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ABSTRACT 

Large-language models (LLMs) hold signifcant promise in improv-
ing human-robot interaction, ofering advanced conversational 
skills and versatility in managing diverse, open-ended user requests 
in various tasks and domains. Despite the potential to transform 
human-robot interaction, very little is known about the distinctive 
design requirements for utilizing LLMs in robots, which may difer 
from text and voice interaction and vary by task and context. To 
better understand these requirements, we conducted a user study 
(� = 32) comparing an LLM-powered social robot against text- and 
voice-based agents, analyzing task-based requirements in conver-
sational tasks, including choose, generate, execute, and negotiate. 
Our fndings show that LLM-powered robots elevate expectations 
for sophisticated non-verbal cues and excel in connection-building 
and deliberation, but fall short in logical communication and may 
induce anxiety. We provide design implications both for robots 
integrating LLMs and for fne-tuning LLMs for use with robots. 

CCS CONCEPTS 

• Human-centered computing → HCI design and evaluation 
methods; • Computing methodologies → Natural language 
processing; • Computer systems organization → Robotics. 
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1 INTRODUCTION 

Across a wide range of day-to-day activities, robots are envisioned 
to possess social and communication skills that allow them to en-
gage seamlessly and naturally with users [9, 34]. Past research 
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Figure 1: We investigate people’s perceptions of and pref-
erences toward LLM-powered robots. We conducted a user 
study that compared an LLM-powered social robot against 
text-based and voice-based agents. Lef: Users participated in 
one of four tasks: choose, generate, execute, and negotiate. 
Right: The user engages with (1) the text-based agent by en-
tering and receiving text-based prompts, (2) the voice-based 
agent through spoken prompts (achieved by the robot’s voice 
with the robot concealed behind a black screen, out of the 
user’s view), and (3) the LLM-powered social robot via spoken 
prompts, in a counterbalanced order. 

on robots has focused on developing these skills, including con-
versational speech [26, 31], gestures [12, 24, 60], gaze [39, 47, 49], 
and appearance [20, 32, 40] to facilitate efective, continuous, and 
dependable interactions with users. The recent emergence of large-
language models (LLMs) provides a novel opportunity for robots 
to augment their social and communicative abilities [70]. As these 
models enable lifelike conversations, contextual adaptation, and 
consistent interaction [10, 68], robots can leverage these capabilities 
to improve their communicative profciency to efectively address 
diverse user requests across a range of tasks and application do-
mains. Despite the immense potential of LLM-equipped robots to 
transform human-robot interaction, a gap exists in the knowledge 
regarding the unique design requirements for robots that harness 
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LLMs for conversational and communicative skills, as well as which 
tasks most beneft from utilizing these capabilities. 

Robots are known to have a unique efect on user experience 
and perceptions compared to other forms of embodiment, including 
text, voice, or virtual agents [16, 35, 41, 46, 53, 54]. Specifcally, the 
presence of a robot triggers diferent cognitive activities, behaviors, 
or actions of a user and elicits diferent responses such as increased 
enjoyment, perceived social competence, and trust towards the 
robot [3, 16, 28, 42, 55, 71]. Therefore, it is conceivable that when 
users engage with robots powered by LLMs, the embodiment of the 
robot can shape distinct user expectations and perceptions of the 
sophisticated conversational system, which might have implications 
for how LLMs need to be specifcally designed for human-robot 
interaction or integrated into a robot system. 

The growing interest in integrating LLMs with robots neces-
sitates a need to understand the unique design requirements of 
LLMs that are expected to work with robots, including design 
needs tailored to the tasks and contexts in which LLM-powered 
robots operate. Previous design requirements for robots have been 
gained through exploring user perceptions regarding various task 
attributes and robot roles [16, 48, 72]. This exploration can similarly 
uncover design opportunities and optimal tasks for LLM-powered 
robots, shaping future guidelines for robot design and LLM devel-
opment. To understand the design requirements for utilizing LLMs 
for robots and identify tasks suitable for integrating LLM-powered 
robot agents, we formulate the following three research questions 
to guide this investigation: (1) how do people perceive robots using 
LLMs; (2) how do people’s perceptions of robots using LLMs vary 
across diferent task settings; and (3) what task contexts beneft 
from the embodiment of a robot when people interact with LLMs? 

To address our research questions, we conducted a user study 
with 32 participants that compared diferent agent typesÐtext, 
voice, and robotÐto better understand people’s perceptions of LLM-
powered robots compared to other forms of embodiment through 
which people interact with LLMs. Additionally, we designed four 
conversational tasksśexecute, generate, negotiate, and choose, based 
on the łtask circumplex” by McGrath [44]Ðto assess which tasks 
can beneft from LLM-powered robots. Our fndings show that LLM-
powered robots elicit new expectations for sophisticated non-verbal 
cues, and are preferred in tasks involving connection-building and 
deliberation between the user and the robot. Conversely, LLM-
powered robots are less preferred when the LLM’s rich social capa-
bilities result in verbose responses, logical and communication er-
rors, or induce anxiety during task interactions. Finally, we present 
design recommendations for LLM-powered robots to enhance fu-
ture HRI. We make the following contributions: 

(1) Compare LLM-powered agents (i.e., text-based, voice-based, 
and social robot) to uncover unique design requirements for 
LLM-powered robots; 

(2) Evaluate LLM efectiveness across tasks (i.e., generate, choose, 
negotiate, execute) to identify optimal interaction contexts 
with robot embodiment; 

(3) Present empirical evidence on user perceptions and prefer-
ences for LLM-powered robots in diverse task settings; 

(4) Provide design implications for developing LLM-powered 
robots and LLMs to improve future human-robot interaction. 

