
Understanding On-the-Fly End-User Robot Programming

Laura ∗ Stegner Yuna ∗ Hwang

University of WisconsinśMadison University of WisconsinśMadison
Madison, Wisconsin, United States Madison, Wisconsin, United States

stegner@cs.wisc.edu yunahwang@cs.wisc.edu

David Porfrio Bilge Mutlu
U.S. Naval Research Laboratory University of WisconsinśMadison
Washington, DC, United States Madison, Wisconsin, United States
david.j.porfrio2.ctr@us.navy.mil bilge@cs.wisc.edu

ABSTRACT

Novel end-user programming (EUP) tools enable on-the-fy (i.e.,
spontaneous, easy, and rapid) creation of interactions with robotic
systems. These tools are expected to empower users in determining
system behavior, although very little is understood about how end
users perceive, experience, and use these systems. In this paper, we
seek to address this gap by investigating end-user experience with
on-the-fy robot EUP. We trained 21 end users to use an existing
on-the-fy EUP tool, asked them to create robot interactions for
four scenarios, and assessed their overall experience. Our fndings
provide insight into how these systems should be designed to better
support end-user experience with on-the-fy EUP, focusing on user
interaction with an automatic program synthesizer that resolves
imprecise user input, the use of multimodal inputs to express user
intent, and the general process of programming a robot.

CCS CONCEPTS

• Human-centered computing → Systems and tools for inter-
action design; • Software and its engineering → Development
frameworks and environments.

KEYWORDS

End-user Programming, Robot Programming, Service Robots, Pro-
gramming Tools, User Study, Usage Patterns, User Experience

ACM Reference Format:
Laura Stegner, Yuna Hwang, David Porfrio, and Bilge Mutlu. 2024. Under-
standing On-the-Fly End-User Robot Programming. In Designing Interactive

Systems Conference (DIS ’24), July 01–05, 2024, IT University of Copenhagen,
Denmark. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3643834.3660721

1 INTRODUCTION

Robots are increasingly being designed to aid end users in com-

pleting day-to-day tasks. These robots arrive with autonomous

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0583-0/24/07
https://doi.org/10.1145/3643834.3660721

������

������� �����������

��
����

��������

�����

�
		�
�
�

������
�����

�������
���������

����������������������

��
�

��������

������
�����

��������������������
������������������

���

�	

�

�

Figure 1: We investigate end-user experience with on-the-fy
robot end-user programming using Tabula, a state-of-the-art
open-source research prototype. Right: An experimenter us-
ing speech and touch input to program a robot to put toys
away in a toy chest. Lef: A visual representation of the gen-
erated program by a study participant (P5).

capabilities, yet they still require input from end users about which
tasks must be completed and any contextual details surrounding the
task. End users could include residents with robots in their private
homes [45], shopkeepers with robot assistants to aid customers
[60], caregivers with robots to assist in providing care to residents
[63], and many more examples. In each of these scenarios, the end
user may need to communicate to the robot a task for it to complete
on the fy, i.e., spontaneously, easily, and rapidly. To address this
need, researchers have created various end-user programming (EUP)
tools to allow end users to create interactions with robotic systems
without extensive technical knowledge [1]. Specifcally, EUP tools
produce robot programs, which traditionally consist of sequences
of actions for the robot to perform in order to complete a task.

Methods, techniques, and tools that facilitate rapid and intu-
itive robot EUP are rapidly proliferating (see Ajaykumar et al. [1]
for a detailed review of robot end-user programming), including
tools that better capture user intent [e.g., 16], automatically syn-
thesize programs given high-level user input [50], or contextualize
programs within the user’s environment [32]. EUP tools that incor-
porate multimodal inputs [e.g., 24, 52, 53, 64] often combine various
methods and techniques in an efort to create a more intuitive and
natural on-the-fy EUP experience.

2468

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Laura Stegner, Yuna Hwang, David Porfirio, and Bilge Mutlu

Despite recent advances in EUP tools for robot programming,
their full potential and impact remain unknown. A rich understand-
ing of user experience with state-of-the-art EUP tools is missing, as
these advanced EUP systems have yet to fnd real-world use and the
research literature lacks deep understanding of use patterns, user
experience, and limitations of these systems. As a result, very little
is known about how these tools might be used by end users. In-
creasingly sophisticated methods and techniques that deviate from
traditional programming paradigms require further exploratory
user studies to contextualize the technical advances within end
user needs and experiences.

Therefore, to help close this gap, we conducted an in-depth
exploratory evaluation using a state-of-the-art on-the-fy EUP pro-
totype called Tabula [52]. Tabula is an open-source EUP prototype
tool that we developed previously (see Porfrio et al. [52]). It facili-
tates on-the-fy robot programming by combining multimodal input
that enables end users to express task intent with a program syn-
thesis technique that automatically completes missing elements of
a program. Using Tabula as a medium for creating robot programs,
we investigate the following research question.

• RQ: What are end users’ experiences with on-the-fy robot
programming?

To answer this question, we trained 21 participants to use Tab-
ula and instructed each participant to create robot programs for
three structured robot scenarios and one open-ended robot scenario.
Specifcally, we consider how end users approach the on-the-fy
robot programming process through an in-depth exploratory eval-
uation of Tabula’s key features, the multimodal inputs, and the
program synthesizer. Therefore, we have the opportunity to probe
usability aspects specifc to Tabula’s implementation, but also glean
more widely applicable design insights.

This paper contributes to understanding how end users approach
robot EUP through (1) a user study that evaluates a multimodal,
on-the-fy EUP tool; (2) fve themes that relate to both the usability
and design of on-the-fy robot programming tools; and (3) a set of
design guidelines that can inform future on-the-fy EUP tool design.

2 RELATED WORK

Our work builds on prior literature from software engineering,
human-computer interaction (HCI), and human-robot interaction
(HRI), focusing on how end users specify requests to interactive
systems, approaches to end-user development and programming,
and prior studies of end-user programming (EUP) tools.

2.1 Approaches to End-user Specifcation

Many programs written today do not rely entirely on professional
programmers or roboticists [e.g., 23, 30, 38, 47, 71]. Instead, end
users with discrete domain expertise drive software development,
specifcally by contributing to obtaining a complete and consistent
set of system requirements [37, 68]. Thus, seminal work in the soft-
ware engineering feld [e.g., 7, 38] provides pointers on how to fa-
cilitate end-user specifcation, particularly at the exploratory phase
[28] of the software lifecycle. Dialogue is an accessible paradigm
for rapid prototyping based on its use in daily human communi-

cation [1]. Porfrio et al. [50] proposed an approach that utilized

speech gathered from łrole-playingž to synthesize human-robot in-
teraction scenarios. Within the end-user specifcation frame, visual
programming interfaces are frequently utilized. Flow-based visual
interfaces allow users to conceptualize programs as processes [72].
In RoboFlow [2], edits to default programs can be easily made with
the assistance of a fow-based visual expression.

Display of readily distinguishable domain-specifc operation
units to end users has proven successful when deployed on a visual
interface. The system implemented and evaluated by Senft et al.
[59] only exposes the graphical representation of the task-level
(high-level) actions to the user, which in turn allowed efective tele-
operation of users for individuals with varying levels of expertise.
More recently, deep learning and large-language modeling (LLM)
methods are gaining attention for łprompt-based prototypingž [e.g.,
5, 35]. ChatGPT (GPT-3.5 and GPT-4 [48]) and its related work [e.g.,
9, 49] serve as distinct use cases where the representation format
of question-answer pairs closely resemble that of interpersonal
communication, borrowing dynamics of turn-taking.

2.2 End-User Development and Programming

End-user development (EUD) encompasses tools and techniques that
facilitate the creation of software systems by non-programmers [42].
Crucially, Lieberman et al. [42] distinguished łdesign-before-usež
EUD as creating software artifacts prior to their execution versus
łdesign-during-usež as modifying existing software already in use.
End-user programming (EUP) is a type of EUD that typically occurs
at the creation phase. Although both paradigms play important
roles within robotics, the focus of programming tools for human-

robot interaction is often on EUP, with these tools having distinct
authoring phases involving the initial creation of a program [1].

EUP tools capture user intent in a variety of diferent ways,
often taking the form of traditional keyboard-and-mouse visual
programming environments [e.g., 2, 40, 58], demonstration [e.g., 26,
34], and, more recently, in situ interfaces via mixed and augmented
reality [e.g., 15, 16]. Often, these interfaces require multimodal
input from developers, such as Figaro [53], in which users paired
spoken language statements with physical demonstrations through
fgurines. Due to the nature of programming, however, EUP systems
often require meticulous and clear input from the user, which can
be awkward for users of multimodal systems [50].

The focus of our work is to better understand how end users
naturally approach programming using EUP tools. Natural input
is often imprecise and rapid, a key observation of the sloppy pro-
gramming paradigm [43]. Specifcally, we focus on how end-user
programmers might combine two historically popular EUP input
modalitiesÐspoken language and sketching. Spoken language has
experienced widespread popularity for programming HRI systems
in the collaborative [24] and service [69] domains. Sketching, too,
has seen success within HRI EUP [44, 57], and has occasionally been
paired with speech for robot control [22, 66]. Therefore, exploring
how end users interact with these modalities within a working
prototype will aid in the design of future EUD and EUP systems.

