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Two Strongly Truthful Mechanisms for Three

Heterogeneous Agents Answering OneQuestion
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Peer prediction mechanisms incentivize self-interested agents to truthfully report their signals even in the

absence of verification by comparing agents’ reports with their peers. We propose two new mechanisms,

Source and Target Differential Peer Prediction, and prove very strong guarantees for a very general setting.

Our Differential Peer Prediction mechanisms are strongly truthful: Truth-telling is a strict Bayesian Nash

equilibrium. Also, truth-telling pays strictly higher than any other equilibria, excluding permutation equilib-

ria, which pays the same amount as truth-telling. The guarantees hold for asymmetric priors among agents,

which the mechanisms need not know (detail-free) in the single question setting. Moreover, they only require

three agents, each of which submits a single item report: two report their signals (answers), and the other

reports her forecast (prediction of one of the other agent’s reports). Our proof technique is straightforward,

conceptually motivated, and turns on the logarithmic scoring rule’s special properties.

Moreover, we can recast the Bayesian Truth Serum mechanism [20] into our framework. We can also

extend our results to the setting of continuous signals with a slightly weaker guarantee on the optimality of

the truthful equilibrium.
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1 INTRODUCTION

Three friends, Alice, Bob, and Chloe, watch a political debate on television. We want to ask their
opinions on who won the debate. We are afraid they may be less than truthful unless we can pay
them for truthful answers. Thus, we seek to design mechanisms that reward the agents for truth-
telling. Their opinions may systematically differ, but are nonetheless related. For example, it turns
out Alice values description and argumentation, Bob values argumentation and presentation, and
Chloe values description and presentation.
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In this article, we design two peer prediction mechanisms by asking Alice, Bob, and Chloe to
play three characters: the expert, who makes predictions; the target who, is being predicted; and
the source, who helps predictions. The source and target are asked for their opinions. In the most
straightforward setting, the expert makes two predictions (e.g., 70% chance of “yes” and 30% chance
of “no”) of the target’s opinion: An initial prediction before the source’s opinion is revealed and
an improved prediction afterwards.
Our political debate motivation might be quixotic (at the very least, we need to ensure that they

do not communicate during the debate so we can elicit the target’s prediction with and without the
source’s information). However, peer-grading can easily fit into this paradigm: We might ask Bob
and Carol to grade a paper, while Alice tries to predict Carol’s mark for the paper before and after
seeing Bob’s mark. Similarly, Alice, Bob, and Carol might be peer-reviewing a paper, filling out a
survey,1 or doing any crowdsourcing task (e.g., labeling data for machine learning applications).
In such cases, it is natural to reward agents for doing a good job, and also to have them update a
prediction with additional information.
For simplicity (and to collect a grade from all three agents), Alice, Bob, and Chloe, might play

all three characters: Alice could predict Chloe’s signal before and after seeing Bob’s; Bob could
predict Alice’s signal before and after seeing Chloe’s; and Chloe could predict Bob’s signal before
and after seeing Alice’s.
This problem is known in the literature as peer prediction or information elicitation without

verification. In the single-question setting agents are only asked one question. Incentivizing agents
is important so they not only participate, but provide thoughtful and accurate information. Our
goal is to elicit truthful information from agents with minimal requirements.
Drawing from previous peer prediction literature, we would like our mechanisms to have the

following desirable properties:

Strongly Truthful [12]. Providing truthful answers is aBayesianNash equilibrium (BNE)

and also guarantees the maximum agents’ welfare among any equilibrium. This maximum
is “strict” with the exception of a few unnatural permutation equilibria where agents report
according to a relabeling of the signals (defined more formally in Section 2).2 This will in-
centivize the agents to tell the truth–even if they believe the other agents will disagree with
them. Moreover, they have no incentive to coordinate on an equilibrium where they do not
report truthfully. In particular, note that playing a permutation equilibrium still requires as
much effort from the agents as playing truth-telling.

General Signals. The mechanism should work for heterogeneous agents who may even have
continuous signals (with a weaker truthfulness guarantee). In our above example, the friends
may not have the same political leanings, and the mechanism should be robust to that. Fur-
thermore, instead of a single winner, wemaywant to elicit themagnitude of their (perceived)
victory.

Detail-Free. The mechanism is not required to know the specifics about the different agents
(e.g., the aforementioned joint prior). In the above example, the mechanism should not be
required to know the a priori political leanings of the different agents.

On Few Agents. We would like our mechanisms to work using as few agents as possible—in
our case, three.

Single-item Reports. We would like to make it easy for agents so they provide very little
information: only one item, either their signal or a prediction. In our case, two agents will

1Here, anonymity may be required to preserve privacy.
2Kong and Schoenebeck [12] show that it is not possible for truth-telling to pay strictly more than permutation equilibrium

in detail-free mechanisms.
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Two Strongly Truthful Mechanisms 14:3

need to provide their signals (e.g., whom they believe won the debate). The remaining agent
will need to provide a prediction on one outcome—a single real value. (e.g., their forecast for
how likely a particular other agent was to choose a particular candidate as the victor).

1.1 Our Contributions

• We define two Differential Peer Prediction mechanisms (Mechanisms 1 and 2) that are
strongly truthful and detail-free for the single question setting and only require a single
item report from three agents. Moreover, the agents need not be homogeneous and their
signals may be continuous.
• Mechanism 1 rewards the source for the improvement of the experts prediction. We can use
any strictly proper scoring rule (see Definition 2.2) to measure the improvement, and truth-
telling is an equilibrium. Moreover, if we use the log scoring rule, then truth-telling has the
highest total payment among all equilibria.
• Mechanism 2, which rewards the target for the improvement of the experts prediction, ex-
ploits special properties of the log scoring rule (see Techniques below for details), which
may be of independent interest. Here, the mechanism can be generalized by replacing the
expert with a suitable predictor that predicts the target’s report given information from a
source (which could be the collection of many agents). We show how to recast the Bayesian
Truth Serummechanism into the framework of this Mechanism (Section 4). This gives added
intuition for its guarantees.
• We provide a simple, conceptually motivated proof for the guarantees of Differential Peer
Predictionmechanisms. Especially in contrast to themost closely relatedwork [10] our proof
is very simple.

1.2 Summary of Our Techniques

Target Incentive Mechanisms. Many of the mechanisms for the single question use what we call
source incentives: They pay agents for reporting a signal that improves the prediction of another
agent’s signal. The original peer prediction mechanism [15] does exactly this. To apply this idea to
the detail-free setting [31, 33], mechanisms take a two-step approach: They first elicit an agent’s
prediction of some target agent’s report and then measure how much that prediction improves
given a report from a source agent.
In Section 3.2, we explicitly develop a technique, which we call target incentives, for rewarding

certain agents for signal reports that agree with a prediction about them.We show that log scoring
rules can elicit signals as well as forecasts by paying the difference of log scoring rule on the signal
between an initial prediction and an improved prediction. This may be of independent interest and
is also the foundation for the results in Sections 3.2 and 4.

Information Monotonicity. We use information monotonicity, a tool from information theory, to
obtain strong truthfulness. Like the present article, the core of the argument that the Disagreement
Mechanism [10] is strongly truthful (for symmetric equilibrium) is based on information mono-
tonicity. However, because it is hard to characterize the equilibria in the Disagreement Mechanism,
the analysis ends up being quite complex. A framework for deriving strongly truthful mechanisms
from information monotonicity, which we implicitly employ, is distilled in Kong and Schoenebeck
[12].

In Section 3, we use the above techniques to develop strongly truthful mechanisms, source-
Differential Peer Prediction and target-Differential Peer Prediction, for the single question setting.
Source-Differential Peer Prediction is quite similar to the Knowledge-Free Peer Prediction Mecha-
nism [33], however, it is strongly truthful, which we show using information monotonicity of log

ACM Transactions on Economics and Computation, Vol. 10, No. 4, Article 14. Publication date: February 2023.



14:4 G. Schoenebeck and F.-Y. Yu

scoring rule. Target-Differential Peer Prediction additionally uses the target incentive techniques
above to show it is strongly truthful.