2 RELATED WORK 

Embodiment. Embodiment plays a pivotal role in shaping how hu-
mans perceive and engage with robots. We adopt the defnition of 
embodiment łstructural coupling” from Ziemke [76] such that a 
system is embodied if mutual perturbative channels exist. We focus 
on physically embodied robots that can leverage rich channels of 
communication such as gesture, posture, gaze, facial expressions, 
proxemics, and social touch [16]. Prior research shows that interac-
tions with physically embodied robots lead to higher user engage-
ment, enjoyment, trust, and empathy compared to text, voice-based, 
or virtual agents [4, 6, 63, 67]. Additionally, embodiment infuences 
user behavior, afecting interaction duration and distance [45, 59]. 
Several studies have explored how physical embodiment afects 
task performance and impression by comparing physically embod-
ied robots to virtual agents [21, 46, 62, 72]. These studies indicate 
that user preferences for embodied agents are infuenced not only 
by embodiment but also by the specifc task context. 

LLM in Robotics. Robots function as the vital bridge connecting 
the tangible real world and LLMs. This connection enables LLM 
to infer knowledge from the physical environment through data 
collected by sensors. Simultaneously, LLMs empower the robot 
with the capability to comprehend semantic meanings and engage 
in fexible dialogue interactions. Thus, LLMs with robots fnd their 
primary applications in task planning [1, 17, 66] or human-robot 
collaboration [30, 75]. For instance, Ye et al. [75] investigated the 
implications of LLM-powered robots when users controlled the 
robot through text for assembly tasks in virtual reality. 

Researchers have also explored the efectiveness of LLMs for con-
versational robots in specifc tasks. Cherakara et al. [11] designed a 
system in which the robot displays appropriate facial expressions 
when conveying information about the National Robotarium. Irfan 
et al. [25] utilized LLMs to create a personalized companion robot 
and examined the challenges associated with open-domain dialogue 
when interacting with older adults. Khoo et al. [29] applied LLMs 
to a social robot to enhance the well-being of older adults by gen-
erating empathetic responses. Yamazaki et al. [74] constructed a 
scenario-based dialogue system for a robot and demonstrated the 
efectiveness of LLMs while establishing trust with users. While 
prior research has primarily concentrated on evaluating the efcacy 
of LLM-powered robots in specifc tasks, we aim to explore a wider 
array of tasks and contexts where LLM-powered robots can ofer 
advantages and comprehend the unique design requirements to ef-
fectively incorporate LLMs with robots across diverse task settings. 

3 METHOD 

3.1 Embodiment Design 

To understand people’s perceptions of robots when powered by 
LLMs, we compare a social robot agent against two other agentsśa 
text-based agent and a voice-based agent. All three agents were 
equipped with GPT-3.5, OpenAI’s text-davinci-003 model [10] with-
out fne-tuning. The model parameters were set to temperature = 
0.7 with max tokens = 2048. Pre-prompts were used to outline the 
four tasks, with parameters identical to those used by Billing et al. 
[7] in Pepperchat. 
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Figure 2: Interaction Examples per Each Task — Participants 
were assigned to one task among the four (i.e., execute, nego-
tiate, choose, and generate) and engaged with all three types 
of agents (i.e., text, voice, and robot.) Top lef to clockwise: 
shows interaction examples of the four tasks. 

3.1.1 Text Agent. Resembling a chatbot, the users interacted with 
the text agent through text input and output. The user sent and 
received prompts via the GPT model with OpenAI API. 

3.1.2 Voice Agent. Simulating a voice assistant, the voice agent 
communicated exclusively through voice commands. For the voice 
agent, the participant and the robot were separated by a screen such 
that the participant only interacted with the agent through voice. 
It utilized the robot’s module, łALAudioDevice [57]” to capture the 
user’s speech. The audio recording is then sent to Google Cloud 
service [19] for speech-to-text analysis, then forwarded to the GPT 
model via OpenAI API. The GPT model generates a response, which 
is converted into a speech using the robot Pepper’s [58] module, 
łALAnimatedSpeech [56].” The same robot was used for both the 
voice and robot agent instead of a smart speaker to avoid favoring 
one specifc technology over another within the broad space of 
voice-based agents (i.e., smart speakers, smart displays, and virtual 
assistants) and to ensure consistent voice interactions across both 
voice and robot agent conditions. 

