 0.1, 𝑃ℎ𝐻 = 0.9; and in case (2), 𝑃𝑙𝐻 = 0.25, 𝑃ℎ𝐻 = 0.75.

We focus on regular strategy profiles where all contingent agents vote informatively (Definition 1).
For case (2), we also consider another series of regular strategy profiles Σ′

𝑁
where contingent agents

play 𝜎 ′ = (0.48, 0.96). In Example 7 and Theorem 4 later, we verify that the fidelity of the regular
informative voting converges to 1 in case (1) but does not converge to 1 in case (2). On the other hand,
the fidelity of the deviating strategy profile Σ′

𝑁
in case (2) converges to 1. Figure 1(a) illustrates these

trends of fidelity.

(a) Fidelity (b) Expected utility for contingent agents

Fig. 1. Fidelity and expected utilities of informative voting.

The expected utilities of contingent agents in different cases and strategies are shown in Figure 1(b).
Note the maximum expected utility that a contingent agent can get is 0.4 × 3 + 0.6 × 8 = 6.0. In
accordance with the fidelity, the expected utility of Σ𝑁 in case (1) converges to the maximum. In case
(2), on the other hand, Σ𝑁 is dominated by Σ′

𝑁
by a utility gain of at least 0.4. Therefore, the group of

contingent agents has no incentive to deviate in case (1) but has an incentive to deviate to Σ′
𝑁
in case

(2).

3.1 Proof Sketch of Theorem 2
To show the relationship between 𝐴(Σ𝑁 ) and 𝜀, we have the following lemma.

Lemma 1. For every 𝑁 , a regular strategy profile Σ𝑁 is an 𝜀-strong BNE with 𝜀 = 2𝐵(𝐵 + 1) (1 −
𝐴(Σ𝑁 )), where 𝐵 is the upper bound of utility function 𝑣𝑛 .

Lemma 1 is an extension of Theorem 3.3 in Schoenebeck and Tao [33]. It shows that every Σ𝑁 is

an 𝜀-strong BNE with 𝜀 proportional to 1 −𝐴(Σ𝑁 ). To prove Lemma 1, we show that, for any other

strategy profile Σ′
𝑁
, a group of agents with incentives to deviate does not exist.

There are two cases of Σ′
𝑁
. In the first case, the fidelity Σ′

𝑁
is bounded by the fidelity of Σ𝑁 . More

precisely, (1 − 𝐴(Σ′
𝑁
)) < (𝐵 + 1) · (1 − 𝐴(Σ𝑁 )). Then two profiles do not make a big difference,

and no agent can gain more than 𝜀 = 2𝐵(𝐵 + 1) (1 −𝐴(Σ𝑁 )) after deviation (Claim 1).

In the second case, the fidelity Σ′
𝑁
is unbounded and much worse than the fidelity of Σ𝑁 . Then

any contingent agent has no incentives to deviate, as their expected utilities are most positively
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correlated with fidelity (Claim 2). Next, we show that a deviating group cannot contain both friendly

and unfriendly agents, because if the expected utility of one side increases by more than 𝜀, the other

side’s will decrease (Claim 3). Therefore, a deviating group contains either only friendly agents or

only unfriendly agents. Finally, we show that in neither case can the deviation succeed, because

pre-determined agents have already played their dominant strategies in a regular profile (Claim 4).

Now we are ready to propose the proof for Theorem 2. We will actually use Lemma 1 and

Theorem 3 to prove Theorem 2. We will discuss the two cases separately.

When lim𝑁→∞𝐴(Σ𝑁 ) = 1, we apply Lemma 1 to each Σ𝑁 , and get that every Σ𝑁 is an 𝜀-strong

BNE where 𝜀 = 2𝐵(𝐵 + 1) · (1 −𝐴(Σ𝑁 )). Then 𝜀 will converge to 0 as 𝑁 → ∞.

When lim𝑁→∞𝐴(Σ𝑁 ) = 1 does not hold, there are infinitely many 𝑁 with Σ𝑁 being of low

fidelity. By Theorem 3 there exists a regular strategy profile sequence {Σ′
𝑁
} with fidelity converging

to 1. Because of the difference in fidelity, there are infinitely many 𝑁 such that Σ𝑁 ≠ Σ′
𝑁
. Then

we show that, for all sufficiently large 𝑁 where Σ𝑁 is of low fidelity, if all contingent agents turn

to play Σ′
𝑁
from Σ𝑁 , every contingent agent will gain at least a constant amount of extra utility.

Therefore, for infinitely many 𝑁 , Σ𝑁 is NOT an 𝜀-strong BNE for some constant 𝜀. The full proof

of Theorem 2 is in Appendix E.3, and the full proof of Lemma 1 is in Appendix E.1.

3.2 Proof Sketch of Theorem 3
In the proof of Theorem 3, we construct a strategy 𝜎 ′

and show that the regular strategy profile

sequence {Σ′
𝑁
} where all contingent agents play 𝜎 ′

has fidelity that converges to 1. It suffices to

construct 𝜎 ′
such that

(1) if 𝐻 is the actual world state, the expected fraction of the voters voting for A is more than 𝜇

by a constant;

(2) if 𝐿 is the actual world state, the expected fraction of the voters voting for A is less than 𝜇 by

a constant.

If this is true, 𝐴(Σ′
𝑁
) converges to 1 due to the Hoeffding Inequality. It remains to construct 𝜎 ′

such that (1) and (2) hold.

We first construct 𝜎 ′
𝜇 such that the expected fraction of the voters voting for A is exactly 𝜇,

where in 𝜎 ′
𝜇 the contingent voter votes for A with a probability that is independent to the signal

she receives. This can be done by setting 𝜎 ′
𝜇 = (𝛽∗, 𝛽∗) where 𝛽∗ satisfies 𝛼𝐹 + 𝛼𝐶 · 𝛽∗ = 𝜇 (notice

that, given the fraction 𝛼𝐹 of the friendly voters who always vote for A, the fraction 𝛼𝑈 of the

unfriendly voters who never vote for A, and the fraction 𝛼𝐶 of the contingent voters who vote for

A with probability 𝛽∗, the expected fraction of votes for A is 𝛼𝐹 + 𝛼𝐶 · 𝛽∗).
Next, we will adjust 𝜎 ′

𝜇 to 𝜎
′ = (𝛽𝑙 , 𝛽ℎ) that satisfies (1) and (2). Naturally, we would like to

increase the probability for voting A if an ℎ signal is received, and we would like to decrease this

probability if 𝑙 is received. That is, we have 𝛽𝑙 = 𝛽
∗ − 𝛿𝑙 and 𝛽ℎ = 𝛽∗ + 𝛿ℎ for some 𝛿𝑙 , 𝛿ℎ > 0, and

we need to show the existences of 𝛿𝑙 and 𝛿ℎ that make (1) and (2) hold.

When 𝐻 is the actual world, comparing with 𝜎 ′
𝜇 , the probability that each contingent agent votes

for A is increased by 𝑃ℎ𝐻 · 𝛿ℎ − 𝑃𝑙𝐻 · 𝛿𝑙 in 𝜎 ′
. Thus, the total expected fraction of votes for A is

increased by

𝛼𝐶 · (𝑃ℎ𝐻 · 𝛿ℎ − 𝑃𝑙𝐻 · 𝛿𝑙 ) .

Similarly, when 𝐿 is the actual world, similar calculations reveal that the total expected fraction of

votes for A is increased by

𝛼𝐶 · (𝑃ℎ𝐿 · 𝛿ℎ − 𝑃𝑙𝐿 · 𝛿𝑙 ) .



Qishen Han, Grant Schoenebeck, Biaoshuai Tao, and Lirong Xia 10

Since the expected fraction of votes for A is exactly 𝜇 for 𝜎 ′
𝜇 , we need to choose 𝛿ℎ and 𝛿𝑙 such that{

𝛼𝐶 · (𝑃ℎ𝐻 · 𝛿ℎ − 𝑃𝑙𝐻 · 𝛿𝑙 ) > 0

𝛼𝐶 · (𝑃ℎ𝐿 · 𝛿ℎ − 𝑃𝑙𝐿 · 𝛿𝑙 ) < 0

.

This can always be done due to the positive correlation 𝑃ℎ𝐻 > 𝑃ℎ𝐿 and 𝑃𝑙𝐻 < 𝑃𝑙𝐿 . In particular,

if we set 𝛿ℎ = 𝛿𝑙 · 𝑃𝑙𝐻𝑃ℎ𝐻
, the first inequality would become equality, while the second inequality

holds due to the positive correlation. By slightly increasing 𝛿ℎ , we can make both inequalities hold.

During these adjustments, we just need to make sure the two constants 𝛿ℎ and 𝛿𝑙 are small enough

such that 𝛽ℎ and 𝛽𝑙 are valid probabilities.

Example 6. In this example, we follow the setting of case (2) in Example 5 to illustrate the construction
of the strategy 𝜎 ′. Recall that 𝛼𝐹 = 0.2, 𝛼𝑈 = 0.3, and 𝛼𝐶 = 0.5. The signal distribution 𝑃ℎ𝐻 = 0.75

and 𝑃𝑙𝐿 = 0.8. The threshold 𝜇 = 0.6.
In the first step, let 𝜎 ′

𝜇 = (0.8, 0.8). We could verify that 𝛼𝐹 + 𝛼𝐶 · 0.8 = 0.2 + 0.5 × 0.8 = 0.6 = 𝜇.
In the second step, let 𝛿𝑙 = 0.3. Then 𝛿ℎ = 𝛿𝑙 · 𝑃𝑙𝐻𝑃ℎ𝐻

= 0.1. Then 𝜎 ′ = (0.5, 0.9). Then we have

𝑃ℎ𝐻 · 𝛿ℎ − 𝑃𝑙𝐻 · 𝛿𝑙 = 0.75 × 0.1 − 0.25 × 0.3 = 0.

𝑃ℎ𝐿 · 𝛿ℎ − 𝑃𝑙𝐿 · 𝛿𝑙 = 0.2 × 0.1 − 0.8 × 0.3 = −0.22 < 0.

Finally, we increase 𝛿ℎ by 0.06. Then 𝛿𝑙 = 0.3, 𝛿ℎ = 0.16, and 𝜎 ′ = (0.5, 0.96). We have

𝑃ℎ𝐻 · 𝛿ℎ − 𝑃𝑙𝐻 · 𝛿𝑙 = 0.75 × 0.16 − 0.25 × 0.3 = 0.05 > 0.

𝑃ℎ𝐿 · 𝛿ℎ − 𝑃𝑙𝐿 · 𝛿𝑙 = 0.2 × 0.16 − 0.8 × 0.3 = −0.208 < 0.

Therefore, 𝜎 ′ = (0.5, 0.96) satisfies the condition.

4 PROBABILITY ANALYSIS ON FIDELITY
In this section, we analyze the condition that a strategy profile is of high fidelity and apply the

analysis to the most common forms of non-strategic voting: informative voting and sincere voting.

We show that neither informative nor sincere voting can lead to the informed majority decision

in every instance, and we characterize the conditions where they lead to the informed majority

decision. Our results give merit to strategic voting.

In order to characterize the fidelity, we introduce the notion of the excess expected vote share.
Given a world state 𝑘 , the excess expected vote share is the expected vote share the informed

majority decision alternative attracts under state 𝑘 minus the threshold of the alternative.

Definition 4 (Excess expected vote share). Given an instance of 𝑁 agents, and a strategy profile

Σ, let random variable 𝑋𝑁𝑛 be "agent 𝑛 votes for A": 𝑋𝑁𝑛 = 1 if agent 𝑛 votes for A, and 𝑋𝑁𝑛 = 0 if 𝑛

votes for R. Then the excess expected vote share is defined as follows:

𝑓 𝑁𝐻 =
1

𝑁

𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝐻 ] − 𝜇. (1)

𝑓 𝑁𝐿 =
1

𝑁

𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝐿] − (1 − 𝜇). (2)

Specifically, 𝑓 𝑁
𝐻

is the excess expected vote share of A condition on world state 𝐻 , and 𝑓 𝑁
𝐿

is the

excess expected vote share of R condition on world state 𝐿. For technical convenience, we define

𝑓 𝑁 = min(𝑓 𝑁
𝐻
, 𝑓 𝑁
𝐿
).
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Our next result shows that we can judge whether the fidelity of a strategy profile sequence

converges to 1 with the tendency of its excess expected vote share (or more precisely, the lower

limit of

√
𝑁 · 𝑓 𝑁 ). If

√
𝑁 · 𝑓 𝑁 has a lower limit of +∞, Then the fidelity of the profiles in the sequence

converges to 1. Otherwise, the fidelity is likely not to converge to 1.

Theorem 4. Given an arbitrary sequence of instances and arbitrary sequence of strategy profiles
{Σ𝑁 }∞𝑁=1

, let 𝑓 𝑁 be the excess expected vote share for each Σ𝑁 .

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 = +∞, the fidelity of Σ𝑁 converges to 1 , i.e., lim𝑁→∞𝐴(Σ𝑁 ) = 1.

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 < 0 (including −∞), 𝐴(Σ𝑁 ) does NOT converge to 1.

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 ≥ 0 (not including +∞), and the variance of

∑𝑁
𝑛=1𝑋

𝑁
𝑛 is at least

proportional to 𝑁 , 𝐴(Σ𝑁 ) does NOT converge to 1.

Remark. Although Theorem 4 does not cover the case when lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 ≥ 0 and the

variance of
∑𝑁
𝑛=1𝑋

𝑁
𝑛 is not large enough, we argue that this case is very special and rare. In this case,

(inf 𝑓 𝑁 ) converges to 0 at the rate of 𝑂 ( 1√
𝑁
), which means the expected vote share of an alternative

is almost equal to the threshold. Moreover, the strategies of the agents have low randomness in total.
Therefore, we believe that Theorem 4 covers the most interesting cases of a sequence of strategy profiles.

Proof Sketch. Recall that 𝐴(Σ) = 𝑃𝐿 · 𝜆R𝐿 (Σ) + 𝑃𝐻 · 𝜆A
𝐻
(Σ). Note that 𝜆A

𝐻
(Σ) is the probability

that the total vote share on A exceeds the threshold 𝜇 when the world state is 𝐻 . Therefore, we can

write 𝜆A
𝐻
(Σ) using the following formula. 𝜆R

𝐿
(Σ) can be written using a similar formula.

𝜆A𝐻 (Σ𝑁 ) = Pr

[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 ≥ 𝜇 · 𝑁 | 𝐻
]
= Pr

[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸
[
𝑋𝑁𝑛 | 𝐻

]
≥ −𝑓 𝑁𝐻 · 𝑁 | 𝐻

]
For the first and the second case, we apply the Hoeffding Inequality. For the first case, we show that

both 𝜆A
𝐻
(Σ) and 𝜆R

𝐿
(Σ) are lower bounded by a function of 𝑁 that converges to 1. For the second

case, we show that either 𝜆A
𝐻
(Σ) and 𝜆R

𝐿
(Σ) is upper bounded by a constant smaller than 1.

For the third case, we apply the Berry-Esseen Theorem [5, 10], which bounds the difference

between the distribution of the sum of independent random variables and the normal distribution.

Therefore, for some constant 𝛿 and infinitely many 𝑁 , 𝜆A
𝐻
(Σ𝑁 ) (or 𝜆R𝐿 (Σ𝑁 )) will not deviate from

1 − Φ(𝛿) too much and is bounded away from 1 by a constant. Φ is the CDF of the standard normal

distribution. The requirements for the variance in the third case are from the Berry-Esseen Theorem.

The full proof of Theorem 4 is in Appendix E.4, and the detailed definition of the Berry-Esseen

Theorem is in Appendix D.2. □

Theorem 4 provides a criterion for judging whether a strategy profile sequence is of high fidelity.

If we apply Theorem 2 to each case of Theorem 4, we directly get a criterion for judging whether a

regular strategy profile sequence is an 𝜀-strong equilibrium.

Corollary 1. Given an arbitrary sequence of instances and an arbitrary regular sequence of
strategy profiles {Σ𝑁 }∞𝑁=1

, let 𝑓 𝑁 be defined for each Σ𝑁 .

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 = +∞, then for every 𝑁 , Σ𝑁 is an 𝜀-strong BNE with 𝜀 = 𝑜 (1).

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 < 0 (including −∞), there are infinitely many 𝑁 such that Σ𝑁 is NOT

an 𝜀-strong BNE with constant 𝜀.
• If lim inf𝑁→∞

√
𝑁 · 𝑓 𝑁 ≥ 0 (not including +∞), and the variance of

∑𝑁
𝑛=1𝑋

𝑁
𝑛 is at least

proportional to 𝑁 , there are infinitely many 𝑁 such that Σ𝑁 is NOT an 𝜀-strong BNE with
constant 𝜀.
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Example 7. In this example, we use Theorem 4 to bound the fidelity of different cases in Example 5.
Note that in each 𝑁 the ratio of friendly, unfriendly, and contingent agents is fixed to be 2 : 3 : 5, and
agents of the same type play the same strategy for different 𝑁 . Therefore, the excess expected vote
share of profile Σ𝑁 and Σ′

𝑁
is independent of 𝑁 .