2.3 EUP Tool Usage

A critical aspect of EUP research in HRI and HCI is investigating
how EUP tools could be used. Formative design studies are common

2469

Understanding On-the-Fly End-User Robot Programming DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

practice in EUP to investigate the potential use of tools that have
not been built yet. Related to our work, Li et al. [41] investigated
how a touchscreen interface can enhance spoken language, and
found that multimodal input can reduce unclear or vague concepts
in speech. Other work used formative studies to investigate the
potential applications for which a hypothetical EUP tool might be
used [20]. In addition to formative studies, Alves-Oliveira et al. [3]
presented a myriad of case studies documenting how their EUP tool
was used in real-world and open-ended deployments, including
how end users applied the tool for robot personalization. Within the
realm of general programming, Puig et al. [55] provided information
on the kinds of programs users could create for robots to perform
when provided with an open-ended development environment.

In our review of related EUP literature, we note that most work
highlights technical over empirical contributions. Technical con-
tributions are often still accompanied by usability measures [e.g.,
14, 46] and measures of whether study participants are able to meet
predetermined task criteria successfully [e.g., 34]. Most work that
makes empirical contributions performs summative evaluations,
including either quantitative scales, such as the System Usability
Scale (SUS), or the Cognitive Dimensions of Notations (CDN) [e.g.,
13, 14], or open-ended, qualitative fndings [e.g., 53]. However, these
empirical fndings are often in service of validating the technical
contributions of the work. In this work, we aim to add to the body
of empirically focused EUP literature with a deeper understanding
of user experience and use patterns with EUP tools and design
guidelines derived from this understanding.

3 METHOD

We conducted a user study where we asked participants to use a
multimodal EUP research prototype, Tabula.1

3.1 Participants

We recruited 21 individuals to participate in the study, aged 18ś72
years (� = 25.19 years, �� = 11.53 years; 11 males, 10 females).
While prior programming experience or exposure to robotic sys-
tems was not required, 12 participants reported previous program-

ming experience (� = 3.92 years, �� = 2.94 years), and fve of those
participants also reported exposure to robotic systems ranging from
using Lego robotics kits as a child to attending a Human-Computer
Interaction summer school that included a robotics project. Partici-
pant backgrounds included 15 occupations or student majors from
a variety of diferent felds which spanned science, engineering,
math and statistics, medicine, and humanities.

3.2 Interface

For our study, we used an open-source, state-of-the-art research
prototype tool called Tabula which we developed in previous work
(see Porfrio et al. [52]). Tabula is a handheld EUP tool where given
a 2-dimensional bird’s-eye view of an environment, users can uti-
lize multimodal speech and touch inputs to create custom robot
programs [52]. The user can frst optionally confgure the environ-
ment by placing relevant objects (e.g., toys, cabinets) with which the
robot could interact. Then, the user creates the robot program by

1All study materials, de-identifed data, codebook, and supplementary video are avail-
able through the following OSF repository: https://osf.io/ps2fw/

�����������������
�����������

������������
���������

������������

�������
��

��������������
�����������

�����������
��
��

������
�����
��
��

������

���
�

Figure 2: We used Tabula, a multimodal EUP tool that uses
a combination of speech and sketching input to generate
a robot program [52], to study end-user experiences with
programming robots on the fy. Lef: First, users confgure
the environment, including placing any objects for the robot
to interact with. Middle: Second, users create recordings by
frst providing a speech utterance to instruct the robot what
to do and subsequently creating a sketch by drawing a path
of points of interest that the robot should visit. Right: Finally,
inputs are combined by the program synthesizer, and users
can view the resulting programming steps.

creating one or more recordings, which consist of a combination of a
spoken command and a sketched path drawn on the interface. Their
utterance is parsed into the core of what the robot has to achieve,
including the base command (e.g., put, move to) and any relevant
parameters for that command (e.g., objects or places within the en-
vironment). The drawn sketch includes a series of waypoints that
represents locations the robot must visit during program execution.
The system then contextualizes the core (the user’s command and
its parameters) within the drawn path, culminating in a program
with waypoints from the sketch. Users are able to view the fnal
program steps after creating recordings through a separate review
panel. A high-level system operation is presented in Figure 2.

In the version of Tabula that we used, users do not meticulously
specify step-by-step programs (i.e., they do not specify commands
and locations in the exact order to be performed), but rather supply
the system with the core of the program and then contextualize that
core with the sketch.2 The command extracted from the utterance is
not guaranteed to happen at any specifc location, as the synthesizer
will automatically decide where to place commands within the
sketch. Therefore, we describe this input as non-sequential.

For example, the user may utter the speech łput the groceries in
the kitchenž and draw a path to the garage, then to the kitchen. The
system inferred that in order to ‘put’ the groceries, it frst needs
to ‘grab’ them. Since there are two actions, the system also infers
that it should ‘grab’ at the frst location and ‘put’ at the second. The
system further has the constraint that the ‘put’ command requires
a container to put the object inÐin this case, putting the groceries

2Tabula’s implementation does not restrict users to providing the speech core and
sketched path in any particular order, but its compilation to Android for this study
imposes this restriction.

2470

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Laura Stegner, Yuna Hwang, David Porfirio, and Bilge Mutlu

in the kitchen cabinets. While the utterance did not include the
container parameter, the system infers which container based on
a pre-confgured dictionary of what containers are in diferent
locations. The system would therefore interpret the given inputs
such that the robot should travel to the garage, grab the groceries,
travel to the kitchen, and put the groceries in the kitchen cabinet.

During a basic operation of Tabula, users create one recording
which results in a basic robot program that accomplishes at most
one goal based on the core. However, by creating multiple record-
ings, Tabula enables end users to specify more complex logic, i.e.,
branching and looping. To create a branch, the user creates a second
recording that starts from an existing waypoint and includes a trig-
ger speech (e.g., łwhen I arrive...ž) to indicate when the robot should
opt to follow that branch. To create a loop, the user simply returns
to a previously-visited waypoint within one recording. Specifying a
loop’s exit condition requires a second recording where the trigger
speech indicates the desired exit condition, e.g., łwhen I say stop...ž

Tabula was selected due to its inclusion of state-of-the-art re-
search concepts described above that have not yet been widely
evaluated by end users. The key features include: (1) the combina-

tion of speech and touch input, (2) the automatic completion of an
under-specifed user input by searching for adequate entities to sat-
isfy relevant preconditions, and (3) the embedding of programming
logic (e.g., loops) within the program to address task complexity.
Porfrio et al. [52] specify that these features are intended to re-
move some of the users’ burden in constructing comprehensive,
end-to-end robot programs. However, as Porfrio et al. [52] do not
include a user study that examines the usability of the system, our
evaluation aims to better understand precisely how these features
support end-user programming eforts.

3.3 Procedure

Participants were guided to a quiet room for the study. The exper-
imenter briefy introduced what the study would entail and then
the participants provided their informed consent before continu-
ing. This study was reviewed and approved by the University of
WisconsinśMadison Institutional Review Board (IRB). The study
consisted of the following fve phases:

Tutorial & Training. Participants learned Tabula through 26 min-

utes of tutorial videos designed to help participants to familiarize
themselves with the basic operations of the system. During the
tutorial, the interface used a supermarket environment. The tu-
torial session was interactive, meaning the experimenter paused
the video at pre-set points to prompt participants to try the exam-

ples from the tutorial. For example, participants practiced making
recordings with the speech łsay hello follow me to the salež and
a sketch of a path from anywhere on the map to the entrance of
the store. The tutorial videos also asked participants questions to
check their understanding of the key system rules. For example, the
tutorial was designed deliberately to build upon previous concepts
and raised questions on the diference between the new constraint
and the previous constraint (e.g., how does adding the new speech
łif someone says yesž change how you program the robot?). Overall,
the tutorial delivered the logistics of how to make a command with
respect to the interface (e.g., using which modality to specify a

complete command) and provided examples of use cases where the
system supports programming logic (e.g., loops).

Structured Scenarios. Participants were then prompted to work
with four diferent design scenarios. Participants programmed a
human-robot interaction using the interface. We then asked partici-
pants to think aloud while completing each scenario, which allowed
the experimenter to notice any hesitancy from the participant and
ask clarifying questions thereafter. All three structured scenarios
commonly used a home environment. We deliberately used a difer-
ent environment in the scenarios versus the tutorial to observe how
participants were to operate with the system, without relying on
their familiarity with a specifc environment. The scenarios were
designed around the idea that participants were hosting a party
and wanted the robot to help prepare. For each scenario, partici-
pants were briefed on the context and given an objective of what
the robot program should accomplish. The objectives encouraged
participants to use a variety of Tabula’s features, including a robot
passing an object, carrying multiple objects, and acting in regard to
varying responses from the end-users described in the scenario. The
comprehensive list of objectives that the participants were asked
to complete is as follows.

• Scenario 1: The robot should put away the toy
• Scenario 2: The robot should bring all of the groceries from
the garage to the kitchen

• Scenario 3: The robot should respond to guests that approach
it to either show them the kitchen or the bathroom

Open-Ended Scenario. After the participants completed the three
structured scenarios, the experimenter then asked the participants
to come up with their own scenarios. Because these scenarios were
open-ended, participants were given a choice to use either the
supermarket environment or the home environment.