3.1.3 Robot Agent. The social robot, Pepper, was used to engage 
with users through animated gestures, text-to-speech, and face 
recognition. For successful communication between the participant 
and the LLM-powered robot, we employed Pepperchat [7], which 
utilizes Google Cloud speech-to-text functionality for speech-based 
dialogue, contributing to a seamless and responsive communica-
tion experience. We chose a minimalist design for the robotic agent, 
emphasizing its basic embodiment to highlight high-level difer-
ences among text, voice, and robot embodiments, rather than fully 
utilizing non-verbal cues. Thus, we chose to accept an out-of-the-
box implementation of each agent, rather than each agent having 
specifc design features (e.g., visual cues for the voice agent.) 

3.2 Task Design 

To understand the design requirements for LLM-powered robots 
across various task settings, we designed diferent tasks based on 
the Group Task Circumplex Model proposed by McGrath [44]. The 
circumplex model is structured around two dimensions, ranging 

from confict-based to cooperative, and conceptual to behavioral. 
The circumplex model classifes group tasks into four categories: (1) 
generate: tasks that involve generating ideas or plans; (2) choose: 
tasks that involve choosing a solution or plan from a set of alterna-
tives where the correct or agreed-upon answer exists; (3) negotiate: 
tasks that involve resolving confict of viewpoints, interests, and 
motives; and (4) execute: tasks that involve executing a plan or 
performance. This framework ofers a structured approach to com-
prehend the nature of the tasks that groups undertake. Figure 2 
shows examples of task interactions. Below we discuss the specifc 
tasks designed for our study. 

3.2.1 Generation Task. In the generation task, the agent and the 
participant collaboratively create an imaginary story. Participants 
were asked to follow a general guideline to introduce characters, 
features of the characters, and the setting for story development. 
To create the foundation and actual story, the participant and agent 
took turns each adding a sentence. To construct a comprehensive 
story, the participants were told to ideally incorporate obstacles, 
solutions to address the obstacles, a climax in the story, and a plot. 

3.2.2 Choosing Task. In the choosing task, the agent assisted the 
participants in selecting a subset of items from a collection of items. 
There was a diferent theme for the collection of items for each 
task, including a ski, beach, and camping trip. Participants were 
told to select items that focused on practicality over leisure. The 
item criteria were based on those commonly featured as essential 
on various travel websites. Participants engaged in discussion with 
the agent to fnalize their item list. 

3.2.3 Execution Task. In the execution task, the agent acted as an 
instructor and the participant acted as a student. The agent’s role 
was to teach the participant how to prepare a beverage in a cafe 
setting. Only the agent knew which drink to make and participants 
were asked to follow the instructions. Participants were told to ask 
the agent if they had any confusion or questions. 

3.2.4 Negotiate Task. In the negotiation task, the agent acted as 
a seller of second-hand items and the participant acted as the po-
tential buyer. The agent’s goal was to sell the item as expensive as 
possible and the participant’s goal was to buy the item as cheap as 
possible. The agent was not aware of how much money the partici-
pant held. To control the task settings and provide consistency, an 
absolute minimum price line was set for the item. 

4 USER STUDY 

4.1 Study Design 

The study followed a mixed-factorial design with scenario tasks 
as the between-subjects factor and the agent embodiment as the 
within-subjects factor. Participants were randomly assigned to one 
of four tasks (i.e., generate, choose, execute, and negotiate) and 
then engaged with the three diferent agents (i.e., text agent, voice 
agent, and robot) in counterbalanced order. At the beginning of the 
study, participants were shown interaction examples with the LLM-
powered agents that involved disagreeing with suggestions, asking 
follow-up questions, and tracking task progress. Additionally, the 
task given per agent difered slightly in topic to avoid the learning 
efect (e.g., a camping, beach, and ski trip). Prompts for the tasks 
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can be found in the supplementary materials1. After interaction 
with each agent, participants completed questionnaires and a semi-
structured interview about their experience. All sessions were held 
in person, audio and video recorded through Zoom [77] on a laptop. 

4.2 Measures 

4.2.1 Subjective Measures. To measure participants’ perception of 
the agents, we used a modifed version of the Godspeed question-
naire [5], which includes a series of semantic scales for measuring 
the robot’s animacy (Cronbach’s � = 0.91), anthropomorphism 
(Cronbach’s � = 0.89), likeability (Cronbach’s � = 0.93), perceived 
intelligence (Cronbach’s � = 0.91), and perceived safety (Cron-
bach’s � = 0.72) on a fve-point rating scale. We modifed the 
questions such that the items asked about their perceptions of 
łagents” instead of łrobots.” Our analysis of the item reliability of 
the perceived safety subscale found a Cronbach’s � of −0.27, due 
to a miscoded item in the subscale. 

