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ABSTRACT 
Peer prediction aims to incentivize truthful reports from agents 
whose reports cannot be assessed with any objective ground truth-
ful information. In the multi-task setting where each agent is asked 
multiple questions, a sequence of mechanisms have been proposed 
which are truthful — truth-telling is guaranteed to be an equilibrium, 
or even better, informed truthful — truth-telling is guaranteed to be 
one of the best-paid equilibria. However, these guarantees assume 
agents’ strategies are restricted to be task-independent: an agent’s 
report on a task is not afected by her information about other tasks. 

We provide the frst discussion on how to design (informed) 
truthful mechanisms for task-dependent strategies, which allows 
the agents to report based on all her information on the assigned 
tasks. We call such stronger mechanisms (informed) omni-truthful. 
In particular, we propose the joint-disjoint task framework, a new 
paradigm which builds upon the previous penalty-bonus task frame-

work. First, we show a natural reduction from mechanisms in the 
penalty-bonus task framework to mechanisms in the joint-disjoint 
task framework that maps every truthful mechanism to an omni-

truthful mechanism. Such a reduction is non-trivial as we show 
that current penalty-bonus task mechanisms are not, in general, 
omni-truthful. Second, for a stronger truthful guarantee, we design 
the matching agreement (MA) mechanism which is informed omni-

truthful. Finally, for the MA mechanism in the detail-free setting 
where no prior knowledge is assumed, we show how many tasks 
are required to (approximately) retain the truthful guarantees. 
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• Information systems → Incentive schemes; • Mathematics 
of computing → Probability and statistics. 
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1 INTRODUCTION 
In multi-task peer prediction, the designer has no ground truth 
information to assess the quality of agents’ reports; nonetheless, the 
goal is to incentivize agents to exert efort working on information 
tasks and to report their information honestly. Peer prediction 
mechanisms meet this challenge by assigning each agent multiple 
(potentially overlapping) questions, soliciting her reports1, and 
rewarding her based on how well her reports correlate with other 
agents’ reports. Thus, peer prediction serves as a powerful tool for 
obtaining high-quality information in a multitude of applications 
ranging from annotating the sentiments of a Twitter dataset to peer 
grading for a large online course.2 

The main goal of peer prediction mechanisms is to encourage 
truthful reporting by punishing agents with reduced rewards when 
they lie about their true information (called the “signal”). In this 
way, strategic agents who aim to game the mechanism for the 
maximum reward prefer to truthfully report. Previous works on 
multi-task peer prediction have provided us various mechanisms 
that can achieve diferent levels of incentive guarantees [2, 7, 14]. 
For example, a truthful mechanism guarantees that truth-telling is 
an equilibrium, meaning that if all other agents are reporting truth-
fully, no unilateral deviation can increase the expected payment. 
Furthermore, we also want truth-telling to be a desired equilibrium. 
In particular, an informed truthful mechanism additionally guaran-
tees that no strategy profle provides higher expected payment than 
the truth-telling equilibrium, and the truth-telling equilibrium re-
wards each agent strictly better than any uninformed strategy3[14]. 
More recent works are mainly guided by the question of how to 
design these truthful mechanisms with fewer tasks [5, 6, 11]. This 
is especially relevant in the detail-free setting where the designer 
has no prior knowledge of agents’ information structure. Here 
mechanisms are usually implemented by learning the information 
structure of the reports, and then using the non-detail free mech-

anism that one would use if the information structure of signals 
were the learned information structure of the reports. Thus the 
number of tasks required is typically related to how many tasks are 
required to learn certain properties of the information structure of 
the reports. 

However, these truthful guarantees are currently developed 
based on a rather restrictive assumption: agents’ strategies are 
task-independent. A task-independent strategy requires that the 
agent’s report on each task depends only on her signal on that 

1
We are interested in the minimal setting where the designer only solicits agents’ 
reports of the questions. For example, there are mechanisms that are not minimal 
which additionally solicit each agent’s prediction about other agents [4, 8–10, 12].
2
One may argue that it is possible to obtain some ground truth information to assess 
agents’ reports in these cases. However, obtaining sufcient ground truth data can 
be costly (e.g. hiring TAs to grade the assignments), and in certain instances, ground 
truth may not even exist (e.g. when tasks involve subjective questions). In such cases, 
it is crucial to have an alternative option.
3
A strategy is uninformed if the agent’s reports do not depend on her signals. For ex-
ample, randomly reporting and always reporting “yes” are two uninformed strategies. 
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specifc task. For example, if the answer to the questions is either 
“yes” or “no”, the space of task-independent strategies can be cap-
tured by a 2 × 2 matrix where the entry �, � is the probability that 
the agent reports � when the signal on that task is � . In contrast, a 
more general concept of strategy, called the task-dependent strategy, 
allows the agent to base her report of a specifc task on her signals 
of all tasks. For example, the agent may report “yes” less often after 
observing a lot of “yes” signals on the tasks she has seen. To distin-
guish, we call the stronger truthful guarantee where a mechanism 
is (informed) truthful under task-dependent strategies (informed) 
omni-truthfulness. Yet, no multi-task peer prediction mechanism is 
known to be omni-truthful. This raises the following question: 

Can we design omni-truthful, or even beter, informed omni-
truthful multi-task peer prediction mechanisms? 

As the goal of peer prediction is to identify and discourage EV-
ERY untruthful strategy, we view the design of omni-truthful mech-

anisms as one of the fundamental problems of multi-task peer 
prediction. From the designer’s point of view, now that we assume 
the agents are trying to game our mechanisms, we really should 
not assume that they are strategic in a restricted way. Another 
important motivation is that task-dependent strategies are natural 
in the multi-task crowdsourcing settings. For example, individuals 
taking multiple-choice tests tend to avoid providing consecutive 
answers of the same letter (e.g. answering 5 “A”s in a row), even 
if they believe that letter is the correct choice. Furthermore, in 
peer assessment, it is natural to believe that the grader will grade 
each assignment after comparing it with other assignments. In both 
cases, an agent’s report on a task depends not only on the signal of 
that task but also the signals of all the other tasks. Therefore, any 
mechanism that fails to deal with task-dependent strategies may 
experience incentive issues in real-life. 

Before we present our results, we frst introduce the bonus-
penalty (BP) task framework, which is widely used in previous 
literature [2, 11, 14]. At a high-level, the BP-framework randomly 
selects a commonly answered bonus task � and two distinct penalty 
tasks � and �. An agent Alice (the agent who is being scored) is 
rewarded if her report on the bonus task � is correlated with the 
report of Bob’s (a randomly chosen peer) on the same task; and 
Alice is punished if her report on the penalty task � is correlated 
with Bob’s report on the other penalty task �. 

1.1 Our Contributions 
We show that under the BP-framework, a truthful mechanism need 
not be omni-truthful. The counter-example we use is that under the 
well-known correlated agreement (CA) mechanism [14], agents can 
beneft by playing task-dependent strategies even when everyone 
else is truthfully reporting (section 3.3). 

Aware that existing mechanisms may not possess the desired 
properties of omni-truthfulness, we propose a framework referred 
to as the joint-disjoint task framework, which simplifes the task-
selection rule of the BP-framework (see fg. 1). In particular, 

– the JD-framework frst independently permutes the order 
of the tasks assigned to each agent so as to prevent any 
correlation on the order of tasks; 

– instead of sampling three tasks in total, the framework only 
samples two tasks: a joint task � answered by both agents, 
and a disjoint task � answered only by Bob; 

– Alice’s reward is determined by a scoring function with the 
input of three reports: Alice’s report on � , and Bob’s reports 
on the � and � . 