Case 1: 𝑃𝑙𝐻 = 0.1, 𝑃ℎ𝐻 = 0.9. In both world states, we have 𝐸 [𝑋𝑁𝑛 | 𝐻 ] = 1 for friendly agents and
𝐸 [𝑋𝑁𝑛 | 𝐻 ] = 0 for unfriendly agents. Contingent agents vote for A with probability 𝑃ℎ𝐻 = 0.9 in 𝐻
state and for R with probability 𝑃𝑙𝐿 = 0.8 in 𝐿 state. Therefore, 𝑓 𝑁 > 0, and

√
𝑁 · 𝑓 𝑁 goes to +∞.

𝑓 𝑁𝐻 = 0.2 + 0.5 × 0.9 − 0.6 = 0.05 𝑓 𝑁𝐿 = 0.3 + 0.5 × 0.8 − 0.4 = 0.3.

Case 2: 𝑃𝑙𝐻 = 0.25, 𝑃ℎ𝐻 = 0.75. For Σ𝑁 , we have 𝑓 𝑁 < 0, and
√
𝑁 · 𝑓 𝑁 goes to −∞.

𝑓 𝑁𝐻 = 0.2 + 0.5 × 0.75 − 0.6 = −0.025 𝑓 𝑁𝐿 = 0.3 + 0.5 × 0.8 − 0.4 = 0.3.

And for the the deviating strategy profile Σ′
𝑁
, we have 𝑓 𝑁 > 0, and

√
𝑁 · 𝑓 𝑁 goes to +∞.

𝑓 𝑁𝐻 =0.2 + 0.5 · (0.75 × 0.96 + 0.25 × 0.48) − 0.6 = 0.02

𝑓 𝑁𝐿 =0.3 + 0.5 · (0.8 × 0.52 + 0.2 × 0.04) − 0.4 = 0.112.

In Case 1, the regular strategy profile Σ𝑁 lies in the first case of Theorem 4, has an fidelity converging
to 1, and is an 𝜀-strong BNE with 𝜀 = 𝑜 (1). In Case 2, Σ𝑁 lies in the second case of Theorem 4 and is
dominated by the deviating strategy profile Σ′

𝑁
. This is in accordance with our observation in Figure 1

and Example 5.

Although Theorem 4 (and Corollary 1) do not cover all the strategy profile sequences, the

following result provides a dichotomy for symmetric profile sequences to judge fidelity. Given

a symmetric strategy profile Σ𝑁 induced by strategy 𝜎 = (𝛽𝑙 , 𝛽ℎ), we can compute the excess

expected vote share of Σ𝑁 . Recall the definition of excess expected vote share:

𝑓 𝑁𝐻 =
1

𝑁

𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝐻 ] − 𝜇.

In 𝐻 state, an agent with signal ℎ votes for A with probability 𝛽ℎ , and an agent with signal 𝑙

votes for A with probability 𝛽𝑙 . Therefore, 𝐸 [𝑋𝑁𝑛 | 𝐻 ] = 𝑃ℎ𝐻 · 𝛽ℎ + 𝑃𝑙𝐻 · 𝛽𝑙 . Then we have

𝑓 𝑁𝐻 =
1

𝑁

𝑁∑︁
𝑛=1

(𝑃ℎ𝐻 · 𝛽ℎ + 𝑃𝑙𝐻 · 𝛽𝑙 ) − 𝜇 = 𝑃ℎ𝐻 · 𝛽ℎ + 𝑃𝑙𝐻 · 𝛽𝑙 − 𝜇.

With similar reasoning, we can compute 𝑓 𝑁
𝐿

and 𝑓 𝑁 :

𝑓 𝑁𝐿 = (𝑃ℎ𝐿 · (1 − 𝛽ℎ) + 𝑃𝑙𝐿 · (1 − 𝛽𝑙 )) − (1 − 𝜇), 𝑓 𝑁 = min

(
𝑓 𝑁𝐻 , 𝑓

𝑁
𝐿

)
.

An interesting observation for the symmetric strategy profiles is that its excess expected vote

share is independent of the number of agents 𝑁 . This is because when every agent plays the same

strategy, the expectation of every 𝑋𝑁𝑛 is the same. For simplicity, given a sequence of symmetric

strategy profiles {Σ𝑁 }, we write its excess expected vote share as 𝑓𝐻 , 𝑓𝐿, and 𝑓 .

Corollary 2. For an arbitrary strategy 𝜎 and an arbitrary sequence of instances, let {Σ𝑁 } be the
sequence of symmetric strategy profile Σ𝑁 induced by 𝜎 , and 𝑓 be the excess expected vote share of
{Σ𝑁 }.

• If 𝑓 > 0, 𝐴(Σ𝑁 ) converges to 1.
• If 𝑓 ≤ 0, 𝐴(Σ𝑁 ) does not converge to 1.
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Proof Sketch. The proof of Corollary 2 works by showing that each case of a symmetric

strategy profile falls into some case of Theorem 4. When 𝑓 > 0,

√
𝑁 · 𝑓 𝑁 → +∞. When 𝑓 < 0,√

𝑁 · 𝑓 𝑁 → −∞. And when 𝑓 = 0,and

√
𝑁 · 𝑓 𝑁 = 0. The variance requirement is also satisfied.

(Otherwise, the strategy 𝜎 must be always voting for the same candidate. This directly implies

𝑓 < 0, which is a contradiction.) The full proof of the Corollary 2 is in Appendix E.5 □

4.1 Case Study: Informative Voting and Sincere Voting
In this section, we study the two most common non-strategic voting schemes – informative voting

and sincere voting under our information structure. We show that both voting schemes lead to the

informed majority decision if and only if certain conditions are satisfied.

In informative voting, all agents play the strategy 𝜎 = (0, 1). When the world state is 𝐻 , an

agent receives signal ℎ and votes for A with probability 𝑃ℎ𝐻 . Therefore, the excess expected vote

share in the 𝐻 state is 𝑓𝐻 = 𝑃ℎ𝐻 − 𝜇. Similarly, the excess expected vote share in the 𝐿 state is

𝑓𝐿 = 𝑃𝑙𝐿 − (1 − 𝜇) = 𝜇 − 𝑃ℎ𝐿 . Applying Corollary 2, we get the following statement.

Corollary 3. For an arbitrary sequence of instances, let {Σ𝑁 } be the sequence of informative
voting profile. Then, the fidelity 𝐴(Σ𝑁 ) converges to 1 if and only if 𝑃ℎ𝐻 > 𝜇 > 𝑃ℎ𝐿 .

Fig. 2. Illustration of Corollary 3.

Corollary 3 forms a comparison with Theorem 2. Strategic behavior always leads to the informed

majority decision, while non-strategic informative voting achieves the same only when the majority

vote threshold is “unbiased” compared with the signal distribution.

In sincere voting, an agent votes as if she is making the decision individually. A sincere agent

chooses the alternative that maximizes the expected utility conditioned on the signal. The expected

utility of an agent making an individual decision conditioned on signal𝑚 is

𝑢𝑛 (A | 𝑚) = Pr[𝑊 = 𝐿 | 𝑚] · 𝑣𝑛 (A, 𝐿) + Pr[𝑊 = 𝐻 | 𝑚] · 𝑣𝑛 (A, 𝐻 ) .
𝑢𝑛 (R | 𝑚) = Pr[𝑊 = 𝐿 | 𝑚] · 𝑣𝑛 (R, 𝐿) + Pr[𝑊 = 𝐻 | 𝑚] · 𝑣𝑛 (R, 𝐻 ) .

Definition 5. A strategy profile Σ is sincere if for any agent 𝑖 , conditioned that 𝑖 receives signal𝑚,

𝑖 votes for A if 𝑢𝑛 (A | 𝑚) > 𝑢𝑛 (R | 𝑚) and votes for R otherwise.

A sincere strategy profile is not always symmetric, because the sincere behavior of agents

not only depends on his/her signal but also on his/her utility. Therefore, sincere agents with

different utility functions may play different strategies. Given the assumption of 𝑃ℎ𝐻 > 𝑃ℎ𝐿 , we

have Pr[𝑊 = 𝐿 | 𝑙] > Pr[𝑊 = 𝐿 | ℎ] and Pr[𝑊 = 𝐻 | 𝑙] < Pr[𝑊 = 𝐻 | ℎ]. As a result,

𝑢𝑛 (A | 𝑙) < 𝑢𝑛 (A | ℎ) and 𝑢𝑛 (R | 𝑙) > 𝑢𝑛 (R | ℎ). Therefore, a sincere voter would play one of the

five strategies below based on her utility function 𝑣𝑛 .

(1) If 𝑢𝑛 (A | 𝑙) < 𝑢𝑛 (R | 𝑙), and 𝑢𝑛 (A | ℎ) < 𝑢𝑛 (R | ℎ), an agent always votes for R.
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(2) If 𝑢𝑛 (A | 𝑙) < 𝑢𝑛 (R | 𝑙), and 𝑢𝑛 (A | ℎ) = 𝑢𝑛 (R | ℎ), an agent votes for R under signal 𝑙 and

votes arbitrarily under signal ℎ.

(3) If 𝑢𝑛 (A | 𝑙) < 𝑢𝑛 (R | 𝑙), and 𝑢𝑛 (A | ℎ) > 𝑢𝑛 (R | ℎ), an agent votes informatively.

(4) If 𝑢𝑛 (A | 𝑙) = 𝑢𝑛 (R | 𝑙), and 𝑢𝑛 (A | ℎ) > 𝑢𝑛 (R | ℎ), an agent votes arbitrarily under signal 𝑙 ,

and vote for A under signal ℎ.

(5) If 𝑢𝑛 (A | 𝑙) > 𝑢𝑛 (R | 𝑙), and 𝑢𝑛 (A | ℎ) > 𝑢𝑛 (R | ℎ), an agent always votes for A.
A sincere profile is also a regular profile, as friendly agents always vote for A, and unfriendly

agents always vote for R in their individual decisions. Therefore, applying Theorem 2, we have the

following statement.

Corollary 4. For an arbitrary sequence of instances, let {Σ𝑁 } be the sequence of sincere strategy
profiles. Then the fidelity 𝐴(Σ𝑁 ) converges to 1 if and only if Σ𝑁 is an 𝜀-strong Bayes Nash with
𝜀 = 𝑜 (1).

Corollary 4 tells us that sincere voting performs aswell as strategic voting if and only if itself is also

strategic. The following example illustrates different behaviors of sincere voters by “manipulating”

their utility functions under the same world state and signal distribution and gives examples where

sincere voting succeeds and fails.

Example 8. Consider the following scenario. The world state prior 𝑃𝐻 = 𝑃𝐿 = 0.5. The signal
distribution 𝑃ℎ𝐻 = 𝑃𝑙𝐿 = 0.8, and 𝑃𝑙𝐻 = 𝑃ℎ𝐿 = 0.2. By the Bayes Theorem, we compute the probability
of a world state conditioned on a private signal as follows.

Pr[𝑊 = 𝐿 | 𝑙] = 0.8, Pr[𝑊 = 𝐻 | 𝑙] = 0.2

Pr[𝑊 = 𝐿 | ℎ] = 0.2, Pr[𝑊 = 𝐻 | ℎ] = 0.8.

We assume all agents are contingent and share the same utility function, and consider three different
cases as shown in Table 7. Suppose Σ is a strategy profile where all agents vote sincerely.

(Winner, World State) (A, 𝐻 ) (A, 𝐿) (R, 𝐻 ) (R, 𝐿)
Case 1 1 0 0 1
Case 2 5 1 0 2
Case 3 4 1 0 2
Table 7. Utility functions for three cases.

In case 1, 𝑢𝑛 (A | ℎ) = 𝑢𝑛 (R | 𝑙) = 0.8, and 𝑢𝑛 (A | 𝑙) = 𝑢𝑛 (R | ℎ) = 0.2. Therefore, every sincere
voter votes informatively, and Σ is also informative voting. By corollary 3, Σ leads to the informed
majority decision if and only if the threshold 0.2 < 𝜇 < 0.8.
In case 2, 𝑢𝑛 (A | 𝑙) = 1.8, 𝑢𝑛 (R | 𝑙) = 1.6, 𝑢𝑛 (A | ℎ) = 4.2, and 𝑢𝑛 (R | ℎ) = 0.4. Therefore, all

sincere agents always vote for A even if they are contingent. In this case, A is always the winner, and
𝐴(Σ) does not converge to 1.

In case 3, 𝑢𝑛 (A | 𝑙) = 𝑢𝑛 (R | 𝑙) = 1.6, 𝑢𝑛 (A | ℎ) = 3.4, and 𝑢𝑛 (R | ℎ) = 0.4. In this case, a sincere
agent votes A under signal ℎ, and votes arbitrarily under signal 𝑙 . Then for any 0.2 < 𝜇 < 1, Σ induced
by strategy 𝜎 = (𝛽𝑙 , 1) leads to the informed majority decision with high probability, where 𝛽𝑙 ≥ 0

satisfies 𝛽𝑙 > 5𝜇 − 4 and 𝛽𝑙 < 1.25𝜇 − 0.25. These conditions guarantee the excess expected vote share
of Σ to be strictly positive.

As shown in Example 8, sincere agents can have drastically different behaviors in different

scenarios. Nevertheless, once we know the strategy of each agent, we can apply Theorem 4 to

analyze the probability of a sequence of sincere voting leading to the informed majority decision.
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5 NON-BINARYWORLD STATES AND NON-BINARY SIGNALS
In this section, we discuss how we extend our model and results to a setting with non-binary world

states and non-binary signals. We follow the setting of Schoenebeck and Tao [33]. The largest

difference in the non-binary setting is that the preferences of agents form a spectrum along multiple

world states. Different agents have different thresholds of world states in which they switch the

preferred alternatives.

World State. There are 𝐾 possible world states W = {1, 2, · · · , 𝐾}. The higher the world state is,

the more A is preferred to R. We use 𝑘 to denote a generic world state. Let 𝑃𝑘 = Pr[𝑊 = 𝑘] be the
common prior of the world state. We assume 𝑃𝑘 > 0 for every 𝑘 ∈ W.

Signal. Every agent receives a signal from S = {1, 2, · · · , 𝑀}. We use𝑚 to denote a generic signal.

Signals are i.i.d conditioned on the world state. Let 𝑃𝑚𝑘 = Pr[𝑆𝑛 =𝑚 |𝑊 = 𝑘] be the probability
that an agent receives signal𝑚 given world state is 𝑘 . The assumption of 𝑃ℎ𝐻 > 𝑃ℎ𝐿 in the binary

state is extended to the following assumption of stochastic dominance, which requires signals to be

positively correlated to world states.

Assumption 1 (Stochastic Dominance). For any agent 𝑛 and any world states 𝑘1 > 𝑘2,

Pr[𝑆𝑛 ≥ 𝑚 |𝑊 = 𝑘1] > Pr[𝑆𝑛 ≥ 𝑚 |𝑊 = 𝑘2] .

Utility. Every agent 𝑛 has a utility function 𝑣𝑛 : W × {A,R} → {0, 1, · · · , 𝐵}, where 𝐵 is the

positive integer upper bound. We assume that A is more preferable in a higher world state than

in a lower state, and R is the opposite: for any 𝑘1 and 𝑘2 with 𝑘1 > 𝑘2, 𝑣𝑛 (𝑘1,A) > 𝑣𝑛 (𝑘2,A), and
𝑣𝑛 (𝑘1,R) < 𝑣𝑛 (𝑘2,R). We also assume 𝑣𝑛 (𝑘,A) ≠ 𝑣𝑛 (𝑘,R) for any 𝑘 and any 𝑛.

Fraction of agents. Given a world state 𝑘 , let 𝛼A
𝑘
and 𝛼R

𝑘
be the approximated fraction of agents

prefer A (R, respectively) in world state 𝑘 . We assume 𝛼A
𝑘
and 𝛼R

𝑘
are independent from 𝑁 . Formally,

given 𝑁 , let 𝑁 (𝑘,A) = {𝑛 | 𝑣𝑛 (𝑘,A) > 𝑣𝑛 (𝑘,R)} be the set of agents preferring A in 𝑘 (𝑁 (𝑘,R)
defined similarly). We have |𝑁 (𝑘,R) | = ⌊𝛼R

𝑘
· 𝑁 ⌋ and |𝑁 (𝑘,A) | = 𝑁 − |𝑁 (𝑘,R) |. Naturally, 𝛼A

𝑘

increases, and 𝛼R
𝑘
decreases as 𝑘 increases. We assume that 𝛼A

𝑘
and 𝛼R

𝑘
are common knowledge.

