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ABSTRACT

Peer prediction aims to incentivize truthful reports from agents
whose reports cannot be assessed with any objective ground truth-
ful information. In the multi-task setting where each agent is asked
multiple questions, a sequence of mechanisms have been proposed
which are truthful — truth-telling is guaranteed to be an equilibrium,
or even better, informed truthful — truth-telling is guaranteed to be
one of the best-paid equilibria. However, these guarantees assume
agents’ strategies are restricted to be task-independent: an agent’s
report on a task is not affected by her information about other tasks.

We provide the first discussion on how to design (informed)
truthful mechanisms for task-dependent strategies, which allows
the agents to report based on all her information on the assigned
tasks. We call such stronger mechanisms (informed) omni-truthful.
In particular, we propose the joint-disjoint task framework, a new
paradigm which builds upon the previous penalty-bonus task frame-
work. First, we show a natural reduction from mechanisms in the
penalty-bonus task framework to mechanisms in the joint-disjoint
task framework that maps every truthful mechanism to an omni-
truthful mechanism. Such a reduction is non-trivial as we show
that current penalty-bonus task mechanisms are not, in general,
omni-truthful. Second, for a stronger truthful guarantee, we design
the matching agreement (MA) mechanism which is informed omni-
truthful. Finally, for the MA mechanism in the detail-free setting
where no prior knowledge is assumed, we show how many tasks
are required to (approximately) retain the truthful guarantees.
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1 INTRODUCTION

In multi-task peer prediction, the designer has no ground truth
information to assess the quality of agents’ reports; nonetheless, the
goal is to incentivize agents to exert effort working on information
tasks and to report their information honestly. Peer prediction
mechanisms meet this challenge by assigning each agent multiple
(potentially overlapping) questions, soliciting her reports!, and
rewarding her based on how well her reports correlate with other
agents’ reports. Thus, peer prediction serves as a powerful tool for
obtaining high-quality information in a multitude of applications
ranging from annotating the sentiments of a Twitter dataset to peer
grading for a large online course.?

The main goal of peer prediction mechanisms is to encourage
truthful reporting by punishing agents with reduced rewards when
they lie about their true information (called the “signal”). In this
way, strategic agents who aim to game the mechanism for the
maximum reward prefer to truthfully report. Previous works on
multi-task peer prediction have provided us various mechanisms
that can achieve different levels of incentive guarantees [2, 7, 14].
For example, a truthful mechanism guarantees that truth-telling is
an equilibrium, meaning that if all other agents are reporting truth-
fully, no unilateral deviation can increase the expected payment.
Furthermore, we also want truth-telling to be a desired equilibrium.
In particular, an informed truthful mechanism additionally guaran-
tees that no strategy profile provides higher expected payment than
the truth-telling equilibrium, and the truth-telling equilibrium re-
wards each agent strictly better than any uninformed strategy>[14].
More recent works are mainly guided by the question of how to
design these truthful mechanisms with fewer tasks [5, 6, 11]. This
is especially relevant in the detail-free setting where the designer
has no prior knowledge of agents’ information structure. Here
mechanisms are usually implemented by learning the information
structure of the reports, and then using the non-detail free mech-
anism that one would use if the information structure of signals
were the learned information structure of the reports. Thus the
number of tasks required is typically related to how many tasks are
required to learn certain properties of the information structure of
the reports.

However, these truthful guarantees are currently developed
based on a rather restrictive assumption: agents’ strategies are
task-independent. A task-independent strategy requires that the
agent’s report on each task depends only on her signal on that

'We are interested in the minimal setting where the designer only solicits agents’
reports of the questions. For example, there are mechanisms that are not minimal
which additionally solicit each agent’s prediction about other agents [4, 8-10, 12].
2One may argue that it is possible to obtain some ground truth information to assess
agents’ reports in these cases. However, obtaining sufficient ground truth data can
be costly (e.g. hiring TAs to grade the assignments), and in certain instances, ground
truth may not even exist (e.g. when tasks involve subjective questions). In such cases,
it is crucial to have an alternative option.

3A strategy is uninformed if the agent’s reports do not depend on her signals. For ex-
ample, randomly reporting and always reporting “yes” are two uninformed strategies.
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specific task. For example, if the answer to the questions is either
“yes” or “no”, the space of task-independent strategies can be cap-
tured by a 2 X 2 matrix where the entry i, j is the probability that
the agent reports j when the signal on that task is i. In contrast, a
more general concept of strategy, called the task-dependent strategy,
allows the agent to base her report of a specific task on her signals
of all tasks. For example, the agent may report “yes” less often after
observing a lot of “yes” signals on the tasks she has seen. To distin-
guish, we call the stronger truthful guarantee where a mechanism
is (informed) truthful under task-dependent strategies (informed)
omni-truthfulness. Yet, no multi-task peer prediction mechanism is
known to be omni-truthful. This raises the following question:

Can we design omni-truthful, or even better, informed omni-
truthful multi-task peer prediction mechanisms?

As the goal of peer prediction is to identify and discourage EV-
ERY untruthful strategy, we view the design of omni-truthful mech-
anisms as one of the fundamental problems of multi-task peer
prediction. From the designer’s point of view, now that we assume
the agents are trying to game our mechanisms, we really should
not assume that they are strategic in a restricted way. Another
important motivation is that task-dependent strategies are natural
in the multi-task crowdsourcing settings. For example, individuals
taking multiple-choice tests tend to avoid providing consecutive
answers of the same letter (e.g. answering 5 “A”s in a row), even
if they believe that letter is the correct choice. Furthermore, in
peer assessment, it is natural to believe that the grader will grade
each assignment after comparing it with other assignments. In both
cases, an agent’s report on a task depends not only on the signal of
that task but also the signals of all the other tasks. Therefore, any
mechanism that fails to deal with task-dependent strategies may
experience incentive issues in real-life.

Before we present our results, we first introduce the bonus-
penalty (BP) task framework, which is widely used in previous
literature [2, 11, 14]. At a high-level, the BP-framework randomly
selects a commonly answered bonus task b and two distinct penalty
tasks p and g. An agent Alice (the agent who is being scored) is
rewarded if her report on the bonus task b is correlated with the
report of Bob’s (a randomly chosen peer) on the same task; and
Alice is punished if her report on the penalty task p is correlated
with Bob’s report on the other penalty task g.

1.1 Our Contributions

We show that under the BP-framework, a truthful mechanism need
not be omni-truthful. The counter-example we use is that under the
well-known correlated agreement (CA) mechanism [14], agents can
benefit by playing task-dependent strategies even when everyone
else is truthfully reporting (section 3.3).

