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ABSTRACT

Large-language models (LLMs) hold significant promise in improv-
ing human-robot interaction, offering advanced conversational
skills and versatility in managing diverse, open-ended user requests
in various tasks and domains. Despite the potential to transform
human-robot interaction, very little is known about the distinctive
design requirements for utilizing LLMs in robots, which may differ
from text and voice interaction and vary by task and context. To
better understand these requirements, we conducted a user study
(n = 32) comparing an LLM-powered social robot against text- and
voice-based agents, analyzing task-based requirements in conver-
sational tasks, including choose, generate, execute, and negotiate.
Our findings show that LLM-powered robots elevate expectations
for sophisticated non-verbal cues and excel in connection-building
and deliberation, but fall short in logical communication and may
induce anxiety. We provide design implications both for robots
integrating LLMs and for fine-tuning LLMs for use with robots.
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1 INTRODUCTION

Across a wide range of day-to-day activities, robots are envisioned
to possess social and communication skills that allow them to en-
gage seamlessly and naturally with users [9, 34]. Past research
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User Interaction Tasks

LLM-Powered Agents

Task 1. Execute

User learns from the agent
how to physically make a
drink from the café menu.

. S
t Agent ";\>
Task 2. Negotiate — &
User negotiates a price with

the agent for a used
product.

Blocking screen between |
\\ participant and agent |
p—

Task 3. Choose

Agent helps the user
choose items from a list to
fit a purpose.

Task 4. Generate

A\

3. Robot Agént

Agent helps the user
generate a creative story.

Figure 1: We investigate people’s perceptions of and pref-
erences toward LLM-powered robots. We conducted a user
study that compared an LLM-powered social robot against
text-based and voice-based agents. Left: Users participated in
one of four tasks: choose, generate, execute, and negotiate.
Right: The user engages with (1) the text-based agent by en-
tering and receiving text-based prompts, (2) the voice-based
agent through spoken prompts (achieved by the robot’s voice
with the robot concealed behind a black screen, out of the
user’s view), and (3) the LLM-powered social robot via spoken
prompts, in a counterbalanced order.

on robots has focused on developing these skills, including con-
versational speech [26, 31], gestures [12, 24, 60], gaze [39, 47, 49],
and appearance [20, 32, 40] to facilitate effective, continuous, and
dependable interactions with users. The recent emergence of large-
language models (LLMs) provides a novel opportunity for robots
to augment their social and communicative abilities [70]. As these
models enable lifelike conversations, contextual adaptation, and
consistent interaction [10, 68], robots can leverage these capabilities
to improve their communicative proficiency to effectively address
diverse user requests across a range of tasks and application do-
mains. Despite the immense potential of LLM-equipped robots to
transform human-robot interaction, a gap exists in the knowledge
regarding the unique design requirements for robots that harness
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LLM:s for conversational and communicative skills, as well as which
tasks most benefit from utilizing these capabilities.

Robots are known to have a unique effect on user experience
and perceptions compared to other forms of embodiment, including
text, voice, or virtual agents [16, 35, 41, 46, 53, 54]. Specifically, the
presence of a robot triggers different cognitive activities, behaviors,
or actions of a user and elicits different responses such as increased
enjoyment, perceived social competence, and trust towards the
robot [3, 16, 28, 42, 55, 71]. Therefore, it is conceivable that when
users engage with robots powered by LLMs, the embodiment of the
robot can shape distinct user expectations and perceptions of the
sophisticated conversational system, which might have implications
for how LLMs need to be specifically designed for human-robot
interaction or integrated into a robot system.

The growing interest in integrating LLMs with robots neces-
sitates a need to understand the unique design requirements of
LLMs that are expected to work with robots, including design
needs tailored to the tasks and contexts in which LLM-powered
robots operate. Previous design requirements for robots have been
gained through exploring user perceptions regarding various task
attributes and robot roles [16, 48, 72]. This exploration can similarly
uncover design opportunities and optimal tasks for LLM-powered
robots, shaping future guidelines for robot design and LLM devel-
opment. To understand the design requirements for utilizing LLMs
for robots and identify tasks suitable for integrating LLM-powered
robot agents, we formulate the following three research questions
to guide this investigation: (1) how do people perceive robots using
LLMs; (2) how do people’s perceptions of robots using LLMs vary
across different task settings; and (3) what task contexts benefit
from the embodiment of a robot when people interact with LLMs?