Majority vote and informed majority decision. We study the majority vote with threshold 𝜇. If at

least 𝜇 · 𝑁 agents vote for A, A is announced to be the winner; otherwise, R is announced to be the

winner. The informed majority decision is defined on each world state 𝑘 . Given a world state 𝑘 , if

𝛼A
𝑘
> 𝜇, we say A is the informed majority decision; otherwise, we say R is the informed majority

decision. We assume that 𝛼A
𝑘
≠ 𝜇 for all 𝑘 ∈ W, and the rounding between 𝛼A

𝑘
and |𝑁 (𝑘,A) | (𝛼R

𝑘

and |𝑁 (𝑘,R) |, respectively) does not flip the informed majority decision.

Types of agents. Let L = {𝑘 ∈ W | 𝛼A
𝑘

< 𝜇} and H = {𝑘 ∈ W | 𝛼A
𝑘

> 𝜇} be the sets of

world states where R (A, respectively) is the informed majority decision. We only consider the

case where both L and H are non-empty. (Otherwise, an alternative is unanimously the informed

majority decision, and there is no uncertainty.) There is a threshold partitioning W into two sets.

Let 𝐿 = max{𝑘 ∈ L} to be the largest world where R is the informed majority decision, and

𝐻 = min{𝑘 ∈ H} to be the smallest world where A is the informed majority decision. We have

𝐻 = 𝐿 + 1.

Similarly, for an agent 𝑛, letL𝑛 = {𝑘 ∈ W | 𝑣𝑛 (𝑘,R) > 𝑣𝑛 (𝑘,A)} andH𝑛 = {𝑘 ∈ W | 𝑣𝑛 (𝑘,R) <
𝑣𝑛 (𝑘,A)}. L𝑛 (H𝑛 , respectively) is the set of world states where R (A, respectively) is preferred by 𝑛.
For a agent 𝑛, let 𝐿𝑛 = max{𝑘 ∈ L𝑛} be the largest world where 𝑛 prefers R, and𝐻𝑛 = min{𝑘 ∈ H𝑛}
to be the smallest world where 𝑛 prefers A. Specifically, let 𝐿𝑛 = 0 if L𝑛 = ∅ and 𝐻𝑛 = 𝐾 + 1 if

H𝑛 = ∅. We have 𝐻𝑛 = 𝐿𝑛 + 1.
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(1) We say an agent 𝑛 is (candidate) friendly if L ∩H𝑛 ≠ ∅. This says that there exists a world
state 𝑘 where 𝑛 prefer A while the informed majority decision is R.

(2) Similarly, an agent 𝑛 is (candidate) unfriendly if H ∩ L𝑛 ≠ ∅. This says that there exists a
world state 𝑘 where 𝑛 prefers R while the informed majority decision is A.

(3) Finally, an agent 𝑛 is contingent if L𝑛 = L. or equivalently,H𝑛 = H .

Unlike the binary setting, friendly/unfriendly agents in the non-binary setting do not always prefer

one alternative. They just have thresholds above or below the majority.

Example 9. We extend the COVID policy-making scenario in Example 4 to the non-binary setting.
𝑁 = 20 voters decide whether to accept or reject the more-restrictive policy. The world states W =

{1, 2, 3} describe the risk level of the virus, whereas a larger state represents a higher risk. Suppose
𝑃1 = 𝑃2 = 0.3, and 𝑃3 = 0.4.
Every voter receives a private signal from S = {1, 2, 3, 4}. The larger the signal is, the higher the

risk is likely to be. Table 8 is the signal distribution given the world state.

World State Signal 1 Signal 2 Signal 3 Signal 4

1 0.6 0.2 0.1 0.1
2 0.4 0.2 0.2 0.2
3 0.1 0.2 0.3 0.4

Table 8. Signal distribution.

The majority threshold is 𝜇 = 0.6. Therefore, A is the informed majority decision if and only if at
least 12 agents prefer A to R. The voters are categorized into four different groups. Each group has five
voters, and voters in the same group share the same utility shown in Table 9. The larger the group
index is, the more voters prefer A to R.

Table 10 shows the preferences of each group and the informed majority decision under each world
state. The preference of each group comes from the comparison of utilities in Table 9. The informed
majority decision is the aggregation of group preferences. Since each group has five voters, and the
majority threshold is 12 agents, A needs to be preferred by at least three groups to become the informed
majority decision. Therefore, A is the informed majority decision only in state 3. By comparing the
preferences of each group and the informed majority decision, we know that group 1 voters are
unfriendly agents, group 2 voters are contingent agents, and group 3 and 4 voters are friendly agents.

Winner A R

World State 1 2 3 1 2 3

Group 1 1 2 3 8 6 4
Group 2 2 3 4 6 4 2
Group 3 2 5 8 4 3 2
Group 4 4 6 9 3 2 1

Table 9. Utility function of each group

World State 1 2 3

Group 1 R R R
Group 2 R R A
Group 3 R A A
Group 4 A A A

Informed Majority R R A
Table 10. Preference of each group and the majority.

Strategy. In the non-binary setting, a strategy can be represented as a vector 𝜎 = (𝛽1, 𝛽2, · · · , 𝛽𝑀 ),
where 𝛽𝑚 is the probability that the agent votes for A when receiving signal𝑚. A strategy profile

is the vector of strategies of all agents. Σ = (𝜎1, 𝜎2, · · · , 𝜎𝑁 ).
The definition of the regular strategy profile remains the same as in the binary setting: friendly

agents always vote for A, and unfriendly agents always vote for R.
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Fidelity and Expected Utility. Given a strategy profile Σ, let 𝜆A
𝑘
(Σ) (𝜆R

𝑘
(Σ), respectively) be the

probability that A (R, respectively) becomes the winner when world state is 𝑘 . We can define the

fidelity and the expected utility in the same manner as in the binary setting.

𝐴(Σ) =
∑︁
𝑘∈L

𝑃𝑘 · 𝜆R𝑘 (Σ) +
∑︁
𝑘∈H

𝑃𝑘 · 𝜆A𝑘 (Σ) .

𝑢𝑛 (Σ) =
𝐾∑︁
𝑘=1

𝑃𝑘 (𝜆A𝑘 (Σ) · 𝑣𝑛 (𝑘,A) + 𝜆
R
𝑘
(Σ) · 𝑣𝑛 (𝑘,R)).

Excess Expected Vote Share. Similarly, the excess expected vote share is the expected vote share

that an alternative attracts under state 𝑘 minus the threshold of the alternative. In different instances,

the informed majority decision may change in different world states. Therefore, we define the

excess expected vote share for both A and R in every world state.

𝑓 𝑁
𝑘A =

1

𝑁

𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] − 𝜇.

𝑓 𝑁
𝑘R =

1

𝑁

𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝑘] − (1 − 𝜇).

For world states 𝑘 ∈ H where A is the informed majority decision, we care about 𝑓 𝑁
𝑘A; and for

states 𝑘 ∈ L, we care about 𝑓 𝑁
𝑘R. Therefore, we define 𝑓

𝑁
to be the smallest excess expected vote

share among those we care about.

𝑓 𝑁 = min

(
min

𝑘∈H
(𝑓 𝑁
𝑘A),min

𝑘∈L
(𝑓 𝑁
𝑘R)

)
.

For symmetric profile sequences where excess expected vote share is independent of 𝑁 , we use

𝑓𝑘A, 𝑓𝑘R, and 𝑓 to denote them.

Instance and Sequence of Strategy Profiles. Let {I𝑁 }∞𝑁=1
(or {I𝑁 } for short) be a sequence of

instances, where each I𝑁 is an instance of 𝑁 agents. The instances in a sequence share the same

majority threshold 𝜇, world state prior distribution {𝑃𝑘 }, signal prior distribution {𝑃𝑚𝑘 }, and
approximated type fractions (𝛼A

𝑘
, 𝛼R
𝑘
). Same to the binary setting, we do not regard agents in

different instances as related and have no additional assumption on the utility functions of agents.

We define a sequence of strategy profile {Σ𝑁 }∞𝑁=1
based on the instance sequence, where for each

𝑁 , Σ𝑁 is a strategy profile in I𝑁 .
Our positive results on strategic voting can be extended to the non-binary setting. Theorem 5

states the equivalence of fidelity converging to 1 and the 𝜀-strong Bayes Nash with 𝜀 = 𝑜 (1).
Theorem 6 guarantees the existence of the regular profile sequence with fidelity converging to 1.

Theorem 5. Given an arbitrary sequence of instance and an arbitrary regular strategy profile
sequence {Σ𝑁 }∞𝑁=1

, let {𝐴(Σ𝑁 )}∞𝑁=1
be the sequence of the fidelities of Σ𝑁 .

• If lim𝑁→∞𝐴(Σ𝑁 ) = 1, then for every 𝑁 , Σ𝑁 is an 𝜀-strong BNE with 𝜀 = 𝑜 (1).
• If lim𝑁→∞𝐴(Σ𝑁 ) = 1 does not hold, then there exist infinitely many 𝑁 such that Σ𝑁 is NOT
an 𝜀-strong BNE for some constant 𝜀.

Theorem 6. Given any arbitrary sequence of instances, there always exists a sequence of regular
strategy profiles {Σ′

𝑁
}∞
𝑁=1

such that 𝐴(Σ′
𝑁
) converges to 1.

Theorem 5 and Theorem 6 preserves the same reasoning as Theorem 2 and Theorem 3. More

details as well as the characterization of the fidelity in the non-binary setting are in Appendix E.
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6 CONCLUSION AND FUTURE WORK
We study the binary voting game where agents can coordinate in groups. We show that strategic

voting always leads to the informed majority decision, while non-strategic behaviors sometimes

fail. In particular, we show that a strategy profile is an 𝜀-strong Bayes Nash Equilibrium with small

𝜀 if and only if it leads to the “correct” decision with high probability. Moreover, we analyze the

fidelity of the strategy profile and provide criteria for judging whether a strategy profile is an

equilibrium based on excess expected vote share. Applying the analysis to non-strategic voting,

we characterize the conditions that informative and sincere voting lead to the informed majority

decision. Our results stand on the framework where agents have endogenous preferences over

outcomes contingent on some underlying state.

One limitation of our work is that our results are restricted to a setting with two alternatives. An

interesting yet challenging future direction is to study the impact of strategic behavior in a setting

with more than two alternatives. We expect more complicated results as Goertz and Maniquet [14]

show that informative voting may be an equilibrium but leads to the wrong alternative in a model

of three alternatives.

Another interesting direction is to explore strategic iterative voting with information uncertainty.

We expect iterative voting to be more powerful in aggregating information and able to simulate

some sophisticated mechanisms. For example, the mechanism in Schoenebeck and Tao [33] can

be regarded as a two-round voting game where only the second round counts, and every agent

votes informatively in the first round and plays a surprisingly popular strategy in the second round.

Kavner and Xia [19] show a surprising result that strategic behaviors increase the social welfare of

agents in iterative voting on average. Nevertheless, the behavior of strategic agents is even more

complicated in iterative voting, and the analysis of equilibria will be highly challenging.
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A COMPARISONWITH FEDDERSEN AND PESENDORFER’S WORK
Feddersen and Pesendorfer [11] consider a two-alternative setting and present a (unique) class

of equilibria that leads to the decision favored by the majority. We argue that Fedderson and

Pesendorfer’s work is drastically different from our work in many aspects.

Setting. The most important and fundamental difference between Fedderson and Pesendorfer’s

work and ours is the setting. Feddersen and Pesendorfer [11] adopt a model with continuous

world states and an asymptotically large number of voters whose preferences are drawn from

a distribution with full support on a continuum. Most of their results (the uniqueness of their

equilibrium, for example) require continuity. We, on the other hand, consider discrete and finite

world states and private signals. The solution concepts in their work is also different from ours.

Fedderson and Pesendorfer consider symmetric Nash Equilibrium with no weakly dominated

strategies. We, on the other hand, consider 𝜀-strong Bayes Nash Equilibrium which precludes

agents from coordinating with each other.

Equilibrium. Due to different settings and different solution concepts, the equilibria are also

different from each other. In Fedderson and Pesendorfer’s work, a Nash equilibrium consists of

only three types of strategies: always vote for A, always vote for R, and vote informatively. In our

work, on the other hand, a voting instance may have multiple distinct equilibria. Example 3 shows

scenarios where a Bayes Nash Equilibrium fails to be a strong Bayes Nash. Moreover, Fedderson

and Pesendorfer only show that the equilibrium will lead to the informed majority decision, while

we also show that non-equilibrium strategy profiles will not lead to the informed majority decision.

Types of agents. Although agents in Fedderson and Pesendorfer’s work can also be classified into

three groups based on their strategy, we argue, as Schoenebeck and Tao [33] argued, that there

is “fundamental difference in the motivation behind this classification”. As we follow the setting

of Reference [33], our agent types reflect the preferences of agents among two alternatives. In

Fedderson and Pesendorfer’s work, however, agents choose their type by playing different strategies

in some specific scheme so that the mechanism outputs the “correct” alternative. Therefore, the

motivation of their classifying agents is to aggregate information and make a good decision, but

not to reflect the preferences of agents.

B FREQUENTLY USED NOTATIONS IN THE BINARY SETTING
Table 11 provides a list of frequently used notation in the main paper (binary setting).

C PROOF OF PROPOSITION 1
Proposition 1. For any 𝑁0 ∈ N, there exists an instance of 𝑁 > 𝑁0 agents, which does not exist a

strong Bayes Nash equilibrium.

Proof. For any 𝑁0, we construct an instance of 𝑁 = 2𝑁0 + 3 agents. The agents consist of three

parts: 𝐹 is a set of 𝑁0 + 1 friendly agents. 𝐶 is a set of two contingent agents. And𝑈 is a set of 𝑁0

unfriendly agents. The valuation function of each set is shown in the table. The threshold 𝜇 = 0.5.

The prior distribution 𝑃𝐿 = 𝑃𝐻 = 0.5. The signal distribution 𝑃ℎ𝐻 = 𝑃𝑙𝐿 = 0.8, and 𝑃𝑙𝐻 = 𝑃ℎ𝐿 = 0.2.

Still, consider three strategy profiles:

• Σ1: In 𝐹 , 𝑁0 agents always vote for A, and one agent votes informatively. Two agents of 𝐶

vote informatively. 𝑁0 agents of𝑈 always vote for R.
• Σ2: 𝑁0 + 1 agents of 𝐹 always vote for A. Two agents of 𝐶 vote informatively. 𝑁0 agents of𝑈

always vote for R.
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Notation Meaning

𝑁 the total number of agents

A,R alternatives

W = {𝐿,𝐻 } the set of world states

S = {𝑙, ℎ} the set of private signals

𝑃𝑘 the prior belief on the probability of world state being 𝑘

𝑃𝑚𝑘 the probability of receiving signal𝑚 under world state 𝑘

𝜇 threshold of the majority vote

𝑣𝑛 (A, 𝑘), 𝑣𝑛 (R, 𝑘) the utility of agent 𝑛

𝐵 the upper bound of the utility function

𝛼𝐹 , 𝛼𝑈 , 𝛼𝐶 the approximated fraction of three types of agents

𝜎, Σ strategy and strategy profile

𝛽ℎ, 𝛽𝑙 the probability of voting for A when receiving signal ℎ (𝑙 )

{Σ𝑁 }∞𝑁=1
a sequence of strategy profiles

𝜆A
𝑘
(Σ), 𝜆R

𝑘
(Σ) the probability that A (R) becomes the winner under world state 𝑘

𝐴(Σ) fidelity: probability that Σ leads to the informed majority decision

𝑢𝑛 (Σ) the (ex-ante) expected utility of agent 𝑛

𝑓 𝑁
𝐻
, 𝑓 𝑁
𝐿
, 𝑓 𝑁 the excess expected vote share

Table 11. Frequently used notation in the binary setting

agents 𝑣 (𝐻,A) 𝑣 (𝐿,A) 𝑣 (𝐿,R) 𝑣 (𝐻,R)
𝐹 100 99 1 0

𝐶 90 0 100 0

𝑈 1 0 100 99

• Σ3: 𝑁0 + 1 agents of 𝐹 always vote for A. One 𝐶 agent votes informatively, and the other

agent always votes for R. 𝑁0 agents of𝑈 always vote for R.
The expected utility of each type of agents in three profiles is in the table as follows. The three

agents Σ1 Σ2 Σ3

𝐹 50.396 66.14 50.3

𝐶 85.12 75.2 76

𝑈 50.396 34.46 50.3

profiles form a deviating cycle of Σ1 → Σ2 → Σ3 → Σ1. In Σ1, the 𝐹 agent who votes informatively

has the incentive to always vote for A, and the profile becomes Σ2. In Σ2, a𝐶 agent has the incentive

to always vote for R, and the profile becomes Σ3. And in Σ3, the group of a 𝐹 agent and two 𝐶

agents have the incentives to turn to informative voting, and the profile becomes Σ1.