Aware that existing mechanisms may not possess the desired
properties of omni-truthfulness, we propose a framework referred
to as the joint-disjoint task framework, which simplifies the task-
selection rule of the BP-framework (see fig. 1). In particular,

- the JD-framework first independently permutes the order
of the tasks assigned to each agent so as to prevent any
correlation on the order of tasks;
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- instead of sampling three tasks in total, the framework only
samples two tasks: a joint task j answered by both agents,
and a disjoint task d answered only by Bob;

— Alice’s reward is determined by a scoring function with the
input of three reports: Alice’s report on j, and Bob’s reports
on the j and d.

Thanks to the simplified task-selection rule, the JD-framework
is useful in dealing with task-dependent strategies which we show
via the following results:

Reduction. We show that one can plug the scoring function of
any truthful mechanism under the BP-framework into the
JD-framework and obtain an omni-truthful mechanism. —
section 3

The MA mechanism. We propose a informed omni-truthful mech-
anism called the matching agreement (MA) mechanism. An
initial version of this mechanism requires some prior knowl-
edge. — section 4

Detail-free. When agents’ information structure is unknown, we
show that O(|2|* log %/62) tasks suffice to make the MA
mechanism approximately informed omni-truthful, where e
and ¢ are error terms and |X| is the size of the signal space
(e.g. |Z| = 2 for binary questions). — section 5

The BP-framework
mice | | [ [mal e fmef [ [ [ ] ]
oo [T T Tl [ Tl [ 11

Payment: Ty(7) 4, 7;) — T(r 4 7o)

The JD-framework
[ T T ]

Boo[ | [ Jof - [ [ [ ][ [

Payment: T(ry j, 1y, 1, 2)

mice [ | | ]

Figure 1: BP-framework v.s. JD-framework, where r; . de-
notes agent i’s report on task k. The main difference is that
while paying Alice, the JD-framework uses agents’ reports
from two tasks while the BP-framework uses three tasks; and
the JD-framework guarantees that the disjoint task (blue) is
sampled from the tasks answered only by Bob (white boxes).

Discussion: Our paper provides the first discussion on designing
multi-task peer prediction mechanisms beyond the task-independent
strategy assumption. The above result shows that it is relatively
easy to generalize truthfulness to omni-truthfulness, where we
provide the plug-in method. Examples of mechanisms that can be
easily plugged into our JD-framework include the D&G mechanism
[2], the CA mechanism [14] and the ®-pairing mechanisms [11].4

However, the plug-in method does not trivially generalize stronger
truthful guarantees like the informed truthfulness. Therefore, we
additional propose the MA mechanism. Let rq, 2 and r3 be Alice’s
report on the joint task and Bob’s report on the joint and disjoint

“We note that there are mainly two types of mechanisms that do not fit into the
BP-framework: the f-mutual information mechanism [7] and the determinant mutual
information mechanism [5]. As we will discuss in section 1.2, the former is improved
by the ®-pairing mechanism which lies in the BP-framework.
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task respectively. At a high-level, the MA mechanism works by
rewarding Alice if i and ry are more likely from the same task
compared with matching r1 and r3, and otherwise punishing Alice.
Furthermore, perhaps surprisingly, there is almost no cost of (in-
formed) omni-truthfulness. In the detail-free setting, on one hand,
we show that the plug-in mechanism can additionally achieve omni-
truthfulness using the same number of tasks as the original mecha-
nism required. For example, the plug-in CA mechanism is not only
informed truthful but also omni-truthful using O(|Z|3 log % /€2)
tasks. On the other hand, we show that for the same error param-
eters, the MA mechanism requires the same order of tasks as the
CA mechanism, but it is (approximately) informed omni-truthful.

1.2 Related Works

We locate our paper in the field of multi-task peer prediction. The
theory of multi-task peer prediction aims to design mechanisms
that have strong incentive guarantees in the minimal (only solicit-
ing agents’ signals) and detail-free (no prior knowledge of agents’
information structure) setting. Note that all truthful guarantees
in this section are, by default, developed under task-independent
strategies.

Dasgupta and Ghosh [2] propose the first multi-task peer predic-
tion mechanism (the D&G mechanism), which is strongly truthful®
when the signal space is binary and every pair of agents’ signals
are assumed to be positively correlated.

There are two direct generalizations of the D&G mechanism.
First, the correlated agreement (CA) mechanism [14] removes the
positive correlation assumption and is informed truthful the finite
signal space. Our matching agreement (MA) mechanism can be
seen as a generalization of the CA mechanism for task-dependent
strategies. Second, Kong and Schoenebeck [7] propose the f-mutual
information framework which also generalizes the D&G mecha-
nism to handle finite signal space (independent of [14]). They show
that paying agents based on the f-mutual information (a generaliza-
tion of Shannon mutual information) can achieve mechanisms that
are strongly truthful with infinite samples. Interestingly, both the
D&G mechanism and the CA mechanism are shown to be special
cases of the f-mutual information mechanism with a special f (the
total variation distance).

Kong [5] then proposes a determinant based mutual information
mechanism, called the DMI mechanism that is informed truthful
and dominantly truthful® for > 2 agents and > 2|Z| tasks. As DMI
is shown to be an unbiased estimator of the mutual information,
the main advantage of the DMI mechanism is that it can achieve
strict truthful guarantees with a finite number of tasks. In a more
recent work, Kong [6] further generalizes this idea and proposes
a family of information measures that share the same properties
as the determinant mutual information, called the volume mutual
information (VMI). This finding triggers a nre family of dominantly
truthful mechanisms called the VMI mechanisms.

Inspired by Kong and Schoenebeck [7], Schoenebeck and Yu
[11] propose the ®-pairing mechanism which uses a new learning-
based method to estimate the mutual information between agents’

5Strongly truthfulness is a stronger incentive guarantee than informed truthfulness.
A dominantly truthful mechanism guarantees that truth-telling is a dominant strategy
for each agent.
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reports. The ®-pairing mechanism is shown to be approximately
strongly truthful given O(log % /€?) tasks. The main advantages of
the ®-pairing mechanism is that it can handle infinite signal space,
e.g. signals with continuous domain.

There exist other works that generalize the classic peer pre-
diction model to various setting. For example, Agarwal et al. [1]
extend Shnayder et al. [14] to incentivise heterogeneous agents,
where each agent has one or more types. Schoenebeck et al. [13]
consider using robust learning to design robust peer prediction
mechanisms to handle adversarial attack. Zhang and Schoenebeck
[15] consider how to incentivise effort from crowdsourcing workers
using the scores output by a peer prediction mechanism to run a
tournament.