Godspeed items are written in a consistent way, such that in 
each group high values of a variable indicate a similar direction. 
Specifcally, the miscoded variable, still (anchored at 1) to surprised 
(anchored at 5) appeared to difer in direction from other items: 
anxious (anchored at 1) to relaxed (anchored at 5) and agitated 
(anchored at 1) to calm (anchored at 5). After re-coding the still-
surprised item by fipping the scale so the semantic meaning of the 
item would be consistent with others, we calculated Cronbach’s � 
of 0.72. This miscoding of the still-surprised item and correction 
by reverse-coding have been reported by prior work that used the 
Godspeed questionnaire [e.g., 2, 8, 61]. Additionally, upon closer 
inspection of the items of this subscale, which included anxious-
relaxed, agitated-calm, and surprised-still (after reversion), we de-
termined these items to be a poor ft to the overall construct of 
łperceived safety” and decided to exclude it from our analysis. 

In addition to the Godspeed questionnaire, we measured par-
ticipants’ satisfaction (Cronbach’s � = 0.96) with the interaction 
on a seven-point rating scale (1 = strongly disagree; 7 = strongly 
agree) using the satisfaction subscales from the Usefulness, Satis-
faction, and Ease of Use (USE) Questionnaire proposed by Lund 
[38]. The overall Cronbach’s � value for the Godspeed attributes 
and satisfaction was 0.97. 

4.2.2 Behavior Measures. To observe and understand participant 
behaviors, we collected measures of the total number of input 
tokens derived from the participants’ prompts. This approach in-
volves counting discrete units that the OpenAI API divides from the 
user’s input to process the prompt. This metric enables assessment 
of the length of dialogue input provided by the user within the 
conversation during the task. 

4.2.3 Performance Measures. To understand the quality of the in-
teraction, we measured the number of failures that occurred during 
the interaction. We considered two categories of failures: (1) tech-
nical errors, such as interruptions by the agent, and inaccurate 
transcriptions from Automatic Speech Recognition (ASR); and (2) 
hallucinations, where the response from the LLM is nonsensical or 
unfaithful to the provided source input [27]. 

1The supplementary materials can be found at https://osf.io/exjrd/?view_only= 
88c0b1f4b2b4f969928a614c9fa8ff 

4.3 Participants 

We recruited 32 participants (10 male, 20 female, 1 gender-queer, 
1 non-binary) through a university mailing list between the ages 
of 18 and 59 (� = 27.47, �� � = 10.30) where 69% were White, 
28% were Asian, and 3% preferred not to answer. Participants were 
required to be in the United States, fuent in English, and at least 
18 years old. All participants agreed to participate in our study via 
our institution’s IRB-approved consent form. The study lasted for 
approximately 60 minutes and participants received $15 per hour 
for compensation upon study completion. 

4.4 Analysis 

Factorial repeated-measures analysis of variance (ANOVA) was 
used to determine whether the task and agent embodiment had a 
signifcant efect on all measures. If the ANOVA test showed sig-
nifcant efects, we tested our data for pairwise diferences using 
Tukey honest signifcance test (HSD), which controls for Type I 
error considering all possible comparisons. The qualitative data was 
analyzed using Thematic Analysis (TA), following the guidelines 
developed by Clarke and Braun [13] and McDonald et al. [43]. The 
frst authors became acquainted with the data by conducting the 
studies and initially creating a codebook [15]. Through ongoing 
team discussions, codes were grouped into categories and refned 
until a consensus was reached. These categories were then fur-
ther organized and reiterated to extract themes that emerged from 
our study data. Once all potential themes were reviewed, the fnal 
themes are presented as our fndings. 

5 RESULTS 

We present the fndings derived from our quantitative and qual-
itative data analysis. In section 5.1, we show the results of our 
quantitative data analysis highlighting the overall patterns from 
the interactions between the LLM-powered agents and participants. 
As the quantitative data showed high variance, we present the fnd-
ings of our qualitative analysis in Section 5.2 to Section 5.2.4, to 
gain further insights into the detailed factors that afected user 
preference and perceptions towards LLM-powered robots. 

5.1 Data from Quantitative Measures 

We examined the infuence of embodiment on interactions with 
LLM-powered agents through an analysis of data from our quan-
titative measures. Figure 3 summarizes signifcant fndings. Over-
all, embodiment had a signifcant efect on input prompt length, 
� (2, 56) = 14.30, � < .001. When comparing the input length across 
embodiment conditions, participants provided signifcantly longer 
inputs to the text agent than the voice agent or the robot. Embod-
iment also had a signifcant efect on input length within tasks, 
� (6, 56) = 4.25, � = .001. The generation task, in particular, had a 
signifcantly longer length of input in the text condition than other 
embodiment conditions. Finally, embodiment had a signifcant ef-
fect on failures, � (2, 56) = 55.16, � < .001. In comparing failures 
across embodiment conditions, participants encountered the most 
failures with the voice agent, followed by the robot and text agents. 
We observed a higher occurrence of failures in the generation task, 
underscoring the difculties faced by agents that used voice-based 
input when confronted with extended input, especially within this 
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Figure 3: Boxplots with data points overlaid on user satisfaction, length of input prompts, and interaction failures. Embodiment: 
(T)ext, (V)oice, (R)obot. Tasks: (N)egotiate, (G)enerate, (C)hoose, (E)xecute. Horizontal lines indicate signifcant pairwise 
comparisons with Tukey HSD (� < .05∗ , � < .01∗∗ , � < .001∗∗∗). 

