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Abstract We describe the development of a C–O coupling reaction
between aryl(2,4,6-trimethoxyphenyl)iodonium salts and aliphatic al-
cohols under weak base conditions. The scope of the reaction is pre-
sented, with 16 examples ranging in yield from moderate to high (54–
96%). The limitations of the reaction are also presented. Mechanistic
experiments reveal a complex network of reactions that include side re-
actions that generate arynes and oxidize the alcohol nucleophile.

Key words arylation, ethers, alcohols, diaryliodonium compounds, li-
gand coupling, C–O coupling

Alkyl aryl ethers are common motifs in pharmaceuti-

cals, agrochemicals, and functional materials (Scheme 1a).2

The reaction between an aryl electrophile and an alkoxide

nucleophile is at the forefront of strategies to synthesize

these scaffolds. Nucleophilic aromatic substitution (SNAr)

dominated early synthetic strategies,3 though the advent of

transition-metal-catalyzed reactions has greatly expanded

the scope of these reactions.4 Recent reports have also in-

cluded the combination of transition-metal catalysts and

either electrochemistry or photochemistry.5 Notwithstand-

ing the advances provided by these methods, they do have

limitations: the SNAr reaction is notably limited in substrate

scope as a result of the Meisenheimer intermediate, cop-

per- and palladium-catalyzed reactions often require de-

signer ligands, and nickel/photocatalysis and nickel/electro-

chemistry are typically limited to electron-deficient (acti-

vated) aryl halides.

An alternative strategy for C–O coupling that has taken

hold over the past decade involves the use of main-group

mediators (Scheme 1b).6–8 Mechanistically, these reactions

are intriguing because the key C–O bond-forming step oc-

curs through ligand coupling, which is the main-group

equivalent of reductive elimination (Scheme 1b). Therefore,

they have the potential for a substrate scope similar to that

of transition-metal-catalyzed reactions, but using Earth-

abundant materials.9 Unlike SNAr and transition-metal-cat-

alyzed reactions that use commercially available aryl ha-

Scheme 1  Strategy and challenges in the synthesis of alkyl aryl ethers
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lides, the iodonium, phosphonium, and sulfonium salt re-

agents that are needed in these reactions are typically not

commercially available. However, the syntheses of these

aryl main-group compounds are generally quite simple, and

the products are isolated by filtration in high yields as

bench-stable solids.

Our interest in the development of reactions with non-

symmetrical aryl(TMP)iodonium salts (TMP = 2,4,6-trime-

thoxyphenyl)10 and the success we have had in the aryla-

tion of phenols prompted us to develop a C–O coupling be-

tween aryl(TMP)iodonium salts and aliphatic alcohols. This

area is well-trodden territory,6 and several challenges have

been identified.10i,11 First, diaryliodonium salts are suscepti-

ble to aryne formation when treated with alkoxide bases:

the Olofsson group reported that the reaction between di-

tolyliodonium triflate and pentanol with t-BuONa as a base

resulted in a mixture of ipso and cine substitution products,

consistent with an aryne intermediate (Scheme 1c).11 Addi-

tionally, we have observed that treatment of 4-chlorophe-

nyl(TMP)iodonium salts with t-BuONa in the presence of

furan as an aryne trap resulted in an 82% yield of the aryne–

furan cycloadduct (Scheme 1c).10i Secondly, oxidation of al-

cohols to carbonyl compounds has been observed in reac-

tions involving diaryliodonium salts and strong bases. The

Olofsson group observed that 1-phenylethanol was oxi-

dized to acetophenone (60%) in the presence of di-

phenyliodonium triflate and t-BuONa (Scheme 1c).11

Our development of a method to couple diaryliodonium

salts with aliphatic alcohols focused on substrates that are

prone to undergo side reactions, so that we could address

some of the challenges in this chemistry (Scheme 1c). We

therefore used 4-chlorophenyl(TMP)iodonium tosylate (1a)

as the aryl electrophile and benzyl alcohol (2a) as the

alkoxide nucleophile source (Table 1). We found that 1.5

equivalents of alcohol 2a and 3.0 equivalents of Cs2CO3 as

the base in toluene as the solvent for two hours at 55 °C re-

sulted in a 78% NMR yield of ether 3a, and we consider

these our ‘standard conditions’ (Table 1, entry 1). We tested

other solvents that have been used for C–O coupling with

diaryliodonium salts6 but in all cases, a lower yield was ob-

served for 3a than with our standard conditions (entries 1–

4). Temperatures that were lower or higher than 55 °C re-

sulted in lower yields of 3a (entries 5 and 6). Bases that

have been successfully used in arylation of phenols with di-

aryliodonium salts, such as K2CO3 and t-BuONa, also pro-

vided lower yields of 3a than did Cs2CO3 (entries 7 and 8).