2 MODEL

Consider the general setting of multi-task peer prediction where
there are two agents.” Suppose each agent is assigned with n tasks
such that 1) the set of overlapping tasks, N¢, has a size of |N;| =
ne € {1,...,n— 1}; and 2) the overlapping tasks are independent
conditioned on n.. Let N1 and Nj be the sets of tasks answered by
each of the agents, respectively. Throughout the paper, we consider
agent 1 as the agent who is being paid (Alice) and agent 2 as the
reference agent (Bob). Suppose tasks have the same finite signal
space, i.e. £ = {0,1,..., m}. We assume that the overlapping tasks
are chosen at random, i.e. there is no bias against any particular
task. Let S; ; denote the signal of agent i on task j. We assume tasks
are i.i.d. with the joint distribution Js, s, = Pr(Sy,; = s1,S2,j = s2)
for every j € Ny U N and s1,sp € >3 Let Ms(i) = Pr(Sij = s)
be the marginal distributions of agent i’s signal for any j € Nj,
ie. Ms(l) = Y, Js.s,- We further use S; to denote the vector of
agent i’s signals on all tasks.

Agents report strategically, i.e. they apply a (random) mapping
on their signals to generate their reports. Agent i’s report on task j
is denoted as Rf ; where 0 specifies i’s strategy. We use Rl.e to denote
the vector of agent i’s reports on all assigned tasks. Again, we use
the capital letter R to denote the random variable of a report and
the lower case r to denote its realization. We use [n] = {0,1...,n}
to denote the set of natural numbers less or equal than n.

We are interested in three types of strategies. First, a general
strategy in the multi-task setting maps a vector of signals to a
distribution over the vector of reports. In other words, the agent
first observes the signals of all assigned tasks, and then decides her
reports of all tasks.

Definition 2.1. A random mapping C : " — Ayn is called a
strategy where the agent reports Rl.c = C(S;). We denote the space
of all strategies as ©¢.

Second, the task-exchangeable strategy additionally assumes the
agents’ reports are independent of the order of the tasks. That is,
an agent’s report on one task depends only on her signal on that
task and the number of each signal on other tasks. Formally,

7If there are more than two agents, while rewarding agent 1, we can randomly select a
peer as agent 2. So, without loss of generality, we consider there are only two agents.
8We emphasize that an important assumption of the multi-task peer prediction set-
ting is that tasks are i.i.d. and agents cannot distinguish tasks conditioned on their
signals. This assumption implies that the agent’s signal exhaustively captures all her
information on that task and excludes the existence of “cheap signals”.
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Definition 2.2. A strategy E : 3 X [n] — Ay is task-exchangeable
if the agent reports Rfj = E(Si,j, y(Si—j)) where y(x) = (cs)oes
counts the number of occurrence of each signal ¢ in vector x with
Yo Co = |x|. We denote the space of such strategies as Of.

Last, a task-independent strategy requires the report on a task
to depend only on the agent’s signal on that particular task.

Definition 2.3. A strategy I : ¥ — Ay is task-independent if the
agent reports Rl{ iz I(S; j) with the same strategy for any task
J € Nj. We denote the space of such strategies as . Specially, we
use 7 to denote the truth-telling strategy where 7(S; ;) = S; j for
any j.

By definition, strategies take task-exchangeable strategies as
special cases which take task-independent strategies as special
cases. Or equivalently, ®; € O C O¢. For the first two types of
strategies, an agent’s strategy on a particular task depends on her
signals for other tasks. Inclusively, we call any strategy 60 € ©¢
a task-dependent strategy. Note that task-independent strategies
form a subspace of task-dependent strategies. We further note
that the space of task-dependent strategies is considerably richer
than the space of task-independent strategies. The former grows
exponentially with the number of tasks an agent is assigned while
the latter depends only on the size of the signal space.

2.1 Mechanism Design Goals

We aim to design mechanisms that map agents’ reports to their
payments to incentivize truth-telling. Let U;(6;, 6;) denote the pay-
ment of agent i where her strategy is 0; and her peer’s strategy is
0j. We now introduce the concept of truthfulness in our setting.

Definition 2.4. A mechanism is truthful if U;(z,7) > U;(6;, 1) for
any i and 0; € ©y.
A mechanism is omni-truthful if the above is true for all 6; € ©¢.

Omni-truthfulness guarantees truth-telling to be an equilibrium
under task-dependent strategies. Stronger equilibrium concepts
have been developed to guarantee truth-telling to be not only an
equilibrium, but also a desired equilibrium. In particular, we intro-
duce informed truthfulness [14].

Definition 2.5. A strategy u is uninformative if the distribution of
agents’ reports £(S;) does not depend on the signal vector S;.

Definition 2.6. A mechanism is informed truthful if U;(z,7) >
Ui(0;, 0;) for any i and 6;, 0; € Or. Furthermore, the inequality is
strict if at least one of 6; and 6; is uninformative.

A mechanism is informed omni-truthful if the above is true for
all 0, 9j € Oc.

Informed truthfulness is desired as it guarantees that any “cheap”
strategy including randomly reporting and always reporting the
same signal is strictly less desired.

We further introduce an approximate version of the truthful
guarantees, which are used in section 5.

Definition 2.7. A mechanism is (¢, §)-omni-truthful if with prob-
ability at least 1 — §, any unilateral deviation from truth-telling
cannot bring an extra expected reward larger than e.

A mechanism is (¢, §)-informed omni-truthful if with probability
at least 1 — , no task-dependent strategy profile rewards any agent
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€ more than truth-telling, and any uninformative strategy rewards
the agent strictly less than truth-telling in expectation.

Analogously, a (¢, §)-(informed) truthful is defined by restricting
the strategy space to task-independent strategies.

2.2 The Bonus-Penalty Task Framework and
the CA Mechanism

Before we talk about our proposed framework, we first introduce
the bonus-penalty (BP) task framework that several well-known
peer prediction mechanisms are based on [2, 11, 14].

The BP-framework. Given the reports from two agents r1 and r
respectively, the BP-framework pays agent 1 as follows:

(1) Pick one task randomly at uniform from N, as the bonus
task b, and pick two distinct tasks randomly at uniform from
Ni and N respectively as the penalty tasks g and p;
(2) Pay agent 1
Uy = Tb(rl,b’ rzjb) - Tp(rl’q, rggp). (1)
At a high level, the BP-framework rewards agents if their reports
on the bonus task are (positively) correlated °, and punish agents
if their reports on two distinct penalty tasks are (positively) corre-
lated. The scoring functions Tj, and T}, are designed based on the
information structure of agents’ signals. In this way, truthfulness
can be guaranteed because any untruthful task-independent strat-
egy will weaken the correlation on the bonus task and increase the
correlation on the penalty tasks. To better illustrate the idea, we
introduce the CA mechanism as an example.

Definition 2.8. (Definition 2.1 [14]) The Delta Matrix A is a |%|X|X|
matrix which is the difference between the joint distribution and
the product of marginal distributions:

Aij=Pr(S1 =i, = j) = Pr(S = i) Pr(Sz = j) = Ji —M}”M}Z).