Thanks to the simplifed task-selection rule, the JD-framework 
is useful in dealing with task-dependent strategies which we show 
via the following results: 
Reduction. We show that one can plug the scoring function of 

any truthful mechanism under the BP-framework into the 
JD-framework and obtain an omni-truthful mechanism. — 
section 3 

The MA mechanism. We propose a informed omni-truthful mech-

anism called the matching agreement (MA) mechanism. An 
initial version of this mechanism requires some prior knowl-
edge. — section 4 

Detail-free. When agents’ information structure is unknown, we 
show that � ( |Σ|3 

log 1 /�2) tasks sufce to make the MA 
�

mechanism approximately informed omni-truthful, where � 
and � are error terms and |Σ| is the size of the signal space 
(e.g. |Σ| = 2 for binary questions). — section 5 

Figure 1: BP-framework v.s. JD-framework, where ��,� de-
notes agent �’s report on task � . The main diference is that 
while paying Alice, the JD-framework uses agents’ reports 
from two tasks while the BP-framework uses three tasks; and 
the JD-framework guarantees that the disjoint task (blue) is 
sampled from the tasks answered only by Bob (white boxes). 

Discussion: Our paper provides the frst discussion on designing 
multi-task peer prediction mechanisms beyond the task-independent 
strategy assumption. The above result shows that it is relatively 
easy to generalize truthfulness to omni-truthfulness, where we 
provide the plug-in method. Examples of mechanisms that can be 
easily plugged into our JD-framework include the D&G mechanism 
[2], the CA mechanism [14] and the Φ-pairing mechanisms [11].4 

However, the plug-in method does not trivially generalize stronger 
truthful guarantees like the informed truthfulness. Therefore, we 
additional propose the MA mechanism. Let �1, �2 and �3 be Alice’s 
report on the joint task and Bob’s report on the joint and disjoint 
4
We note that there are mainly two types of mechanisms that do not ft into the 
BP-framework: the � -mutual information mechanism [7] and the determinant mutual 
information mechanism [5]. As we will discuss in section 1.2, the former is improved 
by the Φ-pairing mechanism which lies in the BP-framework. 
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task respectively. At a high-level, the MA mechanism works by 
rewarding Alice if �1 and �2 are more likely from the same task 
compared with matching �1 and �3, and otherwise punishing Alice. 

Furthermore, perhaps surprisingly, there is almost no cost of (in-
formed) omni-truthfulness. In the detail-free setting, on one hand, 
we show that the plug-in mechanism can additionally achieve omni-

truthfulness using the same number of tasks as the original mecha-

nism required. For example, the plug-in CA mechanism is not only 
informed truthful but also omni-truthful using � ( |Σ|3 

log 1 /�2)
�

tasks. On the other hand, we show that for the same error param-

eters, the MA mechanism requires the same order of tasks as the 
CA mechanism, but it is (approximately) informed omni-truthful. 

1.2 Related Works 
We locate our paper in the feld of multi-task peer prediction. The 
theory of multi-task peer prediction aims to design mechanisms 
that have strong incentive guarantees in the minimal (only solicit-
ing agents’ signals) and detail-free (no prior knowledge of agents’ 
information structure) setting. Note that all truthful guarantees 
in this section are, by default, developed under task-independent 
strategies. 

Dasgupta and Ghosh [2] propose the frst multi-task peer predic-
tion mechanism (the �&� mechanism), which is strongly truthful5 

when the signal space is binary and every pair of agents’ signals 
are assumed to be positively correlated. 

There are two direct generalizations of the �&� mechanism. 
First, the correlated agreement (CA) mechanism [14] removes the 
positive correlation assumption and is informed truthful the fnite 
signal space. Our matching agreement (MA) mechanism can be 
seen as a generalization of the CA mechanism for task-dependent 
strategies. Second, Kong and Schoenebeck [7] propose the � -mutual 
information framework which also generalizes the �&� mecha-

nism to handle fnite signal space (independent of [14]). They show 
that paying agents based on the � -mutual information (a generaliza-
tion of Shannon mutual information) can achieve mechanisms that 
are strongly truthful with infnite samples. Interestingly, both the 
�&� mechanism and the CA mechanism are shown to be special 
cases of the � -mutual information mechanism with a special � (the 
total variation distance). 

Kong [5] then proposes a determinant based mutual information 
mechanism, called the DMI mechanism that is informed truthful 
and dominantly truthful6 

for ≥ 2 agents and ≥ 2|Σ| tasks. As DMI 
is shown to be an unbiased estimator of the mutual information, 
the main advantage of the DMI mechanism is that it can achieve 
strict truthful guarantees with a fnite number of tasks. In a more 
recent work, Kong [6] further generalizes this idea and proposes 
a family of information measures that share the same properties 
as the determinant mutual information, called the volume mutual 
information (VMI). This fnding triggers a nre family of dominantly 
truthful mechanisms called the VMI mechanisms. 

Inspired by Kong and Schoenebeck [7], Schoenebeck and Yu 
[11] propose the Φ-pairing mechanism which uses a new learning-
based method to estimate the mutual information between agents’ 

5
Strongly truthfulness is a stronger incentive guarantee than informed truthfulness. 

6
A dominantly truthful mechanism guarantees that truth-telling is a dominant strategy 
for each agent. 

reports. The Φ-pairing mechanism is shown to be approximately 
strongly truthful given � (log 1 /�2) tasks. The main advantages of 

� 
the Φ-pairing mechanism is that it can handle infnite signal space, 
e.g. signals with continuous domain. 

There exist other works that generalize the classic peer pre-
diction model to various setting. For example, Agarwal et al. [1] 
extend Shnayder et al. [14] to incentivise heterogeneous agents, 
where each agent has one or more types. Schoenebeck et al. [13] 
consider using robust learning to design robust peer prediction 
mechanisms to handle adversarial attack. Zhang and Schoenebeck 
[15] consider how to incentivise efort from crowdsourcing workers 
using the scores output by a peer prediction mechanism to run a 
tournament. 

2 MODEL 
Consider the general setting of multi-task peer prediction where 
there are two agents.7 

Suppose each agent is assigned with � tasks 
such that 1) the set of overlapping tasks, �� , has a size of |�� | = 
�� ∈ {1, . . . , � − 1}; and 2) the overlapping tasks are independent 
conditioned on �� . Let �1 and �2 be the sets of tasks answered by 
each of the agents, respectively. Throughout the paper, we consider 
agent 1 as the agent who is being paid (Alice) and agent 2 as the 
reference agent (Bob). Suppose tasks have the same fnite signal 
space, i.e. Σ = {0, 1, . . . ,�}. We assume that the overlapping tasks 
are chosen at random, i.e. there is no bias against any particular 
task. Let ��, � denote the signal of agent � on task � . We assume tasks 
are i.i.d. with the joint distribution ��1,�2 = Pr(�1, � = �1, �2, � = �2)

(� )
for every � ∈ �1 ∪ �2 and �1, �2 ∈ Σ.8 

Let �� = Pr(��, � = �)
be the marginal distributions of agent �’s signal for any � ∈ �� , 

(1) Í
i.e. � = �2 ∈Σ ��,�2 . We further use �� to denote the vector of � 
agent �’s signals on all tasks. 

