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Abstract. Reaction cross diffusion systems are a two species generalization of the porous media
equation. These systems play an important role in the mechanical modelling of living tissues and
tumor growth. Due to their mixed parabolic-hyperbolic structure, even proving the existence of
solutions to these equations is challenging. In this paper, we exploit the parabolic structure of
the system to prove the strong compactness of the pressure gradient in L

2. The key ingredient
is the energy dissipation relation, which along with some compensated compactness arguments,
allows us to upgrade weak convergence to strong convergence. As a consequence of the pressure
compactness, we are able to prove the existence of solutions in a general setting and pass to the
Hele-Shaw/incompressible limit in any dimension.
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1. Introduction. In this paper, we consider the following two species reaction
cross diffusion system

(1.1)



















∂tρ1 −∇ · (ρ1(∇p− V )) = ρ1F1,1(p, n) + ρ2F1,2(p, n),

∂tρ2 −∇ · (ρ2(∇p− V )) = ρ1F2,1(p, n) + ρ2F2,2(p, n),

ρp = z(ρ) + z∗(p),

∂tn− α∆n = −n(c1ρ1 + c2ρ2),

on the spacetime domain Q∞ := [0,∞) × R
d. The study of these systems has be-

come extremely important in the modelling of tissue growth and cancer [BKMP03,
PT08, RBE+10] and has drawn substantial interest from the mathematical commu-
nity [PQV14, PV15, GPŚG19, KT21, BCP20, BPPS19, JKT21, AKY14, BM14]. The
equations model the growth and death of two populations of cells whose densities are
given by ρ1, ρ2. The densities are linked through a convex energy z (and its convex
dual z∗), which opposes the concentration of the total density ρ = ρ1+ρ2. The energy
induces a pressure function p, which dissipates energy by pushing the densities down
∇p. The most common choice for z is a convex power function zm(a) = 1

m−1 (a
m− a)

for some m > 1, or the incompressible limit z∞ where z∞(a) = 0 if a ∈ [0, 1] and
+∞ otherwise [PQV14, GPŚG19]. The coupling relation ρp = z(ρ) + z∗(p) is equiv-
alent to the subdifferential condition p ∈ ∂z(ρ) [BC17]. For zm, one has the explicit
relation p = m

m−1 (ρ
m−1 − 1). In the incompressible case, the subdifferential z∞(1) is

not single-valued, and as a result, one cannot directly recover the pressure from the
density (note that this is the typical case for incompressible fluid mechanics). Indeed,
the condition ρp = z∞(ρ) + z∗∞(p) is equivalent to the two conditions p(1 − ρ) = 0
and ρ ∈ [0, 1], which only reveals that the pressure is nonzero on the set ρ = 1. The
lack of an explicit density-pressure coupling for the incompressible setting makes this
case much more challenging (c.f. [GPŚG19, BCP20, LX21] and some of the discussion
below). In general, in our subsequent analysis, we will need to expend extra effort to
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tackle cases where ∂z is not single-valued, compared to easier cases where we have an
explicit relation p = z′(ρ).

In addition to the density-pressure coupling, the other driving forces of the equa-
tion are a fixed external vector field V and the source terms on the right-hand side of
the equation. The source terms that control the growth/death of the two populations
depend on both the pressure and a nutrient variable n. The nutrient evolves through
a coupled equation that accounts for both diffusion and consumption.

Throughout the paper, we assume that V ∈ L∞
loc([0,∞);L2(Rd)) and ∇ · V ∈

L∞(Q∞). We will also have the following assumptions on the energy z:
(z1) z : R → R ∪ {+∞} is proper, lower semicontinuous, and convex,
(z2) z(a) = +∞ if a < 0 and z(0) = 0,
(z3) there exists r > min(1− 2

d , 0) such that lim supa→0+ a
−rz(a) = 0,

as well as the following assumptions on the source terms:
(F1) the Fi,j are continuous on R× [0,∞) and uniformly bounded,
(F2) the cross terms F1,2, F2,1 are nonnegative.
In certain cases, we will need the additional assumption:
(F3) for n fixed, p 7→ (F1,1(p, n) + F2,1(p, n)) and p 7→ (F1,2(p, n) + F2,2(p, n)) are