Denote Tp (i, j) = Sign*(A; ) for i, j € ¥ as the scoring function,
where Tp(i, j) = 1if A;j > 0 and Ta(i, j)) = 0 otherwise. The
CA mechanism is a mechanism that applies the scoring function
of T, = Tp = Tp under the BP-framework, which is shown to be
informed truthful.1°

3 THE JOINT-DISJOINT TASK FRAMEWORK

In this section, we provide a framework for designing mechanisms
that guarantee truthfulness under task-dependent strategies, called
the joint-disjoint (JD) task framework. We first show that under
the JD-framework, strategies in general are equivalent to the task-
exchangeable strategies thanks to the random permutation step.
This property greatly shrinks the strategy space that agents can use
to game the mechanism. Second, we show how to plug the scoring
function of a truthful mechanism under the BP-framework into our
JD-framework and get an omni-truthful mechanism. Finally, we
show that the simplifications we made in the JD-framework are
necessary to guarantee truthfulness. As a counterexample, the CA
mechanism is not omni-truthful.

9Although, some mechanisms, e.g. the CA mechanism, can deal with the case of
negatively correlated signals, assuming that agents’ signals on the same task are
positively correlated provides good intuition.

10We further note that there are mechanisms (e.g. the ®-pairing mechanism [11])
which apply asymmetric scoring functions, i.e. Tp, # Tg.
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In both this section and the next section (section 4), we consider
the setting that is not detail-free, i.e. the information structure in
assumed to be known. We will relax this assumption in section 5.

3.1 The Joint-Disjoint Task Framework

As shown in Mechanism 1, the JD-framework applies a simplified
task-selection rule and allows a generalized form for the scoring
function. We highlight the main differences as follow:

— The JD-framework first applies independent permutations of
the tasks assigned to each agent. This prevents agents from
correlating in undesired ways. For example, agents cannot
collude by reporting “yes” on odd tasks and “no” on even
tasks to create stronger correlations than truth-telling.

— While scoring an agent, the JD-framework only draws one
task from the tasks answered by that agent as the joint task,
and draws the disjoint task from the tasks only answered by
her peer. Thus, the agent’s signal on any task other than the
joint task is irrelevant to her payment.

— The JD-framework generalizes the scoring function of the
BP-framework which takes three reports as input.

MECHANISM 1: The joint-disjoint task framework.

Input: Two sets of tasks N1 and N with intersection N¢.

1 Randomly and independently permute the tasks in Nj and
N; and solicit the answers from two agents. The solicited
reports from two agents in the original order are denoted
as r1 and ry respectively.

2 Pick one task uniformly and randomly from the common
tasks N¢ as the joint task j, and pick another task
randomly at uniform from the tasks only answered by
agent 2, Ny \ N as the disjoint task d.

3 The payment for agent 1 is

U = T(rl,j, r2,js rz,d).

Before we introduce our mechanisms, we first show an important
property: in terms of expected payments, any strategy is equivalent
to a task-exchangeable strategy under the JD-framework.

LEMMA 3.1. In Mechanism 1, for any C1,Cy € ©c, there exist
E1, E; € O such that E[U; (Eq, E2)] = E[U(C1, C2)].

The proof is shown in appendix A. Intuitively, the lemma holds
because for any strategy C in the space ©¢ \ O, we can find a
task-exchangeable strategy E such that C differs from E only in the
cases where different permutations of the same signal vector are
treated differently under C but identically under E. However, by
random permutation, C and E should be equivalent after taking the
expectation over the randomness of the permutation.

Lemma 3.1 implies that any mechanism that is truthful under
task-exchangeable strategies is also truthful under any strategies
in general. Thus, in the rest of the paper, we can focus on task-
exchangeable strategies.

3.2 The Plug-in Omni-truthful Mechanisms

Now, we reveal the power of the JD-framework. We show that
simply plugging the scoring function of any truthful mechanism
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into the JD-framework gives us an omni-truthful mechanism. To
begin with, we introduce the following reduction.

Definition 3.2 (JD-reduction). Givena mechanism MB? under the
BP-framework which rewards agent 1 Ty (ry,p. 72) = Tp(r1,¢-T2,p)s
we map it to a mechanism M/ under the JD-framework whose
scoring function T satisfies that T(ry j, 72, j, 72 q4) = Tp(r1,j,72,5) —
Tp(r1,j,1a,q)- We call MID the plug-in mechanism of MBP,

JD-reduction creates a mapping from a mechanism under the
classic BP-framework to a mechanism under the JD-framework. At
the heart of the mapping is that instead of drawing another penalty
task from agent 1, the JD-framework will reuse agent 1’s report on
the joint task as her report on one of the penalty tasks. We now
show that the plug-in mechanism not only preserves all the truth-
ful properties of the original mechanism (under task-independent
strategies), it additionally guarantees omni-truthfulness.

Intuitively, the plug-in mechanism is omni-truthful because
given a joint task, agent 1’s signals on any tasks other than the
joint task have no influence of her payment. Furthermore, agents
do not know which task will be chosen as the joint task. Therefore,
for any task, conditioning the report on signals from other tasks is
not helpful in improving the agent’s expected payment.

THEOREM 3.3. The plug-in mechanism of an informed truthful
mechanism under the BP-framework is still informed truthful. Fur-
thermore, it is omni-truthful.

Proor. Let UIBP(Il,Iz) and U{D(Il,lz) be agent 1’s payment
under the original mechanism MB? and the plug-in mechanism
MIP respectively, when agents’ task-independent strategies are I;
and Ip. We first show that E[U/” (11, I)] = E[UFP (I, I)].

EU IR = Y JueoMY Y Pr(s) =)

51,5253 r1,r2,r3
Pr(I(sz) = r2) Pr(I(s3) = r3) - T(r1,72,73).

Recall that J and M(?) denote the joint and marginal distributions
of agents’ signals respectively. Note that T(r1, ra, r3) = Tp(r1,1r2) —
T (r1,73). We can break the above equation into two summations
in terms of the summation over T, and T}, respectively. Because
Ty (r1,72) is independent of r3 and T, (r1, r3) is independent of r»,
we can marginalize s3 and r3 out in the summation over Tj, and
marginalize s, and r2 out in the summation over Tj,. Specifically,

(U} (1, Ip)]
= > Jsus D Pr(I(s1) = r1) Pr(I(s2) = r2) Ty (r1,72)

51,52 r,r2
= > MM Y Pr(1(s1) = 1) Pr(I(ss) = r3)Tp (1, 73)
51,53 T3

=E[UP (1, Ib)].
This completes the proof of the first part, because for any Iy, I, €
D D

@,,E[U{ (I.I;)] = E[UBP (1, )] < E[UBF (7, 7)] = E[U{ (r,7)].

Now, we show that the plug-in mechanism is omni-truthful. By
Lemma 3.1, we only have to show that E[UIJD (E1,7)] < E[UIJD (r,7)],
where Ej is agent 1’s task-exchangeable strategy. Recall that C,,—1 =
{(c1,.--,¢m) € N®|cy+- - -+cpm = n—1} is the set of possible count-
ing vectors ¢. We write out the expected payment conditioned on



WWW °23, April 30-May 04, 2023, Austin, TX, USA

agent 1’s signals of all tasks but J. Note that signals of tasks are
iid. drawn.

