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ABSTRACT 

Novel end-user programming (EUP) tools enable on-the-fy (i.e., 
spontaneous, easy, and rapid) creation of interactions with robotic 
systems. These tools are expected to empower users in determining 
system behavior, although very little is understood about how end 
users perceive, experience, and use these systems. In this paper, we 
seek to address this gap by investigating end-user experience with 
on-the-fy robot EUP. We trained 21 end users to use an existing 
on-the-fy EUP tool, asked them to create robot interactions for 
four scenarios, and assessed their overall experience. Our fndings 
provide insight into how these systems should be designed to better 
support end-user experience with on-the-fy EUP, focusing on user 
interaction with an automatic program synthesizer that resolves 
imprecise user input, the use of multimodal inputs to express user 
intent, and the general process of programming a robot. 
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action design; • Software and its engineering → Development 
frameworks and environments. 

KEYWORDS 

End-user Programming, Robot Programming, Service Robots, Pro-
gramming Tools, User Study, Usage Patterns, User Experience 

ACM Reference Format: 
Laura Stegner, Yuna Hwang, David Porfrio, and Bilge Mutlu. 2024. Under-
standing On-the-Fly End-User Robot Programming. In Designing Interactive 

Systems Conference (DIS ’24), July 01–05, 2024, IT University of Copenhagen, 
Denmark. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/ 

3643834.3660721 

1 INTRODUCTION 

Robots are increasingly being designed to aid end users in com-

pleting day-to-day tasks. These robots arrive with autonomous 
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Figure 1: We investigate end-user experience with on-the-fy 
robot end-user programming using Tabula, a state-of-the-art 
open-source research prototype. Right: An experimenter us-
ing speech and touch input to program a robot to put toys 
away in a toy chest. Lef: A visual representation of the gen-
erated program by a study participant (P5). 

capabilities, yet they still require input from end users about which 
tasks must be completed and any contextual details surrounding the 
task. End users could include residents with robots in their private 
homes [45], shopkeepers with robot assistants to aid customers 
[60], caregivers with robots to assist in providing care to residents 
[63], and many more examples. In each of these scenarios, the end 
user may need to communicate to the robot a task for it to complete 
on the fy, i.e., spontaneously, easily, and rapidly. To address this 
need, researchers have created various end-user programming (EUP) 
tools to allow end users to create interactions with robotic systems 
without extensive technical knowledge [1]. Specifcally, EUP tools 
produce robot programs, which traditionally consist of sequences 
of actions for the robot to perform in order to complete a task. 

Methods, techniques, and tools that facilitate rapid and intu-
itive robot EUP are rapidly proliferating (see Ajaykumar et al. [1] 
for a detailed review of robot end-user programming), including 
tools that better capture user intent [e.g., 16], automatically syn-
thesize programs given high-level user input [50], or contextualize 
programs within the user’s environment [32]. EUP tools that incor-
porate multimodal inputs [e.g., 24, 52, 53, 64] often combine various 
methods and techniques in an efort to create a more intuitive and 
natural on-the-fy EUP experience. 
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Despite recent advances in EUP tools for robot programming, 
their full potential and impact remain unknown. A rich understand-
ing of user experience with state-of-the-art EUP tools is missing, as 
these advanced EUP systems have yet to fnd real-world use and the 
research literature lacks deep understanding of use patterns, user 
experience, and limitations of these systems. As a result, very little 
is known about how these tools might be used by end users. In-
creasingly sophisticated methods and techniques that deviate from 
traditional programming paradigms require further exploratory 
user studies to contextualize the technical advances within end 
user needs and experiences. 

Therefore, to help close this gap, we conducted an in-depth 
exploratory evaluation using a state-of-the-art on-the-fy EUP pro-
totype called Tabula [52]. Tabula is an open-source EUP prototype 
tool that we developed previously (see Porfrio et al. [52]). It facili-
tates on-the-fy robot programming by combining multimodal input 
that enables end users to express task intent with a program syn-
thesis technique that automatically completes missing elements of 
a program. Using Tabula as a medium for creating robot programs, 
we investigate the following research question. 

• RQ: What are end users’ experiences with on-the-fy robot 
programming? 

To answer this question, we trained 21 participants to use Tab-
ula and instructed each participant to create robot programs for 
three structured robot scenarios and one open-ended robot scenario. 
Specifcally, we consider how end users approach the on-the-fy 
robot programming process through an in-depth exploratory eval-
uation of Tabula’s key features, the multimodal inputs, and the 
program synthesizer. Therefore, we have the opportunity to probe 
usability aspects specifc to Tabula’s implementation, but also glean 
more widely applicable design insights. 

This paper contributes to understanding how end users approach 
robot EUP through (1) a user study that evaluates a multimodal, 
on-the-fy EUP tool; (2) fve themes that relate to both the usability 
and design of on-the-fy robot programming tools; and (3) a set of 
design guidelines that can inform future on-the-fy EUP tool design. 

2 RELATED WORK 

Our work builds on prior literature from software engineering, 
human-computer interaction (HCI), and human-robot interaction 
(HRI), focusing on how end users specify requests to interactive 
systems, approaches to end-user development and programming, 
and prior studies of end-user programming (EUP) tools. 

2.1 Approaches to End-user Specifcation 

Many programs written today do not rely entirely on professional 
programmers or roboticists [e.g., 23, 30, 38, 47, 71]. Instead, end 
users with discrete domain expertise drive software development, 
specifcally by contributing to obtaining a complete and consistent 
set of system requirements [37, 68]. Thus, seminal work in the soft-
ware engineering feld [e.g., 7, 38] provides pointers on how to fa-
cilitate end-user specifcation, particularly at the exploratory phase 
[28] of the software lifecycle. Dialogue is an accessible paradigm 
for rapid prototyping based on its use in daily human communi-

cation [1]. Porfrio et al. [50] proposed an approach that utilized 

speech gathered from łrole-playingž to synthesize human-robot in-
teraction scenarios. Within the end-user specifcation frame, visual 
programming interfaces are frequently utilized. Flow-based visual 
interfaces allow users to conceptualize programs as processes [72]. 
In RoboFlow [2], edits to default programs can be easily made with 
the assistance of a fow-based visual expression. 

Display of readily distinguishable domain-specifc operation 
units to end users has proven successful when deployed on a visual 
interface. The system implemented and evaluated by Senft et al. 
[59] only exposes the graphical representation of the task-level 
(high-level) actions to the user, which in turn allowed efective tele-
operation of users for individuals with varying levels of expertise. 
More recently, deep learning and large-language modeling (LLM) 
methods are gaining attention for łprompt-based prototypingž [e.g., 
5, 35]. ChatGPT (GPT-3.5 and GPT-4 [48]) and its related work [e.g., 
9, 49] serve as distinct use cases where the representation format 
of question-answer pairs closely resemble that of interpersonal 
communication, borrowing dynamics of turn-taking. 

