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Abstract
This paper considers the interplay between semidefinite programming, matrix rank,
and graph coloring. Karger et al. (J ACM 45(2):246–265, 1998) give a vector program
in which a coloring of a graph can be encoded as a semidefinite matrix of low rank. By
complementary slackness conditions of semidefinite programming, if an optimal dual
solution has high rank, any optimal primal solution must have low rank. We attempt
to characterize graphs for which we can show that the corresponding dual optimal
solution must have rank high enough that the primal solution encodes a coloring.
In the case of the original Karger, Motwani, and Sudan vector program, we show
that any graph which is a k-tree has sufficiently high dual rank, and we can extract
the coloring from the corresponding low-rank primal solution. We can also show
that if a graph is not uniquely colorable, then no sufficiently high rank dual optimal
solution can exist. This allows us to completely characterize the planar graphs for
which dual optimal solutions have sufficiently high dual rank, since it is known that
the uniquely colorable planar graphs are precisely the planar 3-trees. We then modify
the semidefinite program to have an objective functionwith costs, and explorewhenwe
can create an objective function such that the optimal dual solution has sufficiently high
rank. We show that it is always possible to construct such an objective function given
the graph coloring. The construction of the objective function gives rise to heuristics for
4-coloring planar graphs. We enumerated all maximal planar graphs with an induced
K4 of up to 14 vertices; the heuristics successfully found a 4-coloring for 99.75% of
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them. Our research was motivated by trying to use semidefinite programming to prove
the four-color theorem, which states that every planar graph can be colored with four
colors. There is an intriguing connection of the Karger–Motwani–Sudan semidefinite
program with the Colin de Verdière graph invariant (J Combin. Theory Ser B 50:11-
21, 1990) (and a corresponding conjecture of Colin de Verdière), in which matrices
that have some similarities to the dual feasible matrices of the semidefinite program
must have high rank in the case that graphs are of a certain type; for instance, planar
graphs have rank that would imply that the primal solution of the semidefinite program
encodes a 4-coloring.

Keywords Semidefinite programming · Graph coloring · Optimization

Mathematics Subject Classification 90-06

1 Introduction

Given an undirected graph G = (V , E), a coloring of G is an assignment of colors to
the vertices V such that for each edge (i, j) ∈ E , i and j receive different colors. The
chromatic number of G, denoted χ(G), is the minimum number of colors used such
that a coloring of G exists. The clique number of a graph G, denoted ω(G), is the size
of the largest clique in the graph; a set S ⊆ V of vertices is a clique if for every distinct
pair i, j ∈ S, (i, j) ∈ E . It is easy to see that ω(G) ≤ χ(G). Graph colorings have
been intensively studied for over a century. One of the most well-known theorems of
graph theory, the four-color theorem, states that four colors suffice to color any planar
graph G; the problem of four-coloring a planar graph can be traced back to the 1850s,
and the computer-assisted proof of the four-color theorem byAppel andHaken [2, 3] is
considered a landmark in graph theory. Jensen and Toft [10] andMolloy and Reed [14]
provide book-length treatments of graph coloring in general. Fritsch and Fritsch [7],
Ore [15], and Wilson [18] provide book-length treatments of the four-color theorem
in particular, and Robertson, Sanders, Seymour, and Thomas [16] give a simplified
computer-assisted proof of the four-color theorem.

This paper considers the use of semidefinite programming in graph coloring. The
connection between semidefinite programming and graph coloring was initiated by
Lovász [13], who introduced the Lovász theta function,ϑ(Ḡ), which is computable via
semidefinite programming; Ḡ is the complement of graph G, in which all edges of G
are replaced by nonedges and vice versa. Lovász shows that ω(G) ≤ ϑ(Ḡ) ≤ χ(G);
a helpful overview of this result is given by Knuth [12].

Another use of semidefinite programming for graph coloring was introduced
by Karger et al. [11] (KMS), who show how to color k-colorable graphs with
O(n1−3/(k+1) log1/2 n) colors in polynomial time using semidefinite programming,
where n is the number of vertices in the graph. KMS define the following vector pro-
gram, which KMS call the strict vector chromatic number (Definition 8.1 of [11]); the
vector program can be solved via semidefinite programming:
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Graph coloring and semidefinite rank 579

minimize α

subject to vi · v j = α, ∀(i, j) ∈ E,

vi · vi = 1, ∀i ∈ V ,

vi ∈ R
n, ∀i ∈ V .

(SVCN)

KMS observe that any k-colorable graph has a feasible solution to the vector program
with α = −1/(k − 1). Suppose that we let C1, . . . ,Ck be a partition of the vertices
representing a feasible k-coloring, so that all the vertices in Ci are assigned the same
color and for any edge (i, j), i and j are contained in different sets of the partition.
KMS show how to construct k vectors u1, . . . , uk ∈ R

n that span R
k−1 such that

ui · u j = −1/(k − 1) for any i, j, i �= j and ui · ui = 1. We can then give a feasible
solution to the vector program above by setting vi = u j whenever i ∈ C j ; that is, each
vector u j represents a different color class, and we set the vector vi for all vertices i
receiving the j th color to the vector u j . It is important for the following discussion
that the ui lie in a (k − 1)-dimensional space, so that this solution of vectors vi also
lies in a (k − 1)-dimensional space.

KMS also observe that there is a natural connection between the strict vector chro-
matic number and the Lovász theta function. In particular, for the optimal value α of
the vector program above, it is possible to show that α = −1/(1 − ϑ(Ḡ)) (see [11,
Theorem 8.2]). If a graph G has an induced k-clique Kk and is k-colorable, then by
Lovász’s theorem, ϑ(Ḡ) = k, and so that a feasible solution of vectors vi as given
above with α = −1/(k − 1) is an optimal solution. It is also possible to argue directly
that a graph with an induced Kk must have α ≥ −1/(k − 1), again proving that the
feasible solution given above is an optimal solution. We will call the feasible solution
above in which there are k distinct unit vectors u1, . . . , uk ∈ R

n with span R
k−1,

ui · u j = −1/(k − 1) for any i, j, i �= j , and each vector vi is equal to one of these
u j the reference solution.

The goal of this paper is to explore situations in which the reference solution is
the unique optimal solution of a semidefinite program (SDP), either the SDP corre-
sponding to the strict vector chromatic number (SVCN) given above, or another that
we will give shortly. To do this, we will use complementary slackness conditions for
semidefinite programs. Consider the primal and dual SDPs shown in standard form
below, where the constraint that X is a positive semidefinite matrix is represented by
X � 0, and we take the outer product of matrices, so that C • X , for instance, denotes∑�

i=1
∑�

j=1 ci j xi j .

minimize C • X maximize bT y
subject to Ai • X = bi for i = 1, . . . ,m, subject to S = C − ∑m

i=1 yi Ai ,

(P) X � 0, (D) S � 0,
X ∈ R

�×�, S ∈ R
�×�.

Duality theory for semidefinite programs (e.g. Alizadeh [1]) shows that for any feasible
primal solution X and any feasible dual solution y, C • X ≥ bT y. Furthermore
if C • X = bT y, so that the solutions are optimal, then it must be the case that
rank(X) + rank(S) ≤ �, and XS = 0. Thus if we want to show that any optimal
primal solution has rank at most r , it suffices to show the existence of an optimal dual
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solution of rank at least � − r . Turning back to the strict vector chromatic number
vector program, the corresponding dual vector program (from KMS [11, Theorem
8.2]) is

maximize −∑
i vi · vi

subject to
∑

i �= j vi · v j ≥ 1,
vi · v j = 0, ∀(i, j) /∈ E, i �= j,
vi ∈ R

n, ∀i ∈ V .

(SVCND)

Thus, given a k-colorable graph G with an induced Kk , if we can show the exis-
tence of a dual feasible solution of objective function value −1/(k − 1) and rank
n − k + 1, then we know that the primal solution must have rank at most k − 1.1

We will show that for graphs in which we can prove this, the primal solution is
then the reference solution, and we can then recover a coloring of the graph. We
will for shorthand say that there is an optimal dual solution of sufficiently high
rank.