1.3 Related Work

Single Task Setting. In this setting, each agent receives a single signal from a common prior.
Miller et al. [15] introduce the first mechanism for single task signal elicitation that has truth-
telling as a strict Bayesian Nash equilibrium and does not need verification. However, their mech-
anism requires full knowledge of the common prior and there exist some equilibria where agents
get paid more than truth-telling. At a high level, the agents can all simply submit the reports with
the highest expected payment and this will typically yield a payment much higher than that of
truth-telling. Note that this is both natural to coordinate on (in fact, Gao et al. [6] found that in an
online experiment, agents did exactly this) and does not require any effort toward the task from
the agents. Kong et al. [9] modify the above mechanism such that truth-telling pays strictly better
than any other equilibrium but still requires the full knowledge of the common prior.
Prelec [20] designs the first detail-free peer prediction mechanism—Bayesian truth serum

(BTS). Moreover, BTS is strongly truthful and can easily be made to have one-item reports. How-
ever, BTS requires an infinite number of participants, does not work for heterogeneous agents, and
requires the signal space to be finite. The analysis, while rather short, is equally opaque. A key in-
sight of this work is to ask agents not only about their own signals, but forecasts (prediction) of
the other agents’ reports.
A series of works [1, 22, 23, 31–33] relax the large population requirement of BTS but lose the

strongly truthful property. Zhang and Chen [33] is unique among prior work in the single question
setting in that it works for heterogeneous agents, whereas other previous detail-free mechanisms
require homogeneous agents with conditionally independent signals.
To obtain the strongly truthful property, Kong and Schoenebeck [10] introduce the Disagree-

ment Mechanism, which is detail-free, strongly truthful (for symmetric equilibrium), and works
for six agents. Thus, it generalizes BTS to the finite agent setting while retaining strong truthful-
ness. However, it requires homogeneous agents, cannot handle continuous signals, and fundamen-
tally requires that each agent reports both a signal and a prediction. Moreover, its analysis is quite
involved. However, it is within the BTS framework, in that it only asks for agents’ signals and
predictions, whereas our mechanism typically asks at least one agent for a prediction after seeing
the signal of another agent.
Finally, most of these works either have multiple rounds [32, 33] or work only if the common

prior is symmetric [1, 13, 20, 22, 31], though sometimes this can be relaxed to a restriction more
like positive correlation [32]. Ourmechanisms also havemultiple rounds; however, we can simplify
them to single round, but this requires asking questions that may be slightly more complex than
the BTS framework.
Prelec [21], posted subsequently to the conference publication of this work [25] but developed

independently, uses very similar techniques to this work combinedwith the setting explored in Ref-
erence [32] where agents are asked questions before and after seeing their signal. Similar to our
target DPPmechanism, themechanisms in Prelec [21] are target incentivemechanisms and pay the
target by log scoring rule on different pairs of initial and improved predictions (e.g., one agent’s
predictions before and after getting her signal that requires additional temporal coordination).
However, with the above additional temporal coordination, the mechanisms can work on two
agents, and our mechanism requires at least three agents for the setting we consider.
Surprisingly, and, with the exception of a footnote inMiller et al. [15], unmentioned by any of the

above works, the idea of target incentive mechanisms with the log scoring rule can be dated back
over 20 years to a (so far unpublished) working paper [19], which studies information pump games
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that also use improvement of predictions on the log scoring rule to encourage truthful reports. In
particular, the paper presents a special case of our main technical lemma (Lemma 3.4) that requires
a slightly stronger assumption than our second-order stochastic relevant (Definition 2.1). Besides
a weaker assumption, our connection to information theory enables us to design strongly truthful
mechanisms instead of truthful mechanisms.

Continuous Single Task Setting. Kong et al. [13] show how to generalize both BTS and the Dis-
agreement Mechanism (with similar properties including homogeneous agents) into a restricted
continuous setting where signals are Gaussians related in a simple manner. The generalization of
the Disagreement Mechanism requires the number of agents to increase with the dimension of the
continuous space.
The aforementioned Radanovic and Faltings [23] considers continuous signals. However, it uses

a discretization approach that yields exceedingly complex reports. Additionally, it requires homo-
geneous agents.
In a slightly different setting, Kong and Schoenebeck [11] study eliciting agents’ forecasts for

some (possibly unverifiable) event, which are continuous values between 0 and 1. However, here,
we are concerned with eliciting signals that can be from a much richer space.

Multi-task Setting. In the multi-task setting, introduced in Dasgupta and Ghosh [5], agents are
assigned a batch of a priori similar tasks that require each agents’ private information to be a
binary signal. Several works extend this to multiple-choice questions [5, 8, 12, 24, 27]. Recently, a
sequence of works study the robustness and limitation of the multi-task setting [3, 26, 34].

The multi-task mechanisms and our single-task mechanism each offer advantages. The key ad-
vantage of the multi-task mechanisms is that agents are only asked for their signal, and not a
prediction. Multi-task mechanisms accomplish this by, implicitly or explicitly, learning some re-
lation between the reports of different agents. However, because of this, multi-task mechanisms
strongly depend on an assumption that both the joint distribution of signals on different questions
are i.i.d. and that the agents apply the same (possibly random) strategy to each task in an i.i.d.
manner. This assumption is not unreasonable in certain crowd-sourcing, peer review, and peer
grading settings, but is likely violated in a survey setting. In the setting of the present article, no
such assumption is needed, as the mechanism can be applied individually to each question or task.
Even in settings where the i.i.d. assumption holds, it may be the case that (in practice) agents

receive information in addition to the elicited signal so the above learning approach fails. For ex-
ample, an agent may like a paper, but believe it to be on a generally unpopular topic, and therefore
conclude that the mechanism will incorrectly predict her rating. This is because the relation be-
tween agents’ reports are learned on all topics and so may be incorrect when applied to the subset
of papers on unpopular topics. In such a case the strategic guarantees of the multi-task mecha-
nisms may fail. Our mechanism mitigates this problem by having agents themselves doing the
prediction, who also have access to the contextual information that will naturally be incorporated
into their prediction.
Another drawback of the multi-task setting, as its name suggests, is the number of questions

required for each agent. Mechanisms tend to either make assumptions about the correlation be-
tween signals (e.g., Reference [5]) or the structure must be learned (e.g., References [24, 27]). In the
latter case, the strategic guarantees are parameterized by an ϵ that only decreases asymptotically
in the number of agents [24]. An exception to this is the DMI mechanism [8], but this still often
requires a fairly large number of tasks to work at all and has additional restrictions. However, re-
cent work [3] shows that the pairing mechanism [24] combined with proper machine learning can
work in settings with as few as four tasks per agent. In contrast, our mechanism only requires a
single task.
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2 PRELIMINARIES

2.1 Peer Prediction Mechanism

There are three characters, Alice, Bob, and Chloe, in our mechanisms. Alice (and, respectively, Bob,
Chloe) has a privately observed signal a (respectively, b, c) from a setA (respectively, B, C). They
all share a common belief that their signals (a,b, c ) are generated from a random variable (A,B,C )
that takes values from A × B × C with a probability measure P called the common prior. P
describes how agents’ private signals relate to each other.
Agents are Bayesian. For instance, after Alice receives A = a, she updates her belief to the

posterior P ((B,C ) = (·, ·) | A = a), which is a distribution over the remaining signals. We will use
PB,C |A (· | a) instead to simplify the notion. Similarly Alice’s posterior of Bob’s signal is denoted
by PB |A (· | a), which is a distribution on B.

A peer predictionmechanism onAlice, Bob, andChloe has three payment functions (UA,UB ,UC ).
The mechanism first collects reports r := (rA, rB , rC ) from agents. It pays Alice with UA (r) (and
Bob and Chloe analogously). Alice’s strategy θA is a (random) function from her signal to a report.
All agents are rational and risk-neutral, so they are only interested in maximizing their (expected)
payment. Thus, given a strategy profile θ := (θA,θB ,θC ), Alice, for example, wants to maximize
her ex-ante payment under common prior P , which is uA (θ ; P ) := EP,θ [UA (r)]. Let ex-ante agents’
welfare denote the sum of ex-ante payment to all agents, uA (θ ; P ) +uB (θ ; P ) +uC (θ ; P ). A strategy
profile θ is a Bayesian Nash equilibrium under common prior P if by changing the strategy unilat-
erally, an agent’s payment can only weakly decrease. It is a strict Bayesian Nash equilibrium if an
agent’s payment strictly decreases as her strategy changes.
We want to design peer prediction mechanisms to “elicit” all agents to report their information

truthfully without verification. We say Alice’s strategy τA is truthful for a mechanism M if Al-
ice truthfully reports the information requested by the mechanism.3 We call the strategy profile
τ truth-telling if each agent reports truthfully. Moreover, wewant to design detail-freemechanisms
that have no knowledge about the common prior P except agents’ (possible non-truthful) reports.
However, agents can always relabel their signals, and detail-free mechanisms cannot distinguish
such a strategy profile from the truth-telling strategy profile. We call these strategy profiles permu-

tation strategy profiles. They can be translated back to truth-telling reports by some permutations
applied to each component of A × B × C—that is, the agents report according to a relabeling of
the signals.
We now define some goals for our mechanism that differ in how unique the high payoff of

truth-telling is. We call a mechanism truthful if the truth-telling strategy profile τ is a strict
Bayesian Nash equilibrium. However, in a truthful mechanism, non-truth-telling equilibria may
yield a higher ex-ante payment for each agent. In this article, we aim for strongly truthfulmecha-

nisms [12] that are not only truthful but also ensure the ex-ante agents’ welfare in the truth-telling
strategy profile τ is strictly better than all non-permutation equilibria. Note that in a symmetric
game, this ensures that each agent’s individual expected ex-ante payment is maximized by truth-
telling compared to any other symmetric equilibrium.
Now, we define the set of common priors that our detail-free mechanisms can work on. Note

that peer reports are not useful when the agents’ signals are independent of each other. Thus, a
peer prediction mechanism needs to exploit some interdependence between agents’ signals.

Definition 2.1 (Zhang and Chen [33]). A common prior P is 〈A,B,C〉-second-order stochastic rele-
vant if for any distinct signals b,b ′ ∈ B, there is a ∈ A, such that PC |A,B (· | a,b) � PC |A,B (· | a,b ′).

3Here, we do not define the notion of truthful reports formally, because it is intuitive in our mechanisms. For general

setting, we can use query models to formalize it [29].
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Thus, when Alice with a is making a prediction of Chloe’s signal, Bob’s signal is relevant, so his
signal induces different predictions when B = b or B = b ′.
We call P second-order stochastic relevant if the above statement holds for any permutation

of {A,B,C}.4

To avoid measure theoretic concerns, we initially require that P has full support, and the joint
signal space A × B × C to be finite. In Appendix G, we will show how to extend our results to
general measurable spaces.