To address our research questions, we conducted a user study
with 32 participants that compared different agent types—text,
voice, and robot—to better understand people’s perceptions of LLM-
powered robots compared to other forms of embodiment through
which people interact with LLMs. Additionally, we designed four
conversational tasks—execute, generate, negotiate, and choose, based
on the “task circumplex” by McGrath [44]—to assess which tasks
can benefit from LLM-powered robots. Our findings show that LLM-
powered robots elicit new expectations for sophisticated non-verbal
cues, and are preferred in tasks involving connection-building and
deliberation between the user and the robot. Conversely, LLM-
powered robots are less preferred when the LLM’s rich social capa-
bilities result in verbose responses, logical and communication er-
rors, or induce anxiety during task interactions. Finally, we present
design recommendations for LLM-powered robots to enhance fu-
ture HRI. We make the following contributions:

(1) Compare LLM-powered agents (i.e., text-based, voice-based,
and social robot) to uncover unique design requirements for
LLM-powered robots;

(2) Evaluate LLM effectiveness across tasks (i.e., generate, choose,
negotiate, execute) to identify optimal interaction contexts
with robot embodiment;

(3) Present empirical evidence on user perceptions and prefer-
ences for LLM-powered robots in diverse task settings;

(4) Provide design implications for developing LLM-powered
robots and LLMs to improve future human-robot interaction.
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2 RELATED WORK

Embodiment. Embodiment plays a pivotal role in shaping how hu-
mans perceive and engage with robots. We adopt the definition of
embodiment “structural coupling” from Ziemke [76] such that a
system is embodied if mutual perturbative channels exist. We focus
on physically embodied robots that can leverage rich channels of
communication such as gesture, posture, gaze, facial expressions,
proxemics, and social touch [16]. Prior research shows that interac-
tions with physically embodied robots lead to higher user engage-
ment, enjoyment, trust, and empathy compared to text, voice-based,
or virtual agents [4, 6, 63, 67]. Additionally, embodiment influences
user behavior, affecting interaction duration and distance [45, 59].
Several studies have explored how physical embodiment affects
task performance and impression by comparing physically embod-
ied robots to virtual agents [21, 46, 62, 72]. These studies indicate
that user preferences for embodied agents are influenced not only
by embodiment but also by the specific task context.

LLM in Robotics. Robots function as the vital bridge connecting
the tangible real world and LLMs. This connection enables LLM
to infer knowledge from the physical environment through data
collected by sensors. Simultaneously, LLMs empower the robot
with the capability to comprehend semantic meanings and engage
in flexible dialogue interactions. Thus, LLMs with robots find their
primary applications in task planning [1, 17, 66] or human-robot
collaboration [30, 75]. For instance, Ye et al. [75] investigated the
implications of LLM-powered robots when users controlled the
robot through text for assembly tasks in virtual reality.
Researchers have also explored the effectiveness of LLMs for con-
versational robots in specific tasks. Cherakara et al. [11] designed a
system in which the robot displays appropriate facial expressions
when conveying information about the National Robotarium. Irfan
et al. [25] utilized LLMs to create a personalized companion robot
and examined the challenges associated with open-domain dialogue
when interacting with older adults. Khoo et al. [29] applied LLMs
to a social robot to enhance the well-being of older adults by gen-
erating empathetic responses. Yamazaki et al. [74] constructed a
scenario-based dialogue system for a robot and demonstrated the
effectiveness of LLMs while establishing trust with users. While
prior research has primarily concentrated on evaluating the efficacy
of LLM-powered robots in specific tasks, we aim to explore a wider
array of tasks and contexts where LLM-powered robots can offer
advantages and comprehend the unique design requirements to ef-
fectively incorporate LLMs with robots across diverse task settings.

3 METHOD
3.1 Embodiment Design

To understand people’s perceptions of robots when powered by
LLMs, we compare a social robot agent against two other agents—a
text-based agent and a voice-based agent. All three agents were
equipped with GPT-3.5, OpenAI’s text-davinci-003 model [10] with-
out fine-tuning. The model parameters were set to temperature =
0.7 with max tokens = 2048. Pre-prompts were used to outline the
four tasks, with parameters identical to those used by Billing et al.
[7] in Pepperchat.
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Task 1. Execute

User (P29):
“Hi Pepper, what should | do first?”

Agent:

“To start making a delicious milk tea, the first step is
to pour milk into the paper cup placed on the table.
Fill it up until it's about half an inch from the bottom.”

Task 4. Generate
User (P4):
“They are trying to make their way back to Pluto, when

an asteroid comes whizzing towards them!”
Agent:

“Suddenly, an asteroid comes hurtling towards their

Task 2. Negotiate

User (P17):
“How old is the bicycle and
what s your starting price?”
Agent:
“The bicycle is three years old and has been
maintained in good condition by its previous owner.
I'am willing to start at $150, what do you think?”

Task 3. Choose

User (P12):
“I'd like to do some hiking on my trip,

on
what should | bring? Agent:

“For hiking, it's a good idea to bring a compass and a

multi-tool. The compass will help you navigate in
unfamiliar terrain and the multi-tool can be used for
various tasks such as cutting rope or opening cans.”

rocket ship! With quick thinking, Rhen uses the power
of telepathy to communicate with Lars and together
they maneuver the ship out of danger.”

Figure 2: Interaction Examples per Each Task — Participants
were assigned to one task among the four (i.e., execute, nego-
tiate, choose, and generate) and engaged with all three types
of agents (i.e, text, voice, and robot.) Top left to clockwise:
shows interaction examples of the four tasks.