decreasing.
Note that the last condition (F3) states that the growth rate of the populations
should decrease as the pressure rises. This corresponds to the biological phenomenon
of contact inhibition, where cells respond to overcrowding by decreasing their growth
rate [PQV14]. While this condition is very natural in most settings, there are some
limited scenarios where it may not hold (for instance one may want to model a scenario
where high pressure might prevent a cancer-killing drug from reaching cells). Hence,
we shall try to only impose (F3) when it is truly necessary for our arguments. A
simple choice for the Fi,j that satisfies all 3 requirements is to take functions of the
form (1− p)+(n− 1)+, but of course many choices are possible.

Constructing weak solutions to the system (1.1) is challenging due to the highest
order nonlinear terms ρ1∇p, ρ2∇p. Given a sequence of approximate solutions, one
needs either strong convergence of the densities or of the pressure gradient to pass to
the limit. Due to the hyperbolic character of the first two equations, the regularity
of the individual densities need not improve over time. Furthermore, it is not clear if
densities with BV initial data will remain BV in dimensions d > 1 (see [CFSS18] and
[BPPS19] for results in one dimension). On the other hand, summing the first two
equations, one sees that the pressure p and the total density ρ satisfy the parabolic
equation

(1.2) ∂tρ−∇· (ρ(∇p−V )) = ρ1
(

F1,1(p, n)+F2,1(p, n)
)

+ρ2
(

F1,2(p, n)+F2,2(p, n)
)

,

(note (1.2) needs to be coupled with the duality relation ρp = z(ρ)+ z∗(p) in order to
fully appreciate the parabolic structure). Hence, attacking the problem through the
pressure appears to be more promising.

Indeed, recently, several authors have been able to construct solutions to certain
cases of (1.1) by exploiting (1.2) to obtain strong convergence of the pressure gradient
[GPŚG19, BCP20, LX21]. In [GPŚG19, BCP20], the authors consider the model with
the specific coupling relation ρ = pm−1 for values of m ∈ (1,∞). These ideas were ini-
tiated in [GPŚG19], where the authors obtain precompactness of the pressure gradient
via regularity, by using the parabolic structure to bound the pressure Laplacian in L1.
Combined with any amount of arbitrarily weak time regularity, this implies gradient
compactness via the Aubin-Lions lemma. As it turns out, both space and time regular-
ity can be problematic. It is not clear whether spatial regularity can hold without some
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structural assumptions on the sources terms Fi,j or in the presence of a non-zero vector
field V . In particular, when ρ and p are coupled through the relation p = ρm−1 they
require the boundedness of p−1/(m−1)|(F1,1(p, n)+F2,1(p, n))−(F1,2(p, n)+F2,2(p, n))|
in both (p, n). This condition is somewhat restrictive from a modeling perspective as
it requires both populations to have the same growth behavior when the pressure is
zero. On the other hand, time regularity of the pressure becomes problematic when
attempting to pass to the incompressible limit m→ ∞. Indeed, in the incompressible
case, the coupling between the total density ρ and the pressure p is degenerate and
it is not clear how to convert time regularity for ρ (easy) into time regularity for p
(hard). This prevents [GPŚG19] from constructing solutions in the incompressible
case. In [BCP20], the authors establish precompactness more directly allowing them
to drop the restrictive assumptions on the source terms from [GPŚG19], nonetheless,
this approach still cannot handle the incompressible case. Finally, [LX21] builds upon
the ideas on [BCP20] to construct solutions in the incompressible case, but under ex-
tremely restrictive assumptions on the source terms. In particular, their source terms
cannot have any dependence on the pressure, which excludes many important versions
of the model.