Agents report strategically, i.e. they apply a (random) mapping 
on their signals to generate their reports. Agent �’s report on task � 
is denoted as �� 

where � specifes �’s strategy. We use �� 
to denote 

�, � � 
the vector of agent �’s reports on all assigned tasks. Again, we use 
the capital letter � to denote the random variable of a report and 
the lower case � to denote its realization. We use [�] = {0, 1 . . . , �}
to denote the set of natural numbers less or equal than �. 

We are interested in three types of strategies. First, a general 
strategy in the multi-task setting maps a vector of signals to a 
distribution over the vector of reports. In other words, the agent 
frst observes the signals of all assigned tasks, and then decides her 
reports of all tasks. 

Defnition 2.1. A random mapping � : Σ� → ΔΣ� is called a 
strategy where the agent reports �� = � (�� ). We denote the space 

� 
of all strategies as Θ� . 

Second, the task-exchangeable strategy additionally assumes the 
agents’ reports are independent of the order of the tasks. That is, 
an agent’s report on one task depends only on her signal on that 
task and the number of each signal on other tasks. Formally, 
7
If there are more than two agents, while rewarding agent 1, we can randomly select a 
peer as agent 2. So, without loss of generality, we consider there are only two agents.
8
We emphasize that an important assumption of the multi-task peer prediction set-
ting is that tasks are i.i.d. and agents cannot distinguish tasks conditioned on their 
signals. This assumption implies that the agent’s signal exhaustively captures all her 
information on that task and excludes the existence of “cheap signals”. 
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Defnition 2.2. A strategy � : Σ × [�] → ΔΣ is task-exchangeable 
if the agent reports �� = � (��, � , � (��,− � )) where � (�) = (�� )� ∈Σ�, �

counts the number of occurrence of each signal � in vector � withÍ 
� �� = |� |. We denote the space of such strategies as Θ� . 

Last, a task-independent strategy requires the report on a task 
to depend only on the agent’s signal on that particular task. 

Defnition 2.3. A strategy � : Σ → ΔΣ is task-independent if the 
agent reports �� = � (��, � ) with the same strategy for any task 

�, � 
� ∈ �� . We denote the space of such strategies as Θ� . Specially, we 
use � to denote the truth-telling strategy where � (��, � ) = ��, � for 
any � . 

By defnition, strategies take task-exchangeable strategies as 
special cases which take task-independent strategies as special 
cases. Or equivalently, Θ� ⊂ Θ� ⊂ Θ� . For the frst two types of 
strategies, an agent’s strategy on a particular task depends on her 
signals for other tasks. Inclusively, we call any strategy � ∈ Θ� 
a task-dependent strategy. Note that task-independent strategies 
form a subspace of task-dependent strategies. We further note 
that the space of task-dependent strategies is considerably richer 
than the space of task-independent strategies. The former grows 
exponentially with the number of tasks an agent is assigned while 
the latter depends only on the size of the signal space. 

2.1 Mechanism Design Goals 
We aim to design mechanisms that map agents’ reports to their 
payments to incentivize truth-telling. Let �� (�� , � � ) denote the pay-
ment of agent � where her strategy is �� and her peer’s strategy is 
� � . We now introduce the concept of truthfulness in our setting. 

Defnition 2.4. A mechanism is truthful if �� (�, �) ≥ �� (�� , �) for 
any � and �� ∈ Θ� . 

A mechanism is omni-truthful if the above is true for all �� ∈ Θ� . 

Omni-truthfulness guarantees truth-telling to be an equilibrium 
under task-dependent strategies. Stronger equilibrium concepts 
have been developed to guarantee truth-telling to be not only an 
equilibrium, but also a desired equilibrium. In particular, we intro-
duce informed truthfulness [14]. 

Defnition 2.5. A strategy � is uninformative if the distribution of 
agents’ reports � (�� ) does not depend on the signal vector �� . 

Defnition 2.6. A mechanism is informed truthful if �� (�, �) ≥ 
�� (�� , � � ) for any � and �� , � � ∈ Θ� . Furthermore, the inequality is 
strict if at least one of �� and � � is uninformative. 

A mechanism is informed omni-truthful if the above is true for 
all �� , � � ∈ Θ� . 

Informed truthfulness is desired as it guarantees that any “cheap” 
strategy including randomly reporting and always reporting the 
same signal is strictly less desired. 

We further introduce an approximate version of the truthful 
guarantees, which are used in section 5. 

Defnition 2.7. A mechanism is (�, �)-omni-truthful if with prob-
ability at least 1 − � , any unilateral deviation from truth-telling 
cannot bring an extra expected reward larger than � . 

A mechanism is (�, �)-informed omni-truthful if with probability 
at least 1 − � , no task-dependent strategy profle rewards any agent 

� more than truth-telling, and any uninformative strategy rewards 
the agent strictly less than truth-telling in expectation. 

Analogously, a (�, �)-(informed) truthful is defned by restricting 
the strategy space to task-independent strategies. 

2.2 The Bonus-Penalty Task Framework and 
the CA Mechanism 

Before we talk about our proposed framework, we frst introduce 
the bonus-penalty (BP) task framework that several well-known 
peer prediction mechanisms are based on [2, 11, 14]. 

The BP-framework. Given the reports from two agents �1 and �2 
respectively, the BP-framework pays agent 1 as follows: 

(1) Pick one task randomly at uniform from �� as the bonus 
task �, and pick two distinct tasks randomly at uniform from 
�1 and �2 respectively as the penalty tasks � and � ; 

(2) Pay agent 1 

�1 = �� (�1,� , �2,� ) − �� (�1,�, �2,� ) . (1) 

At a high level, the BP-framework rewards agents if their reports 
on the bonus task are (positively) correlated 9, and punish agents 
if their reports on two distinct penalty tasks are (positively) corre-
lated. The scoring functions �� and �� are designed based on the 
information structure of agents’ signals. In this way, truthfulness 
can be guaranteed because any untruthful task-independent strat-
egy will weaken the correlation on the bonus task and increase the 
correlation on the penalty tasks. To better illustrate the idea, we 
introduce the CA mechanism as an example. 

Defnition 2.8. (Defnition 2.1 [14]) The Delta Matrix Δ is a |Σ|×|Σ|
matrix which is the diference between the joint distribution and 
the product of marginal distributions: 

(1) (2)
Δ�, � = Pr(�1 = �, �2 = �) − Pr(�1 = �) Pr(�2 = �) = ��, � − � �

� .
� 

Denote �Δ (�, �) = Sign+(Δ�, � ) for �, � ∈ Σ as the scoring function, 
where �Δ (�, �) = 1 if Δ�, � > 0 and �Δ (�, �) = 0 otherwise. The 
CA mechanism is a mechanism that applies the scoring function 
of �� = �� = �Δ under the BP-framework, which is shown to be 
informed truthful.10 

3 THE JOINT-DISJOINT TASK FRAMEWORK 
In this section, we provide a framework for designing mechanisms 
that guarantee truthfulness under task-dependent strategies, called 
the joint-disjoint (JD) task framework. We frst show that under 
the JD-framework, strategies in general are equivalent to the task-
exchangeable strategies thanks to the random permutation step. 
This property greatly shrinks the strategy space that agents can use 
to game the mechanism. Second, we show how to plug the scoring 
function of a truthful mechanism under the BP-framework into our 
JD-framework and get an omni-truthful mechanism. Finally, we 
show that the simplifcations we made in the JD-framework are 
necessary to guarantee truthfulness. As a counterexample, the CA 
mechanism is not omni-truthful. 
9
Although, some mechanisms, e.g. the CA mechanism, can deal with the case of 
negatively correlated signals, assuming that agents’ signals on the same task are 
positively correlated provides good intuition.
10
We further note that there are mechanisms (e.g. the Φ-pairing mechanism [11]) 

which apply asymmetric scoring functions, i.e. �� ≠ �� . 
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In both this section and the next section (section 4), we consider 
the setting that is not detail-free, i.e. the information structure in 
assumed to be known. We will relax this assumption in section 5. 