3.1.1 Text Agent. Resembling a chatbot, the users interacted with
the text agent through text input and output. The user sent and
received prompts via the GPT model with OpenAI API.

3.1.2  Voice Agent. Simulating a voice assistant, the voice agent
communicated exclusively through voice commands. For the voice
agent, the participant and the robot were separated by a screen such
that the participant only interacted with the agent through voice.
It utilized the robot’s module, “ALAudioDevice [57]” to capture the
user’s speech. The audio recording is then sent to Google Cloud
service [19] for speech-to-text analysis, then forwarded to the GPT
model via OpenAI APIL. The GPT model generates a response, which
is converted into a speech using the robot Pepper’s [58] module,
“ALAnimatedSpeech [56].” The same robot was used for both the
voice and robot agent instead of a smart speaker to avoid favoring
one specific technology over another within the broad space of
voice-based agents (i.e., smart speakers, smart displays, and virtual
assistants) and to ensure consistent voice interactions across both
voice and robot agent conditions.

3.1.3  Robot Agent. The social robot, Pepper, was used to engage
with users through animated gestures, text-to-speech, and face
recognition. For successful communication between the participant
and the LLM-powered robot, we employed Pepperchat [7], which
utilizes Google Cloud speech-to-text functionality for speech-based
dialogue, contributing to a seamless and responsive communica-
tion experience. We chose a minimalist design for the robotic agent,
emphasizing its basic embodiment to highlight high-level differ-
ences among text, voice, and robot embodiments, rather than fully
utilizing non-verbal cues. Thus, we chose to accept an out-of-the-
box implementation of each agent, rather than each agent having
specific design features (e.g., visual cues for the voice agent.)

3.2 Task Design

To understand the design requirements for LLM-powered robots
across various task settings, we designed different tasks based on
the Group Task Circumplex Model proposed by McGrath [44]. The
circumplex model is structured around two dimensions, ranging
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from conflict-based to cooperative, and conceptual to behavioral.
The circumplex model classifies group tasks into four categories: (1)
generate: tasks that involve generating ideas or plans; (2) choose:
tasks that involve choosing a solution or plan from a set of alterna-
tives where the correct or agreed-upon answer exists; (3) negotiate:
tasks that involve resolving conflict of viewpoints, interests, and
motives; and (4) execute: tasks that involve executing a plan or
performance. This framework offers a structured approach to com-
prehend the nature of the tasks that groups undertake. Figure 2
shows examples of task interactions. Below we discuss the specific
tasks designed for our study.

3.2.1 Generation Task. In the generation task, the agent and the
participant collaboratively create an imaginary story. Participants
were asked to follow a general guideline to introduce characters,
features of the characters, and the setting for story development.
To create the foundation and actual story, the participant and agent
took turns each adding a sentence. To construct a comprehensive
story, the participants were told to ideally incorporate obstacles,
solutions to address the obstacles, a climax in the story, and a plot.

3.2.2 Choosing Task. In the choosing task, the agent assisted the
participants in selecting a subset of items from a collection of items.
There was a different theme for the collection of items for each
task, including a ski, beach, and camping trip. Participants were
told to select items that focused on practicality over leisure. The
item criteria were based on those commonly featured as essential
on various travel websites. Participants engaged in discussion with
the agent to finalize their item list.

3.2.3 Execution Task. In the execution task, the agent acted as an
instructor and the participant acted as a student. The agent’s role
was to teach the participant how to prepare a beverage in a cafe
setting. Only the agent knew which drink to make and participants
were asked to follow the instructions. Participants were told to ask
the agent if they had any confusion or questions.

3.2.4 Negotiate Task. In the negotiation task, the agent acted as
a seller of second-hand items and the participant acted as the po-
tential buyer. The agent’s goal was to sell the item as expensive as
possible and the participant’s goal was to buy the item as cheap as
possible. The agent was not aware of how much money the partici-
pant held. To control the task settings and provide consistency, an
absolute minimum price line was set for the item.

4 USER STUDY
4.1 Study Design

The study followed a mixed-factorial design with scenario tasks
as the between-subjects factor and the agent embodiment as the
within-subjects factor. Participants were randomly assigned to one
of four tasks (i.e., generate, choose, execute, and negotiate) and
then engaged with the three different agents (i.e., text agent, voice
agent, and robot) in counterbalanced order. At the beginning of the
study, participants were shown interaction examples with the LLM-
powered agents that involved disagreeing with suggestions, asking
follow-up questions, and tracking task progress. Additionally, the
task given per agent differed slightly in topic to avoid the learning
effect (e.g., a camping, beach, and ski trip). Prompts for the tasks
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can be found in the supplementary materials!. After interaction
with each agent, participants completed questionnaires and a semi-
structured interview about their experience. All sessions were held
in person, audio and video recorded through Zoom [77] on a laptop.