2.2 End-User Development and Programming 

End-user development (EUD) encompasses tools and techniques that 
facilitate the creation of software systems by non-programmers [42]. 
Crucially, Lieberman et al. [42] distinguished łdesign-before-usež 
EUD as creating software artifacts prior to their execution versus 
łdesign-during-usež as modifying existing software already in use. 
End-user programming (EUP) is a type of EUD that typically occurs 
at the creation phase. Although both paradigms play important 
roles within robotics, the focus of programming tools for human-

robot interaction is often on EUP, with these tools having distinct 
authoring phases involving the initial creation of a program [1]. 

EUP tools capture user intent in a variety of diferent ways, 
often taking the form of traditional keyboard-and-mouse visual 
programming environments [e.g., 2, 40, 58], demonstration [e.g., 26, 
34], and, more recently, in situ interfaces via mixed and augmented 
reality [e.g., 15, 16]. Often, these interfaces require multimodal 
input from developers, such as Figaro [53], in which users paired 
spoken language statements with physical demonstrations through 
fgurines. Due to the nature of programming, however, EUP systems 
often require meticulous and clear input from the user, which can 
be awkward for users of multimodal systems [50]. 

The focus of our work is to better understand how end users 
naturally approach programming using EUP tools. Natural input 
is often imprecise and rapid, a key observation of the sloppy pro-
gramming paradigm [43]. Specifcally, we focus on how end-user 
programmers might combine two historically popular EUP input 
modalitiesÐspoken language and sketching. Spoken language has 
experienced widespread popularity for programming HRI systems 
in the collaborative [24] and service [69] domains. Sketching, too, 
has seen success within HRI EUP [44, 57], and has occasionally been 
paired with speech for robot control [22, 66]. Therefore, exploring 
how end users interact with these modalities within a working 
prototype will aid in the design of future EUD and EUP systems. 

2.3 EUP Tool Usage 

A critical aspect of EUP research in HRI and HCI is investigating 
how EUP tools could be used. Formative design studies are common 
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practice in EUP to investigate the potential use of tools that have 
not been built yet. Related to our work, Li et al. [41] investigated 
how a touchscreen interface can enhance spoken language, and 
found that multimodal input can reduce unclear or vague concepts 
in speech. Other work used formative studies to investigate the 
potential applications for which a hypothetical EUP tool might be 
used [20]. In addition to formative studies, Alves-Oliveira et al. [3] 
presented a myriad of case studies documenting how their EUP tool 
was used in real-world and open-ended deployments, including 
how end users applied the tool for robot personalization. Within the 
realm of general programming, Puig et al. [55] provided information 
on the kinds of programs users could create for robots to perform 
when provided with an open-ended development environment. 

In our review of related EUP literature, we note that most work 
highlights technical over empirical contributions. Technical con-
tributions are often still accompanied by usability measures [e.g., 
14, 46] and measures of whether study participants are able to meet 
predetermined task criteria successfully [e.g., 34]. Most work that 
makes empirical contributions performs summative evaluations, 
including either quantitative scales, such as the System Usability 
Scale (SUS), or the Cognitive Dimensions of Notations (CDN) [e.g., 
13, 14], or open-ended, qualitative fndings [e.g., 53]. However, these 
empirical fndings are often in service of validating the technical 
contributions of the work. In this work, we aim to add to the body 
of empirically focused EUP literature with a deeper understanding 
of user experience and use patterns with EUP tools and design 
guidelines derived from this understanding. 

3 METHOD 

We conducted a user study where we asked participants to use a 
multimodal EUP research prototype, Tabula.1 

3.1 Participants 

We recruited 21 individuals to participate in the study, aged 18ś72 
years (� = 25.19 years, �� = 11.53 years; 11 males, 10 females). 
While prior programming experience or exposure to robotic sys-
tems was not required, 12 participants reported previous program-

ming experience (� = 3.92 years, �� = 2.94 years), and fve of those 
participants also reported exposure to robotic systems ranging from 
using Lego robotics kits as a child to attending a Human-Computer 
Interaction summer school that included a robotics project. Partici-
pant backgrounds included 15 occupations or student majors from 
a variety of diferent felds which spanned science, engineering, 
math and statistics, medicine, and humanities. 

3.2 Interface 

For our study, we used an open-source, state-of-the-art research 
prototype tool called Tabula which we developed in previous work 
(see Porfrio et al. [52]). Tabula is a handheld EUP tool where given 
a 2-dimensional bird’s-eye view of an environment, users can uti-
lize multimodal speech and touch inputs to create custom robot 
programs [52]. The user can frst optionally confgure the environ-
ment by placing relevant objects (e.g., toys, cabinets) with which the 
robot could interact. Then, the user creates the robot program by 

1All study materials, de-identifed data, codebook, and supplementary video are avail-
able through the following OSF repository: https://osf.io/ps2fw/ 
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Figure 2: We used Tabula, a multimodal EUP tool that uses 
a combination of speech and sketching input to generate 
a robot program [52], to study end-user experiences with 
programming robots on the fy. Lef: First, users confgure 
the environment, including placing any objects for the robot 
to interact with. Middle: Second, users create recordings by 
frst providing a speech utterance to instruct the robot what 
to do and subsequently creating a sketch by drawing a path 
of points of interest that the robot should visit. Right: Finally, 
inputs are combined by the program synthesizer, and users 
can view the resulting programming steps. 

creating one or more recordings, which consist of a combination of a 
spoken command and a sketched path drawn on the interface. Their 
utterance is parsed into the core of what the robot has to achieve, 
including the base command (e.g., put, move to) and any relevant 
parameters for that command (e.g., objects or places within the en-
vironment). The drawn sketch includes a series of waypoints that 
represents locations the robot must visit during program execution. 
The system then contextualizes the core (the user’s command and 
its parameters) within the drawn path, culminating in a program 
with waypoints from the sketch. Users are able to view the fnal 
program steps after creating recordings through a separate review 
panel. A high-level system operation is presented in Figure 2. 

In the version of Tabula that we used, users do not meticulously 
specify step-by-step programs (i.e., they do not specify commands 
and locations in the exact order to be performed), but rather supply 
the system with the core of the program and then contextualize that 
core with the sketch.2 The command extracted from the utterance is 
not guaranteed to happen at any specifc location, as the synthesizer 
will automatically decide where to place commands within the 
sketch. Therefore, we describe this input as non-sequential. 