Now we show that for any other strategy profile Σ, there exists a group of agents with incentives

to deviate.
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Case 1: A is always the winner. In this case, at least 𝑁0 +2 agents always vote for A, the expected
utility of 𝑈 agents is 0.5, and the expected utility of 𝐶 agents is 45. If there exists a group of 𝑈

agents such that A is not always the winner after they deviate to always votes for R, their expected
utility will increase. Otherwise, there are still at least 𝑁0 + 2 agents who always vote for A even if

all𝑈 agents always vote for R. Therefore, at least one 𝐶 agent always votes for A. Now consider

the deviating group 𝐶 ∪𝑈 , where all agents in the group turn to always voting for R. Then R will

always be the winner. The expected utility of𝑈 agents increases to 99.5, and the expected utility of

𝐶 agents increases to 50. Therefore, in this case, Σ is not a strong BNE.

Case 2: R is always the winner. In this case, at least 𝑁0 + 2 agents always vote for R, the expected
utility of 𝐹 agents is 0.5, and the expected utility of𝐶 agents is 50. Similarly, if all agents in 𝐹 voting

for A can reverse the decision, their expected utility will increases. Otherwise, all agents in𝑈 and

𝐶 always vote for R. Then, the group 𝐹 ∪𝐶 has incentives to deviate, where 𝐹 agents always vote

for A, and 𝐶 agents vote informatively. The profile after the deviation is Σ2, in which both 𝐹 and 𝐶

agents have high expected utilities. Therefore, in this case, Σ is not a strong BNE.

Case 3: Neither of the alternatives is always the winner. In this case, any 𝐹 agent not always

voting forA and𝑈 agent not always voting for R has incentives to deviate to get a higher probability

that their preferred alternative to be selected. Now suppose all 𝐹 agents always vote for A, and𝑈
agents always vote for R. In this case, we show that the expected utility of 𝐶 agents is uniquely

maximized by one agent voting informatively and the other agent always voting for R, just as Σ3.

Therefore, for any Σ ≠ Σ3, 𝐶 agents have incentives to deviate to Σ3. And Σ3 itself is dominated by

Σ1.

Now without loss of generality, we index the two agents in 𝐶 as agent 1 and agent 2. Suppose

the strategy of agent 1 is 𝜎1 = (𝛽1
𝑙
, 𝛽1
ℎ
), and the strategy of agent 2 is 𝜎2 = (𝛽2

𝑙
, 𝛽2
ℎ
). Since there

are 𝑁0 + 1 votes for A and 𝑁0 votes for R, R is the winner only when both two agents vote for R.
Let 𝑋1 and 𝑋2 be the random variable that denotes the vote of agent 1 and agent 2 respectively.

𝑋𝑖 = 1 stands for “agent 𝑖 votes for A”, and 𝑋𝑖 = 0 stands for “agent 𝑖 votes for R”. Therefore, the
probability of A being winner under 𝐻 state is

𝜆A𝐻 (Σ) =1 − Pr[𝑋1 = 0 ∧ 𝑋2 = 0 |𝑊 = 𝐻 ]
=1 − Pr[𝑋1 = 0 |𝑊 = 𝐻 ] · Pr[𝑋2 = 0 |𝑊 = 𝐻 ]
=1 − (0.8 · (1 − 𝛽1

ℎ
) + 0.2 · (1 − 𝛽1

𝑙
)) (0.8 · (1 − 𝛽2

ℎ
) + 0.2 · (1 − 𝛽2

𝑙
)).

Similarly,

𝜆R𝐿 (Σ) = Pr[𝑋1 = 0 ∧ 𝑋2 = 0 |𝑊 = 𝐿]
=(0.8 · (1 − 𝛽1

𝑙
) + 0.2 · (1 − 𝛽1

ℎ
)) (0.8 · (1 − 𝛽2

𝑙
) + 0.2 · (1 − 𝛽2

ℎ
)).

And

𝑢1 (Σ) = 𝑢2 (Σ) = 0.5 · (90 · 𝜆A𝐻 (Σ) + 100 · 𝜆R𝐿 (Σ)).
Let 𝑥1 = 1 − 𝛽1

ℎ
, 𝑦1 = 1 − 𝛽1

𝑙
, 𝑥2 = 1 − 𝛽2

ℎ
, and 𝑦2 = 1 − 𝛽2

𝑙
, and expand the expected utility, we get

𝑢1 (Σ) = −26.8𝑥1𝑥2 + 0.8𝑥1𝑦2 + 0.8𝑥2𝑦1 + 30.2𝑦1𝑦2 + 45.

We consider the variables to maximize the expected utility. Note that given 𝑥1 and 𝑦1, if at least

one of 𝑥1 and 𝑦1 does not equal to zero, 𝑦2 = 1 is a necessary condition for 𝑢2 (Σ) to be maximized,

and vice versa. In the special case where four variables are all 0, Σ stands for both 𝐶 agents always

vote for A. In this case, A is always the winner, and 𝐶 agents have incentives to deviate to always

vote for R as shown in Case 1. Now, given at least one of four values is non-zero, we must have

𝑦1 = 𝑦2 = 1 to maximize the expected utility. Then the expected utility turns to

𝑢1 (Σ) = −26.8𝑥1𝑥2 + 0.8𝑥1 + 0.8𝑥2 + 75.2.
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Then it’s not hard to see that 𝑢1 (Σ) is uniquely maximized when one of 𝑥1 and 𝑥2 takes 0 and the

other takes 1. Then Σ is exactly Σ3. Therefore, the expected utility of 𝐶 agents is maximized on Σ3.

Consequently, we show that in every case a strategy profile is not a strong BNE. Therefore, a

strong BNE does no exist in the instance. □

D NON-BINARY SETTING
D.1 Additional Setting
In this section, we propose notions in non-binary settings that are used in technical proofs and not

mentioned in the main paper.

Fraction of Agents. Given a specific 𝑁 , we use 𝑁𝐹 , 𝑁𝐶 , and 𝑁𝑈 to denote the number of each type

of agents, and use 𝛼𝐹 =
𝑁𝐹

𝑁
, 𝛼𝐶 =

𝑁𝐶

𝑁
and 𝛼𝑈 =

𝑁𝑈

𝑁
to denote the fraction of each type of agents.

Note that 𝛼𝐹 , 𝛼𝐶 , and 𝛼𝑈 is dependent to 𝑁 .

In the non-binary setting, we have 𝛼𝐹 < 𝜇 and 𝛼𝑈 < 𝜇 for all sufficiently large 𝑁 , which means

that neither friendly nor unfriendly agents can dominate the vote. Note that this is guaranteed by

the assumption that both L andH are non-empty.

Proposition 1. There exists a constant 𝑁𝜇 > 0, s.t. for all 𝑁 > 𝑁𝜇 , 𝛼𝐹 < 𝜇 and 𝛼𝑈 < 𝜇.

Proof. First, we show that 𝛼𝐹 < 𝜇. For a candidate-friendly agent, we have L𝑛 ⊊ L. Therefore,

𝐿𝑛 < 𝐿, and 𝑛 prefer A if the world state is 𝐿. On the other hand, an agent vote for A in 𝐿 is a

friendly agent according to the definition. Therefore, the set of friendly agents is exactly the set of

agents who will vote A in world state 𝐿. Therefore we have

𝑁𝐹 =|𝑁 (𝐿,A) |
=𝑁 − ⌊𝛼R𝐿 ·𝑇 ⌋
≤(1 − 𝛼R𝐿 ) · 𝑁 + 1

=𝛼A𝐿 𝑁 + 1

=𝑁 (𝛼A𝐿 + 1

𝑇
).

According to the definition of 𝐿, we know that 𝛼A
𝐿
< 𝜇 and 𝛼A

𝐿
is independent from 𝑁 . Therefore,

there must exist a 𝑁𝜇 > 0 s.t. for all 𝑁 > 𝑁𝜇 , 𝛼
A
𝐿
+ 1

𝑁
< 𝜇, and therefore 𝛼𝐹 < 𝜇.

Then we show that 𝛼𝑈 < 1 − 𝜇. Similarly, the set of unfriendly agents is exactly the set of agents

who will vote R in world state 𝐻 . Therefore,

𝑁𝑈 =|𝑁 (𝐻,R) |
=⌊𝛼R𝐻 · 𝑁 ⌋
≤𝛼R𝐻 · 𝑁
<(1 − 𝜇) · 𝑁 .

The last inequality is due to the definition of 𝐻 . Therefore, we have 𝛼𝑈 < 1 − 𝜇. □

For the non-binary results we all assume that 𝑁 > 𝑁𝜇 , therefore 𝛼𝐹 < 𝜇 and 𝛼𝑈 < 𝜇.

Then we define the approximate fraction of each type of agents 𝛼𝐹 , 𝛼𝐶 , and 𝛼𝑈 that are indepen-

dent of 𝑁 . As we have shown in Proposition 1, the set of friendly agents is exactly the set of agents

who will vote A in 𝐿, and the set of unfriendly agents is exactly the set of agents who will vote R
in 𝐻 . Therefore, we define 𝛼𝐹 , 𝛼𝐶 , and 𝛼𝑈 as follows:

(1) 𝛼𝐹 = 𝛼A
𝐿
.
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(2) 𝛼𝑈 = 𝛼R
𝐻
.

(3) 𝛼𝐶 = 1 − 𝛼𝐹 − 𝛼𝑈 .
According to the definition we have 𝛼𝐹 < 𝜇 and 𝛼𝑈 < 1 − 𝜇. And it’s not hard to verify that

𝑁𝐹 = 𝑁 − ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋, 𝑁𝑈 = ⌊𝛼𝑈 · 𝑁 ⌋, and 𝑁𝐶 = ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋ − ⌊𝛼𝑈 · 𝑁 ⌋.

Error Rate. Error rate is complimentary of the fidelity. Given a strategy profile Σ, let 𝜆A
𝑘
(Σ) (𝜆R

𝑘
(Σ),

respectively) be the probability that A (R, respectively) becomes the winner when world state is 𝑘 .

We can define the error rate 𝐼 of the mechanism:

𝐼 (Σ) =
∑︁
𝑘∈L

𝑃𝑘 · 𝜆A𝑘 (Σ) +
∑︁
𝑘∈H

𝑃𝑘 · 𝜆R𝑘 (Σ). (3)

Note that 𝐴(Σ) + 𝐼 (Σ) = 1.

D.2 Berry-Esseen Theorem
In this section, we recall the technical theorem which will be used in the proof of our result. Berry-

Esseen Theorem [5, 10] bounds the difference between the distribution of the sum of independent

variables and the normal distribution.

Definition 6 (Berry-Esseen Theorem). Let𝑋1, 𝑋2, · · · , 𝑋𝑛 be 𝑛 independent variables with 𝐸 [𝑋𝑖 ] =
0, 𝑉𝑎𝑟 (𝑋𝑖 ) = 𝜎2𝑖 > 0, and 𝐸 [|𝑋𝑖 |3] = 𝜌𝑖 < ∞. Let

𝑆𝑛 =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛√︃
𝜎2
1
+ 𝜎2

2
+ · · · + 𝜎2𝑛

.

Denote 𝐹𝑛 to be the CDF of 𝑆𝑛 , and Φ to be the CDF of the standard normal distribution. Then there

exists an absolute constant 𝐶0 s.t. for all 𝑛,

sup

𝑠∈R
|𝐹𝑛 (𝑥) − Φ(𝑥) | ≤ 𝐶0 ·

𝜌1 + 𝜌2 + · · · + 𝜌𝑛
(𝜎2

1
+ 𝜎2

2
+ · · · + 𝜎2𝑛)3/2

.

The upper bound of 𝐶0 is estimated to be 0.5600 by Reference [37].

E NON-BINARY RESULTS
In this section, we present our theoretical results in the non-binary setting. All the theorems are

natural extensions from the binary setting to the non-binary setting, and the proofs also hold for

the binary setting. We’ll give remarks to show how the convert the proofs into the binary setting.

E.1 Lemma 2 (Lemma 1 for binary setting)
First, we show that a strategy profile with high fidelity will lead to an 𝜀-strong BNEwith a sufficiently

small 𝜀.

Lemma 2. Let 𝑒 (𝑁 ) be a function of 𝑁 . For any 𝑁 > 𝑁𝜇 and any regular strategy profile Σ∗ with
𝑁 agents, if Σ∗ satisfies 𝐴(Σ∗) ≥ 1 − 𝑒 (𝑁 ) (equivalently, 𝐼 (Σ∗) ≤ 𝑒 (𝑁 )), then Σ∗ is an 𝜀-strong Bayes
Nash where 𝜀 = 𝐾𝐵((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 ).

Lemma 2 is a natural extension of Theorem B.4 in Schoenebeck and Tao [33].

Proof. Since we have 𝛼𝐹 < 𝜇 and 𝛼𝑈 < 1− 𝜇, we do not need to consider the friendly/unfriendly
agent dominating case. Consider a deviating strategy profile Σ′

, there are two possible cases:

(1) 𝐼 (Σ′) < ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )
(2) 𝐼 (Σ′) ≥ ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )
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Case 1. In the first case, the error rate of Σ′
is small. Since both strategy profile has high fidelity,

we show that agents cannot gain large utility from deviating.

Claim 1. If 𝐼 (Σ′) < ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 ), then 𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ∗) ≤ 𝜀 for all agents.

We know that 𝐼 (Σ) = ∑
𝑘∈L 𝑃𝑘 · 𝜆A

𝑘
(Σ) + ∑

𝑘∈H 𝑃𝑘 · 𝜆R
𝑘
(Σ). Therefore, we have 0 ≤ 𝜆A

𝑘
(Σ′) ≤

( (𝐾−1)𝐵+1) ·𝑒 (𝑁 )
𝑃𝑘

for all 𝑘 ∈ L and 0 ≤ 𝜆R
𝑘
(Σ′) ≤ ( (𝐾−1)𝐵+1) ·𝑒 (𝑁 )

𝑃𝑘
for all 𝑘 ∈ H . At the same time,

since 𝐼 (Σ∗) ≤ 𝑒 (𝑁 ), we have 0 ≤ 𝜆A
𝑘
(Σ∗) ≤ 𝑒 (𝑁 )

𝑃𝑘
for all 𝑘 ∈ L and 0 ≤ 𝜆R

𝑘
(Σ∗) ≤ 𝑒 (𝑁 )

𝑃𝑘
for all

𝑘 ∈ H . Therefore, for every 𝑘 ∈ L, we have

|𝜆R
𝑘
(Σ′) − 𝜆R

𝑘
(Σ∗) | = |𝜆A

𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) | ≤max(𝜆A

𝑘
(Σ′), 𝜆A

𝑘
(Σ∗)) ≤ ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )

𝑃𝑘
.

And for every 𝑘 ∈ H , we have

|𝜆A
𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) | = |𝜆R

𝑘
(Σ′) − 𝜆R

𝑘
(Σ∗) | ≤max(𝜆R

𝑘
(Σ′), 𝜆R

𝑘
(Σ∗)) ≤ ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )

𝑃𝑘
.

Therefore, for any 𝑘 ∈ W, |𝜆A
𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) | ≤ ( (𝐾−1)𝐵+1) ·𝑒 (𝑁 )

𝑃𝑘
. Now for an arbitrary agent 𝑛, we

consider her gain in deviation:

𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ′)

=

𝐾∑︁
𝑘=1

𝑃𝑘 ((𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗)) · 𝑣𝑛 (𝑘,A) + (𝜆R

𝑘
(Σ′) − 𝜆R

𝑘
(Σ∗)) · 𝑣𝑛 (𝑘,R))

=
∑︁
𝑘∈L𝑛

𝑃𝑘 (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A)) (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′))

+
∑︁
𝑘∈H𝑛

𝑃𝑘 (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

≤
∑︁
𝑘∈L𝑛

𝑃𝑘 (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A))
((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )

𝑃𝑘

+
∑︁
𝑘∈H𝑛

𝑃𝑘 (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R))
((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )

𝑃𝑘

≤
∑︁
𝑘∈L𝑛

𝑃𝑘 · 𝐵 · ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )
𝑃𝑘

+
∑︁
𝑘∈H𝑛

𝑃𝑘 · 𝐵 · ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )
𝑃𝑘

=𝐾𝐵((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )
=𝜀.

Case 2. In the second case, we show that Σ′
cannot be a successful deviating strategy in the

following steps:

(1) Contingent agents get strictly less utility in Σ′
than in Σ∗

and thus have no incentive to

deviate.