4.2 Measures

4.2.1 Subjective Measures. To measure participants’ perception of
the agents, we used a modified version of the Godspeed question-
naire [5], which includes a series of semantic scales for measuring
the robot’s animacy (Cronbach’s & = 0.91), anthropomorphism
(Cronbach’s a = 0.89), likeability (Cronbach’s a = 0.93), perceived
intelligence (Cronbach’s @ = 0.91), and perceived safety (Cron-
bach’s @ = 0.72) on a five-point rating scale. We modified the
questions such that the items asked about their perceptions of
“agents” instead of “robots” Our analysis of the item reliability of
the perceived safety subscale found a Cronbach’s a of —0.27, due
to a miscoded item in the subscale.

Godspeed items are written in a consistent way, such that in
each group high values of a variable indicate a similar direction.
Specifically, the miscoded variable, still (anchored at 1) to surprised
(anchored at 5) appeared to differ in direction from other items:
anxious (anchored at 1) to relaxed (anchored at 5) and agitated
(anchored at 1) to calm (anchored at 5). After re-coding the still-
surprised item by flipping the scale so the semantic meaning of the
item would be consistent with others, we calculated Cronbach’s a
of 0.72. This miscoding of the still-surprised item and correction
by reverse-coding have been reported by prior work that used the
Godspeed questionnaire [e.g., 2, 8, 61]. Additionally, upon closer
inspection of the items of this subscale, which included anxious-
relaxed, agitated-calm, and surprised-still (after reversion), we de-
termined these items to be a poor fit to the overall construct of
“perceived safety” and decided to exclude it from our analysis.

In addition to the Godspeed questionnaire, we measured par-
ticipants’ satisfaction (Cronbach’s a = 0.96) with the interaction
on a seven-point rating scale (1 = strongly disagree; 7 = strongly
agree) using the satisfaction subscales from the Usefulness, Satis-
faction, and Ease of Use (USE) Questionnaire proposed by Lund
[38]. The overall Cronbach’s a value for the Godspeed attributes
and satisfaction was 0.97.

4.2.2  Behavior Measures. To observe and understand participant
behaviors, we collected measures of the total number of input
tokens derived from the participants’ prompts. This approach in-
volves counting discrete units that the OpenAI API divides from the
user’s input to process the prompt. This metric enables assessment
of the length of dialogue input provided by the user within the
conversation during the task.

4.2.3  Performance Measures. To understand the quality of the in-
teraction, we measured the number of failures that occurred during
the interaction. We considered two categories of failures: (1) tech-
nical errors, such as interruptions by the agent, and inaccurate
transcriptions from Automatic Speech Recognition (ASR); and (2)
hallucinations, where the response from the LLM is nonsensical or
unfaithful to the provided source input [27].

The supplementary materials can be found at https://osf.io/exjrd/?view_only=
88c0b1ff4b2b4f969928a614c9fasftf
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4.3 Participants

We recruited 32 participants (10 male, 20 female, 1 gender-queer,
1 non-binary) through a university mailing list between the ages
of 18 and 59 (M = 27.47,STD = 10.30) where 69% were White,
28% were Asian, and 3% preferred not to answer. Participants were
required to be in the United States, fluent in English, and at least
18 years old. All participants agreed to participate in our study via
our institution’s IRB-approved consent form. The study lasted for
approximately 60 minutes and participants received $15 per hour
for compensation upon study completion.

4.4 Analysis

Factorial repeated-measures analysis of variance (ANOVA) was
used to determine whether the task and agent embodiment had a
significant effect on all measures. If the ANOVA test showed sig-
nificant effects, we tested our data for pairwise differences using
Tukey honest significance test (HSD), which controls for Type I
error considering all possible comparisons. The qualitative data was
analyzed using Thematic Analysis (TA), following the guidelines
developed by Clarke and Braun [13] and McDonald et al. [43]. The
first authors became acquainted with the data by conducting the
studies and initially creating a codebook [15]. Through ongoing
team discussions, codes were grouped into categories and refined
until a consensus was reached. These categories were then fur-
ther organized and reiterated to extract themes that emerged from
our study data. Once all potential themes were reviewed, the final
themes are presented as our findings.

5 RESULTS

We present the findings derived from our quantitative and qual-
itative data analysis. In section 5.1, we show the results of our
quantitative data analysis highlighting the overall patterns from
the interactions between the LLM-powered agents and participants.
As the quantitative data showed high variance, we present the find-
ings of our qualitative analysis in Section 5.2 to Section 5.2.4, to
gain further insights into the detailed factors that affected user
preference and perceptions towards LLM-powered robots.