E[U]P (E1,7)]
= Z Pr(y(Sl,_]) = C) Z Pr(Sl’] = 81,52,] = Sg,Sz,D = 83)

ceCp-1 $1,52,83

- T(E(s1,¢),52,53)
< Z Pr(y(SlJ) = C) Z Pr(SlJ = 31,52!] = Sz,Sz,D = 33)

ceCpq $1,52,53
- T(s1,52,53)
D
=E[U/P (z,7)],

where the inequality holds because while fixing ¢, agent 1 is never
worse off to play a truthful strategy since M/P is truthful. O

It is worth noting that although Theorem 3.3 only says that
the plug-in mechanism preserves informed truthfulness!?, it triv-
ially generalizes to any (stronger) truthful guarantees such as the
strongly truthfulness [2]. This is because as long as tasks are i.i.d. sam-
pled, the two frameworks score the agent exactly the same in ex-
pectation.

With Theorem 3.3, we can easily generalize any truthful mecha-
nism to an omni-truthful mechanism. For example, we know that
the plugged-in mechanism of the CA mechanism is omni-truthful,
where the scoring function is

T(rj,r2,jr2.4) = Ta(ry,j,r2,j) = Ta(ry,js r2.q)-

3.3 Necessity of the JD-framework Reduction

One may wonder whether the simplifications in the JD-framework
are necessary for omni-truthfulness, or if they are only necessary for
the proof. In this section, we provide a counterexample to illustrate
that if agent 1 (the agent who is being scored) can observe the
signal of the disjoint task, the use of the scoring function of the
CA mechanism does not guarantee omni-truthfulness, even we
permute the tasks (as shown in step 1 of Mechanism 1). In other
words, while paying agent 1, it is necessary to exclude the selection
of the disjoint task from the tasks that are answered by agent 1,
which implies that the JD-framework reduction is necessary.

To gain some intuition on why the CA mechanism fails in this
case, we further show how it achieves truthfulness. At a high-level,
the task-dependent strategy of agent 1 creates some undesired cor-
relations between her signal on the disjoint task and her expected
payment, which the CA scoring function cannot handle. We will
see more in the following example.

Example. Consider a mechanism M follows the task-selection
rule of Mechanism 1 except that it samples the disjoint task d also
from N;. Here the disjoint task is actually jointly answered by
both agents but only agent 2’s report on the disjoint task is used for
scoring. Suppose M uses the scoring function of the CA mechanism,
i.e. Ta. Now, suppose both agent 1 and agent 2 answer the same two
tasks, denoted as a and b. In this case, M will randomly choose one
of these tasks as the joint task and the other as the disjoint task.
CA is not omni-truthful. Suppose agent 2 is truthfully report-
ing. We want to show that there exist untruthful task-dependent

hecause we mainly focus on the informed truthfulness in this paper
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strategies such that agent 1 is better-off deviating. Fixing any i and
Jj as agent 1’s signals on task a and b respectively, and let r, and r,
be agent 1’s corresponding reports under a task-dependent strategy
C1. In this example, an omni-truthful mechanism must guarantee
that agent 1’s expected utility is maximized when r, =i and rj, = j
for any signal pair i and j. Otherwise, we can construct an untruth-
ful task-dependent strategy that makes agent 1 better-off: reporting
rq and rp, while seeing i and j on two tasks, and reporting truthfully
otherwise. Note that the above strategy is not task-independent.

We show that the expected payment of agent 1 in this case can
be written as (details of deviation are shown in appendix B):

E[U1(C1,7)181 = (i, /)] (3

1 (1) (1)
= JipM; " = JikM; (Ta(ra, k) — Ta(rp, k)) -
2M1.<1)M;1) %( M P ) ‘

Note that T (i, j) = Ji,j — Mi(l)M;z). One can numerically find
counterexamples such that eq. (3) is not maximized at r, = i and
rp = j for some i, j € ¥ when the size of the signal space is larger
than two.'? This means that there exist untruthful task-dependent
strategies which make agent 1 better-off.

CA is truthful. To gain some intuitions on why mechanism M
is not omni-truthful, it is useful to show why it is truthful. We will
show that the expected payment of agent 1 (marginalizing over
all i and j) is maximized by truth-telling if r, is independent of
Jj and ry, is independent of i, or equivalently, agent 1’s strategy is
task-independent. To see this, by marginalizing eq. (3) over i, j,

1
BIUN (0] =5 ) 3 (kM = T ) (Ta(ra k) = Ty K))
i,j kex
Because Tp (74, k) is independent of j and Ty (rp, k) is independent
of i, we can marginalize j and i out separately.

E[U (I, 7)] :% D A (@), (Jige = M ME

i ke
= ; 200 (MM - 1)

Then, by renaming j in the second term as i and combining two
terms, we have

E[U1(11,7)] =Z Z A jTA (I (D), k) (4)
i kex
<303 A Tali k) = E[Us (5,7)].
i ke

How does the CA mechanism realize truthfulness? From the
above example, when strategies are task-independent, the magic of
the CA mechanism relies on the property that the expected payment
of an agent is determined by the product of the delta matrix and
the scoring function T (i, j) = Sign*(A; ;) (as shown in eq. (4)).
Therefore, truth-telling maximizes this product because whenever
the delta matrix has a positive entry, the scoring function pairs it
with a 1; and any untruthful reporting only increases the probability
that a positive entry is paired with 0 which decreases the product.

12\e find counterexamples by randomly initializing the joint distribution matrix J
with |2| = 3, and searching over all possible values of r, and rp.
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However, when agent 1’s strategy depends on her signals across
all tasks, the CA mechanism can no longer preserve this magical
expected payment structure (as shown in eq. (3)). Thus, the scoring
function Tp can no longer guarantee truthfulness in the above
example where agent 1 can observe the signal of the disjoint task.

4 THE MATCHING AGREEMENT
MECHANISM

We have shown that to achieve omni-truthfulness, we can simply
plug any truthful mechanism into the JD-framework. However, this
method does not preserve informed truthfulness. At a high-level,
because the JD-framework uses agent 2’s reports from two distinct
tasks to score agent 1, based on our intuition from section 3.3, agent
2’s task-dependent strategy may be correlated with agent 1’s pay-
ment in an undesired way. Therefore, the key of omni-truthfulness
is to find a scoring function that can handle this correlation.

We present an informed omni-truthful mechanism called the
Matching Agreement (MA) mechanism. The scoring function of
MA is based on the following three-dimensional matrix.