Interview & Questionnaires. Following the open-ended scenario,
the experimenter asked participants to respond to a usability ques-
tionnaire (the System Usability Scale (SUS) [12]) based on their
experience across all scenarios. In the last portion of the study, the
experimenter conducted a semi-structured interview and asked
participants to respond to a demographic questionnaire. The inter-
view questions include topics such as the perceived level of system
fexibility (e.g., if the participants deemed the rules of the system
too rigid) and the dynamic participants experienced while utilizing
both speech and touch (e.g., if the order of operation of the speech
frst and sketch second was natural for them).

3.4 Measures and Analysis

We collected the following data: 10 items from the SUS question-
naire [12], screen recordings of tablet usage during the scenarios,
audio recordings of the think aloud conducted during the scenarios,
and audio recordings of responses to questions during the semi-

structured interviews. The think aloud and interviews were tran-
scribed and formatted into tables for analysis. Two coders reviewed
the data and decided to split the analysis of the think alouds and
interviews due to the additional context required to understand the
think alouds, as that dialogue is tightly linked to participants’ use
of the interface. For the interview transcripts, one coder developed

2471

Understanding On-the-Fly End-User Robot Programming DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

Table 1: A summary of the themes developed in our analysis.

Summary of Findings

General Ð These themes relate to user experiences which may generalize to other on-the-fy EUP tools.

Theme 1: End users viewed program steps to better understand the system

End users relied heavily on viewing program steps to shape their understanding of how the system works and to look ahead to their next actions.

Theme 2: End users have poor mental model of the input paradigm

End users who naturally tended toward step-by-step instructions for the robot struggled with articulating their intent non-sequentially.

Theme 3: End users felt that the robot was a tool to use

End users viewed creating the robot programs as a way to utilize a robot in a tool-like manner rather than as an independent, autonomous agent.

Usability Ð These themes relate to specifc experiences based on Tabula’s implementation of on-the-fy EUP.

Theme 4: End users had mixed experiences on interaction with the program synthesizer

End users either appreciated that the program synthesizer provided human-like common sense support, or they disliked the assistance because they
perceived it as a loss of control over the robot program.

Theme 5: There is more to using the system than understanding its basic functionality

Even after learning Tabula’s basic functionality, end users still faced a learning curve to become profcient with its use.

a codebook and conducted a thematic analysis following the guide-
lines of Braun and Clarke [11]. For the scenario data, one coder
developed a codebook for the think aloud transcripts and a list of
behaviors to code in the screen recordings, e.g., started a record-
ing, made a speech input, checked the review mode, etc. Screen
recording data was coded using BORIS [25], an open-source event
recording software. The think aloud and screen recording data was
then chronologically organized and subsequently analyzed for fre-
quency of co-occurring codes within a fve-second window. Across
all coding, the two coders had a high inter-rater reliability (Cohen’s
Kappa, � = 0.83), which indicates an łalmost perfectž agreement ac-
cording to interpretation guidelines from Landis and Koch [39]. We
present themes that emerged through the interview data codebook
as well as the patterns that emerged from the scenario data.

4 FINDINGS

Participants overall had a positive experience with the interface,
with a łgoodž [6] mean SUS score of 69.9 (������ = 72.5, �� =
11.6). From our qualitative analysis, we developed fve themes about
how end users perceived and interacted with various features of
the on-the-fy end-user programming (EUP) tool that they used.
The themes are summarized in Table 1. Themes 1ś3 illustrate expe-
riences with on-the-fy EUP on a more general level, while Themes
4ś5 pertain to usability aspects of Tabula’s specifc implementation.
For each theme, we present its defnition and use participant quotes
to provide support. Theme 4 is further organized into subthemes
to more explicitly illustrate its diferent facets. Participant quotes
are attributed by participant ID, with minimal edits made to ensure
clarity while retaining meaning.

4.1 Theme 1: End users viewed program steps to
better understand the system

The frst theme captures how users refect on system rules when
viewing program steps (see Figure 2, Right), initiate revisions to
the program after discovering an error, and proactively utilize the

program steps to make programs incrementally. Refections shared
by fve participants highlight the end users’ heavy reliance on step
visualization when understanding system operation.

Helping in recalling system rules. Five participants recalled key
system rules as they connected those rules to shaping expectations
and interpreting the fnal output of the program steps. Participants
explicitly stated concepts such as łrecordingsž (P6), łloopsž (P6), and
triggers, e.g., ładding [my] stopsž (P15). Similarly to P6’s comment
on recordings, P10’s comment on the number of recordings provides
insight on how users were able to evaluate system output as they
viewed program steps and remembered key concepts. P10 mentions,
łI think that was... yeah I don’t know what the third [recording]’s
supposed to bež as they viewed the program steps. For the case of
recalling how to specify program logic, P6 asked a critical question
łdoes it loop?ž as they meticulously viewed each program step.

Initiating revisions after discovering errors. Besides the phenom-

enon described in the previous paragraph, there were instances
where users motivated themselves to match the program steps pro-
vided by the system to the steps they imagined and desired. When
misaligned, end users took the initiative to redo the entire program
or wanted to make a revision after they viewed the steps. Six partic-
ipants felt they wanted to łdo it againž (P12) as they examined the
fnal steps. P9 displayed confdence as they noticed what output
of the program steps were łobviously [...] wrongž and expressed
the urge to redo it by saying łbecause I know exactly why.ž P21
expressed a related sentiment and wanted to make partial revisions,
as they cited łso I go to just delete this recording.ž Participants were
able to make these refections and express their urge to revise the
program because they viewed the detailed program output.

Incremental revisions. In addition to the more common ways
participants interacted with the visualized program steps, P15 also
used the program steps to create programs incrementally. Delib-
erately checking the review panel and the detailed output of the
program steps, P15 planned for the next recording after citing łokay

2472

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Laura Stegner, Yuna Hwang, David Porfirio, and Bilge Mutlu

let me see what it did here this is only one of my things.ž Additionally,
revision of the łnext instructionž was made as they have continued
citing łis not when someone says stop but when someone says go to
when someone says where is [the] kitchen.ž This observation brings
us insight into the importance of including detailed step visual-
izations within the system, rather than solely focusing on how to
capture user intent with regards to system rules.

4.2 Theme 2: End users have poor mental model
of the input paradigm

This theme refects end users’ experiences with the non-sequential,
rapid specifcation of the robot programs. Instead of requiring step-
by-step instructions, Tabula accepts non-sequential input, i.e., end
users need not instantiate commands and locations in the exact
order to be performed. With Tabula’s non-sequential input, users
provide a verbal task hint and the sketch on the tablet interface,
and then these inputs are synthesized into a list of program steps
by the system. Twelve participants indicated that the way that the
interface required them to provide input was unintuitive.

Preference for step-by-step inputs. Eleven participants articulated
that they would have preferred the fexibility to interchange the
speech and sketching inputs, especially to support specifying pro-
grams step by step rather than non-sequentially. For example, P16
felt that frst giving the speech input was łbackwardsž when speci-
fying a task for the robot to greet patrons at the front of the store
because they want to łfrst get [the robot] to the entrance and then
give the command.ž P14 expressed similarly that for them, it was
easier to draw out the path and then think of the speech because
they frst need to łinvite [their] mind to imagine that placež then
provide the speech command. The comments from these partici-
pants evoke the sense that they are thinking of the robot program
in a step-by-step, linear sequence of actions, which contrasts the
non-sequential input paradigm used by Tabula. Other participants
were more explicit about their preference for łstep wisež (P3) inputs
and found it łdifcultž (P19) to adapt to the non-sequential pattern.
P17 explains how they would have preferred to create the robot
program that brings the groceries to the kitchen, saying:

łThe robot goes to the garage, and then [I’ll] tell them
‘Take the groceries.’ I’ll put the groceries to the kitchen,
and [I] draw [a path] to the kitchen.ž

Overall, these participants seemed to struggle with the misalign-

ment between their step-by-step mental model of the robot program
and the non-sequential inputs they were asked to provide.

Unintuitive to program robot remotely. One remaining participant
articulated that they did not like creating a robot program when the
robot was not in the same location. They expected to łlet the robot
come to [them] frst and then give [the robot] a taskž (P17) instead
of using the tablet interface to do so remotely. While only one
participant expressed such a difering model of creating programs
for the robot, it highlights a diferent aspect to the input paradigm
that was not widely explored in this study.

4.3 Theme 3: End users felt that the robot was a
tool to use

End users viewed creating the robot programs as a way to utilize a
robot like a tool rather than treating the robot as an independent,
autonomous agent capable of reasoning about its environment. This
theme is formed from seven participants’ remarks, and it encapsu-
lates a unique way in which they viewed the robot. Based on the
demographic data, we see a potential relationship between experi-
ence with programming languages and how people perceived the
robotÐof the seven participants who reported no experience with
programming languages, only one of these participants articulated
the robot was a tool rather than an autonomous agent.

Learning to use the tool. Participants felt it was necessary to learn
the specifc rules to use Tabula because łif you buy anything you
want to use you have to read and use the manufacturer’s manual to be
able to understand how to use itž (P20). This viewpoint emphasizes
the robot’s role as a product to purchase and use as a tool.