5.1 Data from Quantitative Measures

We examined the influence of embodiment on interactions with
LLM-powered agents through an analysis of data from our quan-
titative measures. Figure 3 summarizes significant findings. Over-
all, embodiment had a significant effect on input prompt length,
F(2,56) = 14.30, p < .001. When comparing the input length across
embodiment conditions, participants provided significantly longer
inputs to the text agent than the voice agent or the robot. Embod-
iment also had a significant effect on input length within tasks,
F(6,56) = 4.25, p = .001. The generation task, in particular, had a
significantly longer length of input in the text condition than other
embodiment conditions. Finally, embodiment had a significant ef-
fect on failures, F(2,56) = 55.16,p < .001. In comparing failures
across embodiment conditions, participants encountered the most
failures with the voice agent, followed by the robot and text agents.
We observed a higher occurrence of failures in the generation task,
underscoring the difficulties faced by agents that used voice-based
input when confronted with extended input, especially within this
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Figure 3: Boxplots with data points overlaid on user satisfaction, length of input prompts, and interaction failures. Embodiment:
(T)ext, (V)oice, (R)obot. Tasks: (N)egotiate, (G)enerate, (C)hoose, (E)xecute. Horizontal lines indicate significant pairwise

comparisons with Tukey HSD (p < .05%, p < .01%*, p < .001**%).

specific task context, F(6,56) = 5.94, p < .001. The diverse range of
user experiences related to the quality of interactions led to a sig-
nificant variance in participants’ satisfaction when interacting with
different agents, F(2,56) = 3.81, p = .028. Participants rated their
level of satisfaction with the text agent to be higher than the voice
agent and marginally higher than the robotic agent. We attribute
these differences in the satisfaction scores to the results of the fail-
ures participants experienced with voice-based interaction with
the voice and robotic agents. There were no statistically significant
differences across embodiments or tasks in other subjective metrics,
including anthropomorphism, animacy, likeability, and perceived
intelligence, which can be found in the supplementary materials.

5.2 Data from the Qualitative Measures

In this section, we present the findings of our qualitative analysis
in the order of tasks in which LLM-powered robots were more
preferred by participants, namely: (1) execute; (2) negotiate; (3)
choose; and (4) generate. In each task category, we present design
themes explaining the positive and negative effects of LLM-powered
robot agents, supported by quantitative results.
5.2.1 Execute. Below are themes that emerged in the Execute task.
Conversational Interactions for Effective Learning. Across all the
agents, the LLM’s capability to facilitate natural conversations while
delivering instructions and responses with contextual understand-
ing significantly benefited the participants’ engagement in the inter-
action. For the execution task, the agent received task instructions
before engaging with the participant and then responded freely
to the participant’s requests. All participants frequently sought
guidance on how to proceed in the task, thereby leading to concise
and clear prompts that were easy for the agent to comprehend and
respond to. As shown in Figure 3, the input length of the prompts
tended to be shorter in the execution task. Moreover, seven partici-
pants expressed satisfaction with the agent’s response, the LLM’s
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contextual understanding ability enabled the agent to provide suffi-
cient responses to follow-up questions. P26: “The robot was able to
answer all the spontaneous questions that I had for it, which really
surprised me and we were able to have an actual conversation. He’s
smart enough to teach me!” Given the seamless communication,
there were minimal instances of agents failing to understand and
respond logically to requests, as shown in Figure 3.

Robot’s Social Aspects Enhancing User Engagement. Six partici-
pants expressed a preference for the robot agent over the voice and
text agents due to its efficiency in interacting and enriching engage-
ment with the social aspects of the robot. As participants physically
prepared drinks while simultaneously seeking instructions from
the agent, they expressed that interacting with the robot or voice
agent through spoken communication was easier and facilitated
multitasking, unlike the text agent, which required them to pause
their actions and type queries. P25: ‘I could start asking the follow-up
question as I was doing a task versus text, I had to finish the whole
task and then type the question. I thought it went by a little smoother.”
Five participants encountered additional difficulties with the voice
agent, struggling to time their prompts with the voice agent, leading
to discomfort and reduced interest in engaging with the agent. P30:
“That one [voice agent] for me feels the most choppy and disconnected,
so it was hard for me to tell when I could ask something compared to
the others [agents].”

Moreover, four participants noted that the robot’s social cues
and physical presence enhanced their receptiveness to instructions
and task engagement, as it resembled real-life communication. P26:
“When you’re able to see Pepper, you can kind of look at the tilted head
to understand whether it’s like thinking or not. But when you can’t
see Pepper, it’s like, what’s going on? Those little things help us com-
municate.” Four participants also expressed appreciation towards
the robot’s social cues, such as maintaining eye contact, waiting
for task completion, and offering encouragement, as these inter-
actions made participants feel a genuine sense of companionship
and support. P27: “So especially when you're learning, part of the
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Recurrence of Errors in Inefficient and Time-consuming Conversational Interactions for Robot’s Social Aspects Enhancing
Communication and Logic Interaction with Robot Effective Learning User Engagement
3. Choose : 1. Execute - l
Not Effective for LLM-powered Robots Effective for LLM-powered Robots
4. Generate 2. Negotiate
Communication Barriers for Discomfort with Robot in Information Exchange with L
Creative Collaboration Content Creation Contextual Understanding ozt SR