3.1 The Joint-Disjoint Task Framework 
As shown in Mechanism 1, the JD-framework applies a simplifed 
task-selection rule and allows a generalized form for the scoring 
function. We highlight the main diferences as follow: 

– The JD-framework frst applies independent permutations of 
the tasks assigned to each agent. This prevents agents from 
correlating in undesired ways. For example, agents cannot 
collude by reporting “yes” on odd tasks and “no” on even 
tasks to create stronger correlations than truth-telling. 

– While scoring an agent, the JD-framework only draws one 
task from the tasks answered by that agent as the joint task, 
and draws the disjoint task from the tasks only answered by 
her peer. Thus, the agent’s signal on any task other than the 
joint task is irrelevant to her payment. 

– The JD-framework generalizes the scoring function of the 
BP-framework which takes three reports as input. 

MECHANISM 1: The joint-disjoint task framework. 
Input: Two sets of tasks �1 and �2 with intersection �� . 

1 Randomly and independently permute the tasks in �1 and 
�2 and solicit the answers from two agents. The solicited 
reports from two agents in the original order are denoted 
as �1 and �2 respectively. 

2 Pick one task uniformly and randomly from the common 
tasks �� as the joint task � , and pick another task 
randomly at uniform from the tasks only answered by 
agent 2, �2 \ �� as the disjoint task � . 

3 The payment for agent 1 is 
�1 = � (�1, � , �2, � , �2,� ). (2) 

Before we introduce our mechanisms, we frst show an important 
property: in terms of expected payments, any strategy is equivalent 
to a task-exchangeable strategy under the JD-framework. 

Lemma 3.1. In Mechanism 1, for any �1,�2 ∈ Θ� , there exist 
�1, �2 ∈ Θ� such that E[�1 (�1, �2)] = E[�1 (�1,�2)]. 

The proof is shown in appendix A. Intuitively, the lemma holds 
because for any strategy � in the space Θ� \ Θ� , we can fnd a 
task-exchangeable strategy � such that � difers from � only in the 
cases where diferent permutations of the same signal vector are 
treated diferently under � but identically under �. However, by 
random permutation, � and � should be equivalent after taking the 
expectation over the randomness of the permutation. 

Lemma 3.1 implies that any mechanism that is truthful under 
task-exchangeable strategies is also truthful under any strategies 
in general. Thus, in the rest of the paper, we can focus on task-
exchangeable strategies. 

3.2 The Plug-in Omni-truthful Mechanisms 
Now, we reveal the power of the JD-framework. We show that 
simply plugging the scoring function of any truthful mechanism 

into the JD-framework gives us an omni-truthful mechanism. To 
begin with, we introduce the following reduction. 

Defnition 3.2 (JD-reduction). Given a mechanism M�� 
under the 

BP-framework which rewards agent 1 �� (�1,� , �2,� ) − �� (�1,�, �2,� ), 
we map it to a mechanism M � � 

under the JD-framework whose 
scoring function � satisfes that � (�1, � , �2, � , �2,� ) = �� (�1, � , �2, � ) − 
�� (�1, � , �2,� ). We call M � � 

the plug-in mechanism of M�� 
. 

JD-reduction creates a mapping from a mechanism under the 
classic BP-framework to a mechanism under the JD-framework. At 
the heart of the mapping is that instead of drawing another penalty 
task from agent 1, the JD-framework will reuse agent 1’s report on 
the joint task as her report on one of the penalty tasks. We now 
show that the plug-in mechanism not only preserves all the truth-
ful properties of the original mechanism (under task-independent 
strategies), it additionally guarantees omni-truthfulness. 

Intuitively, the plug-in mechanism is omni-truthful because 
given a joint task, agent 1’s signals on any tasks other than the 
joint task have no infuence of her payment. Furthermore, agents 
do not know which task will be chosen as the joint task. Therefore, 
for any task, conditioning the report on signals from other tasks is 
not helpful in improving the agent’s expected payment. 

Theorem 3.3. The plug-in mechanism of an informed truthful 
mechanism under the BP-framework is still informed truthful. Fur-
thermore, it is omni-truthful. 

� � 
Proof. Let � �� (�1, �2) and � (�1, �2) be agent 1’s payment 

1 1 
under the original mechanism M�� 

and the plug-in mechanism 
M � � 

respectively, when agents’ task-independent strategies are �1 
� � 

= E[� �� 
and �2. We frst show that E[� (�1, �2)] (�1, �2)].

1 1∑ ∑ 
� � (2)

E[� (�1, �2)] = ��1,�2 � Pr(� (�1) = �1)
1 �3 

�1,�2,�3 �1,�2,�3 

Pr(� (�2) = �2) Pr(� (�3) = �3) · � (�1, �2, �3). 
Recall that � and � (� ) denote the joint and marginal distributions 
of agents’ signals respectively. Note that � (�1, �2, �3) = �� (�1, �2) − 
�� (�1, �3). We can break the above equation into two summations 
in terms of the summation over �� and �� respectively. Because 
�� (�1, �2) is independent of �3 and �� (�1, �3) is independent of �2, 
we can marginalize �3 and �3 out in the summation over �� and 
marginalize �2 and �2 out in the summation over �� . Specifcally, 

� � 
E[� (�1, �2)] 

1∑ ∑ 
= ��1,�2 Pr(� (�1) = �1) Pr(� (�2) = �2)�� (�1, �2)
�1,�2 �1,�2∑ ∑ (1) (2)− � � Pr(� (�1) = �1) Pr(� (�3) = �3)�� (�1, �3)�1 �2 

�1,�3 �1,�3 

=E[� �� (�1, �2)] .1 

This completes the proof of the frst part, because for any �1, �2 ∈ 
� � 

= E[� �� (�1, �2)] ≤ E[� �� � � Θ� , E[� (�1, �2)] (�, �)] = E[� (�, �)] .
1 1 1 1

Now, we show that the plug-in mechanism is omni-truthful. By 
� � � � 

Lemma 3.1, we only have to show that E[� (�1, �)] ≤ E[� (�, �)],
1 1

where �1 is agent 1’s task-exchangeable strategy. Recall that C�−1 = 
{(�1, . . . , ��) ∈ N� |�1 +· · ·+�� = � −1} is the set of possible count-
ing vectors � . We write out the expected payment conditioned on 
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agent 1’s signals of all tasks but � . Note that signals of tasks are 
i.i.d. drawn. 

� � 
E[� (�1, �)] 

1∑ ∑ 
= Pr(� (�1,− � ) = �) Pr(�1,� = �1, �2,� = �2, �2,� = �3)
� ∈C�−1 �1,�2,�3 

· � (� (�1, �), �2, �3)∑ ∑ 
≤ Pr(� (�1,� ) = �) Pr(�1,� = �1, �2,� = �2, �2,� = �3)

� ∈C�−1 �1,�2,�3 

· � (�1, �2, �3)
� � 

=E[� (�, �)],
1 

where the inequality holds because while fxing � , agent 1 is never 
worse of to play a truthful strategy since M � � 

is truthful. □ 

It is worth noting that although Theorem 3.3 only says that 
the plug-in mechanism preserves informed truthfulness11, it triv-
ially generalizes to any (stronger) truthful guarantees such as the 
strongly truthfulness [2]. This is because as long as tasks are i.i.d. sam-

pled, the two frameworks score the agent exactly the same in ex-
pectation. 