(2) For a friendly agent 𝑡1 and an unfriendly agent 𝑡2, if one of them gain more than Δ = 𝐵 · 𝑒 (𝑁 )
from deviation, the other will get strictly less utility. Therefore,𝐷 contains either only friendly

agents or only unfriendly agents.

(3) 𝐷 with only one type of pre-determined agents cannot gain utility more than 𝜀.

Claim 2. If 𝐼 (Σ′) ≥ ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 ), then 𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ∗) < 0 for contingent agents.
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Firstly, we have 𝐴(Σ∗) ≥ 𝐴(Σ′) + (𝐾 − 1)𝐵 · 𝑒 (𝑁 ). This is because 𝐼 (Σ′) ≥ ((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 )
and 𝐼 (Σ∗) ≤ 𝑒 (𝑁 ). Then we consider the utility difference of an arbitrary contingent agent 𝑛:

𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ∗) =
∑︁
𝑘∈L

𝑃𝑘 (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A)) (𝜆R𝑘 (Σ
′) − 𝜆R

𝑘
(Σ∗))

+
∑︁
𝑘∈H

𝑃𝑘 (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

Recall that 𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A) > 0 for all 𝑘 ∈ L and 𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R) > 0 for all 𝑘 ∈ H . We

consider two cases:

(1) For all world state 𝑘 , Σ∗
leads to the informed majority decision with a higher probability than

Σ′
. That is, for all 𝑘 ∈ L, 𝜆R

𝑘
(Σ′) − 𝜆R

𝑘
(Σ∗) ≤ 0, and for all 𝑘 ∈ H , 𝜆A

𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) ≤ 0. In this case,

there is at least one 𝑘 such that the inequality is strict. Therefore we have 𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ′) < 0.

(2) There exists a world state 𝑘 in which Σ′
leads to the informed majority decision with a higher

probability than Σ∗
. That is, there exists L ′ ⊆ L and H ′ ⊆ H s.t. L ′ ∪ H ′ ≠ ∅, and for 𝑘 ∈ L ′

,

𝜆R
𝑘
(Σ′) − 𝜆R

𝑘
(Σ∗) > 0; for 𝑘 ∈ H ′

, 𝜆A
𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) > 0. Note that L ′ ∪ H ′ ≠ W always holds,

otherwise we will have 𝐴(Σ′) > 𝐴(Σ∗) which is a contradiction. Then we have∑︁
𝑘∈L\L′

𝑃𝑘 (𝜆R𝑘 (Σ
∗) − 𝜆R

𝑘
(Σ′)) +

∑︁
𝑘∈H\H′

𝑃𝑘 (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′))

=𝐴(Σ∗) −𝐴(Σ′) −
∑︁
𝑘∈L′

𝑃𝑘 (𝜆R𝑘 (Σ
∗) − 𝜆R

𝑘
(Σ′)) −

∑︁
𝑘∈H′

𝑃𝑘 (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′)

>𝐴(Σ∗) −𝐴(Σ′)
≥(𝐾 − 1)𝐵 · 𝑒 (𝑁 ) .

At the same time, for all 𝑘 ∈ L, we have 𝜆R
𝑘
(Σ′) − 𝜆R

𝑘
(Σ∗) ≤ 𝑒 (𝑁 )

𝑃𝑘
, and for all 𝑘 ∈ H ′

, 𝜆A
𝑘
(Σ′) −

𝜆A
𝑘
(Σ∗) ≤ 𝑒 (𝑁 )

𝑃𝑘
. Therefore, the difference of utility will have

𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ′)

< − (𝐾 − 1)𝐵 · 𝑒 (𝑁 ) +
∑︁

𝑘∈L′∪H′

𝑃𝑘 ·
𝑒 (𝑁 )
𝑃𝑘

· 𝐵

≤ − (𝐾 − 1)𝐵 · 𝑒 (𝑁 ) + (𝐾 − 1)𝐵 · 𝑒 (𝑁 )
=0.

In the second line, the first term comes from the sum of all terms for 𝑘 ∈ W \ (L ′ ∪H ′):∑︁
𝑘∈L\L′

𝑃𝑘 (𝜆R𝑘 (Σ
′) − 𝜆R

𝑘
(Σ∗)) (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A))

+
∑︁

𝑘∈H\H′

𝑃𝑘 (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗)) (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R))

= −
∑︁

𝑘∈L\L′

𝑃𝑘 (𝜆R𝑘 (Σ
∗) − 𝜆R

𝑘
(Σ′)) (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A))

−
∑︁

𝑘∈H\H′

𝑃𝑘 (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′)) (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R))

≤ −
∑︁

𝑘∈L\L′

𝑃𝑘 (𝜆R𝑘 (Σ
∗) − 𝜆R

𝑘
(Σ′)) · 1 −

∑︁
𝑘∈H\H′

𝑃𝑘 (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′)) · 1

< − (𝐾 − 1)𝐵 · 𝑒 (𝑁 ).
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And the second term comes from the sum of all terms for𝑘 ∈ L ′∪H ′
. Note that sinceL ′∪H ′ ⊊W,

we have |L ′ ∪H ′ | ≤ 𝐾 − 1.

After excluding contingent agents from the deviating group, we show that any deviating group

𝐷 cannot contain both friendly and unfriendly agents.

Claim 3. Suppose 𝑛1 is an arbitrary friendly agent, and 𝑛2 is an arbitrary unfriendly agent. For
Δ = 𝐾 · 𝐵(𝐵 + 1) · 𝑒 (𝑁 ), we have
(1) If 𝑢𝑛1 (Σ′) − 𝑢𝑛1 (Σ∗) > Δ, 𝑢𝑛2 (Σ′) − 𝑢𝑛2 (Σ∗) < 0.
(2) If 𝑢𝑛2 (Σ′) − 𝑢𝑛2 (Σ∗) > Δ, 𝑢𝑛1 (Σ′) − 𝑢𝑛1 (Σ∗) < 0.

We will only prove (1) since the reasoning of (1) and (2) are similar. Without loss of generality, let

𝑛1 = 1 and 𝑛2 = 2. Suppose 𝑢1 (Σ′) − 𝑢1 (Σ∗) > Δ, we’ll show that 𝑢2 (Σ′) − 𝑢2 (Σ∗) < 0. According

to the definition of friendly and unfriendly agents, we have L1 ⊊ L ⊊ L2, andH2 ⊊ H ⊊ H1.

We’ll mainly use three facts in the proof:

(1) for all 𝑘 ∈ L, 𝜆A
𝑘
(Σ∗) − 𝜆A

𝑘
(Σ′) ≤ 𝑒 (𝑁 )

𝑃𝑘
− 𝜆A

𝑘
(Σ′) ≤ 𝑒 (𝑁 )

𝑃𝑘
; for all 𝑘 ∈ H , 𝜆A

𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) ≤

𝜆A
𝑘
(Σ′) − (1 − 𝑒 (𝑁 )

𝑃𝑘
) ≤ 𝑒 (𝑁 )

𝑃𝑘
.

(2) for both 𝑛 = 1 and 𝑛 = 2, 𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R) is negative for all 𝑘 ∈ L1, and positive for all

𝑘 ∈ H2.

(3) for both 𝑛 = 1 and 𝑛 = 2, 𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R) is increasing in 𝑘 .
We first consider the difference of 1’s expected utility:

Δ < 𝑢1 (Σ′) − 𝑢1 (Σ∗) =
𝐾∑︁
𝑘=1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

We can categorize 𝑘 into three parts:

• 𝑘 ∈ L1. For these 𝑘 , 𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R) < 0 and 𝜆A
𝑘
(Σ∗) − 𝜆A

𝑘
(Σ′) ≤ 𝑒 (𝑁 )

𝑃𝑘
. Therefore, we have∑︁

𝑘∈L1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

=
∑︁
𝑘∈L1

𝑃𝑘 (𝑣1 (𝑘,R) − 𝑣1 (𝑘,A)) (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′))

≤
∑︁
𝑘∈L1

𝑃𝑘 · 𝐵 · 𝑒 (𝑁 )
𝑃𝑘

=
∑︁
𝑘∈L1

𝐵 · 𝑒 (𝑁 ).

• 𝑘 ∈ H2. For these 𝑘 , 𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R) > 0 and 𝜆A
𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗) ≤ 𝑒 (𝑁 )

𝑃𝑘
. Therefore, we have∑︁

𝑘∈H2

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

≤
∑︁
𝑘∈H2

𝑃𝑘 · 𝐵 · 𝑒 (𝑁 )
𝑃𝑘

=
∑︁
𝑘∈H2

𝐵 · 𝑒 (𝑁 ) .

• 𝑘 ∈ W \ (L1 ∪ H2). Note that this part can be divided into two parts: 𝑘 ∈ L ∩ H1 and

L2 ∩H . We’ll deal with this part later.
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Therefore,

Δ <𝑢1 (Σ∗) − 𝑢1 (Σ′)

=

𝐾∑︁
𝑘=1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

≤
∑︁

𝑘∈W\(L1∪H2)
𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ

′) − 𝜆A
𝑘
(Σ∗)) +

∑︁
𝑘∈L1∪H2

𝐵 · 𝑒 (𝑁 )

=
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)) +

∑︁
𝑘∈L1∪H2

𝑒 (𝑁 ) · 𝐵.

Now we start deal with the first two terms with fact 1 and 3.

(1) For the first term

∑
𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗)), we have (𝑣1 (𝑘,A) −

𝑣1 (𝑘,R)) > 0 and (𝜆A
𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗)) ≥ −𝑒 (𝑁 )

𝑃𝑘
. we want to replace the 𝑘 in 𝑣1 into 𝐿, which

will make (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) larger. At the same time, we want the whole term to become

larger as well. Therefore, we add some term into (𝜆A
𝑘
(Σ′) − 𝜆A

𝑘
(Σ∗)) as follows:

∑︁
𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

=
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗) + 𝑒 (𝑁 )

𝑃𝑘
)

−
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) ·
𝑒 (𝑁 )
𝑃𝑘

≤
∑︁

𝑘∈L∪H1

𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗) + 𝑒 (𝑁 )

𝑃𝑘
)

−
∑︁

𝑘∈L∩H1

(𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) · 𝑒 (𝑁 )

=
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

+
∑︁

𝑘∈L∩H1

(((𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) − (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R))) · 𝑒 (𝑁 )

≤
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗)) +

∑︁
𝑘∈L∩H1

𝐵 · 𝑒 (𝑁 ) .
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(2) For the second term −∑
𝑘∈L2∩H 𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)), we use similar

technique to replace 𝑘 into 𝐿:

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′))

= −
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′) + 𝑒 (𝑁 )

𝑃𝑘
)

+
∑︁

𝑘∈L2∩H
(𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) · 𝑒 (𝑁 )

≤ −
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′) + 𝑒 (𝑁 )

𝑃𝑘
)

+
∑︁

𝑘∈L2∩H
(𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) · 𝑒 (𝑁 )

= −
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′))

+
∑︁

𝑘∈L2∩H
(((𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) − (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R))) · 𝑒 (𝑁 )

≤ −
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)) +

∑︁
𝑘∈L2∩H

𝐵 · 𝑒 (𝑁 ).

Note that the first inequality comes from fact 3 that 0 < 𝑣1 (𝐿,A)−𝑣1 (𝐿,R) ≤ 𝑣1 (𝑘,A)−𝑣1 (𝑘,R)
for all 𝑘 ∈ L2 ∩H .

Now we put everything together and get

Δ <𝑢1 (Σ′) − 𝑢1 (Σ∗)

≤
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝑘,A) − 𝑣1 (𝑘,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)) +

∑︁
𝑘∈L1∪H2

𝐵 · 𝑒 (𝑁 )

≤
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′))

+
∑︁

𝑘∈L1∪H2

𝐵 · 𝑒 (𝑁 ) +
∑︁

𝑘∈L∪H1

𝐵 · 𝑒 (𝑁 ) +
∑︁

𝑘∈L2∪H
𝐵 · 𝑒 (𝑁 )

=
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣1 (𝐿,A) − 𝑣1 (𝐿,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)) + 𝐾 · 𝐵 · 𝑒 (𝑁 ).
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Note that 𝐵 ≥ 𝑣1 (𝐿,A) − 𝑣1 (𝐿,R) > 0. Therefore, we have∑︁
𝑘∈L∩H1

𝑃𝑘 (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗)) −

∑︁
𝑘∈L2∩H

𝑃𝑘 (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′))

>
Δ − 𝐾 · 𝐵 · 𝑒 (𝑁 )

𝐵

=
𝐾 · 𝐵(𝐵 + 1) · 𝑒 (𝑁 ) − 𝐾 · 𝐵 · 𝑒 (𝑁 )

𝐵

=𝐾 · 𝐵 · 𝑒 (𝑁 )

Now we consider agent 2’s side. We show that 𝑢2 (Σ′) −𝑢2 (Σ∗) < 0. Most calculations will be the

same as those of agent 1. Note that one main difference is for agent 2, 𝑣2 (𝑘,A) − 𝑣2 (𝑘,R) < 0 for all

𝑘 ∈ W \ (L1 ∪H2).

𝑢2 (Σ′) − 𝑢2 (Σ∗)

=

𝐾∑︁
𝑘=1

𝑃𝑘 (𝑣2 (𝑘,A) − 𝑣2 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

≤
∑︁

𝑘∈W\(L1∪H2)
𝑃𝑘 (𝑣2 (𝑘,A) − 𝑣2 (𝑘,R)) (𝜆A𝑘 (Σ

′) − 𝜆A
𝑘
(Σ∗)) +

∑︁
𝑘∈L1∪H2

𝐵 · 𝑒 (𝑁 )

=
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣2 (𝑘,A) − 𝑣2 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣2 (𝑘,A) − 𝑣2 (𝑘,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)) +

∑︁
𝑘∈L1∪H2

𝐵 · 𝑒 (𝑁 )

≤
∑︁

𝑘∈L∩H1

𝑃𝑘 (𝑣2 (𝐿,A) − 𝑣2 (𝐿,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗))

−
∑︁

𝑘∈L2∩H
𝑃𝑘 (𝑣2 (𝐿,A) − 𝑣2 (𝐿,R)) (𝜆A𝑘 (Σ

∗) − 𝜆A
𝑘
(Σ′)) + 𝐾 · 𝐵 · 𝑒 (𝑁 )

<(𝑣2 (𝐿,A) − 𝑣2 (𝐿,R)) · 𝐾 · 𝐵 · 𝑒 (𝑁 ) + 𝐾 · 𝐵 · 𝑒 (𝑁 )
≤ − 1 · 𝐾 · 𝐵 · 𝑒 (𝑁 ) + 𝐾 · 𝐵 · 𝑒 (𝑁 )
=0.

Therefore, we show that 𝑢2 (Σ′) − 𝑢2 (Σ′) < 0, which implies the claim.

Remark. Note that in the binary setting, this part of proof can be largely simplified. Note that
L1 = H2 = ∅, L ∪H1 = {𝐿}, andH ∪ L2 = {𝐻 }.

Now we come to the final step of Case 2. We’ll show that a deviating group 𝐷 that contains only

friendly or only unfriendly agents cannot gain utility more than 𝜀.

Claim 4. If 𝐷 contains only friendly agents (or only unfriendly agents), then for every 𝑛 ∈ 𝐷 ,
𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ∗) < 𝜀.

With the loss of generality, suppose 𝐷 contains only friendly agents. The calculation for 𝐷

contains only unfriendly agents will be the same. Note that in Σ∗
every friendly agent always

votes for A. Therefore, when friendly agents in 𝐷 deviate, the probability of A being the winner

will decrease. Formally, for any 𝑘 = 1, 2, · · · , 𝐾 , we have 𝜆A
𝑘
(Σ′) ≤ 𝜆A

𝑘
(Σ∗). Now we consider the
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difference in the expected utility of an arbitrary friendly agent in 𝐷 :

𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ∗) =
∑︁
𝑘∈L𝑛

𝑃𝑘 (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A)) (𝜆A𝑘 (Σ
∗) − 𝜆A

𝑘
(Σ′))

+
∑︁
𝑘∈H𝑛

𝑃𝑘 (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R)) (𝜆A𝑘 (Σ
′) − 𝜆A

𝑘
(Σ∗)).

Note that for all 𝑘 ∈ H𝑛 , we have 𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R) > 0. Therefore, the second sum is non-

positive. At the same time, since L𝑛 ⊊ L, we have 𝜆A
𝑘
(Σ∗) − 𝜆A

𝑘
(Σ′) ≤ 𝜆A

𝑘
(Σ∗) ≤ 𝑒 (𝑁 )

𝑃𝑘
and

𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A) > 0. Therefore,

𝑢𝑛 (Σ′) − 𝑢𝑛 (Σ∗) ≤
∑︁
𝑘∈L𝑛

𝑃𝑘 · 𝐵 · 𝑒 (𝑁 )
𝑃𝑘

< 𝐾 · 𝐵 · 𝑒 (𝑁 ) < 𝜀.