In this paper, we establish the precompactness of the pressure gradient directly
by exploiting the energy dissipation relation associated to (1.2). In order to explain
our strategy more fully, we need to introduce a change of variables that will make our
subsequent analysis easier. Thanks to the duality relation ρp = z(ρ)+z∗(p), the term
ρ∇p is equivalent to ∇z∗(p). This suggests the natural change of variables q = z∗(p).
Since the pressure is only relevant on the set ρ > 0, we can essentially treat z∗ as a
strictly increasing function. As a result, we can completely rewrite the system (1.1)
and the parabolic equation (1.2) in terms of q instead of p (c.f. Section 2 and 5 for
the rigorous justification). Doing so, we get the equivalent system
(1.3)


















∂tρ1 −∇ · (ρ1

ρ ∇q) +∇ · (ρ1V ) = ρ1F1,1

(

(z∗)−1(q), n
)

+ ρ2F1,2

(

(z∗)−1(q), n
)

,

∂tρ2 −∇ · (ρ2

ρ ∇q) +∇ · (ρ2V ) = ρ1F2,1

(

(z∗)−1(q), n
)

+ ρ2F2,2

(

(z∗)−1(q), n
)

,

ρq = e(ρ) + e∗(q),

∂tn− α∆n = −n(c1ρ1 + c2ρ2),

where e is the unique convex function such that

e(a) =

{

az(a)− 2
∫ a

0
z(s) ds if z(a) 6= +∞,

+∞ otherwise.

It is worth noting that the change of variables from p to q is essentially the reverse
direction of Otto’s celebrated interpretation of the porous media equation as a W 2

gradient flow [Ott01]. Indeed, the p variable can be interpreted as a Kantorovich po-
tential for the quadratic optimal transport distance, while the q variable is instead the
dual potential for an H−1 distance. While the optimal transport interpretation of the
system is more physically natural, the linearity of the H−1 structure is advantageous
for our arguments. Indeed, summing the first two equations of (1.3), we get a more
linear analogue of (1.2):

(1.4) ∂tρ−∆q +∇ · (ρV ) = µ,

where we have defined µ := ρ1
(

F1,1

(

(z∗)−1(q), n
)

+F2,1

(

(z∗)−1(q), n
))

+ρ2
(

F1,2

(

(z∗)−1(q), n
)

+

F2,2

(

(z∗)−1(q), n
))

for convenience.
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Now we are ready to give an outline of our strategy. As we mentioned earlier,
the key idea is to exploit the energy dissipation relation associated to (1.4). Given
any test function ω ∈W 1,∞

c ([0,∞)) that depends on time only, the energy dissipation
relation states that

(1.5)

∫

Rd

ω(0)e(ρ0(x)) dx =

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

where ρ0 is the initial total density and we recall that Q∞ = [0,∞) × R
d is the full

space-time domain. Suppose we have a sequence (ρk, qk, µk) of solutions to equation
(1.4) with the same initial data ρ0 that converges weakly to a limit point (ρ̄, q̄, µ̄).
Thanks to the linearity of (1.4), the limit point (ρ̄, q̄, µ̄) will also be a solution of (1.4).
As a result, if we also know that the relation ρ̄q̄ = e(ρ̄)+e∗(q̄) holds at the limit, then
both (ρk, qk, µk) and (ρ̄, q̄, µ̄) satisfy the dissipation relation (1.5). Hence, we could
conclude that

∫

Q∞

−e(ρk)∂tω + ω|∇qk|
2 + ωe∗(qk)∇ · V − ωµkqk

=

∫

Q∞

−e(ρ̄)∂tω + ω|∇q̄|2 + ωe∗(q̄)∇ · V − ωµ̄q̄.

If we can prove that ρkqk, e(ρk), e
∗(qk) converge weakly to ρq, e(ρ̄), e∗(q̄) respectively

and

(1.6) lim sup
k→∞

∫

Q∞

ωµkqk ≤

∫

Q∞

ωµ̄q̄,

then we have the upper semicontinuity property

(1.7) lim sup
k→∞

∫

Q∞

ω|∇qk|
2 ≤

∫

Q∞

ω|∇q̄|2

which automatically implies that ∇qk converges strongly in L2
loc([0,∞);L2(Rd)) to

∇q̄. As a result, the energy dissipation relation gives us a way to upgrade some weak
convergence properties into strong gradient convergence.