With Theorem 3.3, we can easily generalize any truthful mecha-

nism to an omni-truthful mechanism. For example, we know that 
the plugged-in mechanism of the CA mechanism is omni-truthful, 
where the scoring function is 

� (�1, � , �2, � , �2,� ) = �Δ (�1, � , �2, � ) − �Δ (�1, � , �2,� ). 

3.3 Necessity of the JD-framework Reduction 
One may wonder whether the simplifcations in the JD-framework 
are necessary for omni-truthfulness, or if they are only necessary for 
the proof. In this section, we provide a counterexample to illustrate 
that if agent 1 (the agent who is being scored) can observe the 
signal of the disjoint task, the use of the scoring function of the 
CA mechanism does not guarantee omni-truthfulness, even we 
permute the tasks (as shown in step 1 of Mechanism 1). In other 
words, while paying agent 1, it is necessary to exclude the selection 
of the disjoint task from the tasks that are answered by agent 1, 
which implies that the JD-framework reduction is necessary. 

To gain some intuition on why the CA mechanism fails in this 
case, we further show how it achieves truthfulness. At a high-level, 
the task-dependent strategy of agent 1 creates some undesired cor-
relations between her signal on the disjoint task and her expected 
payment, which the CA scoring function cannot handle. We will 
see more in the following example. 

Example. Consider a mechanism M follows the task-selection 
rule of Mechanism 1 except that it samples the disjoint task � also 
from �� . Here the disjoint task is actually jointly answered by 
both agents but only agent 2’s report on the disjoint task is used for 
scoring. Suppose M uses the scoring function of the CA mechanism, 
i.e. �Δ. Now, suppose both agent 1 and agent 2 answer the same two 
tasks, denoted as � and �. In this case, M will randomly choose one 
of these tasks as the joint task and the other as the disjoint task. 

CA is not omni-truthful. Suppose agent 2 is truthfully report-
ing. We want to show that there exist untruthful task-dependent 
11
because we mainly focus on the informed truthfulness in this paper 

strategies such that agent 1 is better-of deviating. Fixing any � and 
� as agent 1’s signals on task � and � respectively, and let �� and �� 
be agent 1’s corresponding reports under a task-dependent strategy 
�1. In this example, an omni-truthful mechanism must guarantee 
that agent 1’s expected utility is maximized when �� = � and �� = � 
for any signal pair � and � . Otherwise, we can construct an untruth-
ful task-dependent strategy that makes agent 1 better-of: reporting 
�� and �� while seeing � and � on two tasks, and reporting truthfully 
otherwise. Note that the above strategy is not task-independent. 

We show that the expected payment of agent 1 in this case can 
be written as (details of deviation are shown in appendix B): 

E[�1 (�1, �) |�1 = (�, �)] (3) ∑ ( )
1 (1) (1)

= ��,� �� − � �,� �� (�Δ (��, �) − �Δ (�� , �)) .(1) (1)
2� � � ∈Σ� � 

(1) (2)
Note that �Δ (�, �) = ��, � − � � . One can numerically fnd 

� � 
counterexamples such that eq. (3) is not maximized at �� = � and 
�� = � for some �, � ∈ Σ when the size of the signal space is larger 
than two.12 

This means that there exist untruthful task-dependent 
strategies which make agent 1 better-of. 

CA is truthful. To gain some intuitions on why mechanism M 
is not omni-truthful, it is useful to show why it is truthful. We will 
show that the expected payment of agent 1 (marginalizing over 
all � and � ) is maximized by truth-telling if �� is independent of 
� and �� is independent of � , or equivalently, agent 1’s strategy is 
task-independent. To see this, by marginalizing eq. (3) over �, � , ∑ ∑ ( )

1 (1) (1)
E[�1 (�1, �)] = ��,� �� − � �,� �� (�Δ (��, �) − �Δ (�� , �)) .

2 
�, � � ∈Σ 

Because �Δ (��, �) is independent of � and �Δ (�� , �) is independent 
of � , we can marginalize � and � out separately. ∑ ∑ ( )

1 (1) (2)
E[�1 (�1, �)] = �Δ (�1 (�), �) ��,� − �

� �
� 

2 
� � ∈Σ ∑ ∑ ( )
1 (1) (2)− �Δ (�1 ( �), �) � � − ��,� � � 
2 

� � ∈Σ 

Then, by renaming � in the second term as � and combining two 
terms, we have ∑ ∑ 

E[�1 (�1, �)] = Δ�, ��Δ (�1 (�), �) (4) 
� � ∈Σ∑ ∑ 

≤ Δ�, ��Δ (�, �) = E[�1 (�, �)] . 
� � ∈Σ 

How does the CA mechanism realize truthfulness? From the 
above example, when strategies are task-independent, the magic of 
the CA mechanism relies on the property that the expected payment 
of an agent is determined by the product of the delta matrix and 
the scoring function �Δ (�, �) = Sign+(Δ�, � ) (as shown in eq. (4)). 
Therefore, truth-telling maximizes this product because whenever 
the delta matrix has a positive entry, the scoring function pairs it 
with a 1; and any untruthful reporting only increases the probability 
that a positive entry is paired with 0 which decreases the product. 

12
We fnd counterexamples by randomly initializing the joint distribution matrix � 

with |Σ | = 3, and searching over all possible values of �� and �� . 
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However, when agent 1’s strategy depends on her signals across 
all tasks, the CA mechanism can no longer preserve this magical 
expected payment structure (as shown in eq. (3)). Thus, the scoring 
function �Δ can no longer guarantee truthfulness in the above 
example where agent 1 can observe the signal of the disjoint task. 

4 THE MATCHING AGREEMENT 
MECHANISM 

We have shown that to achieve omni-truthfulness, we can simply 
plug any truthful mechanism into the JD-framework. However, this 
method does not preserve informed truthfulness. At a high-level, 
because the JD-framework uses agent 2’s reports from two distinct 
tasks to score agent 1, based on our intuition from section 3.3, agent 
2’s task-dependent strategy may be correlated with agent 1’s pay-
ment in an undesired way. Therefore, the key of omni-truthfulness 
is to fnd a scoring function that can handle this correlation. 

We present an informed omni-truthful mechanism called the 
Matching Agreement (MA) mechanism. The scoring function of 
MA is based on the following three-dimensional matrix. 

Defnition 4.1. The Gamma matrix Γ is a |Σ| × |Σ| × |Σ| matrix: 
(2) (2) 

. 

Furthermore, let �Γ = Sign(Γ) where �Γ (�, �, �) = 0 if Γ�, �,� = 0, and 

Γ�, �,� = ��, � �� − ��,� �� 

Γ�,�,� 
�Γ (�, �, �) = otherwise.

13 
|Γ�,�,� | 

MECHANISM 2: The matching agreement mechanism. 
1 Apply Mechanism 1 and pay agent 1 �1 = �Γ (�1, � , �2, � , �2,� ). 

As shown in Mechanism 2, we use the sign of the Gamma matrix 
(2)

as the scoring function. Intuitively, ��, � � is the probability of 
� 

agent 1 observes a signal of � while agent 2 observes a signal of � on 
the same task, and agent 2 observes a signal of � on another task. 
Therefore, the MA mechanism is actually asking: is it more likely 
that �1, � and �2, � are from the same task or is it more likely that �1, � 
and �

2,� are from the same task? The MA mechanism rewards the 
agent if the former is more likely than the latter. In other words, the 
MA mechanism encourages agents to correlate on the same task. 