Triethylamine (NEt3) was ineffective as a base in this reac-

tion (entry 9). The mechanistic implications of our standard

conditions are addressed later (see below).

The scope and limitations of this reaction are shown in

Scheme 2. In the arylation of benzyl alcohol (2a), we ob-

tained moderate to high yields (63–75%) of products 3a–d

from activated and moderately deactivated aryl(TMP)iodo-

nium salts with substituents in the para-position to the io-

donium leaving group. A limitation on this reaction is deac-

tivated aryl(TMP)iodonium salts: the use of compound 1e,

bearing a 4-methoxy group, did not lead to the alkyl aryl

ether product (Scheme 2). This is a distinct difference from

our prior work on the arylation of phenols with

aryl(TMP)iodonium salts.10g A substituent in the meta-posi-

tion resulted in 71% yield of 3f. Other primary alcohols

were also compatible with this chemistry. Pentan-1-ol was

arylated in high yields with aryl(TMP)iodonium salts bear-

ing electron-withdrawing (NO2 and CF3) or electron-donat-

ing (Me) substituents in the para-position (3g–i). It is im-

portant to point out here that, in the case of the

aryl(TMP)iodonium tosylate 1i bearing a 4-methyl substitu-

ent, a small amount of an aryne was formed.11 The ratio of

ipso/cine substitution previously observed by Olofsson for a

related substrate was 4:1,11 and here we observed a ~19:1

ratio (Scheme 2). Additionally, the relatively weak nucleop-

hile 2,2,2-trifluoroethanol was arylated under these condi-

tions in moderate to high yields of 54–96% (3j–n).12 The or-

tho-effect is operative in this reaction, and a competition

experiment between 1k and 1j gave 3k and 3j in a 1.2:1 ra-

tio, which is consistent with the yields observed for these

two products (Scheme 2).13,14 Secondary alcohols were ary-

lated in high yield by activated aryl(TMP)iodonium salts

(3o–q). Tertiary alcohols are another limitation of the reac-

tion. Although we and others have observed C–O coupling

of diaryliodonium salts with sodium tert-butoxide,6d,10i the

use of tert-amyl alcohol under these conditions resulted in

a very low yield of 3r, even with the activated aryl(TMP)io-

donium salt 1b.

Table 1  Screening of Reaction Conditionsa

Entry Deviation from standard conditions Yieldb (%) of 3a

1 – 78

2 THF as solvent 28

3 TBME as solvent 42

4 DCE as solvent 43

5 30 °C 43

6 80 °C 38

7 K2CO3 as the base 51

8 t-BuONa as the base 19

9 NEt3 as the base 3

10 30 min 42

a Standard conditions: 1a (0.1 mmol), 2a (0.15 mmol, 1.5 equiv), Cs2CO3 
(0.3 mmol, 3 equiv), toluene (0.5 mL), 55 °C, 2 h.
b Determined by 1H NMR spectroscopy of the crude product with 1,2,4,5-
tetrachloro-3-nitrobenzene as internal standard.
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Scheme 2  Scope and limitations of C–O coupling