Therefore, we show that Σ∗
is an 𝜀-strong BNE where 𝜀 = 𝐾𝐵((𝐾 − 1)𝐵 + 1) · 𝑒 (𝑁 ). □

E.2 Theorem 6 (Thorem 3 for binary setting)
Then we show that there always exists a sequence of regular strategy profiles with high fidelity.

Theorem 6. For an arbitrary sequence of instances, there exists a series of regular strategy profiles
{Σ′

𝑁
}∞
𝑁=1

and constants 𝑁0 > 0, 𝜙 > 0 such that for all 𝑁 > 𝑁0, 𝐴(Σ′
𝑁
) ≥ 1 − 2 exp(−2𝜙2𝑁 ).

Proof. Let 𝐵(𝑛, 𝑝) denote a random variable of binomial distribution with 𝑛 experiments and

probability 𝑝 . Given 𝑁 and a regular strategy profile Σ𝑁 where all contingent agents play strategy

𝜎 = (𝛽1, 𝛽2, · · · , 𝛽𝑚), we can write up 𝜆A
𝑘
and 𝜆R

𝑘
for each 𝑘 .

𝜆A
𝑘
(Σ𝑁 ) = Pr[#number of votes for A ≥ 𝜇𝑁 |𝑊 = 𝑘]

= Pr[𝑁𝐹 + 𝐵(𝑁𝐶 ,
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚) ≥ 𝜇𝑁 ]

= Pr[𝐵(𝑁𝐶 ,
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚) − 𝑁𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 ≥ −𝑓 𝑁
𝑘A (𝜎) · 𝑁 ],

where we define

𝑓 𝑁
𝑘A (𝜎) =

𝑁𝐹

𝑁
+ 𝑁𝐶
𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 − 𝜇

=𝛼𝐹 + 𝛼𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 − 𝜇

Similarly,

𝜆R
𝑘
(Σ𝑁 ) = Pr[𝐵(𝑁𝐶 ,

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚)) − 𝑁𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚) ≥ −𝑓 𝑁
𝑘R (𝜎) · 𝑁 ],

where

𝑓 𝑁
𝑘R (𝜎) =

𝑁𝑈

𝑁
+ 𝑁𝐶
𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚) − (1 − 𝜇)

=𝛼𝑈 + 𝛼𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚) − (1 − 𝜇)
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If we can find a 𝜎 ′
, and constant 𝑁0 > 0, 𝜙 > 0 s.t. for every 𝑁 > 𝑁0, for every 𝑘 ∈ H we have

𝑓 𝑁
𝑘A (𝜎

′) > 𝜙 and for every 𝑘 ∈ L we have 𝑓 𝑁
𝑘R (𝜎

′) > 𝜙 , then we can directly apply the Hoeffding

Inequality and show that for every 𝑁 > 𝑁0, Σ
′
𝑁
has high fidelity.

Now we start constructing strategy 𝜎 ′
. First we define the "approximated version" of 𝑓 𝑁

𝑘A and 𝑓 𝑁
𝑘R

which are independent from 𝑁 . Given a strategy 𝜎 , let

ˆ𝑓𝑘A (𝜎) =𝛼𝐹 + 𝛼𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 − 𝜇 (4)

ˆ𝑓𝑘R (𝜎) =𝛼𝑈 + 𝛼𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚) − (1 − 𝜇). (5)

The rest of the proof will go as follows:

(1) First, we construct a strategy 𝜎 ′
s.t. for every 𝑘 ∈ H we have

ˆ𝑓𝑘A (𝜎 ′) > 0 and for every

𝑘 ∈ L we have
ˆ𝑓𝑘R (𝜎 ′) > 0.

(2) Then we find out 𝑁0 and show that for every 𝑁 > 𝑁0, 𝑓
𝑁
𝑘A (𝜎

′) will not deviate from ˆ𝑓𝑘A (𝜎 ′)
too much, thus will larger than some constant 𝜙 . Similarly we show that for every 𝑁 > 𝑁0,

𝑓 𝑁
𝑘A(𝜎

′) > 𝜙 .
(3) Finally, we show that for all 𝑁 > 𝑁0, 𝐴(Σ′

𝑁
) ≥ 1 − 2 exp(−2𝜙2𝑇 ) by applying the Hoeffding

inequality.

Part 1. Constructing 𝜎 ′. The construction of 𝜎 has three steps. We start from a simple strategy

and then modify it to the target step by step.

Step 1. Consider a simple strategy 𝜎0 = (𝛽∗, 𝛽∗, · · · , 𝛽∗). That is, the agent always votes for A
with probability 𝛽∗ and votes for R with probability 1 − 𝛽∗ no matter what signal she receives. 𝛽∗

satisfies 𝛼𝐹 + 𝛼𝐶 · 𝛽∗ − 𝜇 = 0. Since 𝛼𝐹 < 𝜇 and 𝛼𝑈 < 1 − 𝜇, we have 𝛽∗ ∈ (0, 1). Moreover, we have

ˆ𝑓𝑘A (𝜎0) = 0 and
ˆ𝑓𝑘R (𝜎0) = 0 for all 𝑘 ∈ W.

Step 2. Let𝑚∗ = ⌊𝑀
2
⌋.𝑚∗

will serve as a threshold, as we regard signals not larger than𝑚∗
as

"low signals" and those exceeding 𝑚∗
as "high signals". Specifically, for a world state 𝑘 , define

𝑃𝑙𝑘 =
∑𝑚∗
𝑚=1 𝑃𝑚𝑘 , and 𝑃ℎ𝑘 =

∑𝑀
𝑚=𝑚∗+1 𝑃𝑚𝑘 . According to the stochastic dominance assumption, we

have 0 ≤ 𝑃𝑙𝑘1 < 𝑃𝑙𝑘2 and 𝑃ℎ𝑘1 > 𝑃ℎ𝑘2 ≥ 0 for all 𝑘1 > 𝑘2. Let 𝛽𝑙 = 𝛽
∗ − 𝛿𝑙 , and 𝛽ℎ = 𝛽∗ + 𝛿ℎ , where

𝛿𝑙 > 0 and 𝛿ℎ > 0 are constant satisfying 𝛿ℎ = 𝛿𝑙 · 𝑃𝑙𝐻𝑃ℎ𝐻
. We can carefully select and fix 𝛿ℎ and 𝛿𝑙

to make 𝛽ℎ and 𝛽𝑙 inside (0, 1). Then we construct strategy 𝜎1: if the agent receives a low signal

𝑚 ≤ 𝑚∗
, she votes for A with probability 𝛽𝑙 and R with probability 1 − 𝛽𝑙 ; if she receives a high

signal𝑚 > 𝑚∗
, she votes for A with probability 𝛽ℎ and R with probability 1 − 𝛽ℎ . Then we show

that

• for all 𝑘 ∈ H ,
ˆ𝑓𝑘A (𝜎1) ≥ 0, and

• for all 𝑘 ∈ L,
ˆ𝑓𝑘R (𝜎1) > 0.

For the H side, we’ll first show that
ˆ𝑓𝐻A (𝜎1) = 0. Then we show that for all 𝑘 ∈ H ,

ˆ𝑓𝑘A (𝜎1) ≥
ˆ𝑓𝐻A (𝜎1). For 𝑘 = 𝐻 , we have

ˆ𝑓𝐻A (𝜎1) =𝛼𝐹 + 𝛼𝐶 (𝑃𝑙𝐻 · 𝛽𝑙 + 𝑃ℎ𝐻 · 𝛽ℎ) − 𝜇
=𝛼𝐹 + 𝛼𝐶 (𝑃𝑙𝐻 · (𝛽∗ − 𝛿𝑙 ) + 𝑃ℎ𝐻 · (𝛽∗ + 𝛿ℎ)) − 𝜇

=𝛼𝐶 · (−𝑃𝑙𝐻 · 𝛿𝑙 + 𝑃ℎ𝐻 · 𝛿𝑙 ·
𝑃𝑙𝐻

𝑃ℎ𝐻
)

=0.

For other 𝑘 ∈ H , because 𝛽𝑙 < 𝛽ℎ , 𝑃𝑙𝑘 ≤ 𝑃𝑙𝐻 ,and 𝑃ℎ𝑘 ≥ 𝑃ℎ𝐻 , we have
ˆ𝑓𝑘A (𝜎1) ≥ ˆ𝑓𝐻A(𝜎1) ≥ 0.
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For the L side, similarly, we’ll first show that
ˆ𝑓𝐿R (𝜎1) > 0. Then we show that for all 𝑘 ∈ L,

ˆ𝑓𝑘R (𝜎1) > ˆ𝑓𝐿R (𝜎1). For 𝑘 = 𝐿 we have

ˆ𝑓𝐿R (𝜎1) =𝛼𝑈 + 𝛼𝐶 (𝑃𝑙𝐿 · (1 − 𝛽𝑙 ) + 𝑃ℎ𝐿 · (1 − 𝛽ℎ)) − (1 − 𝜇)
=𝛼𝑈 + 𝛼𝐶 (𝑃𝑙𝐿 · (1 − 𝛽∗ + 𝛿𝑙 ) + 𝑃ℎ𝐿 · (1 − 𝛽∗ − 𝛿ℎ)) − (1 − 𝜇)

=𝛼𝐶 · (𝑃𝑙𝐿 · 𝛿𝑙 − 𝑃ℎ𝐿 · 𝛿𝑙 ·
𝑃𝑙𝐻

𝑃ℎ𝐻
)

=
𝛼𝐶 · 𝛿𝑙
𝑃ℎ𝐻

(𝑃𝑙𝐿 · 𝑃ℎ𝐻 − 𝑃ℎ𝐿 · 𝑃𝑙𝐻 )

>0.

The final inequality comes that 𝑃𝑙𝐻 < 𝑃𝑙𝐿 ,and 𝑃ℎ𝐻 > 𝑃ℎ𝐿 since 𝐿 < 𝐻 . For other 𝑘 ∈ L, because

(1 − 𝛽𝑙 ) > (1 − 𝛽ℎ), 𝑃𝑙𝑘 ≥ 𝑃𝑙𝐿 ,and 𝑃ℎ𝑘 ≤ 𝑃ℎ𝐿 , we have
ˆ𝑓𝑘A (𝜎1) ≥ ˆ𝑓𝐿A (𝜎1) > 0.

Remark. In the binary setting, we just let 𝜎1 = (𝛽𝑙 , 𝛽ℎ). And we will find that ˆ𝑓𝐻A (𝜎1) = 0 and
ˆ𝑓𝐿R (𝜎1) > 0.

Step 3. In step 3, we modify 𝛽ℎ to make both sides strictly positive. Let 𝛽 ′
𝑙
= 𝛽𝑙 , and 𝛽

′
ℎ
= 𝛽ℎ + 𝛿 ′ℎ ,

where 𝛿 ′
ℎ
> 0 is a constant satisfying 𝛼𝐶 · 𝛿 ′

ℎ
≤

ˆ𝑓𝐿R (𝜎1)
2

and 𝛽ℎ + 𝛿 ′ℎ ≤ 1. Therefore, 0 ≤ 𝛽 ′
𝑙
< 𝛽 ′

ℎ
≤ 1.

Now we are ready to construct our final strategy 𝜎 ′
: if the agent receives a low signal𝑚 ≤ 𝑚∗

, she

votes for A with probability 𝛽 ′𝑚 = 𝛽 ′
𝑙
and R with probability 1 − 𝛽 ′

𝑙
; if she receives a high signal

𝑚 > 𝑚∗
, she votes for A with probability 𝛽 ′𝑚 = 𝛽 ′

ℎ
and R with probability 1− 𝛽 ′

ℎ
. Then we show that

• for all 𝑘 ∈ H ,
ˆ𝑓𝑘A (𝜎 ′) > 0, and

• for all 𝑘 ∈ L,
ˆ𝑓𝑘R (𝜎 ′) > 0.

For theH side, we still consider 𝐻 first:

ˆ𝑓𝐻A(𝜎 ′) =𝛼𝐹 + 𝛼𝐶 (𝑃𝑙𝐻 · 𝛽 ′
𝑙
+ 𝑃ℎ𝐻 · 𝛽 ′

ℎ
) − 𝜇

=𝛼𝐹 + 𝛼𝐶 (𝑃𝑙𝐻 · 𝛽𝑙 + 𝑃ℎ𝐻 · (𝛽ℎ + 𝛿 ′ℎ)) − 𝜇
= ˆ𝑓𝐻A (𝜎1) + 𝛼𝐶 · 𝑃ℎ𝐻 · 𝛿 ′

ℎ

=𝛼𝐶 · 𝑃ℎ𝐻 · 𝛿 ′
ℎ

>0.

For other 𝑘 ∈ H , because 𝛽 ′
𝑙
< 𝛽 ′

ℎ
, 𝑃𝑙𝑘 ≤ 𝑃𝑙𝐻 ,and 𝑃ℎ𝑘 ≥ 𝑃ℎ𝐻 , we have

ˆ𝑓𝑘A (𝜎 ′) ≥ ˆ𝑓𝐻A (𝜎 ′) > 0.

For the L side, we consider 𝐿 first:

ˆ𝑓𝐿R (𝜎 ′) =𝛼𝑈 + 𝛼𝐶 (𝑃𝑙𝐿 · (1 − 𝛽 ′𝑙 ) + 𝑃ℎ𝐿 · (1 − 𝛽
′
ℎ
)) − (1 − 𝜇)

𝛼𝑈 + 𝛼𝐶 (𝑃𝑙𝐿 · (1 − 𝛽𝑙 ) + 𝑃ℎ𝐿 · (1 − 𝛽ℎ − 𝛿 ′ℎ)) − (1 − 𝜇)
= ˆ𝑓𝐿R (𝜎 ′) − 𝛼𝐶 · 𝑃ℎ𝐿 · 𝛿 ′ℎ

≥
ˆ𝑓𝐿R (𝜎 ′)
2

>0.

For other 𝑘 ∈ L, because (1−𝛽 ′
𝑙
) > (1−𝛽 ′

ℎ
), 𝑃𝑙𝑘 ≥ 𝑃𝑙𝐿 ,and 𝑃ℎ𝑘 ≤ 𝑃ℎ𝐿 , we have

ˆ𝑓𝑘A (𝜎 ′) ≥ ˆ𝑓𝐿A (𝜎 ′) >
0.

Remark. In the binary setting, similarly, let 𝜎 ′ = (𝛽 ′
𝑙
, 𝛽 ′
ℎ
). We will find that ˆ𝑓𝐻A (𝜎 ′) > 0 and

ˆ𝑓𝐿R (𝜎 ′) > 0
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Part 2 Determine 𝑁0 and 𝜙 . In this part, we’ll show that for all 𝑘 ∈ H , (𝑘 ∈ L, respectively),

𝑓 𝑁
𝑘A (𝜎

′) (𝑓 𝑁
𝑘R (𝜎

′), respectively) will not deviate from ˆ𝑓𝑘A (𝜎 ′) ( ˆ𝑓𝑘R (𝜎 ′), respectively) too much. Since

ˆ𝑓𝑘A (𝜎 ′) and ˆ𝑓𝑘R (𝜎 ′) do not depend on 𝑁 , we can determine constant 𝑁0 and 𝜙 , s.t. for all 𝑁 > 𝑁0,

𝑓 𝑁
𝑘A (𝜎

′) > 𝜙 , and 𝑓 𝑁
𝑘R (𝜎

′) > 𝜙 . We start from theH side. Recall that

𝑓 𝑁
𝑘A (𝜎) =

𝑁𝐹

𝑁
+ 𝑁𝐶
𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 − 𝜇.

And recall that 𝑁𝐹 = 𝑁 − ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋, 𝑁𝑈 = ⌊𝛼𝑈 · 𝑁 ⌋, and 𝑁𝐶 = ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋ − ⌊𝛼𝑈 · 𝑁 ⌋.
Therefore, for all 𝑘 ∈ H , we have

𝑓 𝑁
𝑘A (𝜎

′) =1 − ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋
𝑁

+ ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋ − ⌊𝛼𝑈 · 𝑁 ⌋
𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚 − 𝜇

≥1 − (1 − 𝛼𝐹 ) + ((1 − 𝛼𝐹 ) −
1

𝑁
− 𝛼𝑈 )

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚 − 𝜇

=𝛼𝐹 + 𝛼𝐶 ·
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚 − 𝜇 − 1

𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚

≥ ˆ𝑓𝑘A (𝜎 ′) − 1

𝑁

≥ ˆ𝑓𝐻A (𝜎 ′) − 1

𝑁

Since
ˆ𝑓𝐻A (𝜎 ′) > 0 is independent from 𝑁 , there exists a 𝑁H > 0, s.t. for all 𝑁 > 𝑁H and all 𝑘 ∈ H ,

𝑓 𝑁
𝑘A (𝜎

′) ≥
ˆ𝑓𝐻A (𝜎′)

2
.