specifc task context, � (6, 56) = 5.94, � < .001. The diverse range of 
user experiences related to the quality of interactions led to a sig-
nifcant variance in participants’ satisfaction when interacting with 
diferent agents, � (2, 56) = 3.81, � = .028. Participants rated their 
level of satisfaction with the text agent to be higher than the voice 
agent and marginally higher than the robotic agent. We attribute 
these diferences in the satisfaction scores to the results of the fail-
ures participants experienced with voice-based interaction with 
the voice and robotic agents. There were no statistically signifcant 
diferences across embodiments or tasks in other subjective metrics, 
including anthropomorphism, animacy, likeability, and perceived 
intelligence, which can be found in the supplementary materials. 

5.2 Data from the Qualitative Measures 

In this section, we present the fndings of our qualitative analysis 
in the order of tasks in which LLM-powered robots were more 
preferred by participants, namely: (1) execute; (2) negotiate; (3) 
choose; and (4) generate. In each task category, we present design 
themes explaining the positive and negative efects of LLM-powered 
robot agents, supported by quantitative results. 

5.2.1 Execute. Below are themes that emerged in the Execute task. 

Conversational Interactions for Efective Learning. Across all the 
agents, the LLM’s capability to facilitate natural conversations while 
delivering instructions and responses with contextual understand-
ing signifcantly benefted the participants’ engagement in the inter-
action. For the execution task, the agent received task instructions 
before engaging with the participant and then responded freely 
to the participant’s requests. All participants frequently sought 
guidance on how to proceed in the task, thereby leading to concise 
and clear prompts that were easy for the agent to comprehend and 
respond to. As shown in Figure 3, the input length of the prompts 
tended to be shorter in the execution task. Moreover, seven partici-
pants expressed satisfaction with the agent’s response, the LLM’s 

contextual understanding ability enabled the agent to provide suf-
cient responses to follow-up questions. P26: “The robot was able to 
answer all the spontaneous questions that I had for it, which really 
surprised me and we were able to have an actual conversation. He’s 
smart enough to teach me!” Given the seamless communication, 
there were minimal instances of agents failing to understand and 
respond logically to requests, as shown in Figure 3. 

Robot’s Social Aspects Enhancing User Engagement. Six partici-
pants expressed a preference for the robot agent over the voice and 
text agents due to its efciency in interacting and enriching engage-
ment with the social aspects of the robot. As participants physically 
prepared drinks while simultaneously seeking instructions from 
the agent, they expressed that interacting with the robot or voice 
agent through spoken communication was easier and facilitated 
multitasking, unlike the text agent, which required them to pause 
their actions and type queries. P25: “I could start asking the follow-up 
question as I was doing a task versus text, I had to fnish the whole 
task and then type the question. I thought it went by a little smoother.” 
Five participants encountered additional difculties with the voice 
agent, struggling to time their prompts with the voice agent, leading 
to discomfort and reduced interest in engaging with the agent. P30: 
“That one [voice agent] for me feels the most choppy and disconnected, 
so it was hard for me to tell when I could ask something compared to 
the others [agents].” 

Moreover, four participants noted that the robot’s social cues 
and physical presence enhanced their receptiveness to instructions 
and task engagement, as it resembled real-life communication. P26: 
”When you’re able to see Pepper, you can kind of look at the tilted head 
to understand whether it’s like thinking or not. But when you can’t 
see Pepper, it’s like, what’s going on? Those little things help us com-

municate.” Four participants also expressed appreciation towards 
the robot’s social cues, such as maintaining eye contact, waiting 
for task completion, and ofering encouragement, as these inter-
actions made participants feel a genuine sense of companionship 
and support. P27: “So especially when you’re learning, part of the 
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Figure 4: Summary of Qualitative Findings — Our fndings indicate user preference for LLM-powered robots in the execution and 
negotiation tasks. These tasks necessitated the establishment of social relationships and rapport, and the robot’s social aspects 
benefted from efective synergy with LLM capabilities. LLM-powered robots were less favored in the choice and generation 
tasks. In these cases, the robot’s interaction medium and its social presence hindered optimal user performance. Additionally, a 
higher occurrence of technical communication errors contributed to participants’ lower preference for robot agents. 

learning is from interacting. And that relates to the emotional con-
nections and things that are underneath. So you need the actual robot 
to do it together, physically engaging.” The social cues presented 
with the robot’s social presence increased the participants’ focus 
and immersion in the task, driven by a desire to P25: “impress the 
robot, because he is watching me.” Finally for future interactions, 
fve participants envisioned the robot utilizing its arms and body 
parts for instruction demonstration. Participants explained that 
they expected the robot to have sophisticated non-verbal cues to 
match the advanced capabilities of its conversational skills. P26: 
“The robot’s movements reminded me it was still in development. They 
were random and didn’t have any relation to what it was saying, 
when the way it talked was such high quality. Made it kind of creepy.” 