Diaryliodonium salts, arynes, and the oxidation of alco-

hols can mechanistically intersect in several ways. First, we

and others11,15 have shown that diaryliodonium salts gener-

ate arynes under basic conditions. Even the relatively mild

base used here, cesium carbonate, has been shown to be ef-

fective.15j,m Additionally, Hoye and co-workers have shown

that arynes dehydrogenate alcohols in a concerted process

to generate the simple arene and a carbonyl compound

(Scheme 3a).16 The Olofsson group has shown that the com-

bination of a diaryliodonium salt, a benzylic alcohol, and a

strong base (t-BuONa) resulted in alcohol oxidation

(~60%).11 Alcohol oxidation occurred even in the presence

of a diaryliodonium salt that could not produce an aryne;

this was key evidence supporting the view that arynes are

not involved in alcohol oxidation.11 The group proposed

that alcohol oxidation occurs either by intramolecular

deprotonation of the benzylic proton by an aryl group or by

intermolecular deprotonation with tert-butoxide base

(Scheme 3b).11

In light of the literature precedents, we conducted sev-

eral experiments to identify potential reaction pathways in

addition to C–O coupling under our optimal condition (Ta-

ble 2). We also conducted two sets of control experiments

to rule out background reactions. First, in the absence of the

diaryliodonium salt, benzyl alcohol (2a) was not oxidized

under our standard conditions (Cs2CO3, toluene, 55 °C, 2 h);

therefore, the ambient atmosphere cannot lead to any

benzaldehyde. Secondly, when benzyl alcohol was replaced

by furan, we did not observe any aryne–furan cycloadduct

and, therefore, Cs2CO3 is not sufficiently basic to generate

arynes in toluene at 55 °C for two hours. We added furan as

an aryne trap to a reaction of 1f and 2a, and analyzed the

crude 1H NMR spectrum. We observed a low 8% yield of the

C–O coupling product 3f and a high 73% yield of the aryne–

furan cycloadduct 5a (Table 2, entry 1). Consistent with our

prior work, we also observed no benzaldehyde (entry 1).6e

We have previously shown that meta-substituents activate

aryl(TMP)iodonium salts toward aryne formation in the

presence of alkoxides,10i so we turned our attention to para-

substituted aryl(TMP)iodonium salts, which are less prone

to aryne formation. The reaction of 1b, bearing a strongly

electron-withdrawing 4-nitro substituent, with 2a in the

presence of furan as an aryne trap resulted in a high yield of

3b (96%) and no benzaldehyde or aryne–furan cycloadduct,

based on an analysis of the crude 1H NMR spectrum (entry

2). When we used 1a, which has a less-electron-withdraw-

ing 4-chloro substituent, the yield of the C–O coupling

product was lower (58%), and we observed both benzalde-

hyde (14%) and the aryne–furan cycloadduct (10%) in the

crude 1H NMR spectrum (entry 3). The use of moderately

electron-rich 1d, bearing a 4-methyl substituent, again re-

sulted in a slightly lower yield of the C–O coupling product

3d (48%), a higher yield of benzaldehyde (23%), and a slight-

ly lower yield of the aryne–furan cycloadduct (6%), based on

the crude 1H NMR spectrum. Collectively, these results

point to a complex reaction system in which competitive

reaction rates are controlled by the aryl substituent’s posi-

tion and electronic effects. Moreover, although arynes are

formed in some reactions, consistent with Olofsson’s obser-

vations,11 it is unlikely that they are responsible for alcohol

oxidation under these conditions.
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Table 2  Experimental Evidence for the Formation of Arynes and Oxida-

tion of Alcohols

Our mechanistic interpretation is separated into sub-

strates with meta- or para-substituents (Scheme 4). In the

case of meta-substituents (i.e., compound 1f), we observed

a C–O coupling product (3f) and the aryne intermediate A,

but no benzaldehyde was formed (Table 2, entry 1; Scheme

4a). The combination of Cs2CO3 and benzyl alcohol (2a)

probably generates a sufficient quantity of alkoxide to

deprotonate 1f and generate the aryne intermediate A

(Scheme 4a). The presence of A was confirmed by trapping

experiments in which furan was introduced into reaction

mixtures, and the yield of the aryne–furan cycloadduct 5a

was similar to that of 3f in the absence of furan (Scheme 2;