Prioritized the robot’s capabilities over their own preference. Two
participants built on the notion of learning the robot’s specifc rules
by indicating that as they created their robot programs, they priori-
tized adapting their inputs based on their perception of the robot’s
abilities. P3 described that while łit was easy enough for [them] to do
one thing or the other,ž they opted to create robot programs based
on łwhatever [they] thought it was easier to implement for the robot.ž

Need to ensure real world matches robot’s world model. In a more
extreme view, four participants felt they had a direct responsibility
to ensure that the reality refected the assumptions that the system
made because the robot would not have the reasoning capabilities
to troubleshoot deviation. P8 articulates this point clearly, saying:

łIf [the robot] assumes that [a container is] going to be
there, then it’s your responsibility to make sure that [...]
the containers [are] there to for the robot to put [the
object] in.ž

This perspective shifts the responsibility onto the end user to
ensure that the robot is able to succeed at its program, rather than
expecting the robot to reason about the world autonomously.

4.4 Theme 4: End users had mixed experiences
on interaction with the program synthesizer

End users either appreciated that the program synthesizer provided
human-like common sense support, or they disliked the assistance
because they perceived it as a loss of control over the robot pro-
gram. Participants interacted with the assumptions made by the
program synthesizer when it automatically inserted missing ac-
tions and objects. Twenty participants specifcally commented on
this aspect of the system, revealing a dichotomy of end users who
either appreciate or reject the notion of the program synthesizer
making automated assumptions and a small subset who had mixed
perspectives. The two subthemes presented below illustrate the two
prevalent, opposing viewpoints of the system. Based on the demo-

graphic data, we see the potential for experience with programming
languages to impact how people perceived the interaction with the
program synthesizerÐof the seven participants who reported no

2473

Understanding On-the-Fly End-User Robot Programming DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

familiarity with any programming languages, only one participant
appreciated the automated assumptions.

4.4.1 Subtheme 4a: Automated assumptions can ofer support to
end users. The 11 participants who spoke positively of the auto-
mated assumptions made by the program synthesizer expressed
that it was łnaturalž (P12) and that it provided support during their
programming experience.

Interactions were more natural/human-like. Participants specif-
cally commented on the assumptions made about when to insert
an object and when to insert actions, indicating that these assump-

tions ofered a desirable level of human-like common sense from
the robot that is łhelpfulž (P5). For example, P18 expressed that
the actions automatically inserted by the program synthesizer sim-

plifed the process for them because łthe put action combined the
grab and the move and stuf ž which meant that they did not need
to take time to think through or add those actionsśthat burden was
ofoaded to the program synthesizer.

Desire for additional automated support. Four participants fur-
ther indicated that the system could be more helpful by making
additional assumptions based on user input. For example, P4 wished
that the system would automatically generate a condition for łexit-
ing the loop,ž while P13 wanted the system to łprovide suggestionsž
if the user made a mistake. P11 further envisioned that the system
could make assumptions based on the robot’s ability to interact
with objects that it is close to in its environment, such as łif you
move [the robot] to the item, [the system] just infers that [the robot]’s
supposed to pick it up.ž The automatic assumptions provided con-
venience to some end users, who felt support from the system for
easing into the robot programming process.

4.4.2 Subtheme 4b: Automated assumptions can lead to loss of con-
trol. The 13 participants who commented negatively about the use
of automated assumptions felt that these assumptions led to a loss
of their ability to control how the robot would act. Eight of these
participants focused comments on the automatic insertion of ob-
jects and items, while the remaining 5 participants expressed the
desire for more control over the robot’s precise movements within
its environment, such as indicating specifc regions to avoid.

Doubting robot’s knowledge to automatically insert objects/actions.
Eight participants focusing on the automatic insertion of objects and
actions felt that it was łunnaturalž (P2) and questioned whether the
robot could or should have enough knowledge of the environment
to make such assertions. For example, P2 felt that depending on the
scenario, the user may or may not intend for an object to be placed
inside of a container. P2 explains:

łGiven certain use cases, I could imagine like if you
have one of these robots moving gravel around a yard,
you probably wouldn’t have a container there, but uh
in [the grocery delivery] scenario it felt right to assume
that there would be a cabinet.ž

From P2’s example, it may be difcult to infer when an object
should be placed in a container or not. P6 similarly felt that it was
reasonable for the end user to have to explicitly specify whether
there is a container, saying łIt just makes sense if I have to tell it that
there’s a teddy bear in the middle of the foor that I should also have

to tell it that there’s a cabinet on the wall.ž P19 echoes the sentiment
that they łdon’t know exactly what [the robot]’s going to assume to
do and especially with the assuming where it’s going to put.ž Overall,
participants who did not like the automatic insertion of objects and
actions felt that they did not have as much control or understanding
over how the system would behave.

Desire to control robot’s location. Five participants viewed the
abstraction of the environment into regions as opposed to exact
coordinates as a negative assumption of the systemÐthey wanted
more control over the precise location or path the robot would
travel within the space. The current system abstracted away precise
coordinates in favor of general semantic regions such as łkitchenž
or łliving room.ž P20 explains their desire, using the example that
the kitchen is a łbig place [...] so maybe [in] the command there
should be a way to specify where exactly in the kitchen you want the
groceries to be placed.ž Building of of this sentiment, P5 and P13
both expressed that they may want the robot to łavoid a certain
areaž (P5), so the path that they draw for the robot is the precise
one that it should follow. This group of participants includes the
four participants who also spoke favorably about the automatic
assumptions regarding actions and objects in Subtheme 4a, which
indicates that there is a need to create a balance between easing
the programming process and giving the users the desired level of
precision over the robot’s behaviors.

4.5 Theme 5: There is more to using the system
than understanding its basic functionality

Even after understanding Tabula’s basic functionality, end users
still faced a learning curve to become profcient.

Translating rules into use. Eleven participants expressed that
there were łdiferences between understanding and doingž (P12). P10
articulated that rules for creating robot programs led to instances
where łyou have something in your mind but you don’t know how to
immediately put it in the system.ž This łgapž (P12) forced P15 to re-
sort to łtaking diferent parts of the training and kind of consolidating
it into doing a scenario.ž

Performance aspect to making recordings. In addition to concep-
tual difculties with łconnecting the dotsž (P15) between various
concepts, participants also noted that making the recordings cre-
ated ła performance aspect [...] to get it all in one gož (P2). Once
participants began a recording, they had to łremember the vocabu-
lary that the robot would understandž (P10). If they made a mistake
or if the system łhad a hard timež (P4) discerning what participants
said, then they had to delete the recording and start again.

Desire for editing support. While some participants seemed com-

fortable with the iterative process of creating, reviewing, deleting,
and re-doing recordings, others wanted a diferent way to correct
mistakes. Four participants wanted the ability to łedit a record-
ing afterwardsž (P7), which would ease the pressure of providing
precisely correct speech and touch on the frst attempt. Two partic-
ipants wanted a quick way to łerase if you messed upž (P11) during
a recording without having to łrestartž (P8) the whole program.

2474

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Laura Stegner, Yuna Hwang, David Porfirio, and Bilge Mutlu

5 DISCUSSION

We sought to better understand end user experience with on-the-fy
robot programming through an in-depth assessment of the open-
source EUP tool Tabula. Through our investigation, we uncovered
themes that provide insight into various aspects of on-the-fy robot
EUP. Some themes relate specifcally to the implementation of Tab-
ula, such as its use of multimodal inputs and the use of automated
assistance in the form of a program synthesizer. However, com-

bined with prior work, other themes point to broader implications
regarding the concepts realized through Tabula, such as the reliance
on the visualized program steps. Overall, we see the promise of
on-the-fy EUP tools as a way to facilitate the use of robots to aid
with day-to-day tasks, but these tools require further research and
refnement before they will be sufcient. We encourage future re-
searchers to conduct more in-depth user studies with existing or
novel EUP tools so that we can build a better understanding of end
user needs based on a variety of on-the-fy EUP tools.

In the paragraphs below, we provide general points of discussion
of our fndings, such as how participants perceived the role of the
interface and how our fndings relate to the Cognitive Dimensions
of Notation (CDN) [31]. We reserve detailed discussion of implica-

tions for future design of EUP systems for ğ5.1, highlighting four
key design recommendations.

Role of the interface. We note that participants had diferent as-
sumptions about the role of the interface, with some thinking that
its capabilities were limited to capturing user input on behalf of the
robot and others attributing planning and reasoning capabilities
to the interface itself. Specifcally, some participants felt that the
robot was directly generating the sequence of steps. For example,
in Theme 3, P3 discussed łIf [the robot] assumes that [a container
is] going to be there...ž), which attributes the automatic assumption
made to the robot rather than to the interface’s underlying synthe-
sizer. Also in Theme 4-Subtheme 4b, P2 spoke as though the robot
was assuming that there was a cabinet to place the groceries within
the environment. Therefore, we believe that some participants at-
tributed the automated decision making to the robot’s autonomy
rather than the features of the interface.

We fnd this connection particularly interesting, considering
that there was no physical robot present during the study. The dis-
tinction between the EUP tool and the robot’s autonomy is blurry,
especially because the EUP tool may depend on specifc robot capa-
bilities. Given that participants did not necessarily separate the EUP
tool from the robot’s capabilities, we can consider the automated
decision making of Tabula in close alignment with the autonomy
of the robot for which it was being used to generate programs.