5.2.2 Negotiate. We found the themes below in the Negotiate task. 

Information Exchange with Contextual Understanding. During 
the negotiation task, participants engaged with the agent to reach 
a mutual agreement on the price of an item. This negotiation pro-
cess involved participants posing questions about item specifcs, 
usage history, potential bundle deals, and more. The LLM’s ability 
to understand the context within a conversation, considering the 
dialogue history to generate coherent responses, was efective in 
maintaining a seamless, life-like conversation. P22: “Okay, hold on 
[robot], frst let’s sit down and talk about this more. Tell me a little bit 
more about this bike. Once all my questions are answered sufciently, 
then we can start to negotiate.” 

Participants’ queries for negotiation were generally longer when 
interacting with the text agent compared to the voice and robot 
agent, as shown in Figure 3. Five participants explained that it was 
more convenient to input their questions via text to the agent as 
opposed to verbally articulating their inquiries. The primary ques-
tions posed across the agents were largely similar, with participants 
posing additional queries based on the agent’s response. The text 
and robot agents had clear distinction when their response was 
fnished, as the text agent displayed a complete response on the 
screen, while the robot agent indicated completion through non-
verbal cues such as putting down its arms, tilting its head, and 
adjusting its gaze. As illustrated in Figure 3, participants encoun-
tered difculties less frequently when engaging with these agents, 
whereas the voice agent encountered a higher incidence of failures, 

as participants had challenges in determining when to speak and 
whether the agent accurately understood their prompts. 

Robot Establishing Rapport for Negotiation. Although the robot 
agent was not the most convenient to use, four participants ex-
pressed that the robot was most efective in establishing the con-
nection and rapport that was required for successful negotiations. 
Two participants described that building rapport and personal con-
nections with the agent was crucial to resolving the conficts for 
negotiation. P22: “Negotiation starts with building trust, obviously.” 
The social characteristics, such as the natural language produced 
by the LLM and the behavioral aspects of gaze, facial expressions, 
and body movements, contributed to a sense of engaging in a gen-
uine conversation with a social entity. Five participants described 
that the ability to see and physically interact with the robot agent 
created a personal interaction atmosphere, enhancing the agent’s 
reliability compared to the voice or text agent that lacked physical 
social cues. P17: “I do feel like for me that’s important. Just to be able 
to engage with some visual cues, eyes, you know, a face, that seems 
to be more appealing, inviting a further engagement. Making a real 
conversation.” Although the text agent was efcient in providing 
immediate and informative responses, it was perceived more as 
a search engine and less as an agent genuinely interested in me-
diating deals to participants’ preferences. This perception made 
three participants less inclined to negotiate for more expensive 
items with the text agent. P5: “Yeah cofee machine no big deal, but 
the car I wouldn’t just negotiate that with the text [agent]. It seems 
too machinery and sketchy.” Similar to other tasks, the voice agent 
was least positively perceived among agents for negotiations, as 
it was challenging to discern intentions and gauge conversational 
progress during the negotiation. 

5.2.3 Choose. We identifed the themes below in the Choose task. 

Recurrence of Errors in Communication and Logic. During the 
choosing task, participants chose a fnal set of items from a list 
of items based on practicality and preference through discussions 
with the agents. The discussions required led participants to ar-
ticulate the reasons for and validate their selections to the agent. 
Participants also disagreed with the agent’s suggestions, prompting 
them to elaborate on their rationale. Similar to the negotiation task, 
fve participants described that the text agent was the most efec-
tive at facilitating accurate and expeditious information exchange 
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compared to the voice and robot agents. This efciency resulted 
in longer prompts in the text agent, as illustrated in Figure 3. Ad-
ditionally, as participants iterated the item selection criteria and 
requested validation on the fnal item selections, the LLM occasion-
ally exhibited errors in logic or inconsistencies with the dialogue 
history. For instance, one participant described P24: “He [robot] also 
had some unusual answers. I asked what I should bring on my ski 
trip and Pepper said that I could bring a sand baking tray and ski on 
the tray. I was like, not sure how that would work out. So I felt less 
engaged in obviously, I felt less of a connection with Pepper in this in-
stance.” In another example, the agent altered its recommendations 
multiple times or presented conficting arguments for a single item. 
Unforeseen failures, such as misinterpreting participants’ requests, 
prematurely responding before participants, and introducing fawed 
logic in the agent’s responses, led to increased failures of the voice 
and robot agent as illustrated in Figure 3. P10: “There’s often a dis-
connect between, it [agent] knowing the facts but not knowing that it 
doesn’t make sense.” Such failures were further described by four 
participants to decrease the satisfaction and motivation to engage 
with the voice or robot agent. 