For the L side, similarly for all 𝑘 ∈ L, we have

𝑓 𝑁
𝑘R (𝜎

′) =𝑁𝑈
𝑁

+ 𝑁𝐶
𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚) − (1 − 𝜇)

=
⌊𝛼𝑈 · 𝑁 ⌋

𝑁
+ ⌊(1 − 𝛼𝐹 ) · 𝑁 ⌋ − ⌊𝛼𝑈 · 𝑁 ⌋

𝑁

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚) − (1 − 𝜇)

≥𝛼𝑈 − 1

𝑁
+ ((1 − 𝛼𝐹 ) −

1

𝑁
− 𝛼𝑈 )

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚) − (1 − 𝜇)

=𝛼𝑈 + 𝛼𝐶 ·
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚) − (1 − 𝜇) − 1

𝑁
(1 +

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚))

≥ ˆ𝑓𝑘R (𝜎 ′) − 2

𝑁

≥ ˆ𝑓𝐿R (𝜎 ′) − 2

𝑁
.

Since
ˆ𝑓𝐿R (𝜎 ′) > 0 is independent from 𝑁 , there exists a 𝑁L > 0, s.t. for all 𝑁 > 𝑁L and all 𝑘 ∈ L,

𝑓 𝑁
𝑘R (𝜎

′) ≥
ˆ𝑓𝐿R (𝜎′)

2
.

Remark. This part is different in the binary setting due to the different rounding method. However,
we can still show that 𝑓 𝑁

𝐻A (𝜎
′) ≥ ˆ𝑓𝐻A (𝜎 ′) − 2

𝑁
and 𝑓 𝑁

𝐿R (𝜎
′) ≥ ˆ𝑓𝐿R (𝜎 ′) − 2

𝑁
by the same reasoning.
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Therefore, puttingH andL sides together, let 𝜙 = min(
ˆ𝑓𝐻A (𝜎′)

2
,

ˆ𝑓𝐿R (𝜎′)
2

), and 𝑁0 = max(𝑁H, 𝑁L),
we have for all 𝑁 > 𝑁0, for all 𝑘 ∈ H , 𝑓 𝑁

𝑘A (𝜎
′) ≥ 𝜙 , and all 𝑘 ∈ L, 𝑓 𝑁

𝑘R (𝜎
′) ≥ 𝜙 .

Part 3. Bound the fidelity. Now we come back to the fidelity and bound it by the Hoeffding

Inequality. For all 𝑁 > 𝑁0, for theH side we have

𝜆A
𝑘
(Σ′

𝑁 ) = Pr[𝐵(𝑁𝐶 ,
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚) − 𝑁𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚 ≥ −𝑓 𝑁
𝑘A (𝜎) · 𝑁 ]

≥ Pr[𝐵(𝑁𝐶 ,
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚) − 𝑁𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽 ′𝑚 ≥ −𝜙 · 𝑁 ]

≥1 − 2 exp(−2𝜙2𝑁 ).
Similarly, for the L side we have

𝜆R
𝑘
(Σ′

𝑁 ) = Pr[𝐵(𝑁𝐶 ,
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚)) − 𝑁𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚) ≥ −𝑓 𝑁
𝑘R (𝜎) · 𝑁 ]

≥ Pr[𝐵(𝑁𝐶 ,
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚)) − 𝑁𝐶
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽 ′𝑚) ≥ −𝜙 · 𝑁 ]

≥1 − 2 exp(−2𝜙2𝑁 ).
Therefore for all 𝑁 > 𝑁0,

𝐴(Σ′
𝑁 ) =

∑︁
𝑘∈L

𝑃𝑘 · 𝜆R𝑘 (Σ
′
𝑁 ) +

∑︁
𝑘∈H

𝑃𝑘 · 𝜆A𝑘 (Σ
′
𝑁 )

≥
∑︁
𝑘∈L

𝑃𝑘 (1 − 2 exp(−2𝜙2𝑁 )) +
∑︁
𝑘∈H

𝑃𝑘 (1 − 2 exp(−2𝜙2𝑁 ))

=1 − 2 exp(−2𝜙2𝑁 ).
□

E.3 Theorem 5 (Theorem 2 for binary setting)
Then we give the theorem of the equivalence between fidelity and strong equilibrium.

Theorem 5. Given an arbitrary sequence of instances and an arbitrary sequence of regular strategy
profiles {Σ𝑁 } , let {𝐴(Σ𝑁 )}∞𝑁=1

be the sequence of fidelity of Σ.
• If lim𝑁 ∈∞𝐴(Σ𝑁 ) = 1, for every 𝑁 > 𝑁𝜇 , Σ𝑁 is an 𝜀-strong BNE with 𝜀 = 𝑜 (1).
• If lim𝑁 ∈∞𝐴(Σ𝑁 ) = 1 does NOT hold, there exists infinitely many 𝑁 such that Σ𝑁 is not an
𝜀-strong BNE with constant 𝜀

Proof. Let 𝑒 (𝑁 ) = (1 −𝐴(Σ𝑁 )), and we can directly apply Lemma 2, and get that for every 𝑁 ,

Σ𝑁 is an 𝜀-strong BNE where 𝜀 = 𝐾𝐵((𝐾 − 1)𝐵 + 1) · (1 −𝐴(Σ𝑁 )).
Case 1: lim𝑁 ∈∞𝐴(Σ𝑁 ) = 1. For this case, Since𝐴(Σ𝑁 ) converges to 1, 𝜀, which is positive proportion
to 1 −𝐴(Σ𝑁 ), will converge to 0 as 𝑁 → ∞.

Case 2: lim𝑁 ∈∞𝐴(Σ𝑁 ) = 1 does not hold. Then there exist a constant 𝛿 > 0 and a infinite set

N ⊆ 𝑅, s.t. for all 𝑁 ∈ N , 𝐴(Σ𝑁 ) ≤ 1 − 𝛿 . From Theorem 6 we know that we can construct

a series of symmetric deviating strategies {Σ′
𝑁
}, and find constants 𝑁0 > 0, 𝜙 > 0, s.t. for all

𝑁 > 𝑁0, 𝐴(Σ′
𝑁
) ≤ 1 − 2 exp(−2𝜙2𝑁 ). Note that in both {Σ𝑁 } and {Σ′

𝑁
} every friendly (unfriendly,

respectively) agent always votes for A (R, respectively). Therefore, the deviating group contains

only contingent agents, and we only need to consider the expected utility of contingent agents.
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Given an arbitrary (𝑁 > 𝑁0) ∧ (𝑁 ∈ N), recall the difference of expected utility for an agent

between Σ𝑁 and Σ′
𝑁
:

𝑢𝑛 (Σ′
𝑁 ) − 𝑢𝑛 (Σ𝑁 ) =

∑︁
𝑘∈L

𝑃𝑘 (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A)) (𝜆R𝑘 (Σ
′
𝑁 ) − 𝜆R𝑘 (Σ𝑁 ))

+
∑︁
𝑘∈H

𝑃𝑘 (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R)) (𝜆A𝑘 (Σ
′
𝑁 ) − 𝜆A𝑘 (Σ𝑁 )).

And recall the definition of fidelity:

𝐴(Σ) =
∑︁
𝑘∈L

𝑃𝑘 · 𝜆R𝑘 (Σ) +
∑︁
𝑘∈H

𝑃𝑘 · 𝜆A𝑘 (Σ).

For Σ′
𝑁
we have 𝐴(Σ′

𝑁
) ≥ 1 − 2 exp(−2𝜙2𝑁 ). Therefore, for every 𝑘 ∈ H we have 𝜆A

𝑘
(Σ′

𝑁
) ≥

1 − 2 exp(−2𝜙2𝑁 )
𝑃𝑘

, and for every 𝑘 ∈ L, 𝜆R
𝑘
(Σ′

𝑁
) ≥ 1 − 2 exp(−2𝜙2𝑁 )

𝑃𝑘
. For Σ𝑁 , on the other hand, we

have 𝐴(Σ𝑁 ) ≤ 1 − 𝛿 for all 𝑁 ∈ N . Therefore, there exists some 𝑘∗ ∈ W, s.t.

(1) if 𝑘∗ ∈ H , 𝜆A
𝑘∗ (Σ𝑁 ) ≤ 1 − 𝛿 , or

(2) if 𝑘∗ ∈ L, 𝜆R
𝑘∗ (Σ𝑁 ) ≤ 1 − 𝛿 .

W.l.o.g we assume 𝑘∗ ∈ H . The reasoning for 𝑘∗ ∈ L will be almost the same. Then in the difference

of expected utility, we have

𝑢𝑛 (Σ′
𝑁 ) − 𝑢𝑛 (Σ𝑁 ) =𝑃𝑘∗ (𝑣𝑛 (𝑘∗,A) − 𝑣𝑛 (𝑘∗,R)) (𝜆A𝑘∗ (Σ

′
𝑁 ) − 𝜆A𝑘∗ (Σ𝑁 ))

+
∑︁
𝑘∈L

𝑃𝑘 (𝑣𝑛 (𝑘,R) − 𝑣𝑛 (𝑘,A)) (𝜆R𝑘 (Σ
′
𝑁 ) − 𝜆R𝑘 (Σ𝑁 ))

+
∑︁

𝑘∈H\{𝑛∗ }
𝑃𝑘 (𝑣𝑛 (𝑘,A) − 𝑣𝑛 (𝑘,R)) (𝜆A𝑘 (Σ

′
𝑁 ) − 𝜆A𝑘 (Σ𝑁 ))

≥𝑃𝑘∗ · 1 · (1 −
2 exp(−2𝜙2𝑁 )

𝑃𝑘∗
− (1 − 𝛿)) −

∑︁
𝑘∈W\{𝑘∗ }

𝑃𝑘 · 𝐵 · 2 exp(−2𝜙
2𝑁 )

𝑃𝑘

=𝛿𝑃𝑘∗ − ((𝐾 − 1)𝐵 + 1) · 2 exp(−2𝜙2𝑁 ).
≥𝛿 · min

𝑘∈W
(𝑃𝑘 ) − ((𝐾 − 1)𝐵 + 1) · 2 exp(−2𝜙2𝑁 ).

Note that the first term 𝛿 · min𝑘∈W (𝑃𝑘 ) is a constant, while the second term ((𝐾 − 1)𝐵 + 1) ·
2 exp(−2𝜙2𝑁 ) converge to 0 as 𝑁 → ∞. Therefore, there exists a 𝑁𝛿 ≥ 𝑁0 s.t. for all (𝑁 >

𝑁𝛿 ) ∧ (𝑁 ∈ N), 𝑢𝑛 (Σ′
𝑁
) − 𝑢𝑛 (Σ𝑁 ) > 1

2
𝛿 · min𝑘∈W (𝑃𝑘 ). Therefore, for every such 𝑁 , Σ𝑁 is NOT

an 𝜀-strong BNE for all 𝜀 ≤ 1

2
𝛿 ·min𝑘∈W (𝑃𝑘 ). □

E.4 Theorem 7 (Theorem 4 for binary setting)
Then we give the theorem based on the probability analysis of the fidelity and provide a criterion

for judging whether a profile sequence is of high fidelity.

Consider a strategy profile sequence {Σ𝑁 }. For every 𝑁 , we define random variable𝑋𝑁𝑛 as "agent

𝑛 votes for A". That is, in the instance of 𝑁 agents, 𝑋𝑁𝑛 = 1 if agent 𝑛 votes for A, 𝑋𝑁𝑛 = 0 if 𝑛 votes

for R. Then we can write 𝜆A
𝑘
(Σ𝑁 ) and 𝜆R𝑘 (Σ𝑁 ):
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𝜆A
𝑘
(Σ𝑁 ) = Pr[

𝑁∑︁
𝑛=1

𝑋𝑁𝑛 ≥ 𝜇 · 𝑁 | 𝑘]

= Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] ≥ 𝜇 · 𝑁 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] | 𝑘]

𝜆R
𝑘
(Σ𝑁 ) = Pr[

𝑁∑︁
𝑛=1

(1 − 𝑋𝑁𝑛 ) > (1 − 𝜇)𝑁 | 𝑘]

= Pr[
𝑁∑︁
𝑛=1

(1 − 𝑋𝑁𝑛 ) −
𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝑘] > (1 − 𝜇)𝑁 −
𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝑘] | 𝑘]

Let the excess expected vote share be

𝑓 𝑁
𝑘A =

1

𝑁

𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] − 𝜇.

𝑓 𝑁
𝑘R =

1

𝑁

𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝑘] − (1 − 𝜇).

Then, for every 𝑁 , let

𝑓 𝑁 = min

(
min

𝑘∈H
(𝑓 𝑁
𝑘A),min

𝑘∈L
(𝑓 𝑁
𝑘R)

)
.

Theorem 7. Given an arbitrary sequence of instances and arbitrary sequence of strategy profiles
{Σ𝑁 }∞𝑁=1

let 𝑓 𝑁 is defined for every Σ𝑁 .

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 = +∞, lim𝑁→∞𝐴(Σ𝑁 ) = 1.

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 < 0 (including −∞), i.e., there exists a constant 𝜂 < 0 and an infinite

set N , s.t. for every 𝑁 ∈ N ,
√
𝑁 · 𝑓 𝑁 ≤ 𝜂, then there exists a constant 𝑁𝜂 > 0 such that for all

(𝑁 ∈ N) ∧ (𝑁 > 𝑁𝜂), 𝐴(Σ𝑁 ) has a constant distance with 1.
• If lim inf𝑁→∞

√
𝑁 · 𝑓 𝑁 ≥ 0 (not including +∞), i.e., there exists a constant 𝜂 ≥ 0 and an infinite

set N , s.t. for every 𝑁 ∈ N ,
√
𝑁 · 𝑓 𝑁 ≤ 𝜂, and there exists a constant 𝜓 s.t. for every 𝑁 ∈ N

and every 𝑘 ∈ W, 𝑉𝑎𝑟 (∑𝑁
𝑛=1𝑋

𝑁
𝑛 | 𝑘) ≥ 𝜓 · 𝑁 , then there exists a constant 𝑁𝜂 > 0 such that

for all (𝑁 ∈ N) ∧ (𝑁 > 𝑁𝜂), 𝐴(Σ𝑁 ) has a constant distance with 1.

Proof. Case 1: lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 = +∞. In this case we use the Hoeffding Inequality to give

each 𝜆A
𝑘
(Σ𝑁 ) (or 𝜆R𝑘 (Σ𝑁 )) a lower bound. For all 𝑘 ∈ H , according to the definition of 𝑓 𝑁 :

𝜆A
𝑘
(Σ𝑁 ) = Pr[

𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] ≥ −𝑓 𝑁
𝑘A · 𝑁 | 𝑘]

≥ Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] ≥ −𝑓 𝑁 · 𝑁 | 𝑘] .
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Let 𝑁0 satisfies that for all 𝑁 > 𝑁0,
√
𝑁 · 𝑓 𝑁 > 0. Then for all 𝑁 > 𝑁0, we can directly apply the

Hoeffding Inequality:

𝜆A
𝑘
(Σ𝑁 ) ≥ Pr[

𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘] ≥ −𝑓 𝑁 · 𝑁 | 𝑘]

≥1 − 2 exp(−2(𝑓 𝑁 )2𝑁 ).

Similarly, for all 𝑘 ∈ L, we have

𝜆R
𝑘
(Σ𝑁 ) = Pr[

𝑁∑︁
𝑛=1

(1 − 𝑋𝑁𝑛 ) −
𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝑘] ≥ −𝑓 𝑁
𝑘R · 𝑁 | 𝑘]

≥ Pr[
𝑁∑︁
𝑛=1

(1 − 𝑋𝑁𝑛 ) −
𝑁∑︁
𝑛=1

𝐸 [1 − 𝑋𝑁𝑛 | 𝑘] ≥ −𝑓 𝑁 · 𝑁 | 𝑘]

≥1 − 2 exp(−2(𝑓 𝑁 )2𝑁 ).

Therefore, the fidelity of Σ𝑁 satisfies

𝐴(Σ𝑁 ) =
∑︁
𝑘∈L

𝑃𝑘 · 𝜆R𝑘 (Σ𝑁 ) +
∑︁
𝑘∈H

𝑃𝑘 · 𝜆A𝑘 (Σ𝑁 ) (6)

≥
∑︁
𝑘∈W

(1 − 2 exp(−2(𝑓 𝑁 )2𝑁 ) (7)

=1 − 2 exp(−2(𝑓 𝑁 )2𝑁 ). (8)

Case 2: lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 < 0. In this case, there exists a constant 𝜂 < 0 and an infinite set N ,

s.t. for every 𝑁 ∈ N ,

√
𝑁 · 𝑓 𝑁 ≤ 𝜂. For every 𝑁 , we define 𝑘𝑁 as follows:

𝑘𝑁 = argmin

𝑘

(
min

𝑘∈H
(𝑓 𝑁
𝑘A),min

𝑘∈L
(𝑓 𝑁
𝑘R)

)
.