Relation to Cognitive Dimensions of Notation (CDN). CDN is a
set of 14 design principles intended for evaluating programming
languages, notations, and user interfaces [31]. Each principle il-
lustrates one aspect of usability, intending to serve as a guide to-
ward improving usability along specifc dimensions. We found that
two dimensions align particularly well with certain aspects of our
themes, indicating that these dimensions are key to future robot
EUP tools. While CDN is helpful in contextualizing usability aspects
of Tabula, CDN does not explicitly discuss autonomy or perceptions
surrounding interaction with automated decision making.

The frst dimension, progressive evaluation, considers how easily
users can evaluate and obtain feedback. This dimension connects
well to Theme 1. Participants largely relied on the generated list
of program steps as the mechanism for receiving feedback and
updating their solutions accordingly, indicating that supporting
progressive evaluation is critical.

The second dimension, premature commitment, considers both
how strong the constraints are on using the system and also how
users can easily change or correct decisions later on. With Theme
2, participants felt constrained by the strict order of speech and
sketching inputs. Given that participants had varying notions on
the best input order, avoiding premature commitment by providing
more fexibility in speech and sketch inputs is crucial. Theme 5
also supports the need for premature commitment as participants
wanted a way to edit the recordings after the fact instead of having
to delete and re-do them.

5.1 Design Implications

Based on the themes discussed in ğ4, we present design implications
and recommendations to inform future design of on-the-fy EUP
tools. Each recommendation includes a general recommendation
of how the implication could be applied generally to EUP tools, as
well as a specifc suggestion for modifcations which would lead
to łTabula 2.0.ž The link between the fndings, implications, and
recommendations is visualized in Figure 3.

5.1.1 Design Implication 1: Feedback is critical for the successful use
of on-the-fly EUP systems. Our fndings highlight the importance
of integrating feedback mechanisms within on-the-fy EUP systems
like TabulaÐin contrast to tools in which program fow is explicitly
embedded within user input (e.g., block-based programming tools
[10, 20, 21]), Tabula users rely heavily on feedback (i.e., program step
visualizations) to understand system behavior and make program
changes (Theme 1). Even without access to a way to deploy their
programs to a simulated or physical robot, participants were still
able to use the step visualizations as a pre-deployment check as a
way to understand where an error occurred and how they could
adjust the program fow to correct it.

The reliance on feedback echoes prior investigations of end-
user developers interacting with a program synthesizer [50]. How
feedback is applied is additionally crucial to human-AI systems in
general [4], and our results suggest that purely descriptive (as op-
posed to prescriptive or explanatory) feedback can lead to a lengthy
process of discovering system behavior. Specifcally, because par-
ticipants were only provided with the resulting program steps (de-
scriptive feedback), they had to use their own judgment to discern
if their program was correct and guess how to modify their inputs
to Tabula in order to achieve the desired program output (Theme 1).
In Theme 4-Subtheme 4a, participants specifcally expressed that
the system could provide additional automated support to further
ease their programming eforts. This additional support included
prescriptive measures such as the system detecting mistakes and
ofering corrective suggestions and preemptive measures such as
the system generating conditions on their behalf (P4 and P13).

2475

Understanding On-the-Fly End-User Robot Programming DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

������� �������������������

������

��������������������

��������
��������������

��������������������

�	���������	�����

�����
�������	
��

�����	��

��������
�����

����������������	��

��	�������������

����
��
������
����

��
��������
�
��

�	������

��������������

�	�������

���	�������

��������
�����������������
�����������������

�������������������
��
������

��������
����������
���������
��������������
��
��
��������������

������ �
����������
�����
���
�
�������������������

������

������­�
����������
�����	���

�	�������������
���������������
��
��
������������
������

��������
�
���������������

�������
����������
���
������������������
������
������������

���
�
������

���������������������

����
���������
�������
�
�����
���������

�������

��������������������
��������������������

������������
��
��
�����������������

�������

����������	����������
���
�����������
��������������

����
��������������

����������
�����
���
�������
������

���� 	���������

��������

­�������������
�������������
������������
���������

������
����������������
�
�����������	������

�������������������
��������
��������������

����������

������

��
������������

���������������������
����������������

�	�����������������
�������������������

�����������������
����� ��������
�
�������������

�������

��������������
�����������
����������
�
����������������
��
��

�����

������������������
��
����������������

���������������
���
�������

���	
������������

Figure 3: An overview of the connection between the fndings and resulting design implications and recommendations.

Recommendation 1: For on-the-fy EUD tools, visual feedback should
provide users not only with information on what is wrong with a pro-
gram, but also with information on how to fx it or explanations for
why the system behaved in a certain way. On-the-fy EUD should
therefore draw from prescriptive approaches in formal methods,
such as proposing repairs [19], and strengthen its descriptive ap-
proach through explainable AI techniques such as model recon-
ciliation [18]. Approaches such as these could ofer end users the
ability to assess incomplete solutions, obtain feedback, and build
programs based on the interface’s suggestions.

Specifcally, in realizing a łTabula 2.0,ž we can clearly label steps
provided directly by the end user and steps generated by the system.
Then, the end user could select steps and ask a question such as
łWhy is this step before that step?ž Using methods such as iterative
planning as outlined by Smith [61] or Wang et al. [70], the system
can interactively ofer a rationale behind the decision and suggest
new constraints to add or modifcations to existing recordings
which would alter the resulting steps.

5.1.2 Design Implication 2: Non-sequential user input is unintuitive.
We found across Themes 2 and 5 that participants struggled with
the rules and input paradigms that Tabula enforces. Participants
had to provide input following a strict pattern and adhere to us-
age rules, which they expressed resulted in feelings of frustration

because they could not easily use the interface to express their
intention. For instance, participants commented on the łbackwardsž
input paradigm that Tabula enforced and conveyed their preference
for łstep-wisež inputs (P3, P14, and P16). This study included a fairly
extensive tutorial which included many interactive examples, yet
it is evident that additional training would be required for partici-
pants to achieve profciency. The underlying representations of user
input and resulting program steps appear to be critical to Tabula
users’ experience, a fnding that aligns with prior work of user pro-
gram comprehensionÐcertain program representations may align
better (i.e., representations that facilitate forward-reasoning [67])
or worse (i.e., the imperative programming paradigm [36]) with
user intuition. Other representations are prone to misalignment be-
tween user mental models of program behavior (i.e., trigger-action
programming [33]) or may result in reduced user performance (i.e.,
visualizations of data fow rather than control fow [29]). Fortu-
nately, motivated by prior work that uses formative evaluation to
inform product design [e.g., 41], we believe that changes to the
interface can improve user experience with non-sequential input,
such as through the inclusion of the ability to edit recordings after
they are created. Therefore, it will be important to balance eforts
to create intuitive tools for end users with developing efective
training protocols for introducing new paradigms and systems.

2476

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Laura Stegner, Yuna Hwang, David Porfirio, and Bilge Mutlu

Recommendation 2: Find a way to design on-the-fy EUP tools that
supports more step-by-step programming paradigms. Training to
use on-the-fy EUP tools to create robot programs should remain
essential, even if the training eventually becomes teaching end users
about a robot’s capabilities and limitations. However, interfaces
can always be designed to be more intuitive, e.g., by supporting
more step-by-step paradigms where users can specify movement
and actions sequentially, through methods such as participatory
design and research through design.

In realizing łTabula 2.0,ž we would remove the restriction im-

posed during our study of speech needing to occur before the sketch,
update the synthesizer to allow end users to link utterances to spe-
cifc waypoints, and add further support to accommodate multiple,
separate speech utterances per recording. In making the above
modifcations, end users will have more fexibility and control to be
able to specify step by step what the robot should do at which loca-
tion. The result will be a system which would allow participants to
interleave sketching and speech, similarly to how tools like Figaro
[53] allow more sequential specifcation of movement and actions.
Unlike Figaro, however, the system would still insert or complete
missing or incomplete specifcations.

5.1.3 Design Implication 3: Perception of the robot’s autonomy can
either limit or enhance the role of the robot as a collaborative entity.
Theme 3 and Theme 4-Subtheme 4b together illustrated that a sub-
set of participants perceived that the robot was not necessarily able
to reason about its world. Participants from Theme 4-Subtheme 4b
expressed this view through distrust of the automated assumptions
of the program synthesizer (e.g., P2 considered the automated as-
sumptions to be łunnaturalž), whereas participants in Theme 3 felt
that the robot was merely a tool to use (e.g., P20 felt there would
have to be a łmanufacturer’s manualž such as the instruction book-
lets that come with other household tools). Misperceptions of robot
capability [17] and the potential to view the robot as a łtoolž (rather
than having agency) [65] are known phenomena in human-robot
interaction. Our interviews not only suggest that these phenom-

ena translate to EUP, but also that, in participants’ words, user
perception of the robot’s autonomy changes their behaviors and
experiences. We further saw that in both of these themes, the par-
ticipant’s prior familiarity with programming languages may have
been a factor impacting their current perception of the robot’s au-
tonomy. Given that a robot’s level of autonomy may be set, it is
important to think about how to communicate the robot’s level of
autonomy and precise role to the end user.