2.2 Proper Scoring Rules

Scoring rules are powerful tools to design mechanisms for eliciting predictions. Consider a finite
set of possible outcomes Ω, e.g., Ω = {sunny, rainy}. An expert, Alice, first reports a distribution

P̂ ∈ P (Ω) as her prediction of the outcome, where P (Ω) denotes the set of all probability measures
on Ω. Then, the mechanism and Alice observe the outcome ω. The mechanism gives Alice a score

PS[ω, P̂]. Alice maximizes her expected score by reporting her true belief for the outcome, P (the
probability of each possibly outcome of ω):

Definition 2.2. A scoring rule PS : Ω×P (Ω) �→ R is proper if for any distributions P , P̂ ∈ P (Ω)
we have Eω∼P [PS[ω, P]] ≥ Eω∼P [PS[ω, P̂]]. A scoring rule PS is strictly proper when the equality

holds only if P̂ = P .

Given any convex function f , one can define a new proper scoring rule PSf [12]. In this article,
we consider a special scoring rule called the logarithmic scoring rule [30], defined as

LSR[ω, P] := log (p (ω)), (1)

where p : Ω → R is the probability density function of P . Another popular scoring rule is Brier
scoring rule (quadratic scoring rule) [2], defined as

QSR[ω, P] := 2p (ω) −
∑
ω′ ∈Ω

p (ω ′)2. (2)

2.3 Information Theory

Peer prediction mechanisms and prediction markets incentivize agents to truthfully report their
signals. One key idea these mechanisms use is that agents’ signals are interdependent and strategic
manipulation can only dismantle this structure. Here, we introduce several basic notions from
information theory [4].
The KL-divergence is a measure of the dissimilarity of two distributions: Let P and Q be proba-

bility measures on a finite set Ω with density functions p and q, respectively. The KL divergence

(also called relative entropy) from Q to P is DKL (P ‖Q ) :=
∑

ω ∈Ω −p (ω) log (q(ω)/p (ω)).
We now introduce mutual information, which measures the amount of information between

two random variables: Given a random variable (X ,Y ) on a finite set X × Y , let pX ,Y (x ,y) be the
probability density of the random variable (X ,Y ), and let pX (x ) and pY (y) be the marginal prob-
ability density of X and Y , respectively. The mutual information I (X ;Y ) is the KL-divergence
from the joint distribution to the product of marginals:

I (X ;Y ) :=
∑

x ∈X,y∈Y
pX ,Y (x ,y) log

pX ,Y (x ,y)

pX (x )pY (y)
= DKL (PX ,Y ‖PX ⊗ PY ),

4Our definition has some minor differences from Zhang and Chen [33]’s, for ease of exposition. For instance, they only

require the statement holds for one permutation of {A, B, C } instead of all the permutations.
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where ⊗ denotes the tensor product between distributions. Moreover, if (X ,Y ,Z ) is a random
variable, then the mutual information between X and Y conditional on Z is

I (X ;Y | Z ) := EZ [DKL (P(X ,Y ) |Z ‖PX |Z ⊗ PY |Z )].

The data-processing inequality shows no manipulation of the signals can improve mutual in-
formation between two random variables, and the inequality is of fundamental importance in
information theory.

Theorem 2.3 (Data Processing Ineqality). If X → Y → Z forms a Markov chain,5

I (X ;Y ) ≥ I (X ;Z ).

Because the mutual information is symmetric, neither can manipulating X increase the mutual
information between X and Y . Thus, we say mutual information is information-monotone in both
coordinates.
By basic algebraic manipulations, Kong and Schoenebeck [12] relate proper scoring rules to

mutual information. For two random variables X and Y ,

Ex,y
[
LSR[y, P (Y | x )] − LSR[y, P (Y )]] = I (X ;Y ). (3)

We can generalize themutual information in twoways [12]. The first is to define f −MI using the
f -divergence, where f is a convex function, to measure the distance between the joint distribution
and the product of the marginal distributions. The KL-divergence is just a special case of the f -
divergence. This retains the symmetry between the inputs.
The second way is to use a different proper scoring rule. As mentioned, any convex function f

gives rise to a proper scoring rule PSf . Then the Bregman mutual information can be defined as in

Equation (3): BMI f (X ,Y ) := Ex,y[PS
f [y, PY |X (· | x )] − PSf [y, PY (·)]]. Note that by the properties

of proper scoring rules BMI is information-monotone in the first coordinate; however, in general,
it is not information-monotone in the second.
Thus, by Equation (3), mutual information is the unique measure that is both a Bregman mu-

tual information and an f -MI. This observation is one key for designing our strongly truthful
mechanisms.

3 EXPERTS, TARGETS, AND SOURCES: STRONGLY TRUTHFUL PEER PREDICTION

MECHANISMS

In this section, we show how to design strongly truthful mechanisms to elicit agents’ signals by
implicitly running a prediction market.
Our mechanisms have three characters, Alice, Bob, and Chloe, and there are three roles: expert,

target, and source:

• An expert makes predictions on a target’s report,
• a target is asked to report his signal, and
• a source provides her information to an expert to improve the expert’s prediction.

By asking agents to play these three roles, we design two strongly truthful mechanisms based on
two different ideas.
The first mechanism is source differential peer prediction (S-DPP). This mechanism is based

on the knowledge-free peer predictionmechanism by Zhang and Chen [33], which rewards a source
by how useful her signal is for an expert to predict a target’s report. Their mechanism is only

5Random variables X , Y , and Z form a Markov chain if the conditional distribution of Z depends only on Y and is condi-

tionally independent of X .
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truthful but not strongly truthful. We carefully shift the payment functions and employ Equa-
tion (3) and the data-processing inequality on log scoring rule to achieve the strongly truthful
guarantee.
We further propose a second mechanism, target differential peer prediction (T-DPP). In-

stead of rewarding a source, the T-DPP mechanism rewards a target by the difference of the
logarithmic scoring rule on her signal between an initial prediction and an improved prediction.
Later, in Section 4, we show Bayesian truth serum can be seen as a special case of our T-DPP
mechanism.
Then, we discuss how to remove the temporal separation between agents making reports in

Section 3.3 where agents only need to report once, and their reports do not depend on other agents’
reports.

3.1 The Source Differential Peer Prediction Mechanism

The main idea of the S-DPP mechanism is that it rewards a source by the usefulness of her signal
for predictions. Specifically, suppose Alice acts as an expert, Bob as the target, and Chloe as the

source. Our mechanism first asks Alice to make an initial prediction Q̂ on Bob’s report. Then,

after Chloe reports her signal, we collect Alice’s improved prediction Q̂+ after seeing Chloe’s ad-
ditional information. In each case, Alice maximizes her utility by reporting her Bayesian posterior
conditioned on her information.
The payments for Alice and Bob are simple. S-DPP pays Alice the sum of the logarithmic scoring

rule on those two predictions. S-DPP pays Bob zero. Chloe’s payment consists of two parts. First,

we pay her the prediction score of the improved prediction Q̂+. By the definition of a proper scoring
rule (Definition 2.2), Chloe will report truthfully to maximize it. For the second part, we subtract

from Chloe’s payment three times the score of the initial prediction Q̂ . This ensures the ex-ante
agent welfare equals the mutual information, which is maximized at the truth-telling strategy
profile. To ensure Bob also reports his signal truthfully, we permute Bob and Chloe’s roles in the
mechanism uniformly at random.

Mechanism 1: Two-round Source Differential Peer Prediction

Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn from second-
order stochastic relevant common prior P known to all three agents. LSR is the logarithmic
scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ .
2: Set Alice as the expert. Set Bob or Chloe as the target and the other as the source uniformly at

random. We use t to denote the target’s report and use s to denote the source’s report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂ .
4: Given the source’s report s , the expert makes another prediction Q̂+.
5: The payment to the expert is LSR[t , Q̂] + LSR[t , Q̂+].
6: The payment to the target is 0.

7: The payment to the source is LSR[t , Q̂+] − 3 LSR[t , Q̂].

Theorem 3.1. If the common prior P is second-order stochastic relevant on a finite set with full

support, then Mechanism 1 is strongly truthful:

(1) The truth-telling strategy profile τ is a strict Bayesian Nash equilibrium.

(2) The ex-ante agents’ welfare in the truth-telling strategy profile τ is strictly better than all non-

permutation strategy profiles.
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We defer the proof to Appendix C. Intuitively, because the logarithmic scoring rule is proper,
Alice (the expert) will make truthful predictions when Bob and Chloe report their signals truthfully.
Similarly, the source is willing to report her signal truthfully to maximize the improved prediction
score. This shows Mechanism 1 is truthful.

To show the source is willing to report truthfully, we show Lemma 3.2, which is a data processing
inequality for second-order stochastic relevant distributions, and present the proof in Appendix C.

Lemma 3.2. Let random variable (X ,Y ,Z ) be 〈X ,Y ,Z 〉-stochastic relevant on a finite space X ×
Y ×Z with full support. Given a deterministic function θ : Y → Y ,

Ex,y,z

[
log

(
PZ |XY (z | x ,y)
PZ |X (z | x )

)]
− Ex,y,z

[
log

(
PZ |XY (z | x ,θ (y))

PZ |X (z | x )

)]
≥ 0.