Of course, in order to exploit this idea, we need:
(i) enough regularity to ensure that the dissipation relation (1.5) is valid,
(ii) enough compactness to prove the weak convergence of the nonlinear terms

ρkqk, e(ρk), e
∗(qk),

(iii) enough compactness to verify the nonlinear limit (1.6).
The amount of a priori regularity needed for (i) is very low, thus, this point does
not pose much of a problem. However, obtaining the compactness needed for points
(ii) and (iii) is more delicate. Exploiting convex duality, the weak convergence of
the energies e(ρk), e

∗(qk) is essentially equivalent to the weak convergence of the
product ρkqk (c.f. Lemma 3.2). While we may not know strong convergence of either
ρk or qk separately, we can still obtain the weak convergence of the product through
compensated compactness arguments (c.f. Lemma 5.1 in [Lio96] ). When e∗ is strictly
convex, the weak convergence of the energy e∗(qk) to e∗(q) actually implies that qk
converges to q locally in measure. Thus, in this case, verifying the limit (1.6) becomes
trivial. When the strict convexity of e∗ fails, we will still be able to verify the limit
(1.6) as long as we add the additional structural assumption (F3) on the source terms.
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Once we have obtained the strong convergence of the pressure gradient, construct-
ing solutions to the system (1.3) (and hence the system (1.1)) is straightforward via a
vanishing viscosity approach (note adding viscosity to the system is compatible with
our energy dissipation based argument). Furthermore, the above strategy works even
when the energy is allowed to change along the approximating sequence. Hence, we
can also use the above arguments to show that solutions to the system (1.1) with
the porous media energy zm(a) = 1

m−1 (a
m − a) converge to the incompressible limit

system with the energy z∞(a) = 0 if a ∈ [0, 1] and +∞ otherwise.

1.1. Main results. For the reader’s convenience, in this subsection, we collect
some of our main results. To prevent the introduction from becoming too bloated, we
shall state our results somewhat informally. The rigorous analogues of these results
can be found in Section 5.

Our first result concerns the case where the density-pressure coupling is non-
degenerate i.e. z is differentiable on (0,∞).

Theorem 1.1. Suppose that z is an energy satisfying assumptions (z1-z3) such
that ∂z(a) is a singleton for all a > 0 and suppose that the source terms satisfy
assumptions (F1-F2). Given initial data ρ01, ρ

0
2, n

0 such that e(ρ01 + ρ02) ∈ L1(Rd),
there exists a weak solution (ρ1, ρ2, p, n) to the system (1.1).

When the density-pressure coupling becomes degenerate, we need to add the
additional assumption (F3) on the source terms.

Theorem 1.2. Suppose that z is an energy satisfying assumptions (z1-z3) and
suppose that the source terms satisfy assumptions (F1-F3). Given initial data ρ01, ρ

0
2, n

0

such that e(ρ01 + ρ02) ∈ L1(Rd), there exists a weak solution (ρ1, ρ2, p, n) to the system
(1.1).

In addition to our existence results, we also show that solutions of the system
with the porous media energy zm(a) := 1

m−1a
m converge to a solution of the system

with the incompressible energy

z∞(a) :=

{

0 if a ∈ [0, 1]

+∞ otherwise

as m→ ∞.

Theorem 1.3. Let ρ01, ρ
0
2, n

0 be initial data such that ρ01 + ρ02 ≤ 1 almost ev-
erywhere. Suppose that the source terms satisfy (F1-F3). If (ρ1,γ , ρ2,γ , pγ , nγ) is a
sequence of solutions to the system (1.1) with the energy zγ and the fixed initial data
(ρ01, ρ

0
2, n

0), then there exists a limit point of the sequence (ρ1,∞, ρ2,∞, p∞, n∞) that
solves the system (1.1) with the incompressible energy z∞. Furthermore, the limiting
pressure p∞ satisfies the so called complementarity condition
(1.8)
∫

Q∞

(∇p∞−ρV )·∇(p∞ϕ)−ϕp∞

(

ρ1
(

F1,1(p∞, n)+F1,2(p∞, n)
)

+ρ2
(

F2,1(p∞, n)+F2,2(p∞, n)
)

)

= 0.