Recommendation 3: When designing an EUP tool, the robot’s level of
autonomy should be made explicit. Tools designed for autonomous
robots who can reason about their world may difer from tools
designed for using robots to extend human abilities. Tabula was
designed with the intention that the system/robot could reason
about the world, such as understanding when it may need to au-
tomatically insert steps or assume that certain objects would be
present (e.g., assuming the kitchen cabinets are there to put the
groceries in). However, as some participants did not appreciate this
level of autonomy of the system, they desired more low-level con-
trol over specifying exactly what to do at which locations. Future
research should explore these diferences, such as by investigating
ways in which diferent levels of autonomy and agency can be

communicated to end users. While it is not necessarily the case that
each specifc robot with varying autonomy levels would require a
diferent EUP tool, diferent robot characteristics will likely indi-
cate the need for more specifc EUP tool features. Incorporating a
conceptual framework such as the robot autonomy scale (see Beer
et al. [8]) could create more transparency with regard to how much
automated support is provided to the end user, and such integration
will therefore be a necessary step for future EUP tool design.

For łTabula 2.0,ž we can clearly situate Tabula’s level of auton-
omy within the scale of robot autonomy [8] as sharing control (e.g.,
the synthesizer can automatically complete the user’s commands
while the user has control on which commands to instantiate). We
can specifcally communicate the sensing, planning, and acting
capabilities of the robot that is connected with Tabula through
training materials that exhibit specifc use cases of the synthesizer.
Within the training materials, we will emphasize the exact capabili-
ties the robot has, along with the extent to which the synthesizer
makes assumptions about the user’s intent. This training will be
particularly critical for those who are not familiar with robots, al-
though as familiarity with robots increases, the need for in-depth
training will likely taper.

5.1.4 Design Implication 4: As demonstrated with Tabula, user expe-
rience with perceptions of automated assistance varies with on-the-fly
EUP tools. Particularly with Theme 4, we observed that end users
were split between appreciating the support of the automated as-
sistance provided by the program synthesizer and wishing that
they had more control over the programs generated. A handful of
users expressed mixed opinions. These varying preferences may
be due to our participant pool including a diverse background of
programming, video game, and engineering experience. We note
that robots in the home will similarly be used by individuals with
varying backgrounds. Prior work in robot EUP acknowledges the
need to cater to varying backgrounds by providing entry points for
diferent types of developers [27, 34, 54]; our work suggests that in
addition to providing multiple entry points, on-the-fy EUP tools
will need to cater to a sliding scale of preferences regarding the
level of user control versus automated assistance.

Recommendation 4: When incorporating automation, also give
users varying levels of control. Ideally, anything that is handled by
some form of automated assistance should also be directly con-
trollable and/or modifable for the end user. However, in reality,
due to Tabula’s non-sequential multimodal inputs, all aspects of its
automated assistance may not be fully customizable. Therefore it is
critical that EUP tools clearly communicate explanations behind
their decisions and ofer guidance to support end users in creating
the programs that they desire.

In continuation of the discussion on robot autonomy and end-
user control, łTabula 2.0ž can further be designed to allow end-users
to specify their preferences with regard to the program synthesizer.
Users should be able to adjust the level of control wielded by the syn-
thesizer, in particular the degree to which the synthesizer involves
the human in the loop. For instance, users who opt for high level of
control and low level of robot autonomy should be able to prioritize
or re-arrange the program steps suggested by the synthesizer.

2477

Understanding On-the-Fly End-User Robot Programming DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

5.2 Limitations and Future Work

Our work has a number of limitations that point to future work.
We separate our limitations and future work into three categories.

Generalization to EUP. First, our investigation of end-user ex-
perience with on-the-fy robot EUP used one existing multimodal
EUP tool with specifc capabilities and constraints. Combined with
the fact the on-the-fy development paradigm remains novel for
EUP tools within HRI, the extent to which the behaviors we have
observed and the perceptions we have documented will generalize
to existing EUP tools is unclear. With that being said, the purpose
of our investigation is less to understand existing EUP tools, but
moreso to uncover guidelines for designing EUP tools within this
novel paradigm. Future work must therefore apply our recommen-

dations to the design and evaluation of a łTabula 2.0.ž Future work
must also extend our investigation to additional tools that represent
diferent EUP approaches, including input methods, intent infer-
ence, and program generation methods so that we can understand
what is unique about the multi-modal on-the-fy paradigm and
what generalizes to robot EUP as a whole.

Learning Tabula. Second, although the EUP paradigm is intended
to be accessible to non-experts in programming and robotics, ef-
fectively using any complex end-user tool requires learning and
gaining comfort with its use, which put limits on how long our
participants could explore the tool as well as the time needed to
generate programs. Future work should include multi-day feld
studies with Tabula to investigate how real users learn to use, gain
familiarity with, and generate or refne programs using on-the-fy
EUP tools, similarly to the approach taken by Ranganeni et al. [56].
Additionally, recent work in tablet-based EUP suggests that end-
user perceptions, experience, and success using EUP tools is tied to
individual background [51]. Future work with Tabula should there-
fore investigate possible links between relevant user background
characteristics and tool usage in order to better inform strategies
for training Tabula end users.

Involvement of a Robot. Third, participants used the EUP tool in
a sandbox and therefore did not see their programs being executed
on an actual robot. Their programs were only represented on the
EUP tool. The ability to see the robot behaviors that result from
their programs might provide participants with stronger mental
models of the capabilities and limitations of the robot platform they
are working with, which might inform their programming choices.

Exploration of Specifc Application Domains. Finally, our evalu-
ation engaged the general population of our campus community.
While this population could represent home robot users, it does not
represent specifc domain experts such as shop keepers or health-
care workers. Each domain may have its own needs which dictate
how end users would perceive Tabula. We are currently exploring
applications of on-the-fy EUP in the context of care assistance to
address caregivers’ extremely variable and often hectic workfows,
motivated by our past work on needs of caregivers [62]. Further ex-
ploration into diferent domains, such as by evaluating a łTabula 2.0ž
with specifc domain experts, will lead to a better understanding of
when and how multi-modal on-the-fy EUP is best utilized.

6 CONCLUSION

This work contributes to a growing body of robot end-user pro-
gramming (EUP) research by investigating end user experience with
on-the-fy robot EUP. Using an open-source multimodal EUP proto-
type, we asked participants to create robot programs for structured
and open-ended scenarios, then we interviewed them about their
experiences. Our fndings, which consist of fve themes, illustrate
user experiences which may generalize to other on-the-fy EUP
tools, as well specifc experiences based on Tabula’s implementa-

tion. Contextualizing our fndings within prior work, we develop
design implications that can ofer insights to inform the future
design of on-the-fy EUP tools for robots.

The evaluation of Tabula presented in this paper contributes
to the larger cause of democratization of robots. As robots are be-
coming more prevalent in day-to-day life, it is even more critical
for non-roboticists and non-programmers to be able to efectively
utilize them. Domain experts in felds such as healthcare, educa-
tion, hospitality, and service are primed to receive assistance from
robots, and yet we do not yet have the intuitive, natural interfaces
necessary for them to use emerging robotics tools and platforms.
This work is a foundational step toward these interfaces as it is
an initial exploration into a promising new EUP paradigm. Over
time, as more novel interfaces are built and paradigms are evaluated
within the research and industry communities, a pool of knowledge
will accumulate to help future designers understand what kind
of interface to create for a specifc robot application and the user
population. These tools will ultimately help more people engage
with robots to create solutions that address their unique needs.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation (NSF) award
IIS-1925043 and an NSF Graduate Research Fellowship under Grant
No. DGE-1747503. DP’s contributions occurred while supported as
an NRC Postdoctoral Research Associate at the U.S. Naval Research
Laboratory. Any opinions, fndings, and conclusions or recommen-

dations expressed in this material are those of the authors and do
not necessarily refect the views of the NSF or the U.S. Navy.

REFERENCES
[1] Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2021. A survey on

end-user robot programming. ACM Computing Surveys (CSUR) 54, 8 (2021), 1ś36.
https://doi.org/10.1145/3466819

[2] Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. 2015. RoboFlow: A
fow-based visual programming language for mobile manipulation tasks. In 2015
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 5537ś5544.
https://doi.org/10.1109/ICRA.2015.7139973

[3] Patricia Alves-Oliveira, Kai Mihata, Raida Karim, Elin A Bjorling, and Maya
Cakmak. 2022. FLEX-SDK: An Open-Source Software Development Kit for
Creating Social Robots. In Proceedings of the 35th Annual ACM Symposium on User
Interface Software and Technology. 1ś10. https://doi.org/10.1145/3526113.3545707

[4] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi,
Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. 2019.
Guidelines for Human-AI Interaction. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing systems. 1ś13. https://doi.org/10.1145/3290605.
3300233

[5] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and Elena
Glassman. 2023. ChainForge: A Visual Toolkit for Prompt Engineering and LLM
Hypothesis Testing. arXiv preprint arXiv:2309.09128 (2023). https://doi.org/10.
48550/arXiv.2309.09128

[6] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining What Indi-
vidual SUS Scores Mean: Adding an Adjective Rating Scale. J. Usability Studies 4,
3 (may 2009), 114ś123. https://doi.org/10.5555/2835587.2835589

2478

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark Laura Stegner, Yuna Hwang, David Porfirio, and Bilge Mutlu