Table 2, entry 1). We can neither confirm nor rule out the

presence of 3-iodane B, which might be a precursor to

aryne A (Scheme 4a). However, given the high yield of

aryne confirmed in these reactions, we posit that karyne >>>

kligand coupling and that the vast majority of 3f is derived from

aryne A (Scheme 4a). We measured the arynophilicity of

benzyl alcohol based on our previously reported scale,10j,14

and we obtained a value of –1 (compared with 0 for furan),

which agrees well with the ratio of 5a and 3f in Table 2, en-

try 1. We cannot rule out the possibility that a small

amount of alkoxide also reacts with aryne A. In this case,

the formation of aryne A is inconsequential to the product

distribution because the major product of nucleophilic ad-

dition of benzyl alcohol (2a) to aryne A is the same as that

produced by ligand coupling from B, that is ipso-substitu-

tion of the iodonium leaving group.17 Moreover, given that

we observe no benzaldehyde in the reaction of 1f and 2a, a

combination that would generate substantial amounts of

aryne, we speculate that under these conditions, arynes do

not mediate the oxidation of benzyl alcohol.

In the case of para-substituents, we observed C–O cou-

pling products 3, benzaldehyde (4), and arynes, though

their ratios depend on the electronic effects of the substitu-

ent (Scheme 4b). In all three cases studied, the C–O cou-

pling products 3b, 3a, and 3d were the major product and,

therefore, we suggest that 3-iodane D is a key intermediate

in this case, unlike the case with meta-substituents

(Schemes 4a and 4b). Compound 1b with a para-nitro sub-

stituent gave a high yield of the C–O coupling product 3b

and no benzaldehyde (4) or aryne–furan cycloadduct 5b

when the reaction was conducted in the presence of furan

(Table 2, entry 2). Therefore, we interpret these results as

suggesting that when strongly electron-withdrawing sub-

stituents are present (i.e., NO2), kligand coupling >>> koxidation and

karyne (Scheme 4b). The 4-chloro substituent in compound

1a is less electron withdrawing than the 4-nitro substituent

in 1d and, consequently, both alcohol oxidation and aryne

formation were observed (Table 2, entry 3; Scheme 4b). The

chloro substituent is inductively withdrawing and slightly

activates the meta-position to deprotonation and aryne for-

mation. Overall, the relative order of competitive rates for

compound 1a is kligand coupling > koxidation ≈ karyne (Scheme 4b).

As the transferring aryl group becomes more electron rich,

based on the substituent (4-NO2 to 4-Cl to 4-Me), the yield

of C–O coupling decreases and the yield of side reactions in-

creases. The reaction of compound 1d with an electron-do-

nating 4-methyl substituent produces more benzaldehyde

(4) than was observed with compound 1a bearing a 4-

chloro substituent. However, the amount aryne intermedi-

ate C is reduced relative to that observed for 1a due to the

inductively donating character of methyl, based on its m

value (Scheme 4b). Therefore, the relative order of competi-

Entry Substrate Yield (%) of 3 Yield (%) of 4 Yield (%) of 5

1 1f (R = 3-F) 8 – 73

2 1b (R = 4-NO2) 96 – –

3 1a (R = 4-Cl) 58 14 10

4 1d (R = 4-Me) 48 23 6

a Reaction conditions: 1 (0.1 mmol, 1 equiv), 2a (0.15 mmol, 1.5 equiv), 
furan (0.5 mmol, 5 equiv), Cs2CO3 (0.3 mmol, 3 equiv), toluene (0.5 mL), 
55 °C, 2 h.
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tive rates with compound 1d is kligand coupling > koxidation > karyne

(Scheme 4b). In this case, the C–O coupling product is pro-

duced in a higher yield than the alcohol oxidation product,

which is opposite to the result previously observed by

Olofsson.11 However, there are several differences between

these two systems: (a) aryl(TMP)iodonium salts versus di-

phenyliodonium salt, (2) benzyl alcohol versus phenethyl

alcohol, (3) 55 °C versus r.t., and (4) Cs2CO3 versus t-BuONa.

Although the spectator ligand might be an important factor,

and both systems employ benzylic alcohols, we suspect

that the temperature and, especially, the nature of the base

have greater impacts on the relative product distribution.

In conclusion, we have developed a method for O-aryla-

tion of aliphatic alcohols with aryl(TMP)iodonium salts.18,19

The method is compatible with primary and secondary al-

cohols and with aryl groups bearing electron-withdrawing

substituents or moderately electron-donating substituents.

The mechanisms of O-arylation and alcohol oxidation (as a

side reaction) are dependent on the position and electronic

effects of the aryl substituent.
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