Theorem 1.3 is just a special case of our more general convergence result, Theorem
5.5, which shows that one can extract limit solutions for essentially any reasonable
sequence of energies. Nonetheless, the statement of Theorem 5.5 is a bit too compli-
cated to be cleanly summarized in the introduction, so we leave it to be stated for the
first time in Section 5.
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1.2. Limitations and other directions. Unfortunately, our approach cannot
handle the more challenging case where ρ1, ρ2 have different mobilities or where ρ1, ρ2
flow along different vector fields V1, V2. These cases are known to be extremely diffi-
cult, however see [KM18] and [KT21] for some partial results. When the mobilities
are different, the analogue of (1.4) is a nonlinear parabolic equation with potentially
discontinuous coefficients. As a result, one cannot do much with the limiting variables
ρ̄, q̄. When the densities flow along different vector fields, verifying the upper semi-
continuity property (1.7) requires proving the weak convergence of the terms ρ1,k∇qk
and ρ2,k∇qk. Since this essentially requires knowing strong compactness for ∇qk in
the first place, it completely defeats the purpose of the argument.

Nonetheless, it would be interesting to see if this strategy could be applied to
other systems of equations that have some parabolic structure. For instance, if
{Li,j}i,j∈{1,2} are linear operators whose symbols are dominated by (−∆)1/2 i.e. their

Fourier transforms satisfy lim sup|ξ|→∞
|L̂i,j(ξ)|

|ξ| = 0, then it should be possible to ex-

tend our arguments to the more general system
(1.9)


















∂tρ1 −∇ · (ρ1

ρ ∇q) +∇ · (ρ1V ) + L1,1ρ1 + L1,2ρ2 = ρ1F1,1

(

(z∗)−1(q), n
)

+ ρ2F1,2

(

(z∗)−1(q), n
)

,

∂tρ2 −∇ · (ρ2

ρ ∇q) +∇ · (ρ2V ) + L2,1ρ1 + L2,2ρ2 = ρ1F2,1

(

(z∗)−1(q), n
)

+ ρ2F2,2

(

(z∗)−1(q), n
)

,

ρq = e(ρ) + e∗(q),

∂tn− α∆n = −n(c1ρ1 + c2ρ2),

(perhaps with some other mild requirements on the Li,j). However, it is not so clear
that this more general system models physically relevant phenomena, and hence, we
will not pursue this line of inquiry further in this work.

1.3. Paper outline. The rest of the paper is organized as follows. In Section
2, we explore some of the consequences of the change of variables q = z∗(p). After
this Section, we will focus only on the transformed system (1.3) until Section 5. In
Section 3, we provide some generic convex analysis and compensated compactness
arguments needed for the weak convergence of the primal and dual energies. In
Section 4, we analyze parabolic PDEs, establishing basic estimates and the energy
dissipation relation. Finally, in Section 5, we combine our work to prove the main
results of the paper.

2. The transformation q = z∗(p). In this section, we will explore some of the
consequences of the transformation q = z∗(p). Note that the full verification of the
equivalence between the systems (1.1) and (1.3) will not occur until the final section,
Section 5. Throughout this Section and the next we will extensively use properties
of the Legendre transform and convex duality. Consulting the book [BC17], may be
useful for readers who are less familiar with these tools.

Before we begin our work in this section, let us give a bit more motivation for
introducing this change of variables. First of all, the spatial derivative in the parabolic
equation (1.4) is linear with respect to q, whereas the spatial derivative in parabolic
equation for the p variable (1.2) is not. As a result, establishing the strong L2 gra-
dient compactness for q is simpler than for p. Furthermore, the q variable is always
nonnegative, while certain choices of z will lead to a p variable that is not bounded
from below. The lack of lower bounds on p leads to some very annoying integrability
issues that are completely absent when one works with q instead.

We begin by establishing the fundamental properties of the transformation q =
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z∗(p). In particular, we will show that the transformation is essentially invertible.