[7] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno.
2019. End-user development, end-user programming and end-user software
engineering: A systematic mapping study. Journal of Systems and Software 149
(2019), 101ś137. https://doi.org/10.1016/j.jss.2018.11.041

[8] Jenay M Beer, Arthur D Fisk, and Wendy A Rogers. 2014. Toward a framework
for levels of robot autonomy in human-robot interaction. Journal of human-robot
interaction 3, 2 (2014), 74. https://doi.org/10.5898/JHRI.3.2.Beer

[9] William L Benzon. 2023. Discursive Competence in ChatGPT, Part 1: Talking
with Dragons. (2023). https://doi.org/10.2139/ssrn.4318832

[10] Sara Beschi, Daniela Fogli, and Fabio Tampalini. 2019. CAPIRCI: a multi-modal
system for collaborative robot programming. In End-User Development: 7th Inter-
national Symposium, IS-EUD 2019, Hatfeld, UK, July 10–12, 2019, Proceedings 7.
Springer, 51ś66. https://doi.org/10.1007/978-3-030-24781-2_4

[11] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77ś101. https://doi.org/10.1191/
1478088706qp063oa

[12] John Brooke. 1996. SUS: A ‘Quick and Dirty’ Usability Scale. Usability Evaluation
in Industry 189, 3 (1996), 189ś194. https://doi.org/10.1201/9781498710411

[13] Nina Buchina, Sherin Kamel, and Emilia Barakova. 2016. Design and evaluation of
an end-user friendly tool for robot programming. In 2016 25th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE,
185ś191. https://doi.org/10.1109/ROMAN.2016.7745109

[14] Nina G Buchina, Paula Sterkenburg, Tino Lourens, and Emilia I Barakova.
2019. Natural language interface for programming sensory-enabled scenar-
ios for human-robot interaction. In 2019 28th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN). IEEE, 1ś8. https:
//doi.org/10.1109/RO-MAN46459.2019.8956248

[15] Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S Rao, Manav Wadhawan, Ke Huo,
and Karthik Ramani. 2019. GhostAR: A time-space editor for embodied authoring
of human-robot collaborative task with augmented reality. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. 521ś534.
https://doi.org/10.1145/3332165.3347902

[16] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong, Ke Huo, and Karthik
Ramani. 2019. V. ra: An in-situ visual authoring system for robot-iot task planning
with augmented reality. In Proceedings of the 2019 on designing interactive systems
conference. 1059ś1070. https://doi.org/10.1145/3322276.3322278

[17] Elizabeth Cha, Anca D Dragan, and Siddhartha S Srinivasa. 2015. Perceived
robot capability. In 2015 24th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN). IEEE, 541ś548. https://doi.org/10.1109/
ROMAN.2015.7333656

[18] Tathagata Chakraborti, Sarath Sreedharan, Sachin Grover, and Subbarao Kamb-
hampati. 2019. Plan explanations as model reconciliationśan empirical study. In
2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, 258ś266. https://doi.org/10.1109/hri.2019.8673193

[19] Michael Jae-Yoon Chung and Maya Cakmak. 2020. Iterative Repair of Social Robot
Programs from Implicit User Feedback via Bayesian Inference. In Proceedings of
Robotics: Science and Systems. Corvalis, Oregon, USA. https://doi.org/10.15607/
RSS.2020.XVI.028

[20] Michael Jae-Yoon Chung, Justin Huang, Leila Takayama, Tessa Lau, and Maya
Cakmak. 2016. Iterative design of a system for programming socially interactive
service robots. In Social Robotics: 8th International Conference, ICSR 2016, Kansas
City, MO, USA, November 1-3, 2016 Proceedings 8. Springer, 919ś929. https:
//doi.org/10.1007/978-3-319-47437-3_90

[21] Enrique Coronado, Dominique Deuf, Pamela Carreno-Medrano, Leimin Tian,
Dana Kulić, Shanti Sumartojo, Fulvio Mastrogiovanni, and Gentiane Venture.
2021. Towards a modular and distributed end-user development framework for
human-robot interaction. IEEE Access 9 (2021), 12675ś12692. https://doi.org/10.
1109/ACCESS.2021.3051605

[22] Andrew Correa, Matthew R Walter, Luke Fletcher, Jim Glass, Seth Teller, and
Randall Davis. 2010. Multimodal interaction with an autonomous forklift. In 2010
5th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE,
243ś250. https://doi.org/10.1109/HRI.2010.5453188

[23] Luigi De Russis and Fulvio Corno. 2015. Homerules: A tangible end-user pro-
gramming interface for smart homes. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems. 2109ś
2114. https://doi.org/10.1145/2702613.2732795

[24] Maxwell Forbes, Rajesh PN Rao, Luke Zettlemoyer, and Maya Cakmak. 2015.
Robot programming by demonstration with situated spatial language understand-
ing. In 2015 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014ś2020. https://doi.org/10.1109/ICRA.2015.7139462

[25] Olivier Friard and Marco Gamba. 2016. BORIS: a free, versatile open-source event-
logging software for video/audio coding and live observations. Methods in ecology
and evolution 7, 11 (2016), 1325ś1330. https://doi.org/10.1111/2041-210X.12584

[26] Yuxiang Gao and Chien-Ming Huang. 2019. PATI: a projection-based augmented
table-top interface for robot programming. In Proceedings of the 24th international
conference on intelligent user interfaces. 345ś355. https://doi.org/10.1145/3301275.
3302326

[27] Dylan Glas, Satoru Satake, Takayuki Kanda, and Norihiro Hagita. 2011. An
Interaction Design Framework for Social Robots. In Proceedings of Robotics: Science
and Systems. Los Angeles, CA, USA. https://doi.org/10.15607/RSS.2011.VII.014

[28] Hassan Gomaa and Douglas BH Scott. 1981. Prototyping as a tool in the specif-
cation of user requirements. In Proceedings of the 5th international conference on
Software engineering. 333ś342. https://dl.acm.org/doi/10.5555/800078.802546

[29] Judith Good. 1999. VPLs and novice program comprehension: How do diferent
languages compare?. In Proceedings 1999 IEEE Symposium on Visual Languages.
IEEE, 262ś269. https://doi.org/10.1109/VL.1999.795912

[30] Javi F Gorostiza and Miguel A Salichs. 2011. End-user programming of a social
robot by dialog. Robotics and Autonomous Systems 59, 12 (2011), 1102ś1114.
https://doi.org/10.1016/j.robot.2011.07.009

[31] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual program-
ming environments: a ‘cognitive dimensions’ framework. Journal of Visual Lan-
guages & Computing 7, 2 (1996), 131ś174. https://doi.org/10.1006/jvlc.1996.0009

[32] Gaoping Huang, Pawan S Rao, Meng-Han Wu, Xun Qian, Shimon Y Nof, Karthik
Ramani, and Alexander J Quinn. 2020. Vipo: Spatial-visual programming with
functions for robot-IoT workfows. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1ś13. https://doi.org/10.1145/3313831.
3376670

[33] Justin Huang and Maya Cakmak. 2015. Supporting mental model accuracy in
trigger-action programming. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (Osaka, Japan) (UbiComp ’15).
Association for Computing Machinery, New York, NY, USA, 215ś225. https:
//doi.org/10.1145/2750858.2805830

[34] Justin Huang and Maya Cakmak. 2017. Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts. In Proceedings of the
2017 ACM/IEEE International Conference on Human-Robot Interaction. 453ś462.
https://doi.org/10.1145/2909824.3020215

[35] Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J Cai. 2022. Promptmaker: Prompt-based prototyping
with large language models. In CHI Conference on Human Factors in Computing
Systems Extended Abstracts. 1ś8. https://doi.org/10.1145/3491101.3503564

[36] Rajeswari Hita Kambhamettu, Michael Jae-Yoon Chung, Vinitha Ranganeni, and
Patrícia Alves-Oliveira. 2021. Collecting Insights about How Novice Programmers
Naturally Express Programs for Robots. Plateau Workshop. https://doi.org/10.
1184/R1/19799197.v1

[37] Neil W Kassel and Brian A Malloy. 2003. An approach to automate requirements
elicitation and specifcation. In Proc. of the 7th Int. Conf. on Software Engineering
and Applications. Citeseer, 3ś5.