Figure 4: Summary of Qualitative Findings — Our findings indicate user preference for LLM-powered robots in the execution and
negotiation tasks. These tasks necessitated the establishment of social relationships and rapport, and the robot’s social aspects
benefited from effective synergy with LLM capabilities. LLM-powered robots were less favored in the choice and generation
tasks. In these cases, the robot’s interaction medium and its social presence hindered optimal user performance. Additionally, a
higher occurrence of technical communication errors contributed to participants’ lower preference for robot agents.

learning is from interacting. And that relates to the emotional con- as participants had challenges in determining when to speak and
nections and things that are underneath. So you need the actual robot whether the agent accurately understood their prompts.

to do it together, physically engaging.” The social cues presented
with the robot’s social presence increased the participants’ focus
and immersion in the task, driven by a desire to P25: “impress the
robot, because he is watching me.” Finally for future interactions,
five participants envisioned the robot utilizing its arms and body
parts for instruction demonstration. Participants explained that
they expected the robot to have sophisticated non-verbal cues to
match the advanced capabilities of its conversational skills. P26:
“The robot’s movements reminded me it was still in development. They
were random and didn’t have any relation to what it was saying,
when the way it talked was such high quality. Made it kind of creepy.”

Robot Establishing Rapport for Negotiation. Although the robot
agent was not the most convenient to use, four participants ex-
pressed that the robot was most effective in establishing the con-
nection and rapport that was required for successful negotiations.
Two participants described that building rapport and personal con-
nections with the agent was crucial to resolving the conflicts for
negotiation. P22: “Negotiation starts with building trust, obviously.”
The social characteristics, such as the natural language produced
by the LLM and the behavioral aspects of gaze, facial expressions,
and body movements, contributed to a sense of engaging in a gen-
uine conversation with a social entity. Five participants described
that the ability to see and physically interact with the robot agent
5.2.2  Negotiate. We found the themes below in the Negotiate task. created a personal interaction atmosphere, enhancing the agent’s
reliability compared to the voice or text agent that lacked physical

Information Exchange with Contextual Understanding. During social cues. P17: “I do feel like for me that’s important. Just to be able

the negotiation task, participants engaged with the agent to reach to engage with some visual cues, eyes, you know, a face, that seems
a mutual agreement on the price of an item. This negotiation pro- to be more appealing, inviting a further engagement. Making a real
cess involved participants posing questions about item specifics, conversation.” Although the text agent was efficient in providing
usage history, potential bundle deals, and more. The LLM’s ability immediate and informative responses, it was perceived more as
to understand the context within a conversation, considering the a search engine and less as an agent genuinely interested in me-
dialogue history to generate coherent responses, was effective in diating deals to participants’ preferences. This perception made
maintaining a seamless, life-like conversation. P22: “Okay, hold on three participants less inclined to negotiate for more expensive
[robot], first let’s sit down and talk about this more. Tell me a little bit items with the text agent. P5: “Yeah coffee machine no big deal, but
more about this bike. Once all my questions are answered sufficiently, the car I wouldn’t just negotiate that with the text [agent]. It seems
then we can start to negotiate.” too machinery and sketchy.” Similar to other tasks, the voice agent
Participants’ queries for negotiation were generally longer when was least positively perceived among agents for negotiations, as
interacting with the text agent compared to the voice and robot it was challenging to discern intentions and gauge conversational
agent, as shown in Figure 3. Five participants explained that it was progress during the negotiation.
more convenient to input their questions via text to the agent as 5.2.3 Choose. We identified the themes below in the Choose task.
opposed to verbally articulating their inquiries. The primary ques-
tions posed across the agents were largely similar, with participants Recurrence of Errors in Communication and Logic. During the
posing additional queries based on the agent’s response. The text choosing task, participants chose a final set of items from a list
and robot agents had clear distinction when their response was of items based on practicality and preference through discussions
finished, as the text agent displayed a complete response on the with the agents. The discussions required led participants to ar-
screen, while the robot agent indicated completion through non- ticulate the reasons for and validate their selections to the agent.
verbal cues such as putting down its arms, tilting its head, and Participants also disagreed with the agent’s suggestions, prompting
adjusting its gaze. As illustrated in Figure 3, participants encoun- them to elaborate on their rationale. Similar to the negotiation task,
tered difficulties less frequently when engaging with these agents, five participants described that the text agent was the most effec-
whereas the voice agent encountered a higher incidence of failures, tive at facilitating accurate and expeditious information exchange
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compared to the voice and robot agents. This efficiency resulted
in longer prompts in the text agent, as illustrated in Figure 3. Ad-
ditionally, as participants iterated the item selection criteria and
requested validation on the final item selections, the LLM occasion-
ally exhibited errors in logic or inconsistencies with the dialogue
history. For instance, one participant described P24: “He [robot] also
had some unusual answers. I asked what I should bring on my ski
trip and Pepper said that I could bring a sand baking tray and ski on
the tray. I was like, not sure how that would work out. So I felt less
engaged in obviously, I felt less of a connection with Pepper in this in-
stance.” In another example, the agent altered its recommendations
multiple times or presented conflicting arguments for a single item.
Unforeseen failures, such as misinterpreting participants’ requests,
prematurely responding before participants, and introducing flawed
logic in the agent’s responses, led to increased failures of the voice
and robot agent as illustrated in Figure 3. P10: “There’s often a dis-
connect between, it [agent] knowing the facts but not knowing that it
doesn’t make sense.” Such failures were further described by four
participants to decrease the satisfaction and motivation to engage
with the voice or robot agent.