For example, the user may utter the speech łput the groceries in 
the kitchenž and draw a path to the garage, then to the kitchen. The 
system inferred that in order to ‘put’ the groceries, it frst needs 
to ‘grab’ them. Since there are two actions, the system also infers 
that it should ‘grab’ at the frst location and ‘put’ at the second. The 
system further has the constraint that the ‘put’ command requires 
a container to put the object inÐin this case, putting the groceries 

2Tabula’s implementation does not restrict users to providing the speech core and 
sketched path in any particular order, but its compilation to Android for this study 
imposes this restriction. 
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in the kitchen cabinets. While the utterance did not include the 
container parameter, the system infers which container based on 
a pre-confgured dictionary of what containers are in diferent 
locations. The system would therefore interpret the given inputs 
such that the robot should travel to the garage, grab the groceries, 
travel to the kitchen, and put the groceries in the kitchen cabinet. 

During a basic operation of Tabula, users create one recording 
which results in a basic robot program that accomplishes at most 
one goal based on the core. However, by creating multiple record-
ings, Tabula enables end users to specify more complex logic, i.e., 
branching and looping. To create a branch, the user creates a second 
recording that starts from an existing waypoint and includes a trig-
ger speech (e.g., łwhen I arrive...ž) to indicate when the robot should 
opt to follow that branch. To create a loop, the user simply returns 
to a previously-visited waypoint within one recording. Specifying a 
loop’s exit condition requires a second recording where the trigger 
speech indicates the desired exit condition, e.g., łwhen I say stop...ž 

Tabula was selected due to its inclusion of state-of-the-art re-
search concepts described above that have not yet been widely 
evaluated by end users. The key features include: (1) the combina-

tion of speech and touch input, (2) the automatic completion of an 
under-specifed user input by searching for adequate entities to sat-
isfy relevant preconditions, and (3) the embedding of programming 
logic (e.g., loops) within the program to address task complexity. 
Porfrio et al. [52] specify that these features are intended to re-
move some of the users’ burden in constructing comprehensive, 
end-to-end robot programs. However, as Porfrio et al. [52] do not 
include a user study that examines the usability of the system, our 
evaluation aims to better understand precisely how these features 
support end-user programming eforts. 

3.3 Procedure 

Participants were guided to a quiet room for the study. The exper-
imenter briefy introduced what the study would entail and then 
the participants provided their informed consent before continu-
ing. This study was reviewed and approved by the University of 
WisconsinśMadison Institutional Review Board (IRB). The study 
consisted of the following fve phases: 

Tutorial & Training. Participants learned Tabula through 26 min-

utes of tutorial videos designed to help participants to familiarize 
themselves with the basic operations of the system. During the 
tutorial, the interface used a supermarket environment. The tu-
torial session was interactive, meaning the experimenter paused 
the video at pre-set points to prompt participants to try the exam-

ples from the tutorial. For example, participants practiced making 
recordings with the speech łsay hello follow me to the salež and 
a sketch of a path from anywhere on the map to the entrance of 
the store. The tutorial videos also asked participants questions to 
check their understanding of the key system rules. For example, the 
tutorial was designed deliberately to build upon previous concepts 
and raised questions on the diference between the new constraint 
and the previous constraint (e.g., how does adding the new speech 
łif someone says yesž change how you program the robot?). Overall, 
the tutorial delivered the logistics of how to make a command with 
respect to the interface (e.g., using which modality to specify a 

complete command) and provided examples of use cases where the 
system supports programming logic (e.g., loops). 

Structured Scenarios. Participants were then prompted to work 
with four diferent design scenarios. Participants programmed a 
human-robot interaction using the interface. We then asked partici-
pants to think aloud while completing each scenario, which allowed 
the experimenter to notice any hesitancy from the participant and 
ask clarifying questions thereafter. All three structured scenarios 
commonly used a home environment. We deliberately used a difer-
ent environment in the scenarios versus the tutorial to observe how 
participants were to operate with the system, without relying on 
their familiarity with a specifc environment. The scenarios were 
designed around the idea that participants were hosting a party 
and wanted the robot to help prepare. For each scenario, partici-
pants were briefed on the context and given an objective of what 
the robot program should accomplish. The objectives encouraged 
participants to use a variety of Tabula’s features, including a robot 
passing an object, carrying multiple objects, and acting in regard to 
varying responses from the end-users described in the scenario. The 
comprehensive list of objectives that the participants were asked 
to complete is as follows. 

• Scenario 1: The robot should put away the toy 
• Scenario 2: The robot should bring all of the groceries from 
the garage to the kitchen 

• Scenario 3: The robot should respond to guests that approach 
it to either show them the kitchen or the bathroom 

Open-Ended Scenario. After the participants completed the three 
structured scenarios, the experimenter then asked the participants 
to come up with their own scenarios. Because these scenarios were 
open-ended, participants were given a choice to use either the 
supermarket environment or the home environment. 

Interview & Questionnaires. Following the open-ended scenario, 
the experimenter asked participants to respond to a usability ques-
tionnaire (the System Usability Scale (SUS) [12]) based on their 
experience across all scenarios. In the last portion of the study, the 
experimenter conducted a semi-structured interview and asked 
participants to respond to a demographic questionnaire. The inter-
view questions include topics such as the perceived level of system 
fexibility (e.g., if the participants deemed the rules of the system 
too rigid) and the dynamic participants experienced while utilizing 
both speech and touch (e.g., if the order of operation of the speech 
frst and sketch second was natural for them). 

3.4 Measures and Analysis 

We collected the following data: 10 items from the SUS question-
naire [12], screen recordings of tablet usage during the scenarios, 
audio recordings of the think aloud conducted during the scenarios, 
and audio recordings of responses to questions during the semi-

structured interviews. The think aloud and interviews were tran-
scribed and formatted into tables for analysis. Two coders reviewed 
the data and decided to split the analysis of the think alouds and 
interviews due to the additional context required to understand the 
think alouds, as that dialogue is tightly linked to participants’ use 
of the interface. For the interview transcripts, one coder developed 
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Table 1: A summary of the themes developed in our analysis. 

Summary of Findings 

General Ð These themes relate to user experiences which may generalize to other on-the-fy EUP tools. 

Theme 1: End users viewed program steps to better understand the system 

End users relied heavily on viewing program steps to shape their understanding of how the system works and to look ahead to their next actions. 

Theme 2: End users have poor mental model of the input paradigm 

End users who naturally tended toward step-by-step instructions for the robot struggled with articulating their intent non-sequentially. 

Theme 3: End users felt that the robot was a tool to use 

End users viewed creating the robot programs as a way to utilize a robot in a tool-like manner rather than as an independent, autonomous agent. 