Our first result is to partially characterize the set of graphs for which the reference
solution is the unique optimal solution to the strict vector chromatic number vector
program (SVCN). To state our results, we need to define a (k − 1)-tree and what it
means for a graph to be uniquely colorable. A (k − 1)-tree is a graph constructed by
starting with a complete graph on k vertices. We then iteratively add vertices v; for
each new vertex v, we add k − 1 edges from v to previously added vertices such that
v together with these k − 1 neighbors form a clique. A k-colorable graph is uniquely
colorable if it has only one possible coloring up to a permutation of the colors. The
(k − 1)-tree graphs are easily shown to be uniquely colorable. In particular, we can
show that if a graph is a (k − 1)-tree, then the reference solution is the unique optimal
solution to (SVCN). In the opposite direction, if a graph is not uniquely colorable,
then no optimal dual solution has sufficiently high rank, and there exist optimal primal
solutions that are not the reference solution and are at least k-dimensional. In the case
of planar graphs with induced K4s, these results imply a complete characterization of
the graphs for which the optimal solution is the reference solution, since it is known
that the uniquely 4-colorable planar graphs are exactly the planar 3-trees, also known
as the Apollonian networks [6]. We argue that it is not surprising that graphs which
are not uniquely k-colorable do not have the reference solution as the sole optimal
solution;we show that one can find a convex combination of the two different reference
solutions corresponding to the two different colorings that gives an optimal solution
to (SVCN) of dimension at least k.

To get around the issue of unique colorability, we instead look for minimum-cost
feasible SDP solutions. That is, given a costmatrixC , we look to find optimal solutions
to the primal SDP

1 There are some subtleties here we are glossing over in the interest of getting across the main idea. In
particular, the SDP corresponding to the strict vector chromatic number vector program has dimension
n + 1, not n; we explain why and why that doesn’t matter for our purposes in Sect. 3.
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minimize C • X
subject to Xi j = −1/(k − 1), ∀(i, j) ∈ E,

Xii = 1, ∀i ∈ V ,

X � 0.

(CP)

The corresponding dual SDP is

maximize
∑n

i=1 yi − 2
k−1

∑
e∈E ze

subject to S = C − ∑n
i=1 yi Eii − ∑

e∈E zeEe,

S � 0,
(CD)

where Eii is the matrix with a 1 at position i i and 0 elsewhere and for e = (i, j), Ee

is the matrix with 1 at positions i j and j i and 0 elsewhere. Once again, the reference
solution is a feasible solution to the primal SDP using Xi j = vi · v j . The goal now is
to find a cost matrix C such that there is an optimal dual solution of sufficiently high
rank (here rank n−k+1), so that the reference solution is the unique optimal solution
to the primal SDP. We show that it is always possible to find a cost matrix C such that
there exists a dual optimal solution of sufficiently high rank. Our construction of C
depends on a coloring of the graph; however, we do show that such a C exists.

Furthermore, the construction of C suggests a heuristic for finding a coloring of a
graph, and we show that the heuristic works well for planar graphs. By the four-color
theorem, we know that any planar graph is 4-colorable, and if a planar graph contains
an induced K4, then it requires four colors. We enumerate all maximal planar graphs
of up to 14 vertices containing an induced K4. The heuristics successfully find a 4-
coloring of all graphs of up to 11 vertices, and at least 99.75% of all graphs on 12,
13, and 14 vertices. The heuristics involve repeatedly solving semidefinite programs,
and thus are not practical for large graphs (although they still run in polynomial time).
However, we view them as a proof of concept that it might be possible to use our
framework to reliably 4-color planar graphs.

Our research was motivated by trying to use semidefinite programming to prove the
four-color theorem. There is an intriguing connection between the dual semidefinite
program (CD) and the Colin de Verdière graph invariant [5] (and a corresponding
conjecture of Colin de Verdière), in which matrices that have some similarities to dual
solutions to (CD) must have high rank in the case that graphs have certain structure;
for instance, if solutions for (CD) for planar graphs met the definition of the Colin de
Verdière invariant, then the dual optimal would have sufficiently high rank, and the
primal solution would correspond to a 4-coloring, which would imply the four-color
theorem.While wewere unable to show the connection, we still think it is an intriguing
direction to explore. We explain the Colin de Verdière invariant [5] and the potential
connection to (CD) in Sect. 6.1 in the conclusion.

The rest of this paper is structured as follows. In Sect. 2, we give some preliminary
results on semidefinite programming. In Sect. 3, we show our results for the strict
vector chromatic number SDP, and show that (k − 1)-trees imply dual solutions of
sufficiently high rank, while graphs that are not uniquely colorable imply that such
dual solutions cannot exist. In Sect. 4, we turn to the SDP with cost matrix C , and
show that for any k-colorable graph with an induced k-clique, a cost matrix C exists
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that gives rise to an optimal dual solution of sufficiently high rank. In Sect. 5, we give
two heuristics for coloring planar graphs based on our construction of a cost matrix
C , and show a case where the heuristic fails to find a 4-coloring of a planar graph.
Finally, we turn to some further thoughts and remaining open questions in Sect. 6.

2 Preliminaries

In this section, we recall some basic facts about semidefinite matrices and semidefinite
programs that we will use in subsequent sections.

Recall the primal and dual semidefinite programs given in the introduction, which
we labelled by (P) and (D) respectively.We always haveweak duality for semidefinite
programs, so that the following holds.

Fact 2.1 Given any feasible X for (P) and y for (D), C • X ≥ bT y.

Thus if we can produce a feasible X for (P) and a feasible y for (D) such that
C • X = bT y, then X must be optimal for (P) and y optimal for (D).

The following is also known, and is the semidefinite programming version of com-
plementary slackness conditions for linear programming.

Fact 2.2 [1, Theorem 2.10, Corollary 2.11] For optimal X for (P) and y for (D),
X S = 0 and rank(X) + rank(S) ≤ �.

Semidefinite programs and vector programs (such as the strict vector chromatic
vector program) are equivalent because a symmetric X ∈ R

n×n is positive semidefinite
if and only if X = QDQT for a real matrix Q ∈ R

n×n and diagonal matrix D in which
the entries of D are the eigenvalues of X , and the eigenvalues are all nonnegative. We
can then consider D1/2, the diagonal matrix in which each diagonal entry is the square
root of the corresponding entry of D. Then X = (QD1/2)(QD1/2)T . If we let vi ∈ R

n

be the i th row of QD1/2, then xi j = vi · v j , and similarly, given the vectors vi , we
can construct a semidefinite matrix X with xi j = vi · v j . We also make the following
observation based on this decomposition.

Observation 2.3 Given a semidefinite matrix X = QDQT ∈ R
n×n and vectors vi ∈

R
n with vi the i th row of QD1/2, rank(X) = d if and only if the vectors vi are

supported on just d coordinates.

Throughout the rest of this paper, we will refer to vector programs and semidefinite
programs interchangeably, and may do so without confusion because of the equiva-
lence given above.

Recall from the introduction that we defined the reference solution to be a solution
to (SVCN) such that each vector v� in the solution equals one of k distinct unit
vectors u1, . . . , uk ∈ R

n which span R
k−1 and such that ui · u j = −1/(k − 1)

for any i, j, i �= j . We note that by Observation 2.3 that the corresponding positive
semidefinite matrix X = WWT (with v� the �th row of W ) has rank k − 1 and that
any entry xi j ∈ {1,−1/(k − 1)} for any i, j .
Lemma 2.4 For the reference solution u1, . . . , uk ∈ R

n, u1 + · · · + uk = 0, and any
collection of k − 1 of these vectors are linearly independent.

123



Graph coloring and semidefinite rank 583

Proof Since u1, . . . , uk span R
k−1, they must be linearly dependent, and a1u1 +· · ·+

akuk = 0 for some a1, . . . ak ∈ R not all 0. Let A = a1+· · ·+ak . Since ui ·u j = − 1
k−1

for i �= j , for any fixed i ,

0 = ui · (a1u1 + · · · + akuk)

=
k∑

j=1

a j (ui · u j )

= ai − A − ai
k − 1

.

Therefore, ai = A
k for i = 1, . . . , k and A

k (u1 + · · · + uk) = 0, so u1 + · · · + uk = 0.
It follows that for each i , ui = −∑

j �=i u j .Weclaim any collection of k−1 of the ui
are linearly independent. Suppose not, and suppose u1, . . . , uk−1 are linearly depen-
dent, so that there exist a1, . . . , ak−1 ∈ R not all 0 so that a1u1 + · · · + ak−1uk−1 =
0. Then following the logic above, we have that u1 + · · · + uk−1 = 0. But
then uk = −∑

j �=k u j = 0, which contradicts the fact that uk is a unit vector
in R

n . 	

We will then say that the positive semidefinite X is the reference solution if it has

rank at most k − 1 and for some W with X = WWT , W has exactly k distinct rows
u1, . . . , uk ∈ R

n with ui · u j = −1/(k − 1) for any i, j, i �= j . We observe that the
k × k submatrix of X induced by the indices of k distinct rows of W is 1

k−1 (k I − J )

(where I is the identity and J the all-ones matrix), which has rank k−1, and therefore
any such X has rank exactly k − 1.