Moreover, equality occurs only if θ is an identity function, θ (y) = y.

Though Lemma 3.2 only considers the log scoring rule, it is straightforward to show the source
is willing to report truthfully when we use any strictly proper scoring rule. Consequentially, the
S-DPP mechanism will still have truth-telling as an equilibrium. However, the total payment at
the truth-telling strategy profile may not be maximum.
Note that we can ask Alice, Bob, and Chloe to play all three characters and have the identical

guarantee as Theorem 3.1. We illustrate this modification on n agents in Section 5. Furthermore, if
the agents’ common prior P is symmetric, then the above modification creates a symmetric game
where each agent’s expected payment at the truth-telling strategy profile is both non-negative and
maximized among all symmetric equilibria.

3.2 Target Differential Peer Prediction Mechanism

The target differential peer prediction mechanism (T-DPP) is identical to the S-DPP except
for the payment functions. In contrast to the S-DPP mechanism, T-DPP rewards a target. We show
that paying the difference between initial prediction and an improved prediction on a target’s
signal can incentivize the target to report truthfully (Lemma 3.4).
Our mechanism pays Alice the sum of the log scoring rule on those two predictions. The mech-

anism pays Bob the improvement from the initial prediction Q̂ to the improved prediction Q̂+.
Finally, Chloe’s payment depends on Alice’s first initial prediction Q̂ , which is independent of
Chloe’s action. To ensure Chloe also reports her signal truthfully, we permute the roles of Bob and
Chloe uniformly at random in the mechanism as well.

Mechanism 2: Two-round Target Differential Peer Prediction

Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn from second-
order stochastic relevant common prior P known to all three agents. LSR is the logarithmic
scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ .
2: Set Alice as the expert. Set Bob or Chloe as the target and the other as the source uniformly at

random. We use t to denote the target’s report and use s to denote the source’s report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂ .
4: Given the source’s report s , the expert makes another prediction Q̂+.
5: The payment to the expert is LSR[t , Q̂] + LSR[t , Q̂+].
6: The payment to the target is LSR[t , Q̂+] − LSR[t , Q̂].
7: The payment to the source is −2 LSR[t , Q̂].

ACM Transactions on Economics and Computation, Vol. 10, No. 4, Article 14. Publication date: February 2023.



Two Strongly Truthful Mechanisms 14:11

Theorem 3.3. If the common prior P is second-order stochastic relevant on a finite set with full

support, Mechanism 2 is strongly truthful.

Although the theoretical guarantee in Theorems 3.1 and 3.3 are identical, in Section 5, we discuss
that target DPP may be more robust if we want to replace the expert as an machine learning
algorithm.
We defer the proof to Appendix D and provide a sketch here. We first show Mechanism 2 is

truthful. Because the log scoring rule is proper, Alice (the expert) will make the truthful predictions
when Bob and Chloe report their signals truthfully. Thus, the difficult part is to show the target is
willing to report his signal truthfully if the expert and the source are truthful. Because the roles of
Bob and Chloe are symmetric in the mechanism, we can assume Bob is the target and Chloe is the
source from now on.

Lemma 3.4 (Logarithmic Proper Scoring Rule Reversed). Suppose Alice and Chloe are truth-
ful, and the common prior is 〈A,B,C〉-second-order stochastic relevant. As the target, Bob’s best re-
sponse is to report his signal truthfully.

This is a generalization of a lemma in Prelec [20] and Kong and Schoenebeck [12] and extends
to non-symmetric prior and finite agent setting. The main idea to prove Lemma 3.4 is to show
that maximizing Bob’s expected payment is equivalent to maximizing the reward of a proper scoring

rule applied to predicting Chloe’s report with prediction P (C | θ (b)). Therefore, by the property of
proper scoring rules, Bob is incentivized to tell the truth.6 With Lemma 3.4, the rest of the proof
of Theorem 3.3 is identical to the proof of Theorem 3.1, which is included in Appendix D.

Proof of Lemma 3.4. Given Alice and Chloe are truthful, let θ : B → B be Bob’s (deterministic)
best response. Let Alice, Bob, and Chloe’s signals be a,b, and c , respectively. When Alice and Chloe
both report truthfully, Chloe’s report is ĉ = c . Alice’s initial prediction is Q = PB |A (· | a), and her
improved prediction is Q+ = PB |A,C (· | a, c ). Hence, Bob with strategy θ gets payment

LSR[θ (b), PB |AC (· | a, c )] − LSR[θ (b), PB |A (· | a)].
Because θ is a best response, for all b ∈ B, reporting θ (b) maximizes Bob’s expected payment

conditional on B = b,

E(a,c )∼A,C |B=b
[
LSR[θ (b), PB |A,C (· | a, c )] − LSR[θ (b), PB |A (· | a)]

]
. (4)

The ex-ante payment of Bob is computed by summing over Equation (4) with weight PB , as:

u (θ ) := E(a,b,c )∼P
[
LSR[θ (b), PB |A,C (· | a, c )] − LSR[θ (b), PB |A (· | a)]

]
,

which is maximized over θ . Now, we can swap the role of B and C .

u (θ ) = E(a,b,c )∼P
[
LSR[θ (b), PB |A,C (· | a, c )] − LSR[θ (b), PB |A (· | a)]

]
= Ea,b,c

[
log(PB |A,C (θ (b) | a, c )) − log(PB |A (θ (b) | a)

]
(by the definition (1))

= Ea,b,c

[
log

(
PB |A,C (θ (b) | a, c )
PB |A (θ (b) | a)

)]
= Ea,b,c

[
log

(
PB,C |A (θ (b), c | a)

PB |A (θ (b) | a)PC |A (c | a)

)]
= Ea,b,c

[
log

(
PC |A,B (c | a,θ (b))

PC |A (c | a)

)]
.

6Prelec [19] also shows a weaker version of the above lemma. However, his proof requires a stronger assumption than

second-order stochastic relevant: For any distinct signals b, b′ ∈ B and signals a ∈ A c ∈ C, PC |A,B (c | a, b ) �
PC |A,B (c | a, b′).
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The above value can be seen as the ex-ante prediction score of Bob who reports prediction
PC |A,C (· | a,θ (b)) for Chloe’s signal. Similarly, the ex-ante payment of Bob when his strategy
is truth-telling τ is

u (τ ) = Ea,b,c

[
log

(
PC |A,B (c | a,b)
PC |A (c | a)

)]
.

The difference between u (τ ) and u (θ ) is

u (τ ) − u (θ ) =Ea,b,c
[
log

(
PC |A,B (c | a,b)
PC |A (c | a)

)]
− Ea,b,c

[
log

(
PC |A,B (c | a,θ (b))

PC |A (c | a)

)]
.

First, by Lemma 3.2, we know u (τ ) ≥ u (θ ). However, because θ is a best response, the inequality
is in fact equality u (τ ) = u (θ ). By the second part of Lemma 3.2, this shows θ is an identity and
θ = τ . �

Note that the proof uses (A) the log scoring rule is a Bregman mutual information, which can
be written as the difference between two proper scoring rules, and (B) the log scoring rule is
also an f -mutual information, which is symmetric between the inputs. Furthermore, though both
mechanisms work with the log scoring rule, the S-DPP can work with general proper scoring rule,
but the T-DPP cannot. Proposition 3.5 provides a counter-example where the Brier scoring rule (2)
applied in the reverse way does not elicit the target to report truthfully, which shows a distinction
between the log scoring rule and other scoring rules.

Proposition 3.5. If we replace the log scoring rule with the Brier scoring rule (2), then there exists
an 〈A,B,C〉-second-order stochastic relevant prior P such that reporting his signal truthfully is not a

best response for Bob.

Proof. Let A = {1}, and B = C = {1, 2, 3}. We define an 〈A,B,C〉-second-order stochastic
relevant prior

(P (1,b, c ))b,c =
���
0.12 0.11 0.16
0.04 0.05 0.18
0.15 0.18 0.01

��	 .
By direct computations, Bob’s payment is 0.0878 under truth-telling strategy, but he can get 0.0990
if he misreports 1 as 2. �

3.3 Single-round DPP Mechanism for Finite Signal Spaces

When the signal spaces are finite, the above two-round mechanisms (Mechanisms 1 and 2) can
be reduced to single-round mechanisms by using a virtual signal w . That is, for Alice’s improved
prediction, we provide Alice with a random virtual signal w instead of the actual report from the
source and pay her the prediction score when the source’s report is equal to the virtual signal
s = w . Here, we state only the single-round target-DPP; the single-round source-DPP can be
defined analogously.
Mechanism 3 has the same truthfulness guarantees as Mechanism 2. The proof is the same and

is presented in Appendix E.

Theorem 3.6. If agents’ common beliefs are stochastic relevant and the set B and C are finite, then

Mechanism 3 is strongly truthful.

Remark 3.7. Mechanism 3 uses the virtual signal trick to decouple the dependency between the
expert’s (Alice’s) prediction and the source’s (Chloe’s) signal,w ∈ Xs . Furthermore, the logarithmic
scoring rule is a local proper scoring rule [17] such that the score LSR[w, P] = logp (w ) only
depends on the probability at w . Hence, we can further simplify Alice’s report by asking her to
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Mechanism 3: Single Round T-DPP

Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn from second-
order stochastic relevant common prior P known to all three agents. The empty set ∅ is neither
in B nor C.