That is, 𝑘𝑁 is the world state whose 𝑓 𝑁
𝑘𝑁 ,A

(if 𝑘∈H ) or 𝑓 𝑁
𝑘𝑁 ,R

(if 𝑘𝑁 ∈ L) reach the minimum 𝑓 𝑁 .

Note that for different 𝑁 , 𝑘𝑁 may be different, and some of them will be inH while others may

be in L. However, the reasoning for different 𝑘𝑁 will be the same. Consider the fidelity of Σ𝑁 For

some 𝑁 ∈ N when world state𝑊 = 𝑘𝑁 , and w.l.o.g suppose 𝑘𝑁 ∈ H :

𝜆A
𝑘𝑁

(Σ𝑁 ) = Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝑓 𝑁
𝑘𝑁A · 𝑁 | 𝑘𝑁 ]

≤ Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝜂
√
𝑁 | 𝑘𝑁 ] .

In this case we have 𝜂 < 0, thus −𝜂
√
𝑁 > 0. Therefore, we can directly apply the Hoeffding

Inequality and get

𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝜂
√
𝑁 | 𝑘𝑁 ]

≤ exp(−2𝜂2).
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For every 𝑁 ∈ N , we can prove 𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ exp(−2𝜂2) if 𝑘𝑁 ∈ H , or 𝜆R
𝑘𝑁

(Σ𝑁 ) ≤ exp(−2𝜂2) if
𝑘𝑁 ∈ L. Therefore, for every 𝑁 ∈ N , the fidelity

𝐴(Σ𝑁 ) ≤1 − 𝑃𝑘𝑁 (1 − exp(−2𝜂2))
≤1 − (1 − exp(−2𝜂2)) min

𝑘∈W
(𝑃𝑘 ).

Case 3: lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 ≥ 0. In this case, we apply the Berry-Esseen Theorem, which bounds

the difference between the sum of random variables and normal distribution. We define N and

𝑘𝑁 similarly as in Case 2. Suppose 𝑘𝑁 ∈ H . First we rewrite the form of 𝜆A
𝑘𝑁

(Σ𝑁 ). Let 𝑌𝑁𝑛 =

𝑋𝑁𝑛 − 𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ], and 𝑠𝑁 =

√︃∑𝑁
𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 ) =

√︃∑𝑁
𝑛=1𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ). We have

𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝜂
√
𝑁 | 𝑘𝑁 ]

Let 𝑁 ′
be the number of agents whose 𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ) > 0. W.l.o.g, let 𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ) > 0 for

𝑛 = 1, 2, · · · , 𝑁 ′
, and 𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ) = 0 for 𝑛 = 𝑁 ′ + 1, 𝑁 ′ + 2, · · · , 𝑁 . From the assumption∑𝑁

𝑛=1𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ) ≥ 𝜓 · 𝑁 we know that 𝑁 ′ ≥ 𝜓 · 𝑁 (because 𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ) ≤ 1). Since

𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘𝑁 ) = 0 for 𝑛 = 𝑁 ′ + 1, 𝑁 ′ + 2, · · · , 𝑁 , we have 𝑋𝑁𝑛 = 𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] condition on 𝑘𝑁 for

these 𝑛. Therefore, we have

𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ Pr[
𝑁∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝜂
√
𝑁 | 𝑘𝑁 ]

= Pr[
𝑁 ′∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁 ′∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝜂
√
𝑁 | 𝑘𝑁 ]

Then we rewrite the formula in 𝑌𝑁𝑛 and 𝑠𝑁 :

𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ Pr[
𝑁 ′∑︁
𝑛=1

𝑋𝑁𝑛 −
𝑁 ′∑︁
𝑛=1

𝐸 [𝑋𝑁𝑛 | 𝑘𝑁 ] ≥ −𝜂
√
𝑁 | 𝑘𝑁 ]

= Pr

[ ∑𝑁 ′
𝑛=1 𝑌

𝑁
𝑛

𝑠𝑁
≥ −𝜂

√
𝑁

𝑠𝑁

�����𝑘𝑁
]
.

Then we apply the Berry-Esseen Theorem and get

𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ 1 −
©­­«Φ

(
−𝜂

√
𝑁

𝑠𝑁

)
−𝐶0 ·

∑𝑁 ′
𝑛=1 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ](∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2

ª®®¬ ,
where Φ is the CDF of standard normal distribution, and 𝐶0 < 1 is a constant from the theorem.

We deal with this inequality term by term to show that 𝜆A
𝑘𝑁

(Σ𝑁 ) has a constant difference with 1.

First, we show

Φ

(
𝜂
√
𝑁

𝑠𝑁

)
≥ Φ

(
− 𝜂

√
𝑁√︁
𝜓𝑁

)
= Φ

(
− 𝜂√︁

𝜓

)
.

This is because 𝑠2
𝑁
=

∑𝑁
𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 ) ≥ 𝜓 · 𝑁 . The following table reveals how things works.
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𝑠𝑁 ≥
√︁
𝜓 · 𝑁

𝜂
√
𝑁

𝑠𝑁
≤ 𝜂

√
𝑁√
𝜓𝑁

−𝜂
√
𝑁

𝑠𝑁
≥ − 𝜂

√
𝑁√
𝜓𝑁

Φ
(
−𝜂

√
𝑁

𝑠𝑁

)
≥ Φ

(
− 𝜂

√
𝑁√
𝜓𝑁

)
Table 12. Comparison on the left and the right side.

Secondly, we start to deal with ∑𝑁 ′
𝑛=1 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ](∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2 .

Firstly, since −1 ≤ 𝑌𝑛 ≤ 1, we have 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ] ≤ 1. Therefore,∑𝑁 ′
𝑛=1 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ](∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2 ≤ 𝑁 ′(∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2 .

Then, notice that since 𝜎2𝑛 = 0 for 𝑛 = 𝑁 ′ + 1, 𝑁 ′ + 2, · · · , 𝑁 , we have

∑𝑁 ′
𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 ) =∑𝑁

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 ) ≥ 𝜓 · 𝑁 . Therefore,∑𝑁 ′
𝑛=1 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ](∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2 ≤ 𝑁 ′(∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2 ≤ 𝑁 ′

(𝜓 · 𝑁 )3/2
.

Finally, since 𝑁 ′ ≤ 𝑁 , and 𝑁𝐶 ≥ 𝛼𝐶𝑁 − 1,∑𝑁 ′
𝑛=1 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ](∑𝑁 ′
𝐶

𝑛=1
𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )

)
3/2 ≤ 𝑁 ′

(𝜓 · 𝑁 )3/2
≤ 1√︁

𝜓 3 · 𝑁

Now we are ready to wrap things up:

𝜆A
𝑘𝑁

(Σ𝑁 ) ≤1 −
©­­«Φ

(
−𝜂

√
𝑁

𝑠𝑁

)
−𝐶0 ·

∑𝑁 ′
𝑛=1 𝐸 [|𝑌𝑁𝑛 |3 | 𝑘𝑁 ](∑𝑁 ′

𝑛=1𝑉𝑎𝑟 (𝑌𝑁𝑛 | 𝑘𝑁 )
)
3/2

ª®®¬
≤1 −

(
Φ

(
− 𝜂√︁

𝜓

)
−𝐶0 ·

1√︁
𝜓 3 · 𝑁

)
≤1 −

(
Φ

(
− 𝜂√︁

𝜓

)
− 1√︁

𝜓 3 · 𝑁

)

The last inequality comes from that 𝐶0 ≤ 0.5600 [37].
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The same reasoning also works for other 𝑁 ∈ N . Therefore, let 𝜙 = Φ

(
− 𝜂√

𝜓

)
, then there must

exists a 𝑁𝜙 , s.t. for all (𝑁 > 𝑁𝜙 ) ∧ (𝑁 ∈ N), 𝜆A
𝑘𝑁

(Σ𝑁 ) ≤ 1− 1

2
𝜙 . Therefore,𝐴(Σ𝑁 ) ≤ 1− 1

2
𝑃𝑘𝑁 ·𝜙 ≤

1 − 1

2
min𝑘∈W (𝑃𝑘 ) · 𝜙 . □

Similarly to the binary setting, if we apply Theorem 5 to each case of Theorem 7, we get a

criterion for judging whether a profile sequence is an equilibrium.

Corollary 5. Given an arbitrary sequence of instances and arbitrary sequence of regular strategy
profiles {Σ𝑁 }∞𝑁=1

let 𝑓 𝑁 is defined for every Σ𝑁 .

• If lim inf𝑁→∞
√
𝑁 · 𝑓 𝑁 = +∞, then for all sufficiently large 𝑁 , Σ𝑁 is an 𝜀-strong BNE with

𝜀 = 𝑜 (1).
• If lim inf𝑁→∞

√
𝑁 · 𝑓 𝑁 < 0 (including −∞), there exists infinitely many 𝑁 such that Σ𝑁 is not

an 𝜀-strong BNE with some constant 𝜀.
• If lim inf𝑁→∞

√
𝑁 · 𝑓 𝑁 ≥ 0 (not including +∞), and there exists a constant 𝜓 s.t. for every

𝑁 ∈ N and every 𝑘 ∈ W,𝑉𝑎𝑟 (∑𝑁
𝑛=1𝑋

𝑁
𝑛 | 𝑘) ≥ 𝜓 · 𝑁 , there exists infinitely many 𝑁 such that

Σ𝑁 is not an 𝜀-strong BNE with some constant 𝜀.

E.5 Corollary 6 (Corollary 2 for binary setting)
Finally, we can directly get a dichotomy for symmetric strategy profiles from Theorem 7, by showing

that every case of symmetric profiles falls into some case.

Given arbitrary 𝑁 and a symmetric strategy profile induced by 𝜎 = (𝛽1, 𝛽2 . · · · , 𝛽𝑀 ) the excess
expected vote share is

𝑓 𝑁
𝑘A =

1

𝑁

𝑁∑︁
𝑛=1

(
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚) − 𝜇 =
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 − 𝜇,

𝑓 𝑁
𝑘R =

1

𝑁

𝑁∑︁
𝑛=1

(
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚)) − (1 − 𝜇) =
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚) − (1 − 𝜇),

𝑓 𝑁 =min

(
min

𝑘∈H
𝑓 𝑁
𝑘A,min

𝑘∈L
𝑓 𝑁
𝑘R

)
.

An interesting observation is that the excess expected vote share of symmetric profiles is inde-

pendent of 𝑁 . Therefore, for simplicity, we use 𝑓𝑘A, 𝑓𝑘R, and 𝑓 to denote the excess expected vote

share for symmetric profiles.

Corollary 6. For an arbitrary strategy𝜎 = (𝛽1, 𝛽2 . · · · , 𝛽𝑀 ) and an arbitrary sequence of instances,
let {Σ𝑁 } be the sequence of strategy profile Σ𝑁 induced by 𝜎 , and 𝑓 be the excess expected vote share
of the strategy profiles.

• If 𝑓 > 0, then there exists a constant 𝑁0 > 0, s.t. for all 𝑁 > 𝑁0, 𝐴(Σ𝑁 ) ≥ 1 − 2 exp(− 1

2
𝑓 2𝑁 ).

• If 𝑓 ≤ 0, then there exist constants 𝑁0 > 0 and 𝜂 ′ > 0, s.t. for every 𝑁 > 𝑁0. 𝐴(Σ𝑁 ) ≤ 1 − 𝜂 ′.

Proof. For 𝑓 > 0, we have lim inf 𝑁 → ∞
√
𝑁 · 𝑓 = +∞. Therefore, we can apply Case 1 of

Theorem 5 (Inequality 8), and have

𝐴(Σ𝑁 ) ≥ 1 − 2 exp (−2𝑓 2𝑁 ).
For 𝑓 < 0, we have lim inf 𝑁 → ∞

√
𝑁 · 𝑓 = −∞. Therefore, we can apply Case 2 of Theorem 5

with any constant 𝜂 < 0. Then there exists a 𝑁𝜂 such that for all 𝑁 > 𝑁𝜂 , we have 𝐴(Σ𝑁 ) ≤
1 − (1 − exp(−2𝜂2))min𝑘∈W (𝑃𝑘 ). Therefore, let 𝜂 ′ = (1 − exp(−2𝜂2))min𝑘∈W (𝑃𝑘 ), we have

𝐴(Σ𝑁 ) ≤ 1 − 𝜂 ′.
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For 𝑓 = 0, we have lim inf 𝑁 → ∞
√
𝑁 · 𝑓 = 0. Therefore, we need to consider the variance.∑𝑁

𝑁=1𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘). For a single contingent agent 𝑛, given𝑊 = 𝑘 , we have

Pr[𝑋𝑁𝑛 = 0 | 𝑘] =
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚)

Pr[𝑋𝑁𝑛 = 1 | 𝑘] =
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚 .

Therefore, we have

𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘) =
(
𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · (1 − 𝛽𝑚)
) (

𝑀∑︁
𝑚=1

𝑃𝑚𝑘 · 𝛽𝑚

)
is a constant. Let 𝜓 = min𝑘∈W

(∑𝑀
𝑚=1 𝑃𝑚𝑘 · (1 − 𝛽𝑚)

) (∑𝑀
𝑚=1 𝑃𝑚𝑘 · 𝛽𝑚

)
, and we get for every 𝑘 ∈

W,

∑𝑁
𝑁=1𝑉𝑎𝑟 (𝑋𝑁𝑛 | 𝑘) ≥ 𝜓 · 𝑁 .

We show by contradiction that𝜓 = 0 will not happen. Suppose it is not the case and𝜓 = 0. Let

𝑘𝜓 = argmin𝑘∈W
(∑𝑀

𝑚=1 𝑃𝑚𝑘 · (1 − 𝛽𝑚)
) (∑𝑀

𝑚=1 𝑃𝑚𝑘 · 𝛽𝑚
)
. Then we have(

𝑀∑︁
𝑚=1

𝑃𝑚𝑘𝜓 · (1 − 𝛽𝑚)
) (

𝑀∑︁
𝑚=1

𝑃𝑚𝑘𝜓 · 𝛽𝑚

)
= 0.

W.l.o.g, assume

(∑𝑀
𝑚=1 𝑃𝑚𝑘𝜓 · 𝛽𝑚

)
= 0. Then we consider 𝑓𝑘𝜓A, and have

𝑓𝑘𝜓A = 𝛼𝐶

𝑀∑︁
𝑚=1

𝑃𝑚𝑘𝜓 · 𝛽𝑚 − 𝜇 = −𝜇 < 0,

which contradict with 𝑓 = 0. Therefore,𝜓 = 0 will not happen.

Since we have guaranteed that 𝜓 > 0, we can apply Theorem 7. Let 𝜂 > 0 be any positive

constant, We can apply Case 3 of Theorem 7 and get that there exists a 𝑁𝜂 , s.t. for all 𝑁 > 𝑁𝜂 ,

𝐴(Σ𝑁 ) ≤ 1 − 1

2
min𝑘∈W (𝑃𝑘 )2 · Φ

(
− 𝜂√

𝜓

)
. Therefore, let 𝜂 ′ = 1 − 1

2
min𝑘∈W (𝑃𝑘 )2 · Φ

(
− 𝜂√

𝜓

)
, we

have 𝐴(Σ𝑁 ) ≤ 𝜂 ′ for all 𝑁 > 𝑁𝜂 . □


	Abstract
	1 Introduction
	1.1 Strategic Behaviors
	1.2 Our contribution
	1.3 Related Work

	2 Models and Preliminaries
	3 Equivalence between High Fidelity and Strong Equilibrium
	3.1  Proof Sketch of Theorem 2
	3.2 Proof Sketch of Theorem 3

	4 Probability Analysis on Fidelity
	4.1 Case Study: Informative Voting and Sincere Voting

	5 Non-binary World States and Non-binary Signals
	6 Conclusion and Future Work
	References
	A Comparison with Feddersen and Pesendorfer's Work
	B Frequently used notations in the binary setting
	C Proof of Proposition 1
	D Non-binary setting
	D.1 Additional Setting
	D.2 Berry-Esseen Theorem

	E Non-binary results
	E.1 Lemma 2 (Lemma 1 for binary setting)
	E.2 Theorem 6 (Thorem 3 for binary setting)
	E.3 Theorem 5 (Theorem 2 for binary setting)
	E.4 Theorem 7 (Theorem 4 for binary setting)
	E.5 Corollary 6 (Corollary 2 for binary setting)