Definition 4.1. The Gamma matrix I is a |2| X |2| X |Z| matrix:
2
1]k—Jt]M() Jz ()
Furthermore, let Ty = Sign(I") where Tr(l,], k) =0if[; jx =0,and

Tr (i, j, k) = Ukl otherwise.!3

MECHANISM 2: The matching agreement mechanism.

1 Apply Mechanism 1 and pay agent 1 Uy = Tr (1,5, 72,7, T2.4)-

As shown in Mechanism 2, we use the sign of the Gamma matrix

as the scoring function. Intuitively, J; J'MIEZ) is the probability of
agent 1 observes a signal of i while agent 2 observes a signal of j on
the same task, and agent 2 observes a signal of k on another task.
Therefore, the MA mechanism is actually asking: is it more likely
that r1,j and r7,j are from the same task or is it more likely that ry ;
and ry i are from the same task? The MA mechanism rewards the
agent if the former is more likely than the latter. In other words, the
MA mechanism encourages agents to correlate on the same task.

To prove the informed omni-truthfulness of the MA mechanism,
we first note the following property of Tr, which follows directly
from the definition of Tr.

LeEmMA 4.2. Tr(i, j, k) = =Ty (i, k, j) for any i, j, k € 2.

THEOREM 4.3. The matching agreement mechanism is informed
omni-truthful.

Proor. By lemma 3.1, we can focus on the task-exchangeable
strategies. To prove the theorem, by definition, we want to show
that 1) any task-exchangeable strategy profile pays agent 1 no more
than the truth-telling profile; and 2) the truth-telling profile pays
agent 1 strictly better than the uninformative strategy profile where
either agent plays an uninformed strategy.

We first write down the expected payment of agent 1 when both
agents play task-exchangeable strategies. Again, this is nothing
more than writing out the expectations over agents’ signals.

BDifferent from Ty = Sign* (A) which is a 0/1-matrix, entries of T can be —1, 0 or 1.
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E[Ui(ELE2) = ) Pr(Siy=s1.80) = 52.50 = 3)

$1,52,53

Z Pr(y(S1,—y) = c1.y(So—(s.p)) = €2)

c1€Cn-1
c26Cp—2

- Tr(E1(s1,€1), E2(s2, €2 + y(s3)), E2(s3,¢2 + y(s2)))

Z JslszM(Z) Z Pr(cy,c2)

$1,52,83 c1€Cn-1
c26Cn-2

- Tr (E1(s1, €1), E2(s2, €2 + y(s3)), E2(s3, €2 + ¥ (52))),

where ¢ and ¢y are the counting vectors of agent 1’s and agent 2’s
signals respectively, on all tasks but the joint task J and the disjoint
task D. For short, denote Pr(cy, ¢2) as the joint distribution of agent
1 and agent 2’s counting vectors.

Next, in the above equation, we sum over the signals twice but
in the second time we reorder the summations over s2 and s3 and
combine the reordered summation termwise with the original order.
Note that by Lemma 4.2, exchanging the second and the third entries
of Tr is equivalent to flipping the sign of Tr. Thus,

Z Jss M Z Pr(cr, ¢2)

31 52,53 c1€Cp-1
c26Cp-2

: Tr (E1(s1, 1), E2(s2, €2 + y(53)), E2(s3, €2 + ¥(52)))

Z Jsl 53 (2) Z Pr(cl;CZ)

31 53,52 c1€Cn-1
c26Cp—2

: Tr (E1(s1, €1), E2(s3, €2 + y(52)), E2(s2, €2 + ¥ (s3)))
Z (]51 sz (2) ]51 35 (2)) Z PI’(Cl,Cz)

31 52,53 c1€Cn-1
Ca Ecn_z

- T (E1(s1,€1), Ea(s2, €2 + y(s3)), E2(s3,¢2 + y(s2)))

1
= Z Pr(cy,¢2) Z T'(s1,2,53)

c1€Cn-1 $1,52,53
c26Cp-2

- Tr(E1(s1,€1), E2(s2, €2 + y(s3)), E2(s3,¢2 + y(s2)))
(5)
1

<z Z Pr(cy, c2) Z T'(s1,s2,53)Tr (51, 52, 53)
c1€Cn-1 $1,52,83
c26Cp-2

E[Ui(Ey, E2)] =

oo

(by definition of Tr)
=E[U1(7, 7)]

Therefore, no task-dependent strategy profile can bring larger
expected payment than the truth-telling profile.

The proof of the second part is straightforward. We summarize
the claim as follows and leave the details in appendix C. O

PROPOSITION 4.4. Under the MA mechanism, E[U;(y, E2)] =
E[U1(p, E2)] = E[U1(E1, p)] = 0.

One may notice that the MA mechanism is similar to the CA
mechanism in many aspects. For example, although they are math-
ematically different, at a high level, they both reward agents based
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on the same idea: encouraging correlations on the same task and
punishing correlations on distinct tasks. The MA mechanism also
enjoys several nice properties the CA mechanism has. For example,
they both are clean in math and require as few as two tasks to
apply. As we will see in the next section, the MA mechanism can
be learned with the same recipe as the CA mechanism.

5 DETAIL-FREE MECHANISMS

So far, we have assumed that we know the joint distribution be-
tween agents’ signals, and thus know the Delta matrix and the
Gamma matrix. What if the information structure is not known
which is common while we are soliciting reports either for a new
type of questions or from a new group of agents? In the detail-free
setting, we learn the scoring function purely from agents’ reports.
We show that as long as there are enough i.i.d. tasks to estimate the
joint distributions accurately, the detail-free version of our mecha-
nisms can still guarantee approximate (informed) truthfulness.

The detail-free ID-framework. We first generalize our JD-framework

to the detail-free setting. The idea is straightforward: apply Mecha-
nism 1 but with an estimated scoring function. In particular, let J
be the empirical joint distributions of reports estimated using the
common tasks from N,. That is, J;, ;j is the frequency of observing re-
ports (i, j) on the same task averaged over the number of common
tasks. Similarly, let M¥ be the empirical marginal distributions of
reports estimated using tasks from N for k = 1, 2. Finally, agent 1 is
paid based on T, the scoring function estimated with J and M k The
same recipe has been used to design many truthful mechanisms in
the detail-free setting [5, 11, 14]. We show that this method works
for our mechanisms as well.

The detail-free plug-in mechanism. The plug-in mechanisms have
the same expected payment as the original mechanisms under the
BP-framework. In other words, to guarantee (e, §)-truthfulness
with the same error rates, they require the same accuracy of the
estimation as the original mechanisms. Therefore, unsurprisingly,
the plugged-in method preserves the requirement of the number of
tasks. Again, we use the CA mechanism as an example.

THEOREM 5.1 ([14]). Suppose n. = O(n). There exists an n =
o(|2? log %/62) such that the plug-in mechanism of the CA mecha-
nism is (€, 8) -omni-truthful and (e, )-informed truthful.