1: Bob and Chloe report their signals, b̂ and ĉ .
2: Set Alice as the expert. Set Bob or Chloe as the target and the other as the source uniformly at

random. We use t to denote the target’s report and use s to denote the source’s report.
3: Sample w uniformly from Xs ∪ {∅} where Xs is the signal space of the source, and tell the

expertw and who is the target.
4: if w = ∅ then � initial prediction

5: The expert makes a prediction Q̂ of t .
6: else � improved prediction

7: The expert makes prediction Q̂ of t pretending the source’s report s = w .
8: end if

9: The payment to the expert is 1[w = s] · LSR[t , Q̂] + 1[w = ∅] · LSR[t , Q̂].
10: The target’s payment has three cases: 1[w = s] · LSR[t , Q̂] − 1[w = ∅] · LSR[t , Q̂].
11: The payment to the source is −2 · 1[w = ∅] LSR[t , Q̂].

predict the probability density ∈ [0, 1] of a single virtual signal z ∈ Xt in the target’s (e.g., Bob’s)
signal space.
This trick can be extended to settings with a countably infinite set of signals. For example, for

signals in N, we can generate the virtual signal from a Poisson distribution (which dominates
the counting measure) and normalize the payments correspondingly. However, this trick does not
work on general measurable spaces, e.g., real numbers, because the probability of the virtual signal
matching the source’s report can be zero.

4 BAYESIAN TRUTH SERUM AS A PREDICTION MARKET

In this section, we revisit the original Bayesian Truth Serum (BTS) by Prelec [20] from the per-
spective of prediction markets. We first define the setting, which is a special case of ours (Mecha-
nism 2), and use the idea of prediction markets (Appendix A) to understand BTS.

4.1 Setting of BTS

There are n agents. They all share a common prior P . We call P admissible if it consists of two
main elements: states and signals. The state T is a random variable in {1, . . . ,m}, m ≥ 2, which
represents the true state of the world. Each agent i observes a signal Xi from a finite set Ω. The
agents have a common prior consisting of PT (t ) and PX |T (· | t ) such that the prior joint distribution
of x1, . . . ,xn is Pr(X1 = x1, . . . ,Xn = xn ) =

∏
t ∈[m] PT (t )

∏
i ∈[n] PX |T (xi | t ).

Now, we restate the main theorem concerning Bayesian Truth Serum:

Theorem 4.1 ([20]). For all α > 1, if the common prior P is admissible and n → ∞, Mechanism 4

is strongly truthful.

4.2 Information Score as Prediction Market

Prelec [20] uses a clever algebraic calculation to prove this main result. Kong and Schoenebeck
[12] use information theory to show that for BTS the ex-ante agents’ welfare for the truth-telling
strategy profile is strictly better than for all other non-permutation equilibria. Here, we use the
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Mechanism 4: The original BTS

Require: The common prior is admissible, and α > 1.

1: Agent i reports x̂i ∈ Ω and Q̂i ∈ P (Ω).

2: For each agent i , choose a reference agent j � i uniformly at random. Compute Q (n)
−i j ∈ P (Ω)

such that for all x ∈ Ω
Q (n)
−i j (x ) =

1

n − 2
∑
k�i, j

1[x̂k = x], (5)

which is the empirical distribution of the other n − 2 agents’ reports.
3: The prediction score and information score of i are

SPre = LSR
[
x̂ j , Q̂i

]
− LSR

[
x̂ j ,Q

(n)
−i j

]
and SIm = LSR

[
x̂i ,Q

(n)
−i j

]
− LSR

[
x̂i , Q̂ j

]
.

And the payment to i is SPre + α SIm.

idea of predictionmarkets to show BTS is a truthful mechanism and useMechanism 2 to reproduce
BTS when the common prior is admissible and n → ∞.

The payment from BTS consists of two parts: the information score, SIm and the prediction score,
SPre. The prediction score is exactly the log scoring rule that is well-studied in the previous lit-
erature. However, the role of the information score is more complicated. Here, we provide an
interpretation based on Mechanism 2. Informally, the information score is the improvement from
one agent’s prediction to the aggregating prediction from all agents on one agent’s signal, which
is formalized in Proposition 4.2. Thus, by Lemma 3.4, reporting signal truthfully maximizes the
agent’s information score.
Now, we formalize this idea. Consider i = 1 and j = 2 in BTS and call them Bob and Alice,

respectively. We let Chloe be the collection of other agents {3, 4, . . . ,n}. Let us run Mechanism 2
on this information structure. Bob is the target. Alice’s initial prediction is Q = PX1 |X2 (· | x2).
When Chloe’s signal is x3,x4, . . . ,xn , Alice’s improved prediction is Q+ = PX1 |X−1 (· | x−1), where
x−1 := (x2,x3, . . . ,xn ) is the collection of all agents’ reports expect Bob’s. By Lemma 3.4, Bob’s
payment, LSR[x̂1,Q

+] − LSR[x̂1,Q], which equals

LSR[x̂1, PX1 |X−1 (· | x−1)] − LSR[x̂1, PX1 |X2 (· | x2)], (6)

is maximized in expectation when Bob reports his private signal x1.
Note that Bob’s payment here (Equation (6)) is nearly identical to Bob’s information score in

the BTS (Mechanism 4) at the truth-telling strategy profile: LSR[x̂1,Q
(n)
−{1,2}] − LSR[x̂1, Q̂2], which

equals

LSR
[
x̂1,Q

(n)
−{1,2}

]
− LSR [x̂1, PX1 |X2 (· | x2)

]
. (7)

The only difference between Equations (6) and (7) is that the former predicts x̂ using PX1 |X−1 (· |
x−1) in the first term, while the latter usesQ (n)

−{1,2} . Therefore, the original BTS reduces to a special

case of Mechanism 2 as n → ∞, if we can show limn→∞ P (X1 | x−1) = limn→∞Q
(n)
−{1,2} . Formally,

Proposition 4.2. For all t = 1, . . . ,m andw ∈ Ω,

Q (n)
−{1,2} (w ) − PX1 |X−1 (w | x−1)

PX|T ( · |t )−−−−−−−→ 0 as n → ∞.

That is, the difference between these estimators converges to zero in probability as n goes to infinity.

The proposition follows by seeing that, fixing the state of the world t , both Q (n)
−{1,2} (·) and

PX1 |X−1 (· | x−1) converge to PX |T (w | t ), which is the posterior distribution of Bob’s signal given
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the state of the world. However, Proposition 4.2 requires agents’ signal are symmetric and condi-
tionally independent. In Section 5, we discuss that, in practice, we may replace the simple average

Q (n)
−{1,2} (·) with another learning algorithm to relax these assumptions.

5 DISCUSSION AND APPLICATIONS

We define two Differential Peer Prediction mechanisms, S-DPP and T-DPP, which are strongly
truthful, detail-free, and only require a single item report from three agents. In addition to the
nice theoretical guarantees, our core observation is that paying an agent the difference between
an initial and improved prediction of his signal is a powerful peer prediction tool.
We believe that our mechanism can be applied in several domains, including peer grading, peer

review, surveys, and crowd-sourcing. In fact, Srinivasan and Morgenstern [28] use our DPP mech-
anisms in their proposed market for peer-review process. Moreover, in peer grading, multi-round
review processes are already used in practice [18].
As discussed in the related work, existing single-task mechanisms either make strong assump-

tions on the signal distribution, e.g., symmetric, or also use multiple rounds. We believe our multi-
round mechanism are more practical than mechanisms requiring strong assumptions on the signal
distribution, which may not hold in these domains.
While multi-task peer-prediction mechanism can also sometimes be deployed in this area, the

present mechanism has three advantages: (1) it only requires one question or task, while the multi-
task peer prediction mechanisms often require many. This is of great importance in peer grading
and peer review, where each agent may only grade a small handful of items. (2) Other mecha-
nisms require learning the relationship between signals; however, in the proposed applications
(e.g., peer grading and peer review) the agents typically see much more information than the mere
score, and the relationship of signals may depend on particular traits of different items. Our mech-
anisms mitigate this problem, because the expert can also see the item and use its traits to inform
her prediction. (3) Unlike the multi-task setting, our mechanism does not require questions and
responses to be i.i.d.
Our presentation involves each agent only giving a one item response. As highlighted in the

introduction, our mechanism can easily be adapted so each agent plays all three roles, and thus
provides a signal and a prediction. Specifically, given n agents, we could assign each agent an
index in [n]. In the first round, each agent reports her signal and an initial prediction on i + 1’s
reported signal. In the second round, agent i receives i−1’s reported signal andmakes an improved
prediction on i+1’s reported signal.7 This variant mechanism treats agents symmetrically and can
collect more signals, which is often the goal. Furthermore, this symmetric design may be more fair.
Our mechanism does require some coordination between agents, but in general it is quite mini-

mal. First, we assume that the identities of agents are established. Because we allow heterogeneous
agents, the expert must know who the target is to respond. However, in practice, this could be re-
laxed to knowing the “type” of each of the agents as long as knowing the type is sufficient to
specify the joint prior. Additionally, if agents are homogeneous, then agents’ identities are irrele-
vant. Second, agents cannot be paid until all the reports are in, because some payments rely on all
reports. However, in the single-round mechanisms, no additional coordination is required: Agents
can interact with the mechanism in any order. Even in the two-round mechanisms, the only re-
quirement is that the expert must participate after the source. In the case where roles can safely
be correlated with arrival times, the first arrivals can be assigned to source/target and the final to
be the expert, and then no further coordination is required.