Inefcient and Time-consuming Interaction with Robot. During 
the task, participants described that they initially held a general 
idea of the items they intended to select, and they intended to have 
specifc discussions with the agents to efciently narrow down 
their choices. Participants sought details regarding the advantages 
and disadvantages of these items and validation to determine their 
inclusion. During this engagement, four participants noted that 
the conversational interactions necessitated repetitive and overly 
verbose exchanges with the agent to acquire information equiv-
alent to a łquick search,” resulting in an undue amount of time. 
In contrast, the text-based agent promptly provided the requested 
information and additionally preserved logs for users to reference 
when fnalizing their decision. P8: “I appreciated Pepper being all 
nice, but sometimes it wasn’t the exact information I was looking for 
and there was a lot of fuf. And then I would have to wait for him to 
fnish to ask again. And in the end, I don’t even remember what he 
said! So in those terms, the text was much more efcient.” 

5.2.4 Generate. The Generate task included the themes below. 

Communication Barriers for Creative Collaboration. The creative 
nature of the generation task guided participants to devise prompts 
that were more personal and situation-specifc. These prompts in-
cluded the introduction of character names and attributes, intricate 
plot developments, and distinctive settings. As a result, participants’ 
prompts tended to be more extensive during the generation task, as 
shown in Figure 3. A diference in input length appeared between 
the text agent versus the voice and robot agents, as participants 
expressed difculties in verbally expressing their creative thoughts. 

These communication difculties were due to the timely manner 
of the task. Participants frequently encountered situations where 
they had a lot to convey but struggled to do so spontaneously in 
real-time, without excessive pauses or verbosity in response to the 
robot. Moreover, the collaborative nature of this creative process 
meant that participants needed additional time to carefully consider 
how they wanted to incorporate the agent’s ideas into their story 
and shape the subsequent storyline. As a result, seven participants 

found verbal communication to be less preferable and more chal-
lenging compared to using text inputs, where text inputs allowed 
them to express their ideas in a more organized manner. The com-
munication difculties led to malfunctions as the agents frequently 
misinterpreted the user’s prompts, overlooked important elements 
of the participants’ instructions, or interrupted the participants. P7: 
“But for both cases, the voice and the robot agent. There are a couple 
of times that they just ignore, or interrupt what you say that makes 
you more frustrated. It would just start rattling of when I wasn’t 
done talking.” Among all the tasks, the generation task showed the 
highest number of communication failures, as shown in Figure 3. 
Thus, six participants perceived the text agent to be more practical 
in tracking the storyline and avoiding communication errors. 

Discomfort with Robot in Content Creation. During the task, four 
participants expressed discomfort with the robot’s social presence 
when trying to contemplate creative ideas. This discomfort was due 
to the participants’ expectations of the agent being łsmart,” due to 
its sophisticated verbal capabilities from the LLM. P19: “It seems 
like I am talking to a person, because it [robot] is so smart, and I’m 
like, oh, they might remember this.” These expectations made the 
robot’s social presence cause pressure on the participants, and even 
anxiety when they were trying to come up with the next storyline. 
As the robot would continue to gaze at the user or make subtle 
movements and facial expressions as it awaited the next prompt, the 
participants described that this action created a sense of urgency, 
compelling them to generate their ideas quickly without allowing 
for thorough refection. P6: “I thought more when I was using the 
text, because it wasn’t just of the top of my head. But with the robot, 
I did just kind of say more random stuf because I felt like I needed 
to respond right away.” Another participant supported this fnding 
by describing P19: “I felt the most comfortable with the text event in 
generating ideas because I had no accountability. Or the robot looking 
at me in the face. I feel a little bit more embarrassed.” 

6 DISCUSSION 

In this work, we explored the distinctive design requirements for 
integrating LLMs with robots. To understand how LLMs should 
be tailored for robot applications, we conducted a user study in-
volving 32 participants that compared a text, voice, and robot agent 
across four tasks: execute, negotiate, choose, and generate. Our 
fndings show that the LLM-powered robot elicited user expecta-
tions for sophisticated non-verbal cues and was more favored in the 
Execute and Negotiate tasks, where building connections and en-
gaging in social discussions were crucial. However, LLM-powered 
robots were less preferred in the Choose and Generate tasks, due 
to communication difculties and the potential anxiety during col-
laboration. Below, we present design implications that address the 
distinctive design needs for robots utilizing LLMs, as well as the 
unique design requirements for LLMs intended for use with robots. 