Given a reference solution X = (xi j ) and corresponding W , we can easily define a
k-coloring of the graph as long as xi j = −1/(k − 1) for any (i, j) ∈ E : for the rows
wi of W , and k distinct rows u1, . . . , uk , we let C� = { j ∈ V : w j = u�} for � ∈ [k],
and we color the vertices in C� with color �. Then for any edge (i, j) ∈ E , i and j
must receive different colors since xi j = wi · w j = −1/(k − 1); that is, wi �= w j .

3 The strict vector chromatic number SDP

Recall the strict vector chromatic number vector program given in the introduction:

minimize α

subject to vi · v j = α, ∀(i, j) ∈ E,

vi · vi = 1, ∀i ∈ V ,

vi ∈ R
n, ∀i ∈ V .

(SVCN)

In this section, we give a partial characterization of graphs for which the reference
solution is the unique optimal solution to (SVCN).
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First, we observe that (SVCN) is equivalent to the following semidefinite program:

minimize −β

subject to xi j + β = 0, ∀(i, j) ∈ E,

xii = 1, ∀i ∈ V ,

Z =

⎡

⎢
⎢
⎢
⎣

β 0 . . . 0
0
... X
0

⎤

⎥
⎥
⎥
⎦

� 0,

X = (xi j ) ∈ R
n×n .

(SVCN-P)

The dual of this SDP is

maximize −∑
i∈V sii

subject to γ = −1 + ∑
i �= j si j ,

si j = 0, ∀(i, j) /∈ E, i �= j,

W =

⎡

⎢
⎢
⎢
⎣

γ 0 . . . 0
0
... S
0

⎤

⎥
⎥
⎥
⎦

� 0,

S = (si j ) ∈ R
n×n .

(SVCN-D)

In what follows, we will want to relate the rank of the primal submatrix X =
(xi j )i, j∈V to the rank of the dual submatrix S = (si j )i, j∈V ; that is, we want to look
at the submatrices that don’t contain the 0th row and column of the primal solution
(corresponding to the variableα in (SVCN)) and the corresponding 0th rowand column
of the dual solution.

Lemma 3.1 Given an optimal primal solution Z to (SVCN-P) and optimal dual solu-
tion W to (SVCN-D), we have that rank(X) + rank(S) ≤ n.

Proof If for optimal dual solutionW , the submatrix S = (si j )i∈V has rank at least n−�,
then the optimal dual solutionW has rank at least n−�. Then by Fact 2.2, any optimal
primal solution Z to (SVCN-P) must have rank at most (n+1)− (n− �) = �+1. Let
Z = YY T , and let vi be the i th row of Y . By Observation 2.3, the dimension of the
vectors vi must be at most �+1. But we note that by the condition that zi0 = vi ·v0 = 0
for all i ∈ V , it must be the case that all vectors vi for i ∈ V are orthogonal to v0, so
that the vectors vi for i ∈ V lie in dimension at most �. Then by Observation 2.3 the
rank of X is at most �, giving the desired inequality.

Similarly, if the rank of X is at least �, then because z00 = β is positive, the
rank of Z must be at least � + 1. Then by Fact 2.2, the rank of W must be at most
(n + 1) − (� + 1) = n − �, so that the rank of S is at most n − �. 	


Because the values of Z and W are determined by the submatrices X and S, we
will for the rest of the section refer to primal solutions X and dual solutions S.

Our main result for this section is about graphs that are k-trees.
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Definition 3.2 A (k − 1)-tree with n vertices is an undirected graph constructed by
beginning with the complete graph on k vertices and repeatedly adding vertices in
such a way that each new vertex, v, has k − 1 neighbors that, together with v, form a
k-clique.

An easy inductive argument shows that these graphs are k-colorable. Also, (k−1)-
trees are known to be uniquely k-colorable, where uniquely colorable means every
coloring produces the same vertex partitioning. Once k colors are assigned to the initial
complete graph with k vertices, the color of each new vertex is uniquely determined by
its k − 1 neighbors. This partitioning into color classes is unique up to permuting the
colors. Note that by construction, a (k − 1)-tree contains a Kk (a clique on k vertices).

Recall that Karger et al. [11] show that the solution to (SVCN) is −1/(ϑ(Ḡ) − 1)
where ϑ(Ḡ) is the Lovász theta function. Lovász [13] proved that ω(G) ≤ ϑ(Ḡ) ≤
χ(G) where ω(G) and χ(G) are the clique and chromatic numbers of G respectively.
In particular, if a graph is c-colorable, the optimal solution to this vector program is at
most −1/(c − 1). Note that as previously remarked, (k − 1)-trees contain Kk cliques
and are k-colorable. As a result, the optimal value of (SVCN) for a (k − 1)-tree will
be exactly −1/(k − 1).

Our goal is to show there is an optimal solution to the dual of (SVCN) with high
rank. In particular, given a (k − 1)-tree with n vertices, we show the existence of a
dual optimal solution to (SVCN-D) with rank at least n− k + 1. This ensures that any
primal optimal solution has rank at most k − 1; we show that the reference solution
is the unique optimal primal solution to (SVCN). This is formalized in the following
theorem.

Theorem 3.3 Given a (k − 1)-tree G with n vertices, there is an optimal dual solution
S to (SVCN-D) with rank at least n − k + 1, and thus any optimal primal solution X
to (SVCN-P) has rank at most k − 1.

We subsequently prove that the reference solution is indeed the unique optimal
solution in this case.

Theorem 3.4 The reference solution is the unique optimal primal solution to (SVCN-P)
for a (k − 1)-tree.

To prove Theorem 3.3, we need a number of supporting lemmas. We begin with
the following.

Lemma 3.5 Let tri(G) denote the number of triangles and |E(G)| denote the number
of edges in a (k − 1)-tree G with n vertices. Then,

|E(G)| = (2n − k)
k − 1

2
, (1)

tr i(G) = (3n − 2k)(k − 1)(k − 2)

6
. (2)

Proof We first prove (1) by induction. The smallest (k − 1)-tree is the complete graph
with n = k vertices. This graph has

(k
2

) = k(k−1)
2 edges. We also have (2n − k) k−1

2 =
(2k − k) k−1

2 = (k−1)k
2 . Assume the claim is true for all (k − 1)-trees with at most n
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vertices. If we add an n + 1st vertex, we are also adding k − 1 new edges. Our new
graph will have (2n−k)(k−1)

2 + (k − 1) = (2n−k)(k−1)+2(k−1)
2 = (2(n+1)−k)(k−1)

2 edges,
as desired.

To count triangles, we beginwith the complete graph on k vertices again. This graph
has

(k
3

) = k(k−1)(k−2)
6 triangles.We also have (3n−2k)(k−1)(k−2)

6 = (3k−2k)(k−1)(k−2)
6 =

k(k−1)(k−2)
6 . Assume the claim is true for all (k − 1)-trees with at most n vertices.

If we add an n + 1st vertex, we are also adding
(k−1

2

)
new triangles. Then this

new graph has (3n−2k)(k−1)(k−2)
6 + (k−1)(k−2)

2 = (3n−2k)(k−1)(k−2)+3(k−1)(k−2)
6 =

(3(n+1)−2k)(k−1)(k−2)
6 triangles, as desired. 	


Consider a (k − 1)-tree G with n vertices. For v ∈ V we denote the neighborhood
of v by N (v) = {u : (u, v) ∈ E}.We define the following matrix S(G) ∈ R

n×n which
may be referred to as S if G is clear from context.

S(G)i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|N (i)| − (k − 2)

k(k − 1)(n − k + 1)
, i = j,

|N (i) ∩ N ( j)| − (k − 3)

k(k − 1)(n − k + 1)
, (i, j) ∈ E,

0, (i, j) /∈ E, i �= j .

Wewill show that S(G) is an optimal dual solution to (SVCN-D)with rank n−k+1.
First, we show S(G) is a feasible solution to (SVCN-D) with help from the following
lemma.

Lemma 3.6 For a (k − 1)-tree G with n vertices, S(G) is positive semidefinite.

Proof Observe that it suffices to show S′(G) = k(k − 1)(n − k + 1)S(G) is positive
semidefinite (PSD) since k(k−1)(n−k+1) > 0 for n ≥ k. We proceed by induction.
First consider (k − 1)-trees with k vertices. There is only one, G = Kk . Furthermore,
S′(Kk) is equal to the all-ones matrix which has eigenvalues k and 0 with multiplicity
k − 1 and thus is PSD.

Now assume there is some integer n such that for every (k−1)-tree,G, with at most
n vertices, S′(G) is PSD. Consider a (k − 1)-tree G with n + 1 vertices. Since it is a
(k − 1)-tree, it can be constructed from some smaller (k − 1)-tree G ′ with n vertices
by adding a vertex v and (k − 1) edges that form a k clique with the k − 1 neighbors.
By assumption, S′(G ′) is PSD. Let I be the set of indices of the k − 1 neighbors of v.
Then we observe that S′(G) = T + vn+1v

T
n+1 where

T =

⎡

⎢
⎢
⎢
⎣

0

S′(G ′)
...