7We use modular arithmetic here.
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Machine Learning-aided Peer Prediction. Given the ubiquity of learning algorithms, in our S-DPP
and T-DPP, we may use a learning algorithm to replace the character of the expert that makes
predictions on the target’s report. With this modification, agents only need to report their signals
without making complicated predictions. Therefore, using learning algorithms as a surrogate may
greatly simplify the complication of our mechanisms.
Now, we discuss possible conditions for those learning algorithms to ensure truthfulness. S-DPP

requires that the learning algorithms can improve their prediction based on one agent’s signal,
namely, the source’s. However, by Lemma 3.4, T-DPP really only requires that the learning algo-
rithms can make two predictions on the target’s report such that the improved prediction is better
than the initial one. The condition in T-DPP is weaker than the condition in S-DPP, because a
learning algorithm may not have discernible improvement based on one agent’s (source’s) signal,
but can still make an improved prediction with enough information. For instance, the initial pre-

dictions in the BTS (Mechanism 4) is one agent’s prediction Q̂ j , and the improved prediction is the

empirical average Q (n)
−i, j . We can replace the empirical average with any learning algorithm that

uses all other agents’ signals to make improved predictions.
As mentioned before, if the agents are privy to additional information that systematically

changes the relationship between agents’ signals, then the machine learning algorithms applied to
the entire data, but not given access to the instances themselves, may not work; for example, if two
agents agree in their assessments of dramatic movies but always disagree in their assessments of
comedy movies. The issue is that the relationship cannot be properly learned without information
about the movie itself. To combat this issue, the machine learner could take as input the instances
themselves [14].
One future direction is to use this machinery to analyze when BTS retains its strongly truthful

guarantee, e.g., for what parameters of finite and/or heterogeneous agents.

APPENDICES

A INTRODUCTION TO PREDICTION MARKETS

Now, we want to get the collective prediction from a large group of experts. If we ask them all to
report the prediction simultaneously and pay each of them the log scoring rule on their predic-
tions, then we only receive many different predictions and it is not clear how to aggregate those
predictions into a single prediction.
Hanson’s [7] idea is to approach the experts sequentially. The mechanism asks experts to pre-

dict, given predictions that previous experts have made, and pays the experts the difference of score
between their prediction minus the score of the previous one. Formally,

(1) The designer chooses an initial prediction ŷ0, e.g., the uniform distribution on Ω.
(2) The experts i = 1, 2, . . . ,n arrive in order. Each expert i changes the prediction from ŷi−1 to

ŷi
(3) The market ends and the event’s outcomew ∈ Ω is observed.
(4) Expert i receives a payoff PS[w, ŷi ] − PS[w, ŷi−1].

Therefore, each expert (strictly) maximizes his expected score by reporting his truth belief given
his own knowledge and the prediction of the previous experts.
Suppose, instead of multiple experts arriving in order, we have one expert (Alice) but multiple

signals arrive in order. For example, Alice is asked to predict the champion of a tennis tournament
where w ∈ Ω is the set of players. As the tournament proceeds, Alice collects additional signals
(xi )i=1, ...,n that inform the outcome. Formally,

(1) The designer chooses an initial prediction ŷ0.
(2) In round i = 1, 2, . . . ,n, a signal xi arrives, and Alice changes the prediction from ŷi−1 to ŷi
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(3) At the end, the outcomew ∈ Ω is observed.
(4) Alice receives a payoff

∑n
i=1 (PS[w, ŷi ] − PS[w, ŷi−1]).

With belief P , if Alice reports truthfully in each round, then she will report P (W | y1,y2, . . . ,yi ) at
round i . If we use log scoring rule, then her payment at round i will be I (Yi ;W |Y1, . . . ,Yi−1). Her
overall payment will be I (Y1, . . . ,Yn ;W ), which maximizes her payment. This is an illustration of
the chain rule for Mutual Information: I (X ,Y ;Z ) = I (Y ;ZY |X ) + I (X ;Z ).

B DATA PROCESSING INEQUALITY

There are several proofs for the data processing inequality (Theorem 2.3). However, for information
elicitation, we often aim for a strict data processing inequality such that given a pair of random
variables (X ,Y ) if a random function θ : Y → Y is not a invertible function, I (X ;Y ) > I (X ;θ (Y )).
In this section, we will show such guarantee holds if X and Y are stochastic relevant (defined
later).
We say a pair of random variable X ,Y on a finite space X ×Y is stochastic relevant if for any

distinct x and x ′ in X, PY |X (· | x ) � PY |X (· | x ′). And the above condition also holds when we
exchange X and Y .

Theorem B.1. If (X ,Y ) on a finite space X ×Y is stochastic relevant and has full support. For all

random function θ from Y to Y where the randomness of θ is independent of (X ,Y ),

I (X ;Y ) = I (X ;θ (Y ))

if and only if θ is a deterministic invertible function. Otherwise, I (X ;Y ) > I (X ;θ (Y )).

Moreover, we can extend this to conditional mutual information when the random variable is
second-order stochastic relevant (Definition 2.1).

Proposition B.2. If (W ,X ,Y ) on a finite spaceW × X × Y is second-order stochastic relevant

and has full support. For any random function θ from Y to Y , if the randomness of θ is independent

of random variable (W ,X ,Y ),

I (X ;Y |W ) = I (X ;θ (Y ) |W )

if and only if θ is an one-to-one function. Otherwise, I (X ;Y |W ) > I (X ;θ (Y ) |W ).

B.1 Proof of Theorem B.1

Theorem B.3 (Jensen’s Ineqality). LetX be a random variable on a probability space (X,F , μ )
and let f : R→ R be a convex function. Then f (E[X ]) ≤ E[f (X )]. The equality holds if and only if

f agree almost everywhere on the range of X with a linear function.

Given a random function θ : Y → Y , we use q : Y × Y → R to denote its transition matrix

where q(y, ŷ) = Pr[θ (y) = ŷ] for all y, ŷ ∈ Y . Let Ŷ be the random variable θ (Y ).

Variational representation. By the variational representation of mutual information [16, 24], let
Φ(a) = a loga, Φ∗ (b) = exp(b − 1) and Φ′(a) = 1 + loga the mutual information between X and Y
is

I (X ;Y ) = sup
k :X×Y→R

{
EPX ,Y [k (X ,Y )] − EPX ⊗PY [Φ∗ (k (X ,Y ))]

}
and the maximum happens when

K (x ,y) := Φ′
(
PX ,Y (x ,y)

PX (x )PY (y)

)
. (8)
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We define K̂ for X and Ŷ similarly. With these notions, the mutual information between X and Ŷ
is

I (X ; Ŷ ) = EP
X ,Ŷ

[K̂ (X , Ŷ )] − EPX ⊗PŶ
[
Φ∗
(
K̂ (X , Ŷ )

)]
= EPX ,Y

[∫
K̂ (x , ŷ)q(y, ŷ)dŷ

]
− EPX ⊗PY

[∫
Φ∗
(
K̂ (x , ŷ)

)
q(y, ŷ)dŷ

]
≤ EPX ,Y

[∫
K̂ (x , ŷ)q(y, ŷ)dŷ

]
− EPX ⊗PY

[
Φ∗
(∫

K̂ (x , ŷ)q(y, ŷ)dŷ

)]
.

The last inequality holds due to convexity of Φ∗ and Jensen’s inequality. Let L(x ,y) :=∫
K̂ (x , ŷ)q(y, ŷ)dŷ for all x ,y. We have

I (X ; Ŷ ) ≤ EPX ,Y

[
L(x ,y)

] − EPX ⊗PY [Φ∗ (L(x ,y))] (9)

≤ sup
k :X×Y→R

{
EPX ,Y [k (X ,Y )] − EPX ⊗PY [Φ∗ (k (X ,Y ))]

}
(10)

= I (X ;Y ).

Sufficient condition. We first show the equality holds if θ is an invertible function. Hence, we
need to show (9) and (10) are equalities. Because θ is an invertible function, q is a permutation

matrix. Thus, for all x ,y
∫
Φ∗ (K̂ (x , ŷ))q(y, ŷ)dŷ = Φ∗ (

∫
K̂ (x , ŷ)q(y, ŷ)dŷ), and (9) is equality. For

(10), for all x and y,

L(x ,y) =

∫
K̂ (x , ŷ)q(y, ŷ)dŷ

= K̂ (x ,θ (y)) (deterministic function)

=Φ′
(
PX ,Ŷ (x ,θ (y))

PX (x )PŶ (θ (y))

)
(by (8))

=Φ′
(
PX ,Y (x ,y)

PX (x )PY (y)

)
(invertible)

=K (x ,y).

Therefore, (10) is an equality. This completes the proof.

Necessary condition. Now, we show the equality holds only if θ is an invertible function, i.e., q
is a permutation matrix. We first show a weaker statement, q is injective. Formally, let Rq (y) :=
{ŷ : q(y, ŷ) > 0} is the support of q on y. We say q is injective if for all distinct y,y ′ the support of
q(y, ·) and q(y ′, ·) are disjoint, Rq (y) ∩ Rq (y ′) = ∅.