Theorem 5.1 is a corollary of Theorem 5.13 of Shnayder et al. [14].
First, the CA mechanism is known to be (¢, §)-informed truthful
with O(|2° log % /€?) tasks. Then, Theorem 3.3 straightforwardly
generalizes truthfulness to omni-truthfulness.

The detail-free MA mechanism. A more interesting question is
whether the same recipe can be used to design the detail-free MA
mechanism and how many tasks are required. The first challenge
is that since we are using agents’ reports to estimate the scoring
function, it may be possible for the agents to game the mecha-
nism by potentially changing the scoring function. Fortunately, the
following lemma shows that this can never happen.

LEMMA 5.2. Let UlT(Cl,Cz) be the payment of agent 1 under
the scoring function T when agents’ strategies are C1 and Cy re-
spectively. For any scoring function under the JD-framework T €
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{~1,0, 1}ZXIZIXIZ1 hap satisfies T; jk = —T; k j» and any strategies
C1,Cy € ©c, we have E[U]T (7,7)] = E[U] (C1,C2)].

Lemma 5.2 (see proof in appendix D) is the key of understanding
why the MA mechanism is informed omni-truthful. It shows that
agents can never improve their expected payments by reporting
untruthfully and manipulating the ideal scoring function Tr.

We use the following two-step argument to provide some intu-
ition on why MA is informed truthful in the detail-free setting. First,
any scoring function estimated with our detail-free JD-framework
satisfies the property of Ti,j,k = —f},k,j for any i, j,k € X, since
T,-,j’k = Sign(fi,j]\;Ii - ji,k]\;ljz.). Therefore, exchanging the second
and the third entry of T is equivalent to inverting the sign. Second,
by Lemma 5.2, T (which is unknown) together with the truth-
telling strategy profile maximizes the expected payment. This im-
plies that, indeed, agents can be strategic in changing the scoring
function, but this will only harm the expected payment.

Now, to prove informed omni-truthfulness, we only have to
show that if there are enough tasks, the estimated scoring function
converges to the maximum expected payment E[UlT T(r,7)] with
high probability. We summarize this result in the following theorem.

THEOREM 5.3. Suppose € > 0 and 0 < § < 1. Suppose ne = O(n).
Then, there exists a number of tasks n = O (|2|3 log 3—3/62) such that
the MA mechanism is (€, §)-informed omni-truthful.

See appendix E for the proof. Perhaps surprisingly, although
the scoring function of the MA mechanism looks more compli-
cated than the CA mechanism (a three-dimension matrix v.s. a
two-dimension matrix), they require the same order of tasks to
learn. Indeed, they both required learning the same artifacts, i.e. the
joint distribution of agents’ signals.

6 CONCLUSION AND FUTURE WORK

Our paper provides the first discussion on how to design (informed)
omni-truthful mechanisms that generalize previous literature be-
yond the assumption of task-independent strategy. We present

e the joint-disjoint task framework (JD-framework) which
simplifies the commonly used bonus-penalty task framework
(BP-framework) from the previous literature;

e a plug-in method that directly generalizes truthfulness to
omni-truthfulness;

e the matching agreement (MA) mechanism, an informed
omni-truthful mechanism;

e a method to learn the MA mechanism in the detail-free set-
ting which requires the same number of tasks as the CA
mechanism.

However, there is more to do. First, we believe that there is a
much larger space of informed omni-truthful mechanisms. Can we
identify a family of them? Second, while we generalize the strategies
beyond the task-independent assumption, our mechanisms still
require the tasks to be i.i.d.. Is our intuition in this paper helpful in
preventing strategic behaviors given correlated tasks?
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A PROOF OF LEMMA 3.1

Proor. We first write down the expected payment of agent 1,
where the expectation is taken over the randomness of the signals,
agents’ strategies and the mechanism (random permutations and
the random selection of joint/disjoint tasks).

E[U1(C1, C2)]

C1 G pC
=E[T(R[}, R, % Ry })]

C C. C.
= >0 Pr(RT) =ri,RSE = 1o, RSE = 19)T(r1,r2,13)

r1,72,r3€X

(J and D are r.v. of tasks j and d.)

The joint probability of agents’ reports in the above equation de-
pends on agents’ signals and strategies. Next, we further marginal-
ize agents’ signals on the joint task and disjoint task.

E[U1(Cy, C2)]
= Z Pr(SL] = 31,52,] =52,8p= $3)

51,52,53€%
Z Pr(RCl—r|S —s)Pr(RCZ—r|S =52,5p =53)
1y =TSy =81 5 = T2192] = 2,520 =53

r1,ra,r3€X

C
“Pr(Ry T, =13]S27 = 52,520 = 3)T(r1, 72, 73)

Note that the above equations hold because agent 1 cannot ob-
serve the signal on the disjoint task. Therefore, her report on the
joint task does not depend on agent 2’s signals on either task, i.e.

Pr(Rf} =r11lS1,7 = 51,527 = $2,82p = 53) = Pr(Rf} =r1|S1y = s1).

Now, to prove the lemma, we can focus on the conditional prob-
abilities. Fixing arbitrary j € N, and d € Nz \ N¢, for agent 1,
Pr(RIC}. =r1|Sy,j = s1) is the probability of agent 1 reporting r; on
task j’ when her signal on that task is s; and her strategy is C;. We
want to show that this probability can be equivalently achieved
with a task-exchangeable strategy. The same recipe can be used to
prove an analogue result for agent 2. We summarize these results
for agent 1 and agent 2 in Proposition A.1 and A.2 respectively (we
omit the subscript of agents), which completes the proof. O

PROPOSITION A.1. For any C € ©Oc, there exists an E € O such
that Pr(RJC =r|Sj=5) = Pr(Rf =r|Sj = s) forany j € Nc and
s,r € 2.

PrROOF. We start with marginalizing the probability on the left-
hand-side of the equation over all signal vectors of agent 1 on all
tasks other than the joint task j and all possible permutations (due
to step 1 in Mechanism 1). We use —j to denote all the tasks in Ny
other than j. For short, let Pr(r|s) = Pr(RJC =r|Sj =5s).

Pr(r|s) = Z Pr(S_j = x)

xexn-1

1
. Z = Pr(C(x(slsj = s,5-j = x))z(j) =7)s
T
where 7(j) is the index of the joint task under permutation 7, and
7(s|sj = s,s—j = x) is the signal vector that the agent observes
under the permutation (conditioned on her signal on task j is s
and her signals on all the other tasks are x. Therefore, C(z(s|s; =
$,8-j = X))(j) is the random variable of agent’s report on the
joint task after permutation.
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Our goal is to represent the above probability using a task-
exchangeable strategy. To do so, first note that as long as the vectors
x contain the same number of each signal, they appear with the
same probability. Therefore, we can categorize these cases based on
the counting vectors ¢ = (cy, . .., c;n) Where m is the size of signal
space. Denote Cp, as the set of all possible counting vectors.