To prove the informed omni-truthfulness of the MA mechanism, 
we frst note the following property of �Γ , which follows directly 
from the defnition of �Γ . 

Lemma 4.2. �Γ (�, �, �) = −�Γ (�, �, �) for any �, �, � ∈ Σ. 

Theorem 4.3. The matching agreement mechanism is informed 
omni-truthful. 

Proof. By lemma 3.1, we can focus on the task-exchangeable 
strategies. To prove the theorem, by defnition, we want to show 
that 1) any task-exchangeable strategy profle pays agent 1 no more 
than the truth-telling profle; and 2) the truth-telling profle pays 
agent 1 strictly better than the uninformative strategy profle where 
either agent plays an uninformed strategy. 

We frst write down the expected payment of agent 1 when both 
agents play task-exchangeable strategies. Again, this is nothing 
more than writing out the expectations over agents’ signals. 
13
Diferent from �Δ = Sign+ (Δ) which is a 0/1-matrix, entries of �Γ can be −1, 0 or 1. 
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∑ 
E[�1 (�1, �2)] = Pr(�1,� = �1, �2,� = �2, �2,� = �3)

�1,�2,�3∑ ( )
· Pr � (�1,− � ) = �1, � (�

2,−( � ,� ) ) = �2 
�1 ∈C�−1 
�2 ∈C�−2 

· �Γ (�1 (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2))) ∑ ∑ (2)
= ��1,�2 � Pr(�1, �2)�3 
�1,�2,�3 �1 ∈C�−1 

�2 ∈C�−2 

· �Γ (�1 (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2))), 

where �1 and �2 are the counting vectors of agent 1’s and agent 2’s 
signals respectively, on all tasks but the joint task � and the disjoint 
task � . For short, denote Pr(�1, �2) as the joint distribution of agent 
1 and agent 2’s counting vectors. 

Next, in the above equation, we sum over the signals twice but 
in the second time we reorder the summations over �2 and �3 and 
combine the reordered summation termwise with the original order. 
Note that by Lemma 4.2, exchanging the second and the third entries 
of �Γ is equivalent to fipping the sign of �Γ . Thus, ∑ ∑ 

1 (2)
E[�1 (�1, �2)] = ��1,�2 � Pr(�1, �2)�3

2 
�1,�2,�3 �1 ∈C�−1 

�2 ∈C�−2 

· �Γ (�1 (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2))) ∑ ∑ 
1 (2)+ ��1,�3 ��2 Pr(�1, �2)
2 
�1,�3,�2 �1 ∈C�−1 

�2 ∈C�−2 

· �Γ (�1 (�1, �1), �2 (�3, �2 + � (�2)), �2 (�2, �2 + � (�3))) ∑ ∑ 
1 (2) (2)

= (��1,�2 � − ��1,�3 � ) Pr(�1, �2)�3 �2
2 
�1,�2,�3 �1 ∈C�−1 

�2 ∈C�−2 

· �Γ (�1 (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2))) ∑ ∑ 
1 

= Pr(�1, �2) Γ(�1, �2, �3)
2 
�1 ∈C�−1 �1,�2,�3 
�2 ∈C�−2 

· �Γ (�1 (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2)))
(5) ∑ ∑ 

1 ≤ Pr(�1, �2) Γ(�1, �2, �3)�Γ (�1, �2, �3)
2 
�1 ∈C�−1 �1,�2,�3 
�2 ∈C�−2 

(by defnition of �Γ) 
=E[�1 (�, �)] 

Therefore, no task-dependent strategy profle can bring larger 
expected payment than the truth-telling profle. 

The proof of the second part is straightforward. We summarize 
the claim as follows and leave the details in appendix C. □ 

Proposition 4.4. Under the MA mechanism, E[�1 (�, �2)] = 
E[�1 (�, �2)] = E[�1 (�1, �)] = 0. 

One may notice that the MA mechanism is similar to the CA 
mechanism in many aspects. For example, although they are math-

ematically diferent, at a high level, they both reward agents based 
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on the same idea: encouraging correlations on the same task and 
punishing correlations on distinct tasks. The MA mechanism also 
enjoys several nice properties the CA mechanism has. For example, 
they both are clean in math and require as few as two tasks to 
apply. As we will see in the next section, the MA mechanism can 
be learned with the same recipe as the CA mechanism. 

5 DETAIL-FREE MECHANISMS 
So far, we have assumed that we know the joint distribution be-
tween agents’ signals, and thus know the Delta matrix and the 
Gamma matrix. What if the information structure is not known 
which is common while we are soliciting reports either for a new 
type of questions or from a new group of agents? In the detail-free 
setting, we learn the scoring function purely from agents’ reports. 
We show that as long as there are enough i.i.d. tasks to estimate the 
joint distributions accurately, the detail-free version of our mecha-

nisms can still guarantee approximate (informed) truthfulness. 

The detail-free JD-framework. We frst generalize our JD-framework 
to the detail-free setting. The idea is straightforward: apply Mecha-

nism 1 but with an estimated scoring function. In particular, let �˜ 
be the empirical joint distributions of reports estimated using the 
common tasks from �� . That is, �˜�, � is the frequency of observing re-
ports (�, �) on the same task averaged over the number of common 
tasks. Similarly, let �̃ � 

be the empirical marginal distributions of 
reports estimated using tasks from �� for � = 1, 2. Finally, agent 1 is 
paid based on �˜ , the scoring function estimated with �˜ and �˜ � 

. The 
same recipe has been used to design many truthful mechanisms in 
the detail-free setting [5, 11, 14]. We show that this method works 
for our mechanisms as well. 

The detail-free plug-in mechanism. The plug-in mechanisms have 
the same expected payment as the original mechanisms under the 
BP-framework. In other words, to guarantee (�, �)-truthfulness 
with the same error rates, they require the same accuracy of the 
estimation as the original mechanisms. Therefore, unsurprisingly, 
the plugged-in method preserves the requirement of the number of 
tasks. Again, we use the CA mechanism as an example. 

Theorem 5.1 ([14]). Suppose �� = Θ(�). There exists an � = 
� ( |Σ|3 

log 1 /�2) such that the plug-in mechanism of the CA mecha-
� 

nism is (�, �)-omni-truthful and (�, �)-informed truthful. 

Theorem 5.1 is a corollary of Theorem 5.13 of Shnayder et al. [14]. 
First, the CA mechanism is known to be (�, �)-informed truthful 
with � ( |Σ|3 

log 1 /�2) tasks. Then, Theorem 3.3 straightforwardly 
�

generalizes truthfulness to omni-truthfulness. 

The detail-free MA mechanism. A more interesting question is 
whether the same recipe can be used to design the detail-free MA 
mechanism and how many tasks are required. The frst challenge 
is that since we are using agents’ reports to estimate the scoring 
function, it may be possible for the agents to game the mecha-

nism by potentially changing the scoring function. Fortunately, the 
following lemma shows that this can never happen. 

Lemma 5.2. Let �
1 
� (�1,�2) be the payment of agent 1 under 

the scoring function � when agents’ strategies are �1 and �2 re-
spectively. For any scoring function under the JD-framework � ∈ 

{−1, 0, 1}|Σ |× |Σ |× |Σ | that satisfes ��, �,� = −��,�,� , and any strategies 
�1,�2 ∈ Θ� , we have E[��Γ (�, �)] ≥ E[�

1 
� (�1,�2)].