0
0 · · · 0 0

⎤

⎥
⎥
⎥
⎦
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and

vn+1(i) =
{
1 i ∈ I ∪ {n + 1}
0 otherwise

.

Then xT S′(G)x = xT T x + xT vn+1v
T
n+1x ≥ xT vn+1v

T
n+1x = (vTn+1x)

2 ≥ 0 where
the first inequality is due to T being PSD since S′(G ′) is PSD. 	

Lemma 3.7 For a (k − 1)-tree G with n vertices, S(G) is a feasible dual solution to
(SVCN-D).

Proof Lemma 3.6 shows that S(G) is PSD. To complete this claim, we must show
that the dual constraints of (SVCN-D) are satisfied. That S(G)i j = 0 for (i, j) /∈ E is
clear by construction. The other constraint requires

∑
i �= j S(G)i j ≥ 1. For S(G),

∑

i �= j

S(G)i j = 2
∑

(i, j)∈E

|N (i) ∩ N ( j)| − (k − 3)

k(k − 1)(n − k + 1)

= −2(k − 3)|E(G)| + 2
∑

(i, j)∈E |N (i) ∩ N ( j)|
k(k − 1)(n − k + 1)

= −2(k − 3)((2n − k) k−1
2 ) + 2

∑
v∈V (# of triangles in G containing v)

k(k − 1)(n − k + 1)

= −(k − 3)(k − 1)(2n − k) + 6tr i(G)

k(k − 1)(n − k + 1)

= −(k − 3)(k − 1)(2n − k) + 6( (3n−2k)(k−1)(k−2)
6 )

k(k − 1)(n − k + 1)

= (k − 1)((k − 2)(3n − 2k) − (k − 3)(2n − k))

k(k − 1)(n − k + 1)

= (k − 1)(3nk − 2k2 − 6n + 4k − 2nk + k2 + 6n − 3k)

k(k − 1)(n − k + 1)

= k(k − 1)(n − k + 1)

k(k − 1)(n − k + 1)
= 1

where we use both (1) and (2) from Lemma 3.5. 	

We can now show that S(G) is an optimal dual solution to (SVCN-D).

Theorem 3.8 For a (k − 1)-tree G with n vertices, S(G) is an optimal dual solution
to (SVCN-D).

Proof We remarked earlier that optimal primal solutions to (SVCN-P) for a (k − 1)-
tree have objective value −1/(k − 1). Thus for S(G) to be an optimal dual solution, it
suffices to show that −∑

i S(G)i i = −1/(k − 1). Again using (1) from Lemma 3.5,
we have
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−
n∑

i=1

S(G)i i = −
n∑

i=1

|N (i)| − (k − 2)

k(k − 1)(n − k + 1)

= − 1

k(k − 1)(n − k + 1)

[

−(k − 2)n +
n∑

i=1

|N (i)|
]

= − −(k − 2)n + 2|E |
k(k − 1)(n − k + 1)

= −−(k − 2)n + ((2n − k)(k − 1))

k(k − 1)(n − k + 1)

= −−nk + 2n + 2nk − 2n − k2 + k

k(k − 1)(n − k + 1)
= −1/(k − 1).

	

Finally, we want to show that for a (k − 1)-tree G with n vertices, S(G) has rank

at least n − k + 1. This guarantees that any primal solution has rank at most k − 1.

Theorem 3.9 For a (k − 1)-tree G with n vertices, S(G) has rank at least n − k + 1.

Proof It again suffices to show the claim is true for S′(G) = k(k−1)(n−k+1)S(G).
Proceeding by induction, for n = k we have rank(S′(G)) = rank(S′(Kk)) = 1 =
k− (k−1)with S′(Kk) equal to the all-ones matrix. Assuming the claim is true for all
(k−1)-trees with at most n vertices, we consider a (k−1)-tree G with n+1 vertices.
We again use the decomposition S′(G) = T + vn+1v

T
n+1 where

T =

⎡

⎢
⎢
⎢
⎣

0

S′(G ′)
...

0
0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

, vn+1(i) =
{
1 i ∈ I ∪ {n + 1}
0 otherwise

,

and G ′ is a (k−1)-tree with n vertices acquired by removing vertex n+1 with exactly
k − 1 neighbors, i ∈ I , from G. Note dim(ker(T )) = dim(ker(S′(G ′)) + 1 ≤ k by
assumption. Now assume x ∈ ker(S′(G)). Then

0 = xT S′(G)x = xT T x + xT vn+1v
T
n+1x .

Since T and vn+1v
T
n+1 are both PSD, this implies xT T x = 0 and xT vn+1v

T
n+1x =

0. Therefore ker(S′(G)) = ker(T ) ∩ ker(vn+1v
T
n+1). However, note that x =

(0, · · · , 0, 1) ∈ ker(T ), but x /∈ ker(vn+1v
T
n+1). Then

ker(S′(G)) = ker(T ) ∩ ker(vn+1v
T
n+1) � ker(T ).

This implies dim(ker(S′(G)) < dim(ker(T )) ≤ k, so rank(S′(G)) ≥ (n+1)−k+1.
	


123



Graph coloring and semidefinite rank 589

We can now prove Theorem 3.3.

Proof of Theorem 3.3 Theorem3.3 follows as an immediate consequenceofLemma3.7,
Theorems 3.8, and 3.9. 	


We now turn to showing that the reference solution is indeed the optimal solution
to (SVCN-P) in the case of (k − 1)-trees.

Proof of Theorem 3.4 Let X = YY T be an optimal solution to (SVCN-P) for a graph
G with an induced k-clique K with rank at most k − 1. We claim that there are only k
distinct rows w1, . . . , wk of Y , such that, if yi is the row of Y corresponding to vertex
i , yi ∈ {w1, . . . , wk} for each i and w� · w j = − 1

k−1 for � �= j , so X is the reference
solution, as desired.

Consider the smallest (k − 1)-tree, the complete graph on k vertices, Kk . Clearly
in any optimal solution X = YY T to (SVCN-P) for Kk with rank at most k − 1, we
have yi �= y j for i �= j since each yi is a unit vector and yi · y j = − 1

k−1 for i �= j by
the constraints of (SVCN-P).

Now, assume the claim is true for all (k−1)-trees on n vertices. Consider a (k−1)-
tree,G, with n+1 vertices and an optimal primal solution X = YY T to (SVCN-P)with
rank at most k−1.G is constructed from a (k−1)-tree,G ′, with n vertices by attaching
an additional vertex v with edges to all vertices in an induced (k−1)-clique, Kk−1, of
G ′. Let Y−v be the submatrix of Y given by removing the row y corresponding to v.
Then X−v = Y−vY T−v is X with the row and column corresponding to v removed and is
an optimal primal solution to (SVCN-P) for G ′ with rank at most k − 1. By induction,
we know Y−v only has k distinct rows w1, . . . , wk ∈ R

k−1 with wi · w j = − 1
k−1 for

i �= j . It remains to show that y ∈ {w1, . . . , wk}.
Let x1, . . . , xk−1 be the rows of Y corresponding to the vertices of the Kk−1. They

must be distinct and linearly independent: by Lemma 2.4, any collection of k − 1
distinct wi must be linearly independent. Therefore we may assume {x1, . . . xk−1} =
{w1, . . . , wk−1}, so we know wi · y = −1/(k − 1) for i = 1, . . . , k − 1 since there
is an edge from v to each of the vertices of the Kk−1. Furthermore, for a given i , the
set of solutions to wi · y = − 1

k−1 is represented by a hyperplane Hi in the (k − 1)-
dimensional vector space spanned by {w1, . . . , wk−1}. Therefore, a satisfying vector
w must lie in H1 ∩ · · · ∩ Hk−1. Because w1, . . . , wk−1 are linearly independent,
dim(H1 ∩ · · · ∩ Hk−1) = 0. Thus there is a unique vector that satisfies the given
equations. Since wk satisfies all k − 1 equations, we find that y = wk as desired.
Therefore, X is the reference solution. 	


Theorem 3.4 shows that we can partition the vertices of a (k − 1)-tree into k sets
with each set associated to a different vector assigned in the low rank primal solution.
Since vertices u, v are only in the same set in the partition if they were assigned the
same vector in the primal solution, it is not possible for neighbors to be in the same
set. We can then produce a valid coloring of the vertices by associating one color to
each set in the partition.