Pr(rls) = D Pr(y(S-j)=c)

ceCp

Z Z % Pr(C(x(slsj =s,5-j =%))z(j) =7)-

xeyn-1l. 7w
y(x)=c

Next, we simplify the summation over 7. By symmetry, we know
that 7 (j) will map task j to any ¢ € Ny with equal probability. We
use 7’ to denote the permutation of length n — 1. Then,

Pr(rls) = > Pr(y(S-;) =c)

ceCp1
Z Z ! Z ;Pr(c(sh‘ =ssp=7'(x)r=r)
" (n — 1)! ¢ 5S¢ I3 .
xexn-1.leN;
y(x)=c

Because fixing ¢, any vector x such that y(x) = ¢ will be treated
equivalently while averaging 7”. Therefore, we can simply remove
the marginalization over n’ in the above equation.

Pr(rls) = > Pr(y(S-;) =c)

ceCp-1

. l Z Z Pr(C(s|sy =s,s—¢p=x)p =7).

" (N, xezt;
y(x)=c
Now, given any strategy C € O, signal s, report r and counting
vector ¢ € Cy—1, let E be a task-exchangeable strategy such that

1
Pr(E(s,c) =r) = — Pr(C(s|sy =s,s—¢p=x)p =7).
" [;1 xe;‘l:
y(x)=c
(6)
It is easy to show that under such a strategy E, Pr(Rf =r|Sj=s) =

Pr(R]C =r|S; = s), which completes the proof. O

PROPOSITION A.2. Forany C € ©Oc, there exists an E € O such
thatPr(RJC =rlSj=s5S;=5) = Pr(Rj‘.E =rlSj =555 =5') for
any j € Ne,d € Np \ N¢ ands,s’,r € 3. The same result holds while
replacing RJC with Rg in the above equation.

The proof is analogue to Proposition A.1, and thus is omitted.
The only difference is that we have to condition on two signals.

B EXPECTED PAYMENT IN EXAMPLE 3.3

In this example, the expected payment of the CA mechanism is
E[U1(C1,7)I$1 = (i, ))]

= Z mummpMm¢>Zmﬁu=ma=@mmw¢)
te{a,b} keX

= D Pr(Sg—¢ = K181 = (i, ) TACre, &)
k’eX
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Note that by random selection, each ¢ has probability % of being
chosen as the joint task. Then, by renaming k’ as k and combining
the two terms in the above equation, we have

1
== > (Pr(Sze = kISt = (i, /) = Pr(Sg,—¢ = kIS1 = (i, /) Ta(re. k)
te{ab}
kex

(rename k’ as k)
_ 1 D () _
_2M§”M;”;;z(1"ij T1aeM) (T (ra, k) = Ta (1, )
()
C PROOF OF PROPOSITION 4.4

ProoF. We want to show that if at least one of the agents play
the uninformed strategy, the expected payment for agent 1 is zero
which is strictly less than the truth-telling profile. To see this, first
let agent 1 plays an uninformed strategy:

E[U1(p E2)]

1
=5 Z Pr(cy, c2) Z I'(s1,52,53)

c1€Cn-1 $1,52,53
c26Cp-2

- Tr (u(s1, 1), E2(s2, €2 + y(53)), E2(s3, €2 + y(s2))) (by eq. (5))

Let H = u(s1, ¢1) be an r.v. that does not depend on s; and ¢1. We
then can rearrange the order of summations such that the terms that
do not depend on s; and ¢; can be moved out of the summations
over s1 and ¢7.

= S S T (H, Ea(snca +v(55)). Exlss 2 + (s2))

2
>, Priener)

c26€Cp—3 52,53
c1€Cn-1

'ZF(Sl,Sz,Sa)
S1

=2 D Prlen) ) Te(H Ealsp, 0+ y(59)). Eassoea + y(52))

c26Cn-2

MM - MPMP) =0,

52,53

The same recipe can be used to prove the analogue result for agent
2,1.e. E[U1(E1, p)] = 0. We thus omit the proof. O

D PROOF OF LEMMA 5.2

ProOF. Again, by Lemma lemma 3.1, we can focus on task-
exchangeable strategies. Let E1 and E; be the task-exchangeable
strategies that are equivalent to strategies C; and Cs. By eq. (5), the
expected payment for agent 1 while the scoring function is T and
strategies are Ej and Ej is:

1

E[U] (E1, E)] = Z Pr(cy, c2) Z I'(s1,2,53)
c1€Cn $1,52,53
c2€Cp—2

- T(E1(s1,¢1), E2(s2, €2 + y(s3)), E2(s3, c2 + y(s2)))

Because the entries of T are -1, 0 or 1, the above equation is upper
bounded by

3446
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E[U] (E1, E2)] S% Z Pr(cy, c2) Z T (s1, 52, 53)]

c1€Cn-1 $1,52,53
c26Cp—2
1 .
=3 Z [(s1, s, 53)Sign (T'(s1, 52, 53))
$1,52,53
Tr
=E[U;" (r,7)].

E PROOF OF THEOREM 5.3
Proor. We want to show: with probability at least 1 — &,

AUy = UlT(T, T) — UlTr (r,7)| < e

where T is the scoring function learned from the detail-free JD-
framework with all agents truthfully reporting. Note that

AU =% DTG, j.k) (Sign(T (i, j k) - Sign(T (i, j,k)))

i,j,k
1 e . .
<5 Z T'(,j, k) |slgn(r(z,], k)) - Slgn(r(l,],k))'
i,j,k
sz;ﬁaﬁm—fuﬂmy
L],

We now apply the result that any distribution over the finite domain
A can be learned within L1 distance of € and with probability 1 — §
given O(|Allog %/ez) i.i.d. samples [3]. This means that with n, =
0(16|2* log % /€%) common tasks we can estimate the marginal
distributions with error £, and with n = 0(16|2° log %/62) tasks

we can estimate the joint distribution with error . Formally,

412]"
_jl<E @) _ 2l o €
Z |]z,] Jl,J| < 4 and Z 'Mk Mk' < 4|2| .
i,j k
Now, we can bound the L1 distance between two matrices:
.. S 2 2 x x -
2 LGk =GR = Y M = Jigedty? = oM = T
i,j.k ijk
9 -
< 22 |]1]M]£ ) _]i,leg'
i,j.k

<2y

i,j.k

:22

i,j,k
- € -
<2 oy = Juil+ 557 2,0
i,j i,jk

€ €
< -+-=€
2 2

This completes the proof as with probability at least 1 — 6,

@ 5 (@ €
1 55)

€

) . .
M,i Ui = Jij) 4|Z|Ji,j

UT (r,0) 2 U] (r,1) — e 2 UT (€1, C2) — ¢,

and furthermore, one can easily verify that if either agent plays an
uninformative strategy, the expected payment is 0 which is strictly
smaller than UIT '(z, 1) for a small enough e. o
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