Usability Ð These themes relate to specifc experiences based on Tabula’s implementation of on-the-fy EUP. 

Theme 4: End users had mixed experiences on interaction with the program synthesizer 

End users either appreciated that the program synthesizer provided human-like common sense support, or they disliked the assistance because they 
perceived it as a loss of control over the robot program. 

Theme 5: There is more to using the system than understanding its basic functionality 

Even after learning Tabula’s basic functionality, end users still faced a learning curve to become profcient with its use. 

a codebook and conducted a thematic analysis following the guide-
lines of Braun and Clarke [11]. For the scenario data, one coder 
developed a codebook for the think aloud transcripts and a list of 
behaviors to code in the screen recordings, e.g., started a record-
ing, made a speech input, checked the review mode, etc. Screen 
recording data was coded using BORIS [25], an open-source event 
recording software. The think aloud and screen recording data was 
then chronologically organized and subsequently analyzed for fre-
quency of co-occurring codes within a fve-second window. Across 
all coding, the two coders had a high inter-rater reliability (Cohen’s 
Kappa, � = 0.83), which indicates an łalmost perfectž agreement ac-
cording to interpretation guidelines from Landis and Koch [39]. We 
present themes that emerged through the interview data codebook 
as well as the patterns that emerged from the scenario data. 

4 FINDINGS 

Participants overall had a positive experience with the interface, 
with a łgoodž [6] mean SUS score of 69.9 (������ = 72.5, �� = 
11.6). From our qualitative analysis, we developed fve themes about 
how end users perceived and interacted with various features of 
the on-the-fy end-user programming (EUP) tool that they used. 
The themes are summarized in Table 1. Themes 1ś3 illustrate expe-
riences with on-the-fy EUP on a more general level, while Themes 
4ś5 pertain to usability aspects of Tabula’s specifc implementation. 
For each theme, we present its defnition and use participant quotes 
to provide support. Theme 4 is further organized into subthemes 
to more explicitly illustrate its diferent facets. Participant quotes 
are attributed by participant ID, with minimal edits made to ensure 
clarity while retaining meaning. 

4.1 Theme 1: End users viewed program steps to 
better understand the system 

The frst theme captures how users refect on system rules when 
viewing program steps (see Figure 2, Right), initiate revisions to 
the program after discovering an error, and proactively utilize the 

program steps to make programs incrementally. Refections shared 
by fve participants highlight the end users’ heavy reliance on step 
visualization when understanding system operation. 

Helping in recalling system rules. Five participants recalled key 
system rules as they connected those rules to shaping expectations 
and interpreting the fnal output of the program steps. Participants 
explicitly stated concepts such as łrecordingsž (P6), łloopsž (P6), and 
triggers, e.g., ładding [my] stopsž (P15). Similarly to P6’s comment 
on recordings, P10’s comment on the number of recordings provides 
insight on how users were able to evaluate system output as they 
viewed program steps and remembered key concepts. P10 mentions, 
łI think that was... yeah I don’t know what the third [recording]’s 
supposed to bež as they viewed the program steps. For the case of 
recalling how to specify program logic, P6 asked a critical question 
łdoes it loop?ž as they meticulously viewed each program step. 

Initiating revisions after discovering errors. Besides the phenom-

enon described in the previous paragraph, there were instances 
where users motivated themselves to match the program steps pro-
vided by the system to the steps they imagined and desired. When 
misaligned, end users took the initiative to redo the entire program 
or wanted to make a revision after they viewed the steps. Six partic-
ipants felt they wanted to łdo it againž (P12) as they examined the 
fnal steps. P9 displayed confdence as they noticed what output 
of the program steps were łobviously [...] wrongž and expressed 
the urge to redo it by saying łbecause I know exactly why.ž P21 
expressed a related sentiment and wanted to make partial revisions, 
as they cited łso I go to just delete this recording.ž Participants were 
able to make these refections and express their urge to revise the 
program because they viewed the detailed program output. 

Incremental revisions. In addition to the more common ways 
participants interacted with the visualized program steps, P15 also 
used the program steps to create programs incrementally. Delib-
erately checking the review panel and the detailed output of the 
program steps, P15 planned for the next recording after citing łokay 
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let me see what it did here this is only one of my things.ž Additionally, 
revision of the łnext instructionž was made as they have continued 
citing łis not when someone says stop but when someone says go to 
when someone says where is [the] kitchen.ž This observation brings 
us insight into the importance of including detailed step visual-
izations within the system, rather than solely focusing on how to 
capture user intent with regards to system rules. 

4.2 Theme 2: End users have poor mental model 
of the input paradigm 

This theme refects end users’ experiences with the non-sequential, 
rapid specifcation of the robot programs. Instead of requiring step-
by-step instructions, Tabula accepts non-sequential input, i.e., end 
users need not instantiate commands and locations in the exact 
order to be performed. With Tabula’s non-sequential input, users 
provide a verbal task hint and the sketch on the tablet interface, 
and then these inputs are synthesized into a list of program steps 
by the system. Twelve participants indicated that the way that the 
interface required them to provide input was unintuitive. 

Preference for step-by-step inputs. Eleven participants articulated 
that they would have preferred the fexibility to interchange the 
speech and sketching inputs, especially to support specifying pro-
grams step by step rather than non-sequentially. For example, P16 
felt that frst giving the speech input was łbackwardsž when speci-
fying a task for the robot to greet patrons at the front of the store 
because they want to łfrst get [the robot] to the entrance and then 
give the command.ž P14 expressed similarly that for them, it was 
easier to draw out the path and then think of the speech because 
they frst need to łinvite [their] mind to imagine that placež then 
provide the speech command. The comments from these partici-
pants evoke the sense that they are thinking of the robot program 
in a step-by-step, linear sequence of actions, which contrasts the 
non-sequential input paradigm used by Tabula. Other participants 
were more explicit about their preference for łstep wisež (P3) inputs 
and found it łdifcultž (P19) to adapt to the non-sequential pattern. 
P17 explains how they would have preferred to create the robot 
program that brings the groceries to the kitchen, saying: 

łThe robot goes to the garage, and then [I’ll] tell them 
‘Take the groceries.’ I’ll put the groceries to the kitchen, 
and [I] draw [a path] to the kitchen.ž 

Overall, these participants seemed to struggle with the misalign-

ment between their step-by-step mental model of the robot program 
and the non-sequential inputs they were asked to provide. 

Unintuitive to program robot remotely. One remaining participant 
articulated that they did not like creating a robot program when the 
robot was not in the same location. They expected to łlet the robot 
come to [them] frst and then give [the robot] a taskž (P17) instead 
of using the tablet interface to do so remotely. While only one 
participant expressed such a difering model of creating programs 
for the robot, it highlights a diferent aspect to the input paradigm 
that was not widely explored in this study. 