We prove this by contradiction: if q is not injective and I (X ;Y ) = I (X ; Ŷ ), (X ,Y ) is not stochastic
relevant. I (X ;Y ) = I (X ; Ŷ ) implies (9) and (10) are equalities. Because (9) is an equality, given x
and y for all ŷ ∈ Rq (y),

L(x ,y) = K̂ (x , ŷ). (11)

Because (10) is an equality, for all x and y,

L(x ,y) = K (x ,y). (12)
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Supposeq is not injective. There existy1,y2, andy
∗ inY such thaty1 � y2 andy∗ ∈ Rq (y1)∩Rq (y2).

For all x ,

K (x ,y1) =L(x ,y1) (by (12))

= K̂ (x ,y∗) (by (11) and ŷ∗ ∈ Rq (y1))
=L(x ,y2) (by (11) and ŷ∗ ∈ Rq (y2))
=K (x ,y2). (by (12))

Since Φ′ is invertible, for all x

PX ,Y (x ,y1)

PX (x )PY (y1)
=

PX ,Y (x ,y2)

PX (x )PY (y2)
.

Therefore, PX |Y (· | y1) = PX |Y (· | y2), and (X ,Y ) is not stochastic relevant. This shows the Markov
kernel q is injective and has a deterministic inverse function.
Now, we show if q is injective, then q is a permutation when Y is a finite space. Because q is a

Markov kernel |Rq (y) | ≥ 1 for ally. Moreover, becauseq is injective, |∪yRq (y) | =
∑
y |Rq (y) | ≥ |Y |.

However, ∪yRq (y) = {ŷ : ∃y, (y, ŷ) ∈ Rq } ⊆ Y , | ∪y Rq (y) | ≤ |Y |. Therefore, by pigeonhole

principle, |Rq (y) | = 1 for all y, which is one-to-one.8

B.2 Proof of Proposition B.2

Proposition B.2. Given random variable (W ,X ,Y ), define pointwise conditional mutual infor-
mation between X and Y givenW = w as

I (X ;Y |W = w ) := DKL

(
PX |W (· | w ) ⊗ PY |W (· | w ) ‖ P(X ,Y ) |W (· | w )

)
,

which is the mutual information between X |W = w and Y |W = w .
First observe that conditional mutual information I (X ;Y | W ) is the average pointwise condi-

tional mutual information between X and Y across differentW ,

I (X ;Y |W ) =

∫
I (X ;Y |W = w ) pW (w )dw .

Thus, we can apply Theorem B.1 to each pointwise conditional mutual information.
The sufficient condition is straightforward. For the necessary condition, we can reuse the argu-

ment in the proof of Theorem B.1. Let Φ(a) = a loga and

K (x ,y | w ) := Φ′
(

PX ,Y |W (x ,y | w )

PX |W (x | w )PY |W (y | w )

)
.

We define K̂ (x ,y | w ) for X , Ŷ , andW similarly, and we let L(x ,y | w ) :=
∫
K̂ (x , ŷ | w )q(y, ŷ)dŷ.

By similar derivation, we have analogy of Equations (11) and (12): For all x ,y,w and ŷ ∈ Rq (y)

L(x ,y | w ) = K̂ (x , ŷ | w ) (13)

and

L(x ,y | w ) = K (x ,y | w ). (14)

8Note that the proof implicitly uses the property that the distribution of (X , Y , Ŷ ) has a full support. In particular, Equations
(11) and (12) only hold on the support of the distribution.
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Suppose q is not injective. There exists y1, y2 and y
∗ such that y1 � y2 and y

∗ ∈ Rq (y1) ∩ Rq (y2).
For all x andw

K (x ,y1 | w ) =L(x ,y1 | w ) (by (14))

= K̂ (x ,y∗ | w ) (by (13) and y∗ ∈ Rq (y1))
=L(x ,y2 | w ) (by (13) and y∗ ∈ Rq (y2))
=K (x ,y2 | w ).

Since Φ′ is injective, for all x andw

PX ,Y |W (x ,y1 | w )

PX |W (x | w )PY |W (y1 | w )
=

PX ,Y |W (x ,y2 | w )

PX |W (x | w )PY |W (y2 | w )
.

Therefore, there exists distinct y1 and y2 such that for allw

PX |Y ,W (· | y1,w ) = PX |Y ,W (· | y2,w ).

This contradicts the condition that (X ,Y ,W ) is second-order stochastic relevant. �

C PROOFS IN SECTION 3.1

Proof of Lemma 3.2.

Ex,y,z

[
log

(
PZ |X ,Y (z | x ,y)
PZ |X (z | x )

)]
− Ex,y,z

[
log

(
PZ |X ,Y (z | x ,θ (y))

PZ |X (z | x )

)]
= Ex,y,z

[
log

(
PZ |X ,Y (z | x ,y)

PZ |X ,Y (z | x ,θ (y))

)]
= Ex,y

[
Ez

[
log

(
PZ |X ,Y (z | x ,y)

PZ |X ,Y (z | x ,θ (y))

)
| X = x ,Y = y

]]
= Ex,y

[
DKL (PZ |X ,Y (· | x ,θ (y))‖PZ |X ,Y (· | x ,y))

]
.

Let d (x ,y,y ′) := DKL (PZ |X ,Y (· | x ,y ′)‖PZ |X ,Y (· | x ,y)), which is the KL-divergence from random
variable Z conditional on X = x and Y = y to Z conditional on X = x and Y = y ′. Thus, we have

Ex,y
[
DKL (PZ |X ,Y (· | x ,θ (y))‖PZ |X ,Y (· | x ,y))

]
= Ex,y

[
d (x ,y,θ (y))

]
. (15)

First, note that by Jensen’s inequality (Theorem B.3) d (x ,y,θ (y)) ≥ 0 for all x and y, so Equation
(15) is non-negative. This shows the first part.

Let Eθ = {y : θ (y) � y} ⊆ Y , which is the event such that θ disagrees with the identity mapping.
Because P is 〈X ,Y ,Z 〉-second-order stochastic relevant, for all y ∈ Eθ there is x , PZ |X ,Y (· | x ,y) �
PZ |X ,Y (· | x ,θ (y)), so d (x ,y,θ (y)) > 0 by Jensen’s inequality (Theorem B.3). Therefore, when
equality holds, the probability of event Eθ is zero, and θ is an identity becauseX×Y×Z is a finite
space. �

Proof of Theorem 3.1. The proof has two parts. Mechanism 1 is truthful and the truth-telling
strategy profile maximizes the ex-ante agent welfare.
Truthfulness. We first show Mechanism 1 is truthful. For the expert Alice, suppose Bob and

Chloe provide their signals truthfully. Her expected payment consists of two prediction scores

LSR[b, Q̂] and LSR[b, Q̂+], where Q̂ is her first prediction and Q̂+ is the second. The expected first
prediction score (under the randomness of Bob’s signal B conditional on Alice’s signal being a) is

Eb∼PB |A ( · |a)[LSR[b, Q̂]] ≤ Eb∼PB |A ( · |a)[LSR[b, PB |A (· | a)]],
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which is less than reporting truthful prediction PB |A (· | a), since log scoring rule is proper (Def-

inition 2.2). Similarly, her expected payment is maximized when her improved prediction Q̂+ is
PB |A,C (· | a, c ).

If Chloe is the source, then she will tell the truth given Alice and Bob report truthfully by
Lemma 3.2. Formally, let Alice’s, Bob’s, and Chloe’s signal bea,b, and c , respectively. Let θ : C → C
denote Chloe’s (deterministic) best response. Alice’s initial prediction and Bob’s signal is PB |A (· | a).
Because Chloe unilaterally deviates, Alice’s improved prediction is PB |A,C (· | a,θ (c )). Therefore,
Chloe’s payment is LSR[b, PB |A,C (· | a,θ (c ))] − 3 LSR[b, PB |A (· | a)].

Note that regardless of Chloe’s report, the initial prediction is Q̂ = PB |A (· | a). Hence, equiva-
lently, Chloe’s best response also maximizes LSR[b, PB |A,Ĉ (· | a, ĉ )] − LSR[b, PB |A (· | a)]. Taking
expectation over signal A,B,C and strategy θ , we have

v (θ ) :=
∑
a,b,c

PA,B,C (a,b, c )
(
LSR[b, PB |A,C (· | a,θ (c ))] − LSR[b, PB |A (· | a)]

)

= Ea,b,c
[
log(PB |A,C (b | a,θ (c ))) − log(PB |A (b | a))

]
(by (1))

= Ea,b, ĉ

[
log

(
PB |A,C (b | a,θ (c ))

PB |A (b | a)

)]
.

Similarly, the ex-ante payment of Chloe when her strategy is truth-telling τ is

v (τ ) = Ea,b,c

[
log

(
PB |A,C (b | a, c )
PB |A (b | a)

)]
.

The difference between v (τ ) and v (θ ) is

v (τ ) −v (θ ) = Ea,b,c
[
log

(
PB |A,C (b | a, c )
PB |A (b | a)

)]
− Ea,b,c

[
log

(
PB |A,C (b | a,θ (c ))

PB |A (b | a)

)]
.

First, by Lemma 3.2, we know v (τ ) ≥ v (θ ). However, because θ is a best response, the inequality
is in fact equality, v (τ ) = v (θ ). By the second part of Lemma 3.2, this shows θ is an identity and
θ = τ .