1 

Lemma 5.2 (see proof in appendix D) is the key of understanding 
why the MA mechanism is informed omni-truthful. It shows that 
agents can never improve their expected payments by reporting 
untruthfully and manipulating the ideal scoring function �Γ . 

We use the following two-step argument to provide some intu-
ition on why MA is informed truthful in the detail-free setting. First, 
any scoring function estimated with our detail-free JD-framework 
satisfes the property of �̃�, �,� = −�̃�,�, � for any �, �, � ∈ Σ, since 
�̃�, �,� = Sign( �̃�, � �2 − �̃�,� �

2). Therefore, exchanging the second ˜ ˜ 
� � 

and the third entry of �̃ is equivalent to inverting the sign. Second, 
by Lemma 5.2, �Γ (which is unknown) together with the truth-
telling strategy profle maximizes the expected payment. This im-

plies that, indeed, agents can be strategic in changing the scoring 
function, but this will only harm the expected payment. 

Now, to prove informed omni-truthfulness, we only have to 
show that if there are enough tasks, the estimated scoring function 
converges to the maximum expected payment E[��Γ (�, �)] with

1

high probability. We summarize this result in the following theorem. 

Theorem 5.3. Suppose � > 0 and 0 < � < 1. Suppose �� = Θ(�).( )
Then, there exists a number of tasks � = � |Σ|3 

log 1 /�2 such that 
� 

the MA mechanism is (�, �)-informed omni-truthful. 

See appendix E for the proof. Perhaps surprisingly, although 
the scoring function of the MA mechanism looks more compli-

cated than the CA mechanism (a three-dimension matrix v.s. a 
two-dimension matrix), they require the same order of tasks to 
learn. Indeed, they both required learning the same artifacts, i.e. the 
joint distribution of agents’ signals. 

6 CONCLUSION AND FUTURE WORK 
Our paper provides the frst discussion on how to design (informed) 
omni-truthful mechanisms that generalize previous literature be-
yond the assumption of task-independent strategy. We present 

• the joint-disjoint task framework (JD-framework) which 
simplifes the commonly used bonus-penalty task framework 
(BP-framework) from the previous literature; 

• a plug-in method that directly generalizes truthfulness to 
omni-truthfulness; 

• the matching agreement (MA) mechanism, an informed 
omni-truthful mechanism; 

• a method to learn the MA mechanism in the detail-free set-
ting which requires the same number of tasks as the CA 
mechanism. 

However, there is more to do. First, we believe that there is a 
much larger space of informed omni-truthful mechanisms. Can we 
identify a family of them? Second, while we generalize the strategies 
beyond the task-independent assumption, our mechanisms still 
require the tasks to be i.i.d.. Is our intuition in this paper helpful in 
preventing strategic behaviors given correlated tasks? 
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A PROOF OF LEMMA 3.1 
Proof. We frst write down the expected payment of agent 1, 

where the expectation is taken over the randomness of the signals, 
agents’ strategies and the mechanism (random permutations and 
the random selection of joint/disjoint tasks). 
E[�1 (�1,�2)] 

=E[� (��1 , ��2 , ��2 )] (� and � are r.v. of tasks � and �.)
1,� 2,� 2,� ∑ 

= Pr(��1 = �1, ��2 = �2, ��2 = �3)� (�1, �2, �3)
1,� 2,� 2,� 

�1,�2,�3 ∈Σ 

The joint probability of agents’ reports in the above equation de-
pends on agents’ signals and strategies. Next, we further marginal-

ize agents’ signals on the joint task and disjoint task. 
E[�1 (�1,�2)] ∑ 

= Pr(�1,� = �1, �2,� = �2, �2,� = �3)
�1,�2,�3 ∈Σ∑ 
· Pr(�� 

1,� 
1 = �1 |�1,� = �1) Pr(�� 

2,� 
2 = �2 |�2,� = �2, �2,� = �3)

�1,�2,�3 ∈Σ 

· Pr(��2 = �2, �2,� = �3)� (�1, �2, �3)
2,� = �3 |�2,� 

Note that the above equations hold because agent 1 cannot ob-
serve the signal on the disjoint task. Therefore, her report on the 
joint task does not depend on agent 2’s signals on either task, i.e. 

Pr(��1 = �1 |�1,� = �1, �2,� = �2, �2,� = �3) = Pr(��1 = �1 |�1,� = �1) .
1,� 1,� 

Now, to prove the lemma, we can focus on the conditional prob-
abilities. Fixing arbitrary � ∈ �� and � ∈ �2 \ �� , for agent 1, 
Pr(��1 = �1 |�1, � = �1) is the probability of agent 1 reporting �1 on

1, � 
task � when her signal on that task is �1 and her strategy is �1. We 
want to show that this probability can be equivalently achieved 
with a task-exchangeable strategy. The same recipe can be used to 
prove an analogue result for agent 2. We summarize these results 
for agent 1 and agent 2 in Proposition A.1 and A.2 respectively (we 
omit the subscript of agents), which completes the proof. □ 

Proposition A.1. For any � ∈ Θ� , there exists an � ∈ Θ� such 
that Pr(�� = � |� � = �) = Pr(�� = � |� � = �) for any � ∈ �� and� � 
�, � ∈ Σ. 

Proof. We start with marginalizing the probability on the left-
hand-side of the equation over all signal vectors of agent 1 on all 
tasks other than the joint task � and all possible permutations (due 
to step 1 in Mechanism 1). We use − � to denote all the tasks in �1 
other than � . For short, let Pr(� |�) = Pr(�� = � |� � = �).

� ∑ 
Pr(� |�) = Pr(�− � = �)

� ∈Σ�−1 ∑ 
1 · Pr(� (� (� |� � = �, �− � = �))� ( � ) = � ), 

� �! 

where � ( �) is the index of the joint task under permutation � , and 
� (� |� � = �, �− � = �) is the signal vector that the agent observes 
under the permutation (conditioned on her signal on task � is � 
and her signals on all the other tasks are � . Therefore, � (� (� |� � = 
�, �− � = �))� ( � ) is the random variable of agent’s report on the 
joint task after permutation. 

Our goal is to represent the above probability using a task-
exchangeable strategy. To do so, frst note that as long as the vectors 
� contain the same number of each signal, they appear with the 
same probability. Therefore, we can categorize these cases based on 
the counting vectors � = (�1, . . . , ��) where � is the size of signal 
space. Denote C� as the set of all possible counting vectors. ∑ 

Pr(� |�) = Pr(� (�− � ) = �)
� ∈C�−1 ∑ ∑ 

1 
Pr(� (� (� |� � = �, �− � = �))� ( � ) = � ). 

�! 
� ∈Σ�−1: � 
� (� )=� 

Next, we simplify the summation over � . By symmetry, we know 
that � ( �) will map task � to any ℓ ∈ �1 with equal probability. We 

′ 
use � to denote the permutation of length � − 1. Then, ∑ 
Pr(� |�) = Pr(� (�− � ) = �)

� ∈C�−1 ∑ ∑ ∑ 
1 1 

Pr(� (� |�ℓ = �, �−ℓ = � ′ (�))ℓ = � ). 
� (� − 1)!′ � ∈Σ�−1: ℓ ∈�1 � 

� (� )=� 

Because fxing � , any vector � such that � (�) = � will be treated 
′

equivalently while averaging � . Therefore, we can simply remove 
′

the marginalization over � in the above equation. ∑ 
Pr(� |�) = Pr(� (�− � ) = �)

� ∈C�−1 ∑ ∑ 
1 · Pr(� (� |�ℓ = �, �−ℓ = �)ℓ = � ). 
� 

ℓ ∈�1 � ∈Σ�−1: 
� (� )=� 

Now, given any strategy � ∈ Θ� , signal � , report � and counting 
vector � ∈ C�−1, let � be a task-exchangeable strategy such that ∑ ∑ 

1

Pr(� (�, �) = � ) = Pr(� (� |�ℓ = �, �−ℓ = �)ℓ = � ). 
� 

ℓ ∈�1 � ∈Σ�−1: 
� (� )=� 

(6) 
It is easy to show that under such a strategy �, Pr(�� = � |� � = �) = 

� 
Pr(�� = � |� � = �), which completes the proof. □

� 

Proposition A.2. For any � ∈ Θ� , there exists an � ∈ Θ� such 
that Pr(�� = � |� � = �, �� = � ′) = Pr(�� = � |� � = �, �� = � ′) for

� � 
any � ∈ �� , � ∈ �2 \ �� and �, � ′ , � ∈ Σ. The same result holds while 
replacing �� with �� in the above equation. 