4.3 Theme 3: End users felt that the robot was a 
tool to use 

End users viewed creating the robot programs as a way to utilize a 
robot like a tool rather than treating the robot as an independent, 
autonomous agent capable of reasoning about its environment. This 
theme is formed from seven participants’ remarks, and it encapsu-
lates a unique way in which they viewed the robot. Based on the 
demographic data, we see a potential relationship between experi-
ence with programming languages and how people perceived the 
robotÐof the seven participants who reported no experience with 
programming languages, only one of these participants articulated 
the robot was a tool rather than an autonomous agent. 

Learning to use the tool. Participants felt it was necessary to learn 
the specifc rules to use Tabula because łif you buy anything you 
want to use you have to read and use the manufacturer’s manual to be 
able to understand how to use itž (P20). This viewpoint emphasizes 
the robot’s role as a product to purchase and use as a tool. 

Prioritized the robot’s capabilities over their own preference. Two 
participants built on the notion of learning the robot’s specifc rules 
by indicating that as they created their robot programs, they priori-
tized adapting their inputs based on their perception of the robot’s 
abilities. P3 described that while łit was easy enough for [them] to do 
one thing or the other,ž they opted to create robot programs based 
on łwhatever [they] thought it was easier to implement for the robot.ž 

Need to ensure real world matches robot’s world model. In a more 
extreme view, four participants felt they had a direct responsibility 
to ensure that the reality refected the assumptions that the system 
made because the robot would not have the reasoning capabilities 
to troubleshoot deviation. P8 articulates this point clearly, saying: 

łIf [the robot] assumes that [a container is] going to be 
there, then it’s your responsibility to make sure that [...] 
the containers [are] there to for the robot to put [the 
object] in.ž 

This perspective shifts the responsibility onto the end user to 
ensure that the robot is able to succeed at its program, rather than 
expecting the robot to reason about the world autonomously. 

4.4 Theme 4: End users had mixed experiences 
on interaction with the program synthesizer 

End users either appreciated that the program synthesizer provided 
human-like common sense support, or they disliked the assistance 
because they perceived it as a loss of control over the robot pro-
gram. Participants interacted with the assumptions made by the 
program synthesizer when it automatically inserted missing ac-
tions and objects. Twenty participants specifcally commented on 
this aspect of the system, revealing a dichotomy of end users who 
either appreciate or reject the notion of the program synthesizer 
making automated assumptions and a small subset who had mixed 
perspectives. The two subthemes presented below illustrate the two 
prevalent, opposing viewpoints of the system. Based on the demo-

graphic data, we see the potential for experience with programming 
languages to impact how people perceived the interaction with the 
program synthesizerÐof the seven participants who reported no 
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familiarity with any programming languages, only one participant 
appreciated the automated assumptions. 

4.4.1 Subtheme 4a: Automated assumptions can ofer support to 
end users. The 11 participants who spoke positively of the auto-
mated assumptions made by the program synthesizer expressed 
that it was łnaturalž (P12) and that it provided support during their 
programming experience. 

Interactions were more natural/human-like. Participants specif-
cally commented on the assumptions made about when to insert 
an object and when to insert actions, indicating that these assump-

tions ofered a desirable level of human-like common sense from 
the robot that is łhelpfulž (P5). For example, P18 expressed that 
the actions automatically inserted by the program synthesizer sim-

plifed the process for them because łthe put action combined the 
grab and the move and stuf ž which meant that they did not need 
to take time to think through or add those actionsśthat burden was 
ofoaded to the program synthesizer. 

Desire for additional automated support. Four participants fur-
ther indicated that the system could be more helpful by making 
additional assumptions based on user input. For example, P4 wished 
that the system would automatically generate a condition for łexit-
ing the loop,ž while P13 wanted the system to łprovide suggestionsž 
if the user made a mistake. P11 further envisioned that the system 
could make assumptions based on the robot’s ability to interact 
with objects that it is close to in its environment, such as łif you 
move [the robot] to the item, [the system] just infers that [the robot]’s 
supposed to pick it up.ž The automatic assumptions provided con-
venience to some end users, who felt support from the system for 
easing into the robot programming process. 

4.4.2 Subtheme 4b: Automated assumptions can lead to loss of con-
trol. The 13 participants who commented negatively about the use 
of automated assumptions felt that these assumptions led to a loss 
of their ability to control how the robot would act. Eight of these 
participants focused comments on the automatic insertion of ob-
jects and items, while the remaining 5 participants expressed the 
desire for more control over the robot’s precise movements within 
its environment, such as indicating specifc regions to avoid. 

Doubting robot’s knowledge to automatically insert objects/actions. 
Eight participants focusing on the automatic insertion of objects and 
actions felt that it was łunnaturalž (P2) and questioned whether the 
robot could or should have enough knowledge of the environment 
to make such assertions. For example, P2 felt that depending on the 
scenario, the user may or may not intend for an object to be placed 
inside of a container. P2 explains: 

łGiven certain use cases, I could imagine like if you 
have one of these robots moving gravel around a yard, 
you probably wouldn’t have a container there, but uh 
in [the grocery delivery] scenario it felt right to assume 
that there would be a cabinet.ž 

From P2’s example, it may be difcult to infer when an object 
should be placed in a container or not. P6 similarly felt that it was 
reasonable for the end user to have to explicitly specify whether 
there is a container, saying łIt just makes sense if I have to tell it that 
there’s a teddy bear in the middle of the foor that I should also have 

to tell it that there’s a cabinet on the wall.ž P19 echoes the sentiment 
that they łdon’t know exactly what [the robot]’s going to assume to 
do and especially with the assuming where it’s going to put.ž Overall, 
participants who did not like the automatic insertion of objects and 
actions felt that they did not have as much control or understanding 
over how the system would behave. 

Desire to control robot’s location. Five participants viewed the 
abstraction of the environment into regions as opposed to exact 
coordinates as a negative assumption of the systemÐthey wanted 
more control over the precise location or path the robot would 
travel within the space. The current system abstracted away precise 
coordinates in favor of general semantic regions such as łkitchenž 
or łliving room.ž P20 explains their desire, using the example that 
the kitchen is a łbig place [...] so maybe [in] the command there 
should be a way to specify where exactly in the kitchen you want the 
groceries to be placed.ž Building of of this sentiment, P5 and P13 
both expressed that they may want the robot to łavoid a certain 
areaž (P5), so the path that they draw for the robot is the precise 
one that it should follow. This group of participants includes the 
four participants who also spoke favorably about the automatic 
assumptions regarding actions and objects in Subtheme 4a, which 
indicates that there is a need to create a balance between easing 
the programming process and giving the users the desired level of 
precision over the robot’s behaviors. 