Inefficient and Time-consuming Interaction with Robot. During
the task, participants described that they initially held a general
idea of the items they intended to select, and they intended to have
specific discussions with the agents to efficiently narrow down
their choices. Participants sought details regarding the advantages
and disadvantages of these items and validation to determine their
inclusion. During this engagement, four participants noted that
the conversational interactions necessitated repetitive and overly
verbose exchanges with the agent to acquire information equiv-
alent to a “quick search,” resulting in an undue amount of time.
In contrast, the text-based agent promptly provided the requested
information and additionally preserved logs for users to reference
when finalizing their decision. P8: ‘T appreciated Pepper being all
nice, but sometimes it wasn’t the exact information I was looking for
and there was a lot of fluff. And then I would have to wait for him to
finish to ask again. And in the end, I don’t even remember what he
said! So in those terms, the text was much more efficient.”

5.2.4 Generate. The Generate task included the themes below.

Communication Barriers for Creative Collaboration. The creative
nature of the generation task guided participants to devise prompts
that were more personal and situation-specific. These prompts in-
cluded the introduction of character names and attributes, intricate
plot developments, and distinctive settings. As a result, participants’
prompts tended to be more extensive during the generation task, as
shown in Figure 3. A difference in input length appeared between
the text agent versus the voice and robot agents, as participants
expressed difficulties in verbally expressing their creative thoughts.

These communication difficulties were due to the timely manner
of the task. Participants frequently encountered situations where
they had a lot to convey but struggled to do so spontaneously in
real-time, without excessive pauses or verbosity in response to the
robot. Moreover, the collaborative nature of this creative process
meant that participants needed additional time to carefully consider
how they wanted to incorporate the agent’s ideas into their story
and shape the subsequent storyline. As a result, seven participants
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found verbal communication to be less preferable and more chal-
lenging compared to using text inputs, where text inputs allowed
them to express their ideas in a more organized manner. The com-
munication difficulties led to malfunctions as the agents frequently
misinterpreted the user’s prompts, overlooked important elements
of the participants’ instructions, or interrupted the participants. P7:
“But for both cases, the voice and the robot agent. There are a couple
of times that they just ignore, or interrupt what you say that makes
you more frustrated. It would just start rattling off when I wasn’t
done talking.” Among all the tasks, the generation task showed the
highest number of communication failures, as shown in Figure 3.
Thus, six participants perceived the text agent to be more practical
in tracking the storyline and avoiding communication errors.

Discomfort with Robot in Content Creation. During the task, four
participants expressed discomfort with the robot’s social presence
when trying to contemplate creative ideas. This discomfort was due
to the participants’ expectations of the agent being “smart,” due to
its sophisticated verbal capabilities from the LLM. P19: ‘Tt seems
like I am talking to a person, because it [robot] is so smart, and I'm
like, oh, they might remember this.” These expectations made the
robot’s social presence cause pressure on the participants, and even
anxiety when they were trying to come up with the next storyline.
As the robot would continue to gaze at the user or make subtle
movements and facial expressions as it awaited the next prompt, the
participants described that this action created a sense of urgency,
compelling them to generate their ideas quickly without allowing
for thorough reflection. P6: “T thought more when I was using the
text, because it wasn’t just off the top of my head. But with the robot,
I did just kind of say more random stuff because I felt like I needed
to respond right away.” Another participant supported this finding
by describing P19: ‘T felt the most comfortable with the text event in
generating ideas because I had no accountability. Or the robot looking
at me in the face. I feel a little bit more embarrassed.”

6 DISCUSSION

In this work, we explored the distinctive design requirements for
integrating LLMs with robots. To understand how LLMs should
be tailored for robot applications, we conducted a user study in-
volving 32 participants that compared a text, voice, and robot agent
across four tasks: execute, negotiate, choose, and generate. Our
findings show that the LLM-powered robot elicited user expecta-
tions for sophisticated non-verbal cues and was more favored in the
Execute and Negotiate tasks, where building connections and en-
gaging in social discussions were crucial. However, LLM-powered
robots were less preferred in the Choose and Generate tasks, due
to communication difficulties and the potential anxiety during col-
laboration. Below, we present design implications that address the
distinctive design needs for robots utilizing LLMs, as well as the
unique design requirements for LLMs intended for use with robots.