We now turn to characterizing cases in which we cannot find optimal dual solutions
of sufficiently high rank by looking at potential solutions of vector colorings for
graphs without unique colorings. In particular, we restrict our attention to graphs that
havemultiple distinct k-colorings and contain an induced k-clique. These assumptions
provide information about the optimal objective function values.
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Theorem 3.10 Let G be a graph with n vertices, multiple distinct k-colorings, and an
induced k-clique. There exists an optimal primal solution to the strict vector chromatic
number program for G with rank greater than k − 1, and thus by Fact 2.2 the rank of
any optimal dual solution must be less than n − k + 1.

Proof Let c1, c2 be functions from the vertices ofG to {1, . . . , k}mapping each vertex
to a number i corresponding to its color for two distinct k-colorings of G. Let K be an
induced k-clique in G. Begin with a reference solution of rank k − 1 and assign each
color class a corresponding vector in such a way that c1(i) = c2(i) for i ∈ K . This
fixes the color labelling for the vertices in K . Then, we can represent these colorings
by the PSD matrices C1 and C2, respectively, where Cp(i j) = 1 if cp(i) = cp( j) and
Cp(i j) = −1/(k − 1) if cp(i) �= cp( j) for p = 1, 2 and i, j ∈ [n]. Note then, for
α ∈ (0, 1), X = αC1 + (1 − α)C2 is also a valid solution to (SVCN-P). It suffices to
prove that X has rank greater than k − 1 for some α ∈ (0, 1).

Because C1 and C2 are PSD, for any value of α ∈ (0, 1), ker(X) = ker(C1) ∩
ker(C2). We will show there is a vector x ∈ ker(C1) such that x /∈ ker(C2) from
which the result directly follows.

Let v be a vertex whose color changes, i.e. c1(v) �= c2(v). Then v cannot be in K .
Let s ∈ K be such that c1(s) = c1(v) and thus c2(s) �= c2(v). Let i1, i2, . . . , ik−2 ∈ K
such that c2(i j ) �= c2(v) for j = 1, . . . k − 2. Also note that c1(i j ) �= c1(v) since
c1(s) = c1(v) and (i j , s) ∈ E for j = 1, . . . , k − 2. Because dim(ker(C1)) =
n − (k − 1) = n − k + 1, there exists x ∈ ker(C1) such that x �= 0 but x(i) = 0 for
i �= v, s, i1, . . . , ik−2. Assume x ∈ ker(C2); we show this leads to a contradiction.
Then,

(C1x)(v) = C1(vv)x(v) + C1(vs)x(s) +
k−2∑

j=1

C1(vi j )x(i j )

= x(v) + x(s) − 1

k − 1

k−2∑

j=1

x(i j ) = 0

and

(C2x)(v) = C2(vv)x(v) + C2(vs)x(s) +
k−2∑

j=1

C2(vi j )x(i j )

= x(v) − 1

k − 1
x(s) − 1

k − 1

k−2∑

j=1

x(i j ) = 0

from which we can conclude that x(s) = 0. Similarly,

(C1x)(s) = C1(sv)x(v) +
k−2∑

j=1

C1(si j )x(i j ) = x(v) − 1

k − 1

k−2∑

j=1

x(i j ) = 0
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and

(C2x)(s) = C2(sv)x(v) +
k−2∑

j=1

C2(vi j )x(i j ) = − 1

k − 1
x(v) − 1

k − 1

k−2∑

j=1

x(i j ) = 0

imply that x(v) = 0. By considering row i j for j = 1, . . . , k − 2, we see that the
x(i j ) satisfy

A[x(i1), x(i2), . . . , x(ik−2)]T = 0

where A is the (k − 2) × (k − 2) matrix with 1 along the diagonal and −1/(k − 1)
everywhere else. We can write A as A = − 1

k−1 J + k
k−1 I where J is the all 1 s matrix.

Then A has eigenvalues 2/(k − 1) with multiplicity 1 and k/(k − 1) with multiplicity
k − 3, and thus has trivial nullspace. Therefore [x(i1), x(i2), . . . , x(ik−2)] = 0 which
contradicts that x �= 0. Then x /∈ ker(C2), so rank(X) > k − 1. 	


While we have shown that (k − 1)-trees have solutions with sufficiently high dual
rank for the standard vector chromatic number SDP, it would be nice if we could
completely characterize which graphs have solutions with sufficiently high dual rank.
A reasonable guesswould be that a k-colorable graphG containing an induced k-clique
has an optimal solution with high dual rank if and only if it is uniquely colorable. This
assertion is true for the important special case of planar graphs.

Corollary 3.11 A planar graph with n vertices has an optimal solution to (SVCN-D)
with rank at least n − 3 if and only if it is uniquely colorable.

Proof Fowler [6] shows that uniquely-colorable planar graphs are exactly the set of
planar 3-trees. By Theorem 3.3 we know such graphs have dual rank at least n − 3.
Furthermore, Theorem 3.10 shows that graphs with multiple colorings have optimal
primal solutions to (SVCN-P) with rank more than 3 and therefore do not have dual
solutions with rank n − 3. 	


Unfortunately, the following example in Fig. 1 shows unique colorability is not
sufficient in general for a sufficiently high dual rank. Hillar and Windfeldt [9, Fig.
2] presented the uniquely 3-colorable graph in Fig. 1 excluding vertex 25 which adds
a triangle. Computing the primal and dual SDPs of this graph returns solutions with
objective value −0.5, primal rank of 24, and dual rank of 1. If the claim were true, we
would expect all dual solutions to have rank at least 23.

Thus it remains an interesting open question to characterize in general cases in
which graphs have sufficiently high dual rank and have the reference solution as the
optimal primal solution to (SVCN-P).

4 A semidefinite programwith costs

Unfortunately, Theorem 3.10 seems to indicate that this method of looking for graphs
that have high dual rank with the standard vector chromatic number SDP cannot be
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Fig. 1 Uniquely 3-colorable graph with an induced K3 which does not have any dual optimal solution of
sufficiently high dual rank

generalized to graphs with multiple colorings. To extend our method, we consider
a modified SDP described next. The new program utilizes a new objective function.
Here, we introduce the notion of a cost matrix C(G). The goal is to identify a C(G)

such that minimizing C(G) • X forces X to have our desired rank. In particular, we
consider the SDP given by

minimize C(G) • X
subject to Xi j = −1/(k − 1), ∀(i, j) ∈ E,

Xii = 1, ∀i ∈ V ,

X � 0.

(CP)

We observe that the solutions to (SVCN) with α = −1/(k−1) are exactly the feasible
solutions to (CP). The corresponding dual SDP is

maximize
∑n

i=1 yi − 2
k−1

∑
e∈E ze

subject to S = C − ∑n
i=1 yi Eii − ∑

e∈E zeEe,

S � 0
(CD)

where Eii is the matrix with a 1 at position i i and 0 elsewhere and for e = (i, j), Ee

is the matrix with 1 at positions i j and j i and 0 elsewhere.
To demonstrate how this cost matrix influences the behavior of rank(X), assume

that G = (V , E) is a k-colorable graph with an induced k-clique, but is not a (k − 1)-
tree. We still know there is a solution to the strict vector chromatic number program
with α = −1/(k − 1), and thus it is possible to find an X satisfying our modified
vector program constraints. Now fix c : V → [k] to be a valid k-coloring of G. With
this coloring, we can define an associated matrix C(G) in the following way:
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C(G)i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 i < j, c(i) = c( j),∀� such that i < � < j, c(i) �= c(�)

−1 i > j, c(i) = c( j),∀� such that i > � > j, c(i) �= c(�)

0 otherwise.

Intuitively, the reference solution corresponding to the coloring given by c is the solu-
tion that will minimize total cost since we’ll look for a solution X with Xi j = 1 exactly
when C(G)i j = −1; for such entries, we’ll have the same vectors corresponding to
vertices i and j . But we can show additionally that there is a dual optimal solution for
cost matrix C(G) that has sufficiently high rank.

Theorem 4.1 For G and C(G) as described, there is an optimal solution to (CD) with
rank at least n − k + 1, so that any optimal solution to (CP) has rank at most k − 1.

Let K be an induced k-clique in our k-colorable graph G. Let si denote the sum
of entries in column i of C(G). Consider the assignment of dual variables given by
yi = si for i /∈ K , yi = si − 1 for i ∈ K , ze = −1 for e = (i, j), i, j ∈ K , i �= j ,
and ze = 0 otherwise. We denote this assignment by (y, z).

Lemma 4.2 The dual matrix S constructed with (y, z) is positive semidefinite.

Proof Consider the complete graph on k vertices given by G = Kk (as this is the
smallest possible k-colorable graph containing an induced k-clique). Observe that
C(Kk) is the matrix of all 0 s as no two vertices can be colored the same. Thus si = 0
for all i ∈ Kk . Furthermore, (y, z) assigns yi = −1 for all i ∈ Kk and ze = −1 for
all e ∈ Kk . Then S is the all-ones matrix with eigenvalues k and 0 with multiplicity
k − 1, and thus is positive semidefinite.