Lemma 2.1. If z is an energy satisfying (z1-z3), then z∗ is nonnegative, nonde-
creasing, and (z∗)−1 is well defined and Lipschitz on z∗(R) ∩ (0,∞). Furthermore,
for any δ > 0, (z∗)−1 is uniformly Lipschitz on [δ,∞)

Proof. Given any b ∈ R, we have

z∗(b) = sup
a∈R

ab− z(a) ≥ 0− z(0) = 0.

It is also clear that inf ∂z∗(b) ≥ 0 since z(a) = +∞ for any a < 0. If b1 < b2, then
z∗(b2)− z

∗(b1) ≥ a1(b2− b1) ≥ 0 where a1 is any element of ∂z∗(b1). Thus, z
∗ is both

nonnegative and nondecreasing.
Since z is proper, we know that z(a) 6= −∞ for all a. Thus given some a0 > 0,

there must exist some b0 ∈ R such that b0 ≤ z(a0)
a0

. It then follows that for all a ≥ a0

ab0 − z(a) ≤ ab0 − z(a0)− (a− a0)
z(a0)

a0
= a(b0 −

z(a0)

a0
) ≤ 0.

Therefore, for all b ≤ b0

sup
a∈R

ab− z(a) = sup
a∈[0,a0]

ab− z(a).

Fix ε > 0 and let an ∈ [0, a0] be a decreasing sequence such that z∗(−n) ≤
ε−nan−z(an) (note that from the above logic such choices of an must exist once n is
sufficiently large). Since an is decreasing and bounded from below, it must converge
to a limit point ā as n→ ∞. Thus,

0 ≤ lim inf
n→∞

z∗(−n) ≤ ε− z(ā)− lim sup
n→∞

nan,

which immediately implies that ā = 0. We can then rewrite the above as

lim inf
n→∞

z∗(−n) ≤ ε− lim sup
n→∞

nan ≤ ε.

Therefore, lim infn→∞ z∗(−n) = 0.
It now follows that if z∗(b) ∈ (0,∞), then there must exist some b0 < b such that

2z∗(b0) ≤ z∗(b). We then have

inf ∂z∗(b) ≥
z∗(b)

2(b− b0)
> 0.

Thus, z∗ is strictly increasing at b whenever z∗(b) ∈ (0,∞). Since z∗ is convex, it
follows that for any δ > 0 (z∗)−1 is uniformly Lipschitz on [δ,∞).

Perhaps the most significant aspect of the change of variables q = z∗(p) is the
change in the energy controlling the primal and dual coupling. Recall that we defined
the new energy e through the formula

(2.1) e(a) =

{

az(a)− 2
∫ a

0
z(s) ds if z(a) 6= +∞,

+∞ otherwise.

While this formula appears somewhat mysterious, e is the unique (up to an irrelevant
constant factor) convex function such that ∂e(a) = z∗ ◦∂z(a) when ∂z(a) 6= ∅. Thus,
when p ∈ ∂z(ρ) we will know that q ∈ ∂e(ρ). Note that the monotonicity of z∗ is
key, otherwise e would fail to be convex. The following Lemma records the properties
that e inherits from z.
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Lemma 2.2. Suppose that z is an energy satisfying (z1-z3). If we define e : R →
R ∪ {+∞} according to (2.1), then e satisfies the following properties
(e1) e : R → R ∪ {+∞} is proper, convex, and lower semicontinuous.
(e2) e(a) = +∞ if a < 0, e(0) = 0, and e is increasing on e−1(R).

(e3) lim supa→0+
e(a)
a = 0, lim infb→∞

e∗(b)
b > 0 and there exists α > max(1 − 2

d , 0)
such that lim supa→0+ a

−α−1e(a) = 0.
Furthermore, if a > 0, we have

∂e(a) = {ab− z(a) : b ∈ ∂z(a)} = {z∗(b) : b ∈ ∂z(a)},

and so ∂e(a) is a singleton if and only if ∂z(a) is a singleton.