[38] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scafdi, Joseph Lawrance, Henry Lieberman, Brad Myers,
et al. 2011. The state of the art in end-user software engineering. ACM Computing
Surveys (CSUR) 43, 3 (2011), 1ś44. https://doi.org/10.1145/1922649.1922658

[39] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159ś174. https://doi.org/10.2307/2529310

[40] Nicola Leonardi, Marco Manca, Fabio Paternò, and Carmen Santoro. 2019. Trigger-
action programming for personalising humanoid robot behaviour. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems. 1ś13. https:
//doi.org/10.1145/3290605.3300675

[41] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 577ś589. https://doi.org/10.1145/3332165.3347899

[42] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-user
development: An emerging paradigm. In End user development. Springer, 1ś8.
https://doi.org/10.1007/1-4020-5386-X_1

[43] Greg Little, Robert C Miller, Victoria H Chou, Michael Bernstein, Tessa Lau, and
Allen Cypher. 2010. Sloppy programming. In No Code Required. Elsevier, 289ś307.
https://doi.org/10.1016/B978-0-12-381541-5.00015-8

[44] Kexi Liu, Daisuke Sakamoto, Masahiko Inami, and Takeo Igarashi. 2011. Ro-
boshop: multi-layered sketching interface for robot housework assignment and
management. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. 647ś656. https://doi.org/10.1145/1978942.1979035

[45] Fei Lu, Xinran Wang, and Guohui Tian. 2012. The structure and application of
intelligent space system oriented to home service robot. In 2012 IEEE International
Conference on Information and Automation. 289ś294. https://doi.org/10.1109/
ICInfA.2012.6246820

[46] Gabriella Lucci and Fabio Paternò. 2014. Understanding end-user development
of context-dependent applications in smartphones. In Human-Centered Software
Engineering: 5th IFIP WG 13.2 International Conference, HCSE 2014, Paderborn,
Germany, September 16-18, 2014. Proceedings 5. Springer, 182ś198. https://doi.
org/10.1007/978-3-662-44811-3_11

[47] Matt MacLaurin. 2009. Kodu: end-user programming and design for games. In
Proceedings of the 4th international conference on foundations of digital games.
xviiiśxix. https://doi.org/10.1145/1536513.1536516

2479

Understanding On-the-Fly End-User Robot Programming

[48] OpenAI. 2023. GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774
arXiv:2303.08774 [cs.CL]

[49] Lidiia Ostyakova, Kseniia PetukhovaO, Veronika Smilga, and Dilyara Zhariko-
vaO. 2023. Linguistic Annotation Generation with ChatGPT: a Synthetic
Dataset of Speech Functions for Discourse Annotation of Casual Conversa-
tions. In Proceedings of the International Conference “Dialogue, Vol. 2023. https:
//doi.org/10.28995/2075-7182-2023-22-386-403

[50] David Porfrio, Evan Fisher, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu.
2019. Bodystorming human-robot interactions. In proceedings of the 32nd annual
ACM symposium on user Interface software and technology. 479ś491. https:
//doi.org/10.1145/3332165.3347957

[51] David Porfrio, Mark Roberts, and Laura M. Hiatt. 2024. Goal-Oriented End-
User Programming of Robots. In Proceedings of the 2024 ACM/IEEE International
Conference on Human-Robot Interaction (Boulder, CO, USA) (HRI ’24). Association
for Computing Machinery, New York, NY, USA, 582ś591. https://doi.org/10.
1145/3610977.3634974

[52] David Porfrio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi,
and Bilge Mutlu. 2023. Sketching Robot Programs On the Fly. In Proceedings of
the 2023 ACM/IEEE International Conference on Human-Robot Interaction. 584ś593.
https://doi.org/10.1145/3568162.3576991

[53] David J Porfrio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi,
and Bilge Mutlu. 2021. Figaro: A tabletop authoring environment for human-
robot interaction. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1ś15. https://doi.org/10.1145/3411764.3446864

[54] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and Bruno Maisonnier. 2009.
Choregraphe: a graphical tool for humanoid robot programming. In RO-MAN
2009-The 18th IEEE International Symposium on Robot and Human Interactive
Communication. IEEE, 46ś51. https://doi.org/10.1109/ROMAN.2009.5326209

[55] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler,
and Antonio Torralba. 2018. Virtualhome: Simulating household activities via
programs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 8494ś8502. https://doi.org/10.48550/arXiv.1806.07011

[56] Vinitha Ranganeni, Vy Nguyen, Henry Evans, Jane Evans, Julian Mehu, Samuel
Olatunji, Wendy Rogers, Aaron Edsinger, Charles Kemp, and Maya Cakmak. 2024.
Robots for Humanity: In-Home Deployment of Stretch RE2. In Companion of the
2024 ACM/IEEE International Conference on Human-Robot Interaction. 1299ś1301.
https://doi.org/10.1145/3610978.3641114

[57] Daisuke Sakamoto, Koichiro Honda, Masahiko Inami, and Takeo Igarashi. 2009.
Sketch and run: a stroke-based interface for home robots. In Proceedings of the
SIGCHI conference on human factors in computing systems. 197ś200. https:
//doi.org/10.1145/1518701.1518733

[58] Andrew Schoen, Nathan White, Curt Henrichs, Amanda Siebert-Evenstone, David
Shafer, and Bilge Mutlu. 2022. CoFrame: A System for Training Novice Cabot
Programmers. In 2022 17th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 185ś194. https://doi.org/10.1109/HRI53351.2022.9889345

[59] Emmanuel Senft, Michael Hagenow, Kevin Welsh, Robert Radwin, Michael Zinn,
Michael Gleicher, and Bilge Mutlu. 2021. Task-level authoring for remote robot
teleoperation. Frontiers in Robotics and AI 8 (2021), 707149. https://doi.org/10.
3389/frobt.2021.707149

[60] Emmanuel Senft, Satoru Satake, and Takayuki Kanda. 2020. Would You Mind
Me if I Pass by You? Socially-Appropriate Behaviour for an Omni-based Social

DIS ’24, July 01–05, 2024, IT University of Copenhagen, Denmark

Robot in Narrow Environment. In Proceedings of the 2020 ACM/IEEE International
Conference on Human-Robot Interaction. 539ś547. https://doi.org/10.1145/3319502.
3374812

[61] David Smith. 2012. Planning as an iterative process. In Proceedings of the AAAI
Conference on Artifcial Intelligence, Vol. 26. 2180ś2185. https://doi.org/10.1609/
aaai.v26i1.8449

[62] Laura Stegner and Bilge Mutlu. 2022. Designing for Caregiving: Integrating
Robotic Assistance in Senior Living Communities. In Designing Interactive Systems
Conference (Virtual Event, Australia) (DIS ’22). Association for Computing Machin-
ery, New York, NY, USA, 1934ś1947. https://doi.org/10.1145/3532106.3533536

[63] Laura Stegner, Emmanuel Senft, and Bilge Mutlu. 2023. Situated participatory
design: A method for in situ design of robotic interaction with older adults. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1ś15. https://doi.org/10.1145/3544548.3580893

[64] Maj Stenmark, Mathias Haage, and Elin Anna Topp. 2017. Simplifed program-
ming of re-usable skills on a safe industrial robot: Prototype and evaluation.
In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. 463ś472. https://doi.org/10.1145/2909824.3020227

[65] Leila Takayama. 2012. Perspectives on agency interacting with and through
personal robots. In Human-computer interaction: the agency perspective. Springer,
195ś214. https://doi.org/10.1007/978-3-642-25691-2_8

[66] Seth Teller, Matthew R Walter, Matthew Antone, Andrew Correa, Randall Davis,
Luke Fletcher, Emilio Frazzoli, Jim Glass, Jonathan P How, Albert S Huang,
et al. 2010. A voice-commandable robotic forklift working alongside humans in
minimally-prepared outdoor environments. In 2010 IEEE International Conference
on Robotics and Automation. IEEE, 526ś533. https://doi.org/10.1109/ROBOT.2010.
5509238

[67] John Gregory Trafton and Brian J Reiser. 1991. Providing natural representations
to facilitate novices’ understanding in a new domain: Forward and backward
reasoning in programming. In Proceedings of the 13th Annual Conference of the
Cognitive Science Society. Lawrence Erlbaum Associates, Inc., 923ś927.

[68] Jim Van Buren and David Cook. 1998. Experiences in the adoption of requirements
engineering technologies. Crosstalk-The Journal of Defense Software Engineering
11, 12 (1998), 3ś10.

[69] Nick Walker, Yu-Tang Peng, and Maya Cakmak. 2019. Neural semantic parsing
with anonymization for command understanding in general-purpose service
robots. In Robot World Cup. Springer, 337ś350. https://doi.org/10.1007/978-3-
030-35699-6_26

[70] Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian (Shawn)
Ma, and Yitao Liang. 2023. Describe, Explain, Plan and Select: Inter-
active Planning with LLMs Enables Open-World Multi-Task Agents. 36
(2023), 34153ś34189. https://proceedings.neurips.cc/paper_fles/paper/2023/
fle/6b8dfb8c0c12e6fafc6c256cb08a5ca7-Paper-Conference.pdf

[71] Jefrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards
end-user programming for the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. 1435ś1444. https://doi.org/10.1145/1240624.
1240842

[72] Bahram Zarrin and Hubert Baumeister. 2015. Towards separation of concerns
in fow-based programming. In Companion Proceedings of the 14th International
Conference on Modularity. 58ś63. https://doi.org/10.1145/2735386.2736752

2480

	Abstract
	1 Introduction
	2 Related Work
	2.1 Approaches to End-user Specification
	2.2 End-User Development and Programming
	2.3 EUP Tool Usage

	3 Method
	3.1 Participants
	3.2 Interface
	3.3 Procedure
	3.4 Measures and Analysis

	4 Findings
	4.1 Theme 1: End users viewed program steps to better understand the system
	4.2 Theme 2: End users have poor mental model of the input paradigm
	4.3 Theme 3: End users felt that the robot was a tool to use
	4.4 Theme 4: End users had mixed experiences on interaction with the program synthesizer
	4.5 Theme 5: There is more to using the system than understanding its basic functionality

	5 Discussion
	5.1 Design Implications
	5.2 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References