4.5 Theme 5: There is more to using the system 
than understanding its basic functionality 

Even after understanding Tabula’s basic functionality, end users 
still faced a learning curve to become profcient. 

Translating rules into use. Eleven participants expressed that 
there were łdiferences between understanding and doingž (P12). P10 
articulated that rules for creating robot programs led to instances 
where łyou have something in your mind but you don’t know how to 
immediately put it in the system.ž This łgapž (P12) forced P15 to re-
sort to łtaking diferent parts of the training and kind of consolidating 
it into doing a scenario.ž 

Performance aspect to making recordings. In addition to concep-
tual difculties with łconnecting the dotsž (P15) between various 
concepts, participants also noted that making the recordings cre-
ated ła performance aspect [...] to get it all in one gož (P2). Once 
participants began a recording, they had to łremember the vocabu-
lary that the robot would understandž (P10). If they made a mistake 
or if the system łhad a hard timež (P4) discerning what participants 
said, then they had to delete the recording and start again. 

Desire for editing support. While some participants seemed com-

fortable with the iterative process of creating, reviewing, deleting, 
and re-doing recordings, others wanted a diferent way to correct 
mistakes. Four participants wanted the ability to łedit a record-
ing afterwardsž (P7), which would ease the pressure of providing 
precisely correct speech and touch on the frst attempt. Two partic-
ipants wanted a quick way to łerase if you messed upž (P11) during 
a recording without having to łrestartž (P8) the whole program. 
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5 DISCUSSION 

We sought to better understand end user experience with on-the-fy 
robot programming through an in-depth assessment of the open-
source EUP tool Tabula. Through our investigation, we uncovered 
themes that provide insight into various aspects of on-the-fy robot 
EUP. Some themes relate specifcally to the implementation of Tab-
ula, such as its use of multimodal inputs and the use of automated 
assistance in the form of a program synthesizer. However, com-

bined with prior work, other themes point to broader implications 
regarding the concepts realized through Tabula, such as the reliance 
on the visualized program steps. Overall, we see the promise of 
on-the-fy EUP tools as a way to facilitate the use of robots to aid 
with day-to-day tasks, but these tools require further research and 
refnement before they will be sufcient. We encourage future re-
searchers to conduct more in-depth user studies with existing or 
novel EUP tools so that we can build a better understanding of end 
user needs based on a variety of on-the-fy EUP tools. 

In the paragraphs below, we provide general points of discussion 
of our fndings, such as how participants perceived the role of the 
interface and how our fndings relate to the Cognitive Dimensions 
of Notation (CDN) [31]. We reserve detailed discussion of implica-

tions for future design of EUP systems for ğ5.1, highlighting four 
key design recommendations. 

Role of the interface. We note that participants had diferent as-
sumptions about the role of the interface, with some thinking that 
its capabilities were limited to capturing user input on behalf of the 
robot and others attributing planning and reasoning capabilities 
to the interface itself. Specifcally, some participants felt that the 
robot was directly generating the sequence of steps. For example, 
in Theme 3, P3 discussed łIf [the robot] assumes that [a container 
is] going to be there...ž), which attributes the automatic assumption 
made to the robot rather than to the interface’s underlying synthe-
sizer. Also in Theme 4-Subtheme 4b, P2 spoke as though the robot 
was assuming that there was a cabinet to place the groceries within 
the environment. Therefore, we believe that some participants at-
tributed the automated decision making to the robot’s autonomy 
rather than the features of the interface. 

We fnd this connection particularly interesting, considering 
that there was no physical robot present during the study. The dis-
tinction between the EUP tool and the robot’s autonomy is blurry, 
especially because the EUP tool may depend on specifc robot capa-
bilities. Given that participants did not necessarily separate the EUP 
tool from the robot’s capabilities, we can consider the automated 
decision making of Tabula in close alignment with the autonomy 
of the robot for which it was being used to generate programs. 

Relation to Cognitive Dimensions of Notation (CDN). CDN is a 
set of 14 design principles intended for evaluating programming 
languages, notations, and user interfaces [31]. Each principle il-
lustrates one aspect of usability, intending to serve as a guide to-
ward improving usability along specifc dimensions. We found that 
two dimensions align particularly well with certain aspects of our 
themes, indicating that these dimensions are key to future robot 
EUP tools. While CDN is helpful in contextualizing usability aspects 
of Tabula, CDN does not explicitly discuss autonomy or perceptions 
surrounding interaction with automated decision making. 

The frst dimension, progressive evaluation, considers how easily 
users can evaluate and obtain feedback. This dimension connects 
well to Theme 1. Participants largely relied on the generated list 
of program steps as the mechanism for receiving feedback and 
updating their solutions accordingly, indicating that supporting 
progressive evaluation is critical. 

The second dimension, premature commitment, considers both 
how strong the constraints are on using the system and also how 
users can easily change or correct decisions later on. With Theme 
2, participants felt constrained by the strict order of speech and 
sketching inputs. Given that participants had varying notions on 
the best input order, avoiding premature commitment by providing 
more fexibility in speech and sketch inputs is crucial. Theme 5 
also supports the need for premature commitment as participants 
wanted a way to edit the recordings after the fact instead of having 
to delete and re-do them. 

5.1 Design Implications 

Based on the themes discussed in ğ4, we present design implications 
and recommendations to inform future design of on-the-fy EUP 
tools. Each recommendation includes a general recommendation 
of how the implication could be applied generally to EUP tools, as 
well as a specifc suggestion for modifcations which would lead 
to łTabula 2.0.ž The link between the fndings, implications, and 
recommendations is visualized in Figure 3. 

5.1.1 Design Implication 1: Feedback is critical for the successful use 
of on-the-fly EUP systems. Our fndings highlight the importance 
of integrating feedback mechanisms within on-the-fy EUP systems 
like TabulaÐin contrast to tools in which program fow is explicitly 
embedded within user input (e.g., block-based programming tools 
[10, 20, 21]), Tabula users rely heavily on feedback (i.e., program step 
visualizations) to understand system behavior and make program 
changes (Theme 1). Even without access to a way to deploy their 
programs to a simulated or physical robot, participants were still 
able to use the step visualizations as a pre-deployment check as a 
way to understand where an error occurred and how they could 
adjust the program fow to correct it. 