If Chloe is the target, then her action does not affect her expected payment, so reporting her
signal truthfully is a best response strategy. By randomizing the roles of source and target, both
Bob and Chloe will report their signals truthfully.
Strongly truthful. Now, we show the truth-telling strategy profile τ maximizes the ex-ante

agent welfare under P . If Bob is the target, then the ex-ante agent welfare (before anyone receives
signals) in truth-telling strategy profile τ is∑

i

ui (τ ; P ) = E(a,b,c )∼P
[
2
(
LSR[b, PB |A,C (· | a, c )] − LSR[b, PB |A (· | a)]

)]

= 2E(a,b,c )∼P

[
log

(
PB |A,C (b | a, c )
PB |A (b | a)

)]
= 2I (B;C | A),

which is the conditional information between Bob’s and Chloe’s signals given Alice’s signal.
However, let θ = (θA,θB ,θC ) be an equilibrium strategy profile, where Bob and Chloe report

signals θB (B) and θC (C ), respectively. Since θ is an equilibrium, if Bob is the target, then Alice with

signal a will predict truthfully, and report Q̂ = PθB (B ) |A (· | a) and Q̂+ = PθB (B ) |A,θC (C ) (· | a,θC (c )).
By a similar computation, the ex-ante agent welfare is∑

i

ui (θ ; P ) = 2I (θB (B);θC (C ) | A) ≤ 2I (B;C | A) =
∑
i

ui (P ,τ ).
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The inequality is based on the data processing inequality (Theorem 2.3). Moreover, by Proposi-
tion B.2, the equality holds only if θ is a permutation strategy profile. �

D PROOF IN SECTION 3.2

D.1 Proof of Theorem 3.3

The proof is mostly identical to Theorem 3.1 in Appendix C. We include it for completeness.

Proof of Theorem 3.3. The proof also has two parts. Mechanism 2 is truthful and the truth-
telling strategy profile maximizes the ex-ante agent welfare.
We first show Mechanism 2 is truthful. For the expert Alice, the proof is identical to the proof

of Theorem 3.1. By Lemma 3.4, if Bob is the target, then he will tell the truth given Alice and
Chloe report truthfully. If Bob is the source, then his action does not affect his expect payment, so
reporting his signal truthfully is a best response strategy. By randomizing the role of source and
target, both Bob and Chloe will report their signals truthfully.
The proof for strongly truthful is identical to the proof of Theorem 3.1. �

Note that if we randomize the roles amount Alice, Bob, and Chloe, then each agent has a non-
negative expected payment at the truth-telling equilibrium.

E PROOF OF THEOREM 3.6

For the expert Alice, suppose Bob and Chloe provide their signals truthfully. Her payment con-
sists of two prediction scores: When the random variable w = ∅, the prediction score (under the
randomness of Bob’s signal B conditional on Alice’s signal being a) is

Eb∼PB |A ( · |a)[LSR[b, Q̂]] ≤ Eb∼PB |A ( · |a)[LSR[b, PB |A (· | a)]].

Since log scoring rule is proper (Definition 2.2), reporting truthful prediction PB |A (· | a) maximizes
it. Similarly, when w � ∅, her (conditional) expected payment is maximized when her improved
prediction is PB |A,C (· | a,w ). For the target Bob, suppose Alice and Chloe report truthfully. We
will follow the proof of Lemma 3.4 to show Bob’s best response is truth-telling. Let θ : B → B be
Bob’s (deterministic) best response. Bob’s expected payment depends on four values: signals a, b,
c , and virtual signalw :

UB = 1[w = c] LSR[θ (b), PB |A,C (· | a,w )] − 1[w = ∅] LSR[θ (b), PB |A (· | a)].

And Bob’s expected payment is

uB (θ ) =
1

|C| + 1 Ea,b,c
[
LSR[θ (b), PB |A,C (· | a, c )] − LSR[θ (b), PB |A (· | a)]

]
.

Thus, by the same argument in Lemma 3.4, Bob’s best response is truth-telling. If Bob is the source,
then his action does not affect his expect payment, so reporting his signal truthfully is a best
response strategy. By randomizing the role of source and target, both Bob and Chloe will report
their signals truthfully.
The proof of strongly truthful is identical to the proof of Theorem 3.3.

F SKETCH PROOF FOR PROPOSITION 4.2

A consistent predictor f of a value Y given evidence X1,X2, . . . is one where more information
leads to a better prediction such that

lim
n→∞

Pr[| f (x1,x2, . . . ,xn ) − Y | ≥ ϵ]→ 0.
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The proposition follows by seeing that, fixing t and w , both Q (n)
−{1,2} (w ) and PX1 |X−1 (w |

x2,x3, . . . ,xn ) are both consistent estimators for PX1 |T (w | t ).
Q (n)
−{1,2} (w ) is the empirical distribution of n−2 independent samples from PX |T (· | t ) to estimate

PX |T (w | t ) and is therefore a consistent estimator.
However, becauseX1 andX2,X3, . . . ,Xn are independent conditional on t , the posterior distribu-

tion PT |X−1 (t | x2,x3, . . . ,xn ) is consistent. That is, for all t ∈ [m], Pr[|P (T = t | x2,x3, . . . ,xn )−1| ≥
ϵ | T = t]→ 0. Thus,

PX1 |X−1 (· | x2,x3, . . . ,xn ) =
∑
t

PX1 |T (· | t )PT |X−1 (t | x2,x3, . . . ,xn )

is also a consistent predictor of PX1 |T (w | t ), which completes the proof.

G GENERAL MEASURE SPACES

G.1 Settings

There are three characters, Alice, Bob, and Chloe. Consider three measure spaces (A,SA, μA),
(B,SB , μB ), and (C,SC , μC ). Let X := A × B × C, S := SA × SB × SC , and μX = μA ⊗ μB ⊗ μC ,
where ⊗ denotes the product between distributions. Let P (X) be the set of probability density
function on X with respect to μX .

9

Alice (and, respectively, Bob, Chloe) has a privately observed signal a (respectively,b, c) from set
A (respectively, B C). They all share a common prior belief that their signals (a,b, c ) are generated
from a random variable X := (A,B,C ) on (X,S) with a probability measure P ∈ P (X), and a
positive density function p > 0. We consider a uniform second-order stochastic relevant for general
measure space as follows10:

Definition G.1. A random variable (A,B,C ) in A × B × C with a probability measure P is not
〈A,B,C〉-uniform stochastic relevant if there exist a signal a ∈ A and two distinct signals b,b ′ ∈ B
such that the posterior on C is identical whether B = b with A = a or B = b ′ with A = a,

PC |A,B (· | a,b) = PC |A,B (· | a,b ′) almost surely on μC .

Otherwise, we call P 〈A,B,C〉-uniform stochastic relevant. Thus, when Alice is making a pre-
diction to Chloe’s signal, Bob’s signal is always relevant and induces different predictions when
B = b or B = b ′.

We call P uniform second-order stochastic relevant if it is 〈X ,Y ,Z 〉-uniform stochastic relevant
where 〈X ,Y ,Z 〉 is any permutation of {A,B,C}.

G.2 Theorems 3.1 and 3.3 on general measure spaces

Here, we state analogous results to Theorems 3.1 and 3.3. The proofs are mostly identical.

Theorem G.2. Given a measure space (X,S, μX ), if the common prior P is uniform second-order

stochastic relevant on the measurable space (X,S), and P is absolutely continuous with respect to μX ,
then Mechanism 1 has the following properties:

9Formally, P (X) is the set of all distributions on X that are absolutely continuous with respect to measure μX . For P ∈
P (X), we denote the density of P with respect to μ by p ( ·). For example, if X is a discrete space, then we can set μ as the

counting measure. If X is a Euclidean space Rd , then we can use the Lebesgue measure.
10One major difference between 〈A, B, C〉-stochastic relevant (Definition 2.1) and 〈A, B, C〉-uniform second-order sto-

chastic relevant (Definition G.1) is the quantifier of A: Given all distinct pair b, b′, it is sufficient to have one a∗ such
that PC |AB ( · |a∗, b ) � PC |AB ( · |a∗, b′). However, for uniform stochastic relevant, it requires for all a, PC |AB ( · |a, b ) �
PC |AB ( · |a, b′). One issue for second-order stochastic relevant in general measure space is that we can change measure

zero point to make such distribution stochastic irrelevant, and the probability to derive a∗ such that PC |AB ( · |a∗, b ) �
PC |AB ( · |a∗, b′) may be zero.
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(1) The truth-telling strategy profile τ is a strict Bayesian Nash Equilibrium.

(2) The ex-ante agent welfare in the truth-telling strategy profile τ is strictly better than all non-

invertible strategy profiles.

Here, the maximum agent welfare happens not only at permutation strategy profiles, but also
invertible strategy profile. This limitation is due to the strictness of data processing inequality
(Theorem B.1). For example, consider a pair of random variables (X ,Y ) on Z>0 × Z>0. Let θ be a
Markov operator such that for x ∈ Z>0, θ (x ) = x with probability 1/2 and θ (x ) = −x otherwise.
Although θ is not a one-to-one function, I (X ;Y ) = I (θ (X );Y ). However, following the proof of
Theorem B.1, we can say the equality holds when θ is injective.

The guarantee of Mechanism 2 is the same.

Theorem G.3. Given a measure space (X,S, μX ) if the common prior P is uniform second-order

stochastic relevant on the measurable space (X,S), and P is absolutely continuous with respect to μX ,
then Mechanism 2 has the following properties:

(1) The truth-telling strategy profile τ is a strict Bayesian Nash Equilibrium.

(2) The ex-ante agent welfare in the truth-telling strategy profile τ is strictly better than all non-

invertible strategy profiles.
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