6.1 Combining LLM-powered Robots with 
Non-verbal Interaction Cues 

Our fndings reveal that interactions with LLM-powered robots 
established unique expectations for users regarding non-verbal 
cues. In contrast, users interacting with text and voice-based agents 
did not actively seek non-verbal cues. These expectations were 
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not solely shaped by the robot’s physical form but were rather a 
result of the robot’s advanced language capabilities powered by the 
LLM. This sophistication in language abilities led users to anticipate 
equally sophisticated non-verbal cues from the robot. Therefore, it 
is recommended that LLM-powered robots explore and incorporate 
a diverse range of rich non-verbal cues, such as gaze [25], gestures 
[33, 64], behaviors, and facial expressions [11], during interactions 
with users. These non-verbal elements should be tailored to match 
the heightened expectations set by the robot’s advanced spoken 
language capabilities. For instance, combinations of non-verbal 6.4 Limitations and Future Work 
cues can be developed to demonstrate appropriate behaviors and 
explanations in various contexts, such as reactions to diferent user 
inputs, respecting user boundaries, and failures in responding to 
user requests. The alignment of verbal and non-verbal cues can 
enhance the experience between the user and LLM-powered robots, 
making the engagement more sophisticated and natural for users. 

6.2 Considering Task Characteristics when 
Utilizing LLMs with Robots 

Our study fndings indicate that LLM-powered robots exhibited a 
preference for certain tasks over others due to the unique character-
istics of each task. Therefore to efectively utilize LLMs for robots, 
customization [50, 74] and fne-tuning [37] are crucial for diferent 
tasks. While existing state-of-the-art LLMs can be suitable for tasks 
similar to Execute and Negotiate, for tasks resembling Choose and 
Generate, LLM adaptation will be required. One method can be 
fne-tuning LLMs to ft the goal and context of the task, such as 
simplifying rich social descriptions to enhance efciency, intuitive-
ness, and directness. The fne-tuning process can include selecting 
a pre-trained model, defning task objectives [18], preparing task-
specifc data [29], confguring fne-tuning parameters [22, 23, 36], 
training the model, validating and evaluating performance [52], 
and deploying the fne-tuned model onto the robot. 

6.3 Utilizing LLMs for Robot Design 

During our study, we observed several design opportunities to 
leverage LLMs with robots. During the interactions with users, 
LLMs demonstrated the potential to empower robots to adapt to a 
broader array of user requests and efectively capture user needs 
and preferences. These instances emphasize the capacity of LLMs 
to either substitute or complement traditionally challenging tasks 
in the realm of robot design and implementation. For instance, dur-
ing robot application development, signifcant time is often spent 
implementing the dialogue system, defning the robot’s intent and 
entity, and training it to handle user requests and communication 
variability efectively. LLMs can address these challenges by fexibly 
accommodating task models variations and processing a wide range 
of inputs. This adaptability can guide robots to ofer personalized 
user experiences through iterative and engaging interactions. 

However, it is crucial to acknowledge that integrating LLMs 
may also introduce risks and errors, such as causing robots to 
deviate from context or produce hallucination errors. LLM-powered 
robots in real-world settings may display unexpected behaviors or 
make statements inconsistent with their intended character, leading 
to a mismatch between the situational context and the robot’s 
intended personality. Furthermore, as illustrated by instances in 

our study, LLMs may introduce hallucination errors, leading the 
robot to provide information that is inaccurate or nonsensical. As 
a result, LLMs on robots must be viewed as both a feature and 
a potential challenge, requiring the establishment of appropriate 
boundaries regarding what LLMs can and cannot achieve. Technical 
methods such as curated datasets for pre-training [69, 73], program 
verifcation [14, 65], human-in-the-loop review [51], fne-tuning, 
and other measures can be used for LLM action boundaries. 

Our study has several limitations. First, we chose to compare LLM-
powered robots to two other forms in which people interact with 
LLMs: text agents and voice agents. While this comparison was 
informative on how people’s perceptions of LLM-powered robots 
difered from other LLM-powered agents, we would have ideally 
compared the LLM-powered robot to a non-LLM-powered robot. 
However, it was difcult to specify what a łnon-LLM” condition 
would look like and how such a condition would be implemented. 
Nonetheless, the lack of comparison against a non-LLM-powered 
robot limits our ability to study the unique efects of the integration 
of LLMs in robots. We plan to explore this question in our future 
work, for example, using a Wizard-of-Oz approach with human op-
erators generating responses or a rule-based approach with scripted 
dialogues to achieve sophisticated but fxed conversational capa-
bilities for the robot. Second, the quantitative data from subjective 
measures exhibited high variance, leading to non-signifcant results 
in multiple items. This high variability can be attributed to our sam-
ple size, which limits the generalizability of our fndings. Future 
work may include larger-scale studies. Third, our minimalist ro-
bot design lacked diverse non-verbal behavior, potentially causing 
users to perceive the three agents as more similar than in real-world 
scenarios. Future research can explore how LLM-powered robots 
might use the full range of their embodied capabilities, which could 
also improve their communication performance with users. 

7 CONCLUSION 

This research investigates the design requirements for robots con-
nected to LLMs and in tasks where they excel. We compare three 
LLM-powered agentsÐtext, voice, and robotÐacross four tasksÐ 
generate, negotiate, choose, and execute. Findings reveal that LLM-
equipped robots enhance user expectations for non-verbal cues, 
excel in connection building and deliberation, but face challenges in 
communication difculties and creating social pressure. We provide 
design insights for robots adopting LLMs and LLMs used for robots. 
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