The reliance on feedback echoes prior investigations of end-
user developers interacting with a program synthesizer [50]. How 
feedback is applied is additionally crucial to human-AI systems in 
general [4], and our results suggest that purely descriptive (as op-
posed to prescriptive or explanatory) feedback can lead to a lengthy 
process of discovering system behavior. Specifcally, because par-
ticipants were only provided with the resulting program steps (de-
scriptive feedback), they had to use their own judgment to discern 
if their program was correct and guess how to modify their inputs 
to Tabula in order to achieve the desired program output (Theme 1). 
In Theme 4-Subtheme 4a, participants specifcally expressed that 
the system could provide additional automated support to further 
ease their programming eforts. This additional support included 
prescriptive measures such as the system detecting mistakes and 
ofering corrective suggestions and preemptive measures such as 
the system generating conditions on their behalf (P4 and P13). 
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Figure 3: An overview of the connection between the fndings and resulting design implications and recommendations. 

Recommendation 1: For on-the-fy EUD tools, visual feedback should 
provide users not only with information on what is wrong with a pro-
gram, but also with information on how to fx it or explanations for 
why the system behaved in a certain way. On-the-fy EUD should 
therefore draw from prescriptive approaches in formal methods, 
such as proposing repairs [19], and strengthen its descriptive ap-
proach through explainable AI techniques such as model recon-
ciliation [18]. Approaches such as these could ofer end users the 
ability to assess incomplete solutions, obtain feedback, and build 
programs based on the interface’s suggestions. 

Specifcally, in realizing a łTabula 2.0,ž we can clearly label steps 
provided directly by the end user and steps generated by the system. 
Then, the end user could select steps and ask a question such as 
łWhy is this step before that step?ž Using methods such as iterative 
planning as outlined by Smith [61] or Wang et al. [70], the system 
can interactively ofer a rationale behind the decision and suggest 
new constraints to add or modifcations to existing recordings 
which would alter the resulting steps. 

5.1.2 Design Implication 2: Non-sequential user input is unintuitive. 
We found across Themes 2 and 5 that participants struggled with 
the rules and input paradigms that Tabula enforces. Participants 
had to provide input following a strict pattern and adhere to us-
age rules, which they expressed resulted in feelings of frustration 

because they could not easily use the interface to express their 
intention. For instance, participants commented on the łbackwardsž 
input paradigm that Tabula enforced and conveyed their preference 
for łstep-wisež inputs (P3, P14, and P16). This study included a fairly 
extensive tutorial which included many interactive examples, yet 
it is evident that additional training would be required for partici-
pants to achieve profciency. The underlying representations of user 
input and resulting program steps appear to be critical to Tabula 
users’ experience, a fnding that aligns with prior work of user pro-
gram comprehensionÐcertain program representations may align 
better (i.e., representations that facilitate forward-reasoning [67]) 
or worse (i.e., the imperative programming paradigm [36]) with 
user intuition. Other representations are prone to misalignment be-
tween user mental models of program behavior (i.e., trigger-action 
programming [33]) or may result in reduced user performance (i.e., 
visualizations of data fow rather than control fow [29]). Fortu-
nately, motivated by prior work that uses formative evaluation to 
inform product design [e.g., 41], we believe that changes to the 
interface can improve user experience with non-sequential input, 
such as through the inclusion of the ability to edit recordings after 
they are created. Therefore, it will be important to balance eforts 
to create intuitive tools for end users with developing efective 
training protocols for introducing new paradigms and systems. 
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Recommendation 2: Find a way to design on-the-fy EUP tools that 
supports more step-by-step programming paradigms. Training to 
use on-the-fy EUP tools to create robot programs should remain 
essential, even if the training eventually becomes teaching end users 
about a robot’s capabilities and limitations. However, interfaces 
can always be designed to be more intuitive, e.g., by supporting 
more step-by-step paradigms where users can specify movement 
and actions sequentially, through methods such as participatory 
design and research through design. 

In realizing łTabula 2.0,ž we would remove the restriction im-

posed during our study of speech needing to occur before the sketch, 
update the synthesizer to allow end users to link utterances to spe-
cifc waypoints, and add further support to accommodate multiple, 
separate speech utterances per recording. In making the above 
modifcations, end users will have more fexibility and control to be 
able to specify step by step what the robot should do at which loca-
tion. The result will be a system which would allow participants to 
interleave sketching and speech, similarly to how tools like Figaro 
[53] allow more sequential specifcation of movement and actions. 
Unlike Figaro, however, the system would still insert or complete 
missing or incomplete specifcations. 

5.1.3 Design Implication 3: Perception of the robot’s autonomy can 
either limit or enhance the role of the robot as a collaborative entity. 
Theme 3 and Theme 4-Subtheme 4b together illustrated that a sub-
set of participants perceived that the robot was not necessarily able 
to reason about its world. Participants from Theme 4-Subtheme 4b 
expressed this view through distrust of the automated assumptions 
of the program synthesizer (e.g., P2 considered the automated as-
sumptions to be łunnaturalž), whereas participants in Theme 3 felt 
that the robot was merely a tool to use (e.g., P20 felt there would 
have to be a łmanufacturer’s manualž such as the instruction book-
lets that come with other household tools). Misperceptions of robot 
capability [17] and the potential to view the robot as a łtoolž (rather 
than having agency) [65] are known phenomena in human-robot 
interaction. Our interviews not only suggest that these phenom-

ena translate to EUP, but also that, in participants’ words, user 
perception of the robot’s autonomy changes their behaviors and 
experiences. We further saw that in both of these themes, the par-
ticipant’s prior familiarity with programming languages may have 
been a factor impacting their current perception of the robot’s au-
tonomy. Given that a robot’s level of autonomy may be set, it is 
important to think about how to communicate the robot’s level of 
autonomy and precise role to the end user. 

Recommendation 3: When designing an EUP tool, the robot’s level of 
autonomy should be made explicit. Tools designed for autonomous 
robots who can reason about their world may difer from tools 
designed for using robots to extend human abilities. Tabula was 
designed with the intention that the system/robot could reason 
about the world, such as understanding when it may need to au-
tomatically insert steps or assume that certain objects would be 
present (e.g., assuming the kitchen cabinets are there to put the 
groceries in). However, as some participants did not appreciate this 
level of autonomy of the system, they desired more low-level con-
trol over specifying exactly what to do at which locations. Future 
research should explore these diferences, such as by investigating 
ways in which diferent levels of autonomy and agency can be 

communicated to end users. While it is not necessarily the case that 
each specifc robot with varying autonomy levels would require a 
diferent EUP tool, diferent robot characteristics will likely indi-
cate the need for more specifc EUP tool features. Incorporating a 
conceptual framework such as the robot autonomy scale (see Beer 
et al. [8]) could create more transparency with regard to how much 
automated support is provided to the end user, and such integration 
will therefore be a necessary step for future EUP tool design. 