� � 

The proof is analogue to Proposition A.1, and thus is omitted. 
The only diference is that we have to condition on two signals. 

B EXPECTED PAYMENT IN EXAMPLE 3.3 
In this example, the expected payment of the CA mechanism is 
E[�1 (�1, �) |�1 = (�, �)] ∑ ⎛∑ 

= Pr(ℓ is the joint task) ⎜ Pr(�2,ℓ = � |�1 = (�, �))�Δ (�ℓ , �)
ℓ ∈{�,� } ⎝� ∈Σ ∑ ⎞ 
− Pr(�2,−ℓ = � ′ |�1 = (�, �))�Δ (�ℓ , � ′)⎟ 
� ′ ∈Σ ⎠ 
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Note that by random selection, each ℓ has probability 1
2 of being 

chosen as the joint task. Then, by renaming � ′ as � and combining 
the two terms in the above equation, we have ∑ 
1 ( )

= Pr(�2,ℓ = � |�1 = (�, �)) − Pr(�2,−ℓ = � |�1 = (�, �) �Δ (�ℓ , �)
2 
ℓ ∈{�,� }
� ∈Σ 

′ (rename � as �)∑ ( )
1 (1) (1)

= ��,� � − � �,� � (�Δ (��, �) − �Δ (�� , �)) .(1) (1) � � 
2� � � ∈Σ� � 

(7) 

C PROOF OF PROPOSITION 4.4 
Proof. We want to show that if at least one of the agents play 

the uninformed strategy, the expected payment for agent 1 is zero 
which is strictly less than the truth-telling profle. To see this, frst 
let agent 1 plays an uninformed strategy: 
E[�1 (�, �2)]∑ ∑ 
1 

= Pr(�1, �2) Γ(�1, �2, �3)
2 
�1 ∈C�−1 �1,�2,�3 
�2 ∈C�−2 

· �Γ (� (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2))) (by eq. (5))
Let � = � (�1, �1) be an r.v. that does not depend on �1 and �1. We 
then can rearrange the order of summations such that the terms that 
do not depend on �1 and �1 can be moved out of the summations 
over �1 and �1. ∑ ∑ 

1 
= �Γ (�, �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2)))
2 
�2 ∈C�−2 �2,�3∑ ∑ 

· Γ(�1, �2, �3) Pr(�1, �2)
�1 �1 ∈C�−1 ∑ ∑ 

1 
= Pr(�2) �Γ (�, �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2)))
2 
�2 ∈C�−2 �2,�3 

(2) (2) (2) (2)· (� � − � � ) = 0.�2 �3 �3 �2 

The same recipe can be used to prove the analogue result for agent 
2, i.e. E[�1 (�1, �)] = 0. We thus omit the proof. □ 

D PROOF OF LEMMA 5.2 
Proof. Again, by Lemma lemma 3.1, we can focus on task-

exchangeable strategies. Let �1 and �2 be the task-exchangeable 
strategies that are equivalent to strategies �1 and �2. By eq. (5), the 
expected payment for agent 1 while the scoring function is � and 
strategies are �1 and �2 is: ∑ ∑ 

1 
E[�

1 
� (�1, �2)] = Pr(�1, �2) Γ(�1, �2, �3)

2 
�1 ∈C�−1 �1,�2,�3 
�2 ∈C�−2 

· � (�1 (�1, �1), �2 (�2, �2 + � (�3)), �2 (�3, �2 + � (�2)))
Because the entries of � are -1, 0 or 1, the above equation is upper 
bounded by 
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∑ ∑ 
1 

E[�
1 
� (�1, �2)] ≤ Pr(�1, �2) |Γ(�1, �2, �3) |

2 
�1 ∈C�−1 �1,�2,�3 
�2 ∈C�−2 ∑ 

1 
= Γ(�1, �2, �3)Sign (Γ(�1, �2, �3))
2 
�1,�2,�3 

=E[��Γ (�, �)] .
1 

□ 

E PROOF OF THEOREM 5.3 
Proof. We want to show: with probability at least 1 − � , 

�̃Δ�1 B �
1 (�, �) − ��Γ (�, �) ≤ �,

1| |
where �̃ is the scoring function learned from the detail-free JD-
framework with all agents truthfully reporting. Note that ∑ 

1 ( )
Δ�1 = Γ(�, �, �) Sign(Γ̃ (�, �, �)) − Sign(Γ(�, �, �))

2 
�, �,�| |∑ 

1 ≤ Γ(�, �, �) Sign(Γ̃ (�, �, �)) − Sign(Γ(�, �, �))| |
2 
�, �,�∑ 

≤ Γ(�, �, �) − Γ̃ (�, �, �) .| |
�, �,� 

We now apply the result that any distribution over the fnite domain 
Λ can be learned within L1 distance of � and with probability 1 − � 
given � ( |Λ| log 1 /�2) i.i.d. samples [3]. This means that with �� = 

� 
� (16|Σ|2 

log 1 /�2) common tasks we can estimate the marginal
� 

distributions with error � 
4 , and with � = � (16|Σ|3 

log 1 /�2) tasks
� 

� 
we can estimate the joint distribution with error 

4 |Σ | . Formally, ∑ � ∑ (2) � 
��, � − �˜�, � ≤ and � − �˜ 2 ≤ .| | 

4 | � � | 4|Σ|
�, � � 

Now, we can bound the L1 distance between two matrices:∑ ∑ (2) (2) 
˜Γ(�, �, �) − Γ̃ (�, �, �) = ��, � � − ��,� � − (�˜�, � �2 − �˜�,� | | | � � � 

�, �,� �, �,� 
(2)≤ 2 

∑ 
��, � � − �˜�, � �˜ 2 

� � |
�, �,� ∑ (2) (2) � ≤ 2 

|
��, � � − �̃�, � (� ± )

|� � 
4|Σ|

�, �,� ∑ (2) � 
= 2 � (��, � − �˜�, � ) ± �˜�, � � 

4|Σ|| |
�, �,�∑ ∑ � ≤ 2 ��, � − �̃�, � + �̃�, � | | 

2|Σ|
�, � �, �,� 

� � ≤ = � 
2 
+ 
2 

This completes the proof as with probability at least 1 − � , 
�˜ �˜�

�Γ (�, �) ≥ �
1 (�, �) − � ≥ �

1 (�1,�2) − �,
1 

and furthermore, one can easily verify that if either agent plays an 
uninformative strategy, the expected payment is 0 which is strictly 
smaller than ��Γ (�, �) for a small enough � . □

1 

�˜ � 
2)| 
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