Now assume the claim is true for all k-colorable graphs containing an induced
k-clique that have at most n vertices. Let G = (V , E) such that |V | = n + 1, G is
k-colorable, and G has an induced k-clique, K . Then G can be constructed by adding
a vertex vn+1 and its adjacent edges to some graph G ′ = (V ′, E ′) such that |V ′| = n,
G ′ is k-colorable, and G ′ contains K . By assumption, the matrix S′ corresponding to
G ′, {y′

i }ni=1, and {z′e}e∈E ′ is positive semidefinite.
Let vm be the largest-indexed vertex that is the same color as vn+1 after it is added

to G. We consider how the addition of vn+1 affects C(G ′), {yi }n+1
i=1 , and {ze}e∈E . For

i, j �= n + 1, C(G)i j = C(G ′)i j . We also observe C(G)m(n+1) = C(G)(n+1)m = −1
andC(G)i(n+1) = C(G)(n+1)i = 0 for i �= m. Furthermore, for i �= m, n+1, yi = y′

i ,
while ym = y′

m − 1 and yn+1 = −1. Finally, ze = −1 for e ∈ K and 0 otherwise.
With this update, we see that

S(G) =

⎡

⎢
⎢
⎢
⎣

0

S′(G ′)
...

0
0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

+ vvT
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where vT = [0, . . . , 0,−1, 0, . . . , 0, 1]. It follows that S(G) is positive semidefinite
since S′(G ′) is PSD by assumption and for all x ∈ R

n+1, xT vvT x = (vT x)2 ≥ 0. 	

Theorem 4.3 The assignment (y, z) is an optimal dual solution to (CD), and the ref-
erence solution is an optimal primal solution to (CP).

Proof The previous lemma shows (y, z) satisfies the constraints. Thus to prove this
claim, it suffices to show (y, z)maximizes the objective function.We demonstrate this
by showing that the reference solution has the same objective function value.

First, we consider the dual objective function value of (CD) for (y, z). We have

n∑

i=1

yi − 2

k − 1

∑

e∈E
ze =

(
n∑

i=1

si

)

− k + 2

k − 1

(
k

2

)

=
⎛

⎝
∑

1≤i, j≤n

C(G)i j

⎞

⎠ − k + k =
∑

1≤i, j≤n

C(G)i j .

Now, let X be the matrix given by the reference solution:

Xi j =

⎧
⎪⎨

⎪⎩

1 c(i) = c( j)

− 1
k−1 c(i) �= c( j)

where c : V → [k] is the fixed coloring used to generate C(G). Note that X satisfies
the constraints of the primal SDP (CP). The objective function value is given by

C(G) • X =
∑

i, j :c(i)=c( j)

C(G)i j − 1

k − 1

∑

i, j :c(i) �=c( j)

C(G)i j

=
∑

i, j :c(i)=c( j)

C(G)i j =
∑

1≤i, j,≤n

C(G)i j .

Since the primal and dual objective function values are equal, the corresponding solu-
tions must be optimal. 	


Finally, we restate and prove Theorem 4.1.

Theorem 4.1. For G and C(G) as described, there is an optimal solution to (CD) with
rank at least n-k+1, so that any optimal solution to (CP) has rank at most k-1.

Proof Again begin by considering the complete graph on k vertices given by Kk . As
previously discussed, the matrix S determined by (y, z) is simply the all-ones matrix.
It is straightforward to see this has rank 1 = k − k + 1.

Assume the claim holds for all k-colorable graphs with an induced k-clique and
at most n vertices. Let G be a k-colorable graph with an induced k-clique and n + 1
vertices. Following the same decomposition used previously, we can write

S(G) = T + vvT
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where

v(i) =

⎧
⎪⎨

⎪⎩

−1 i = m

1 i = n + 1

0 otherwise

for vm the largest-valued vertex colored the same as vn+1 and

T =

⎡

⎢
⎢
⎢
⎣

0

S′(G ′)
...

0
0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

.

Since S(G) is a sum of positive semidefinite matrices, ker(S(G)) = ker(T ) ∩
ker(vvT ). Observe that x = (0, . . . , 0, 1) ∈ ker(T ). However, x /∈ ker(vvT ). Thus
dim(ker(S(G))) = dim(ker(T ) ∩ ker(vvT )) < dim(ker(T )) ≤ k as desired. 	

Theorem 4.4 For G and C(G) as described, the reference solution is the unique opti-
mal primal solution to (CP).

Proof Theorem 4.3 tells us that the reference solution is an optimal primal solution to
(CP), while Theorem 4.1 tells us that any optimal primal solution to (CP) has rank at
most k − 1. Therefore it suffices to show that any rank k − 1 optimal primal solution
to (CP) is in fact the reference solution.

From the proof of Theorem 4.3, we know that the optimal objective function value
is

∑
1≤i, j≤n C(G)i j . Furthermore, any primal feasible X satisfying C(G) • X =∑

1≤i, j≤n C(G)i j must have Xi j = 1 whenever C(G)i j = −1 since Xi j ≤ 1 for all
1 ≤ i, j ≤ n and each entry of C(G) is either 0 or −1. Let K be an induced Kk in
G, X = YY T be a rank k − 1 primal optimal solution to (CP) and c : V → [k] be
the k-coloring used to construct C(G). Define k sets by Si = {v ∈ V : c(v) = i} for
i = 1, . . . , k and let ni = |Si |.

We claim that for each i = 1, . . . , k the rows of Y corresponding to the vertices
in Si are the same; in particular, there are only k distinct rows of Y . For each Si , sort
the vertices in Si from smallest label to largest so that Si = {vi1 , vi2 , . . . , vini } where
i1 < i2 < · · · < ini . By construction of C(G), we have that Ci1i2 = Ci2i3 = · · · =
Cini−1ini

= −1 implying Xi1i2 = Xi2i3 = · · · = Xini−1ini
= 1, so that the rows of Y

corresponding to vi1 , vi2 , . . . , vini are all the same vector which we call wi . We know
that there cannot be multiple vertices of K in any Si , so exactly one member of K must
be in each Si for i = 1, . . . , k. Therefore, wi · w j = −1/(k − 1) for all i, j, i �= j ,
and this is the reference solution. 	


5 Experimental results

Our results above show that we can find a cost matrix C such that the corresponding
dual SDP has an optimal solution of sufficiently high rank given that we know the
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Table 1 This table depicts the number of times the heuristic algorithms failed on maximally planar graphs
with between 5 and 14 vertices

# Nodes # Maximally planar graphs with K4 # Heuristic 1 failures # Heuristic 2 failures

5 1 0 0

6 1 0 0

7 4 0 0

8 12 0 0

9 45 0 0

10 222 0 0

11 1219 0 0

12 7485 18 (∼.24%) 18 (∼.24%)

13 49,149 108 (∼.22%) 116 (∼.24%)

14 337,849 619 (∼.18%) 811 (∼.24%)

coloring. In order to understand if it is possible to construct the cost matrix C without
knowing the coloring in advance, especially in the case of planar graphs, we turned to
implementing heuristics to find 4-colorings for planar graphs. Note that an algorithm
that could provably find a 4-coloring for planar graphs would give an alternate proof
to the four-color theorem (assuming the algorithm did not itself rely on the current
proof of the four-color theorem).

Two heuristics have been implemented and experimentally demonstrated success
returning low-rank primal solutions to (CP) for planar graphs. Neither algorithm
assumes knowledge of a graph coloring. We tested these heuristics on all maximal
planar graphs of up to 14 vertices with an induced K4; note that for such graphs a 4-
coloring exists and at least 4 colors are required. These graphs were generated via the
planar graph generator plantri due to Brinkmann andMcKay [4] found at https://users.
cecs.anu.edu.au/~bdm/plantri/. The ‘-a’ switch was used to produce graphs written in
ascii format. The code was implemented in Python using the MOSEK Optimizer as
the SDP solver. Both the graph data files and algorithm implementation can be found
at https://github.com/rmirka/four-coloring.git. Our results are shown in Table 1. The
heuristics successfully found a 4-coloring for all graphs with up to 11 vertices, and
successfully found a 4-coloring for 99.75% of the graphs of 12–14 vertices. We do
not record the running time of the heuristics; because the heuristics involve repeatedly
solving semidefinite programs, they are not competitive with other greedy or local
search style heuristics. Our primary reason for studying these heuristics was to find
whether we could reliably find a cost matrix C giving rise to a 4-coloring for planar
graphs.