For łTabula 2.0,ž we can clearly situate Tabula’s level of auton-
omy within the scale of robot autonomy [8] as sharing control (e.g., 
the synthesizer can automatically complete the user’s commands 
while the user has control on which commands to instantiate). We 
can specifcally communicate the sensing, planning, and acting 
capabilities of the robot that is connected with Tabula through 
training materials that exhibit specifc use cases of the synthesizer. 
Within the training materials, we will emphasize the exact capabili-
ties the robot has, along with the extent to which the synthesizer 
makes assumptions about the user’s intent. This training will be 
particularly critical for those who are not familiar with robots, al-
though as familiarity with robots increases, the need for in-depth 
training will likely taper. 

5.1.4 Design Implication 4: As demonstrated with Tabula, user expe-
rience with perceptions of automated assistance varies with on-the-fly 
EUP tools. Particularly with Theme 4, we observed that end users 
were split between appreciating the support of the automated as-
sistance provided by the program synthesizer and wishing that 
they had more control over the programs generated. A handful of 
users expressed mixed opinions. These varying preferences may 
be due to our participant pool including a diverse background of 
programming, video game, and engineering experience. We note 
that robots in the home will similarly be used by individuals with 
varying backgrounds. Prior work in robot EUP acknowledges the 
need to cater to varying backgrounds by providing entry points for 
diferent types of developers [27, 34, 54]; our work suggests that in 
addition to providing multiple entry points, on-the-fy EUP tools 
will need to cater to a sliding scale of preferences regarding the 
level of user control versus automated assistance. 

Recommendation 4: When incorporating automation, also give 
users varying levels of control. Ideally, anything that is handled by 
some form of automated assistance should also be directly con-
trollable and/or modifable for the end user. However, in reality, 
due to Tabula’s non-sequential multimodal inputs, all aspects of its 
automated assistance may not be fully customizable. Therefore it is 
critical that EUP tools clearly communicate explanations behind 
their decisions and ofer guidance to support end users in creating 
the programs that they desire. 

In continuation of the discussion on robot autonomy and end-
user control, łTabula 2.0ž can further be designed to allow end-users 
to specify their preferences with regard to the program synthesizer. 
Users should be able to adjust the level of control wielded by the syn-
thesizer, in particular the degree to which the synthesizer involves 
the human in the loop. For instance, users who opt for high level of 
control and low level of robot autonomy should be able to prioritize 
or re-arrange the program steps suggested by the synthesizer. 
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5.2 Limitations and Future Work 

Our work has a number of limitations that point to future work. 
We separate our limitations and future work into three categories. 

Generalization to EUP. First, our investigation of end-user ex-
perience with on-the-fy robot EUP used one existing multimodal 
EUP tool with specifc capabilities and constraints. Combined with 
the fact the on-the-fy development paradigm remains novel for 
EUP tools within HRI, the extent to which the behaviors we have 
observed and the perceptions we have documented will generalize 
to existing EUP tools is unclear. With that being said, the purpose 
of our investigation is less to understand existing EUP tools, but 
moreso to uncover guidelines for designing EUP tools within this 
novel paradigm. Future work must therefore apply our recommen-

dations to the design and evaluation of a łTabula 2.0.ž Future work 
must also extend our investigation to additional tools that represent 
diferent EUP approaches, including input methods, intent infer-
ence, and program generation methods so that we can understand 
what is unique about the multi-modal on-the-fy paradigm and 
what generalizes to robot EUP as a whole. 

Learning Tabula. Second, although the EUP paradigm is intended 
to be accessible to non-experts in programming and robotics, ef-
fectively using any complex end-user tool requires learning and 
gaining comfort with its use, which put limits on how long our 
participants could explore the tool as well as the time needed to 
generate programs. Future work should include multi-day feld 
studies with Tabula to investigate how real users learn to use, gain 
familiarity with, and generate or refne programs using on-the-fy 
EUP tools, similarly to the approach taken by Ranganeni et al. [56]. 
Additionally, recent work in tablet-based EUP suggests that end-
user perceptions, experience, and success using EUP tools is tied to 
individual background [51]. Future work with Tabula should there-
fore investigate possible links between relevant user background 
characteristics and tool usage in order to better inform strategies 
for training Tabula end users. 

Involvement of a Robot. Third, participants used the EUP tool in 
a sandbox and therefore did not see their programs being executed 
on an actual robot. Their programs were only represented on the 
EUP tool. The ability to see the robot behaviors that result from 
their programs might provide participants with stronger mental 
models of the capabilities and limitations of the robot platform they 
are working with, which might inform their programming choices. 

Exploration of Specifc Application Domains. Finally, our evalu-
ation engaged the general population of our campus community. 
While this population could represent home robot users, it does not 
represent specifc domain experts such as shop keepers or health-
care workers. Each domain may have its own needs which dictate 
how end users would perceive Tabula. We are currently exploring 
applications of on-the-fy EUP in the context of care assistance to 
address caregivers’ extremely variable and often hectic workfows, 
motivated by our past work on needs of caregivers [62]. Further ex-
ploration into diferent domains, such as by evaluating a łTabula 2.0ž 
with specifc domain experts, will lead to a better understanding of 
when and how multi-modal on-the-fy EUP is best utilized. 

6 CONCLUSION 

This work contributes to a growing body of robot end-user pro-
gramming (EUP) research by investigating end user experience with 
on-the-fy robot EUP. Using an open-source multimodal EUP proto-
type, we asked participants to create robot programs for structured 
and open-ended scenarios, then we interviewed them about their 
experiences. Our fndings, which consist of fve themes, illustrate 
user experiences which may generalize to other on-the-fy EUP 
tools, as well specifc experiences based on Tabula’s implementa-

tion. Contextualizing our fndings within prior work, we develop 
design implications that can ofer insights to inform the future 
design of on-the-fy EUP tools for robots. 

The evaluation of Tabula presented in this paper contributes 
to the larger cause of democratization of robots. As robots are be-
coming more prevalent in day-to-day life, it is even more critical 
for non-roboticists and non-programmers to be able to efectively 
utilize them. Domain experts in felds such as healthcare, educa-
tion, hospitality, and service are primed to receive assistance from 
robots, and yet we do not yet have the intuitive, natural interfaces 
necessary for them to use emerging robotics tools and platforms. 
This work is a foundational step toward these interfaces as it is 
an initial exploration into a promising new EUP paradigm. Over 
time, as more novel interfaces are built and paradigms are evaluated 
within the research and industry communities, a pool of knowledge 
will accumulate to help future designers understand what kind 
of interface to create for a specifc robot application and the user 
population. These tools will ultimately help more people engage 
with robots to create solutions that address their unique needs. 
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