Proof. It is clear that e(0) = 0 and e(a) = +∞ if z(a) = +∞.
Given any two points a0, a1 ∈ z−1(R), convexity implies that

(2.2) 2(a1 − a0)z(
a1 + a0

2
) ≤ 2

∫ a1

a0

z(s) ds ≤ (a1 − a0)(z(a0) + z(a1)).

Thus, if z(a) 6= +∞, then

0 ≤ e(a) ≤ az(a)− 2az(
a

2
) <∞.

Therefore e(a) = +∞ if and only if z(a) = +∞. Thus, the set e−1(R) is an in-
terval. Furthermore, the above inequalities combined with (z3) clearly imply that
lim supa→0+ a

−α−1e(a) = 0.
Again using (2.2),

e(a1)−e(a0) = a0(z(a1)−z(a0))+(a1−a0)z(a1)−2

∫ a1

a0

z(s) ds ≥ a0(z(a1)−z(a0))−(a1−a0)z(a0)

If b0 ∈ ∂z(a0), then

e(a1)− e(a0) ≥ (a1 − a0)
(

a0b0 − z(a0)).

Thus, b ∈ ∂z(a) implies that ab − z(a) ∈ ∂e(a) whenever a ∈ e−1(R). Thus, the
subdifferential of e is nonempty whenever the subdifferential of z is nonempty. Com-
bining this with the equality z−1(R) = e−1(R), it follows that e is convex, lower
semicontinuous and proper.

Note that b ∈ ∂z(a) implies that z∗(b) = ab − z(a). Therefore, {ab − z(a) : b ∈
∂z(a)} = {z∗(b) : b ∈ ∂z(a)}. Since

∫ a

0
z(s) ds is everywhere differentiable on the

interior of z−1(R), every element of ∂e(a) must have the form ab− z(a) for b ∈ ∂z(a).
Convexity implies that ab − z(a) ≥ −z(0) = 0, thus e is increasing on the interior
e−1(R).

It remains to show that limb→∞
e∗(b)

b > 0. Since lim supa→0+
e(a)
a = 0, there must

exist some a0 > 0 such that e(a0) <∞. Thus,

lim inf
b→∞

e∗(b)

b
≥ lim inf

b→∞
a0 −

e(a0)

b
= a0.

Now that we have established properties of the transformation q = z∗(p) we
can temporarily forget about the original system (1.1) and focus on (1.3). We will
eventually return to (1.1) in the final section, where we show that solutions to (1.3)
can be transformed into solutions to (1.1). Until then, our efforts will be concentrated
on establishing the energy dissipation strategy described in the introduction.
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Parameter z energy a ∈ [0,∞) z∗ energy b ∈ R e energy a ∈ [0,∞) e∗ energy b ∈ R

m ∈ (0,∞] \ {1} 1
m−1 (a

m − a) max( (m−1)b+1
m , 0)m/(m−1) 1

m+1a
m+1 m

m+1 max(b, 0)
m+1
m

m→ 1 a log(a)− a exp(b) 1
2a

2 1
2 max(b, 0)2

Table 2.1

Some examples of the transformation from z to e.

3. Convex analysis and compensated compactness. In this section, we
collect some results that we will need to establish the weak convergence of the primal
and dual energy terms. We begin by defining some convex spaces that we will work
with throughout the paper.

Definition 3.1. Given an energy e satisfying (e1-e3), we define

X(e) := {ρ ∈ L∞
loc(Q∞) : e(ρ) ∈ L∞

loc([0,∞);L1(Rd))},

Y (e∗) := {q ∈ L2
loc(Q∞) : e∗(q) ∈ L1

loc([0,∞);L1(Rd))}.

We are now ready to present a result that will play an important role in our argument.