6.1 Combining LLM-powered Robots with
Non-verbal Interaction Cues

Our findings reveal that interactions with LLM-powered robots

established unique expectations for users regarding non-verbal

cues. In contrast, users interacting with text and voice-based agents

did not actively seek non-verbal cues. These expectations were
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not solely shaped by the robot’s physical form but were rather a
result of the robot’s advanced language capabilities powered by the
LLM. This sophistication in language abilities led users to anticipate
equally sophisticated non-verbal cues from the robot. Therefore, it
is recommended that LLM-powered robots explore and incorporate
a diverse range of rich non-verbal cues, such as gaze [25], gestures
[33, 64], behaviors, and facial expressions [11], during interactions
with users. These non-verbal elements should be tailored to match
the heightened expectations set by the robot’s advanced spoken
language capabilities. For instance, combinations of non-verbal
cues can be developed to demonstrate appropriate behaviors and
explanations in various contexts, such as reactions to different user
inputs, respecting user boundaries, and failures in responding to
user requests. The alignment of verbal and non-verbal cues can
enhance the experience between the user and LLM-powered robots,
making the engagement more sophisticated and natural for users.

6.2 Considering Task Characteristics when
Utilizing LLMs with Robots

Our study findings indicate that LLM-powered robots exhibited a
preference for certain tasks over others due to the unique character-
istics of each task. Therefore to effectively utilize LLMs for robots,
customization [50, 74] and fine-tuning [37] are crucial for different
tasks. While existing state-of-the-art LLMs can be suitable for tasks
similar to Execute and Negotiate, for tasks resembling Choose and
Generate, LLM adaptation will be required. One method can be
fine-tuning LLMs to fit the goal and context of the task, such as
simplifying rich social descriptions to enhance efficiency, intuitive-
ness, and directness. The fine-tuning process can include selecting
a pre-trained model, defining task objectives [18], preparing task-
specific data [29], configuring fine-tuning parameters [22, 23, 36],
training the model, validating and evaluating performance [52],
and deploying the fine-tuned model onto the robot.

6.3 Utilizing LLMs for Robot Design

During our study, we observed several design opportunities to
leverage LLMs with robots. During the interactions with users,
LLMs demonstrated the potential to empower robots to adapt to a
broader array of user requests and effectively capture user needs
and preferences. These instances emphasize the capacity of LLMs
to either substitute or complement traditionally challenging tasks
in the realm of robot design and implementation. For instance, dur-
ing robot application development, significant time is often spent
implementing the dialogue system, defining the robot’s intent and
entity, and training it to handle user requests and communication
variability effectively. LLMs can address these challenges by flexibly
accommodating task models variations and processing a wide range
of inputs. This adaptability can guide robots to offer personalized
user experiences through iterative and engaging interactions.
However, it is crucial to acknowledge that integrating LLMs
may also introduce risks and errors, such as causing robots to
deviate from context or produce hallucination errors. LLM-powered
robots in real-world settings may display unexpected behaviors or
make statements inconsistent with their intended character, leading
to a mismatch between the situational context and the robot’s
intended personality. Furthermore, as illustrated by instances in
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our study, LLMs may introduce hallucination errors, leading the
robot to provide information that is inaccurate or nonsensical. As
a result, LLMs on robots must be viewed as both a feature and
a potential challenge, requiring the establishment of appropriate
boundaries regarding what LLMs can and cannot achieve. Technical
methods such as curated datasets for pre-training [69, 73], program
verification [14, 65], human-in-the-loop review [51], fine-tuning,
and other measures can be used for LLM action boundaries.

6.4 Limitations and Future Work

Our study has several limitations. First, we chose to compare LLM-
powered robots to two other forms in which people interact with
LLMs: text agents and voice agents. While this comparison was
informative on how people’s perceptions of LLM-powered robots
differed from other LLM-powered agents, we would have ideally
compared the LLM-powered robot to a non-LLM-powered robot.
However, it was difficult to specify what a “non-LLM” condition
would look like and how such a condition would be implemented.
Nonetheless, the lack of comparison against a non-LLM-powered
robot limits our ability to study the unique effects of the integration
of LLMs in robots. We plan to explore this question in our future
work, for example, using a Wizard-of-Oz approach with human op-
erators generating responses or a rule-based approach with scripted
dialogues to achieve sophisticated but fixed conversational capa-
bilities for the robot. Second, the quantitative data from subjective
measures exhibited high variance, leading to non-significant results
in multiple items. This high variability can be attributed to our sam-
ple size, which limits the generalizability of our findings. Future
work may include larger-scale studies. Third, our minimalist ro-
bot design lacked diverse non-verbal behavior, potentially causing
users to perceive the three agents as more similar than in real-world
scenarios. Future research can explore how LLM-powered robots
might use the full range of their embodied capabilities, which could
also improve their communication performance with users.

7 CONCLUSION

This research investigates the design requirements for robots con-
nected to LLMs and in tasks where they excel. We compare three
LLM-powered agents—text, voice, and robot—across four tasks—
generate, negotiate, choose, and execute. Findings reveal that LLM-
equipped robots enhance user expectations for non-verbal cues,
excel in connection building and deliberation, but face challenges in
communication difficulties and creating social pressure. We provide
design insights for robots adopting LLMs and LLMs used for robots.
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