At a high-level, both heuristics follow the same procedure. At each step, they solve
the vector program (CP) given in Sect. 4. If the returned solution does not have the
desired rank, the cost matrix C is updated and the process is repeated. The heuristics
differ in how the cost matrix is updated.

Before presenting the details of the heuristics, we provide some intuition for them.
Clearly, in any 4-coloring of a graph with an induced K4, each of the vertices in the
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K4 must be assigned a different color. This also means the 4 vectors assigned to the
vertices of the K4 in any solution to the vector programming formulation of (CP)
must be unique and motivates our desire to use these 4 unique vectors to define color
classes. For any vertex i that is not part of the K4, we consider it to be in one of
the four color classes if and only if Xi j = 1 for some j in the K4. In this case, i
and j must be assigned the same vector in the solution and therefore are members of
the same color class. We consider vertices unassigned a color class to be uncolored.
Furthermore, if Xi j = −1/3 for some j in the K4, we assume i and j should not
be in the same color class, even if i is currently uncolored. By this notion of color
classes, it is not guaranteed that all vertices will be assigned to a color class in every
optimal solution to (CP). In order to work towards obtaining the reference solution and
extracting a 4-coloring, we design cost matrices that encourage the SDP to assign at
least one currently uncolored vertex v to a color class in the next iteration, while also
maintaining the existing color classes. We now proceed with describing the heuristics.

The first heuristic (Algorithm 1) is based on the coloring-dependent cost matrix
discussed in Sect. 4. The algorithm first identifies an induced K4 = {ki }4i=1 and finds
an initial solution with C = 0. If the primal solution does not have low enough rank,
the returned solution is used to update the cost matrix. Let Si = {v ∈ V : Xvki = 1}
for i = 1, 2, 3, 4; these Si represent the current color classes, but there will be some
vertices not contained in any. Let v be a vertex in V \(∪4

i=1Si ). Then there must exist
i∗ ∈ {1, 2, 3, 4} such that Xvki∗ �= 1 and Xvki∗ �= −1/3. This indicates that the color
class of ki∗ is a candidate color class for v, so we update Si∗ by adding v to it. Now,C is
constructed based on the Si , i = 1, 2, 3, 4. In particular, for i = 1, 2, 3, 4, if ni denotes
the number of vertices in Si , then for j = 1, . . . , ni − 1, we set Crs = Csr = −1
where r and s are the j th and j + 1st vertices in Si . This new cost matrix C is used to
compute an updated solution X̂ . Note that because v was added to Si∗ , there will be
some v′ already in the color class of ki∗ such that Cv′v = Cvv′ = −1. Based on the
objective function of (CP), this entry encourages the next solution to have Xvv′ = 1 if
possible, which would successfully color v (and hopefully more vertices). If X̂ is of
the desired rank, the algorithm terminates. If not, we first check to see if X̂vki∗ = 1, i.e.
if our selected vertex from the previous iteration was successfully colored. If yes, we
repeat the process beginning with our solution X̂ and selecting a currently uncolored
vertex to try and assign a color to. If v was not successfully colored, we remove the
entry in the cost matrix corresponding to this assignment from the previous iteration
and resolve the SDP while adding ki∗ to a list of ‘bad’ colors for v; in particular, we
no longer consider the color class of ki∗ to be a feasible color for v. We now repeat
the process by selecting a new feasible color class for v (following the same rules
as previously in addition to requiring it not be in the list of ‘bad’ colors for v) and
constructing Si , i = 1, 2, 3, 4 and C accordingly.

The second heuristic (Algorithm 2) is motivated by similar ideas but distinct cost-
matrix updates. Again, the algorithm first identifies an induced K4 = {ki }4i=1 and
finds an initial solution with C = 0. Now, if X is a primal solution with greater rank
than desired, let S = {v ∈ V : ∃k ∈ K4 such that Xvk = 1}. Intuitively, S is the
set of vertices that are currently assigned to some color class. Now, choose a single
vertex v ∈ V \ S. Again, there must exist k ∈ K4 such that Xvk �= 1 or −1/3
meaning the color class of k is a candidate color class for v, so C is updated such
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Algorithm 1:
input : Planar G = (V , E) with a K4
output: X � 0 which can be used to extract a coloring of G

1 Find a clique K = {k1, k2, k3, k4} ;
2 C = 0;
3 i = 0, j = 1;
4 badcolors = [];
5 good = False;
/* call the Mosek optimizer to solve the SDP on graph G with cost

matrix C and return the primal and dual matrices (X , S,
respectively) and ranks(r , p, respectively) */

6 X , S, r , p = solveModi f ied(G,C);
7 while r > 3 do
8 if Xik j �= 1 and good then

/* Undo our previous cost matrix assignment if the candidate
color class for i didn’t work and remove the color class
from future options for i */

9 badcolors = badcolors ∪ {k j };
10 CiS j [length(S j )−2] = CSj [length(S j )−2]i = 0;

11 X , S, r , p = solveModi f ied(G,C);
12 good = False
13 else

/* Search for a currently uncolored vertex and a candidate
color class then update the cost matrix */

14 good = True;
15 Ss = {v ∈ V : Xvks = 1}, s = 1, 2, 3, 4;

16 colored = ∪4
s=1Ss ;

17 still Looking = True;
18 while stillLooking do
19 for q = 1, . . . , 4 do
20 if still Looking and i /∈ colored and kq /∈ badcolors and Xikq �= 1, −1/3 then
21 Sq = Sq ∪ {i};
22 still Looking = False;
23 j = q;
24 end
25 end
26 if still Looking then
27 i = i + 1 mod n;
28 badcolors = []
29 end
30 end
31 C = 0;
32 for q = 1, . . . , 4 do
33 for s = 0, . . . , length(Sq ) − 2 do
34 CSq [s],Sq [s+1] = CSq [s+1],Sq [s] = −1;

35 end
36 end
37 X , S, r , p = solveModi f ied(G,C)

38 end
39 end
40 return X
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Algorithm 2:
input : Planar G = (V , E) with a K4
output: X � 0 which can be used to extract a coloring of G

1 Find a clique K = {k1, k2, k3, k4} ;
2 C = 0;
/* call the Mosek optimizer to solve the SDP on graph G with cost

matrix C and return the primal and dual matrices (X , S,
respectively) and ranks(r , p, respectively) */

3 X , S, r , p = solveModi f ied(G,C);
4 v∗ = k∗ = k1;
5 badcolors = [];
6 good = False;
7 while r > 3 do
8 if Xv∗,k∗ �= 1 and good then

/* Undo our previous cost matrix assignment if the candidate
color class for v∗ didn’t work and remove the color class
from future options for v∗ */

9 Cv∗,k∗ = Ck∗,v∗ = 0;
10 X , S, r , p = solveModi f ied(G,C);
11 badcolors = badcolors ∪ {k∗};
12 good = False;
13 else

/* Search for a currently uncolored vertex and a candidate
color class then update the cost matrix */

14 good = True;
15 Ss = {v ∈ V : Xvks = 1}, s = 1, 2, 3, 4;

16 colored = ∪4
s=1Ss ;

17 still Looking = True;
18 while stillLooking do
19 for q = 1, . . . , 4 do
20 if still Looking and v∗ /∈ colored and kq /∈ badcolors and Xv∗kq �= 1,−1/3 then
21 Cv∗kq = Ckqv∗ = −1;

22 stillLooking = False;
23 k∗ = kq ;
24 end
25 end
26 if still Looking then
27 v∗ = v∗ + 1 mod n;
28 badcolors = []
29 end
30 end
31 X , S, r , p = solveModi f ied(G,C)

32 end
33 end
34 return X

that Cvk = Ckv = −1. Now the vector program is run again, and the value of Xvk in
the new solution is immediately checked. If Xvk = 1 now, the algorithm proceeds as
usual. However if Xvk �= 1, the cost matrix is updated so that Cvk = 0 again and a
different entry is chosen to update. In particular, if there is another k′ in the K4 whose
color class has not been ruled out for v, we try setting Cvk′ = −1, otherwise we find
a different uncolored vertex v′ and a k∗ in the K4 corresponding to a candidate color
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Fig. 2 Algorithm obstacle: K4 = {2, 5, 6, 7}

class for v′ and setCv′k∗ = −1.Again, this process is repeated until the desired primal
rank is achieved.

In both heuristics, the success termination condition is that the primal rank is equal
to 3, but this doesn’t necessarily guarantee that the dual rank is n − 3. If instead one
wanted to guarantee high dual rank, one could run the algorithm one more time, i.e.
once the low-rank primal solution is achieved, extract the coloring and construct the
corresponding C matrix as previously described in Theorem 4.1.