Lemma 3.2. Let e : R → R∪{+∞} be an energy satisfying (e1−e3). Let ek : R →
R∪{+∞} be a sequence of energies satisfying (e1-e3) such that ek converges pointwise
everywhere to e. Suppose we have a sequence of nonnegative density and pressure
functions ρk ∈ X(ek), qk ∈ Y (e∗k) such that ρkqk = ek(ρk)+e

∗
k(qk) almost everywhere

and ρk, qk converge weakly in L1
loc(Q∞) to limits ρ, q ∈ L1

loc(Q∞) respectively. If
ρq ∈ L1

loc([0,∞);L1(Rd)) and for every nonnegative ϕ ∈ C∞
c (Q∞)

lim sup
k→∞

∫

Q∞

ϕρkqk ≤

∫

Q∞

ϕρq,

then ρ ∈ X(e), q ∈ Y (e∗), ρq = e(ρ)+e∗(q) almost everywhere, and ρkqk, ek(ρk), e
∗
k(qk)

converge weakly in L1
loc([0,∞);L1(Rd)) to ρq, e(ρ), e∗(q) respectively.

Proof. Given some nonnegative ϕ ∈ C∞
c (Q∞), let D be a compact set containing

the support of ϕ. From our assumptions, we have

∫

Q∞

ϕρq ≥ lim sup
k→∞

∫

Q∞

ϕρkqk = lim sup
k→∞

∫

Q∞

ϕek(ρk) + ϕe∗k(qk).

Fix some simple functions g1, g2 ∈ L∞(D) such that every value of g1 is a value where
e∗k converges to e∗ (c.f. Lemma A.1). It then follows that

lim sup
k→∞

∫

Q∞

ϕ
(

ek(ρk)+e
∗
k(qk)

)

≥ lim sup
k→∞

∫

Q∞

ϕ
(

g1ρk−e
∗
k(g1)+g2qk−ek(g2)

)

=

∫

Q∞

ϕ
(

g1ρ−e
∗(g1)+g2q−e(g2)

)

.

Taking a supremum over g1, g2, we can conclude that

∫

Q∞

ϕρq ≥ lim sup
k→∞

∫

Q∞

ϕ
(

ek(ρk) + e∗k(qk)
)

≥

∫

Q∞

ϕ
(

e(ρ) + e∗(q)
)

.

On the other hand, Young’s inequality immediately implies that

ρq ≤ e(ρ) + e∗(q)
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almost everywhere. Thus, ρq = e(ρ)+e∗(q) almost everywhere. This also now implies
that ρ ∈ X(e) and q ∈ Y (e∗).

The previous calculation shows that ek(ρk) + e∗k(qk) is uniformly bounded in
L1
loc([0,∞);L1(Rd)). Thus, for any time T > 0, there exists w1, w2 ∈ C(QT )

∗ such
that ek(ρk), e

∗
k(qk) converge (along a subsequence that we will not relabel) to w1, w2

respectively. Arguing as in the first paragraph, it follows that

∫

QT

ϕw1 = lim inf
k→∞

∫

QT

ϕek(ρk) ≥

∫

QT

ϕe(ρ),

∫

QT

ϕw2 = lim inf
k→∞

∫

QT

ϕe∗k(qk) ≥

∫

QT

ϕe∗(q).

Hence,

∫

QT

ϕ|w1 − e(ρ)|+ ϕ|w2 − e∗(q)| =

∫

QT

ϕ
(

w1 − e(ρ) + w2 − e∗(q)
)

=

lim sup
k→∞

∫

QT

ϕ
(

ek(ρk) + e∗k(qk)− e(ρ)− e∗(q)
)

= lim sup
k→∞

∫

QT

ϕ
(

ρkqk − ρq
)

≤ 0.

Thus, w1 = e(ρ) and w2 = e∗(q). Since w1, w2 and T > 0 were arbitrary, it follows
that e(ρ), e∗(q) are the only weak limit points of ek(ρk), e

∗
k(qk) in L

1
loc([0,∞);L1(Rd)).

Thus, the full sequences ek(ρk), e
∗
k(qk) must converge weakly in L1

loc([0,∞);L1(Rd))
to e(ρ) and e∗(q) respectively. The weak L1

loc([0,∞);L1(Rd)) convergence of ρkqk to
ρq is an immediate consequence.

Knowing the weak convergence of the energy terms actually implies a certain
limited strong convergence property that can be deduced from the convexity of e