The example in Fig. 2 causes both heuristics to fail without coloring the graph. First
we note the induced K4 = {2, 5, 6, 7}. In the first iteration of the heuristic, these are
the only four vertices that are assigned colors. In the second iteration, both heuristics
successfully color vertex 1 to match vertex 6. However, afterwards each heuristic is
unable to color any more vertices (it tries and fails on all other possible colors for the
remaining vertices).

We considered whether our heuristics get stuck on graphs that also contained ver-
tices resulting in irrevocable Kempe chain tangles. Irrevocable Kempe chain tangles
occur when Kempe’s local-search method of recoloring Kempe chains fails to make a
color available for the vertex of interest; see Gethner et al. [8] for a computational and
empirical analysis of Kempe’s method and irrevocable Kempe chain tangles. As such,
finding an irrevocable Kempe chain tangle in a graph indicates that Kempe’s method
will fail to color the graph. We tested two graphs known to contain vertices that often
result in irrevocable Kempe chain tangles and slightly modified them to ensure they
contained an induced K4. The graphs are given in Figs. 3 and 4. Our heuristics did
successfully color these graphs, indicating that the class of graphs for which our algo-
rithm does not terminate is different than the ones for which coloring with Kempe
chains does not work.

6 Further thoughts, open questions, and conclusions

In this section, we explain how our work is motivated by the Colin de Verdière graph
parameter, give a possible strengthening of our results, and conclude by posing some
open questions.
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Fig. 3 A graph for which at least one vertex results in an irrevocable Kempe chain tangle for at least one
labeling

Fig. 4 A second graph for which at least one vertex results in an irrevocable Kempe chain tangle for at least
one labeling

6.1 Connections with the Colin deVerdière graph parameter

As mentioned in the introduction, the research in this paper was prompted by an
attempt to prove the four-color theoremand a connection between theColin deVerdière
graph parameter [5] (see also [17] for a useful survey of the invariant) and the dual
semidefinite program (CD). A generalized Laplacian L = (�i j ) of graphG is a matrix
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such that the entries �i j < 0 when (i, j) ∈ E , and �i j = 0 when (i, j) /∈ E and i �= j .
The Colin de Verdière invariant, μ(G), is defined as follows.

Definition 6.1 The Colin de Verdière invariant μ(G) is the largest corank of a gener-
alized Laplacian L of G such that:

1. L has exactly one negative eigenvalue of multiplicity one;
2. there is no nonzero matrix X = (xi j ) such that LX = 0 and such that xi j = 0

whenever i = j or �i j �= 0.

Colin de Verdière shows that μ(G) ≤ 3 if and only if G is planar; in other words,
any generalized Laplacian of G with exactly one negative eigenvalue of multiplicity
1 will have rank at least n − 3 (modulo the second condition on the invariant, which
we will ignore for the moment). Other results show that G is outerplanar if and only if
μ(G) ≤ 2, and G is a collection of paths if and only if μ(G) ≤ 1. Colin de Verdière
[5] conjectures that χ(G) ≤ μ(G) + 1; this result is known to hold for μ(G) ≤ 4.

We note if G is planar that the part of the dual matrix for (CD), S − C =
−∑n

i=1 yi Eii − ∑
e∈E zeEe is indeed a generalized Laplacian L of a planar graph

when the ze ≥ 0 for all e ∈ E , and that if the set of edges e for which ze > 0 is
connected, then the yi can be adjusted so that this matrix has a single negative eigen-
value of multiplicity one. Thus S − C , under these conditions, must have sufficiently
high rank, as desired to verify that the optimal primal solution to (CP) is the reference
solution. This would show that if the graph G has a clique on μ(G) + 1 vertices, then
indeed χ(G) = μ(G) + 1. So, for example, this would prove that any planar graph
with an induced K4 can be four-colored, leading to a non-computer assisted proof of
the four-color theorem. However, we do not know how to find the corresponding cost
matrix C or show that the dual S we find is optimal; indeed, for the dual we construct
in Sect. 4, ze < 0. Still, we view our heuristics as a step towards finding a way to
construct the cost matrix C without knowledge of the coloring, and without reliance
on the machinery of the proofs of the four-color theorem that have been developed
thus far.

6.2 Coloring-independent cost matrix

The method given in Sect. 4 has a significant impediment. The C matrix defined
previously assumes knowledge of a coloring for a graph. Ideally, for this method to
have greater impact, we would like to find a definition of C(G) and a corresponding
dual assignment (y, z) based solely on the structure of an input graph and independent
of a specific coloring, but still requiring the optimal primal solution to (CP) to be our
desired low-rank solution.

Fortunately, there is a formal way of thinking about what any possible C(G) must
look like. Let us again assume for a moment that G is a k-colorable graph with an
induced k-clique and define X based on a specific coloring, c, of G as described
above. Then if S is an optimal dual solution and X is an optimal primal solution,
XS = 0. Then for any i, j ∈ [n],∑n

p=1 XipSpj = 0. If X is the reference solution for

the coloring c, this implies
∑n

p=1 XipSpj = ∑
p:c(p)=c(i) Spj − 1

k−1

∑
p:c(p) �=c(i) Spj

= 0. In particular, let r1, . . . rk be representatives of the k color classes. Since the
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above is true for any i, j , fixing j and iterating through i = r1, r2, . . . rk shows∑
p:c(p)=c(r1) Spj = · · · = ∑

p:c(p)=c(rk ) Spj .
This is slightly problematic as it seems to indicate eitherC(G) or (y, z)will require

knowledge of a specific coloring to guarantee this relationship. However, we can at
least say something using the fact that a graph with an induced k-clique must use k
different colors for these vertices alone.We show below a cost matrixC and an optimal
dual solution for which any feasible primal solution (including the reference solution)
is optimal for (CP).

For a graph G with an induced k-clique, consider C(G) given by C(G)i j = 1 if
i = j or (i, j) ∈ E and 0 otherwise. Denote the number of induced Kks in G by K,
the number of induced Kks containing i ∈ V by ki , and the number of induced Kks
containing (i, j) ∈ E by ki j . Finally, for the assignment (y, z), set yi = C(G)i i − ki
and zi j = C(G)i j − ki j .

Recall that the dual matrix S is given by S = C(G) − ∑
i∈V yi Eii −∑

e=(i, j)∈E zi j Ee. Thus using (y, z), Si j = ki j for i �= j while Sii = ki .

Lemma 6.2 The matrix S obtained using the assignment (y, z) is positive semidefinite.

Proof Assume G has only one induced Kk composed from the vertices v1, . . . , vk .
Then S has one eigenvalue of k with corresponding eigenvector xk(i) = 1 if i ∈
{v1, . . . , vk} and 0 otherwise. S also has 0 as an eigenvalue with multiplicity n − 1
corresponding to n − k elementary unit vectors {ei : i /∈ Kk} and k − 1 basis vectors
for the set {x : xv1 +· · ·+ xvk = 0}. Therefore S is PSD. Now if G contains p induced
Kks, we can write S as a sum of p PSD matrices where each corresponds to one of
G’s induced Kks. Thus S is PSD. 	

Lemma 6.3 The matrix S obtained using the assignment (y, z) is optimal for (CD).

Proof Consider the dual objective function of (CD). We have

∑

i∈V
yi − 2

k − 1

∑

(i, j)∈E
zi j =

∑

i∈V
(C(G)i i − ki ) − 2

k − 1

∑

(i, j)∈E
(C(G)i j − ki j )

=
(

∑

i∈V
C(G)i i

)

− kK −
⎛

⎝ 2

k − 1

∑

(i, j)∈E
C(G)i j

⎞

⎠ + 2

k − 1

(
k

2

)

K

=
∑

i∈V
C(G)i i − 2

k − 1

∑

(i, j)∈E
C(G)i j

= C(G) • X

for any primal feasible X . 	


6.3 Open questions

We close with several open questions.Wewere unable to give a complete characteriza-
tion of the k-colorable graphs with an induced Kk for which the strict vector chromatic
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number (SVCN) has a unique primal solution of the reference solution. Such graphs
must be uniquely colorable, but clearly some further restriction is needed.

When we know the coloring, we can produce a cost matrix C for the semidefinite
program (CP) such that the reference solution is the unique optimal solution and it
must have rank k − 1. We wondered whether one could use (CP) in a greedy coloring
scheme, by incrementally constructing the matrix C ; the graph in Fig. 2 shows that
our desired scheme does not work in a straightforward manner. Possibly one could
consider an algorithm with a limited amount of backtracking, as long as one could
show that the algorithm continued to make progress against some metric.

Another open question is whether one can somehow directly produce a cost matrix
C leading to a dual solution of sufficiently high rank that does not need knowledge of
the coloring. And we conclude with the open question that first motivated this work:
is it possible to use the Colin de Verdière parameter to produce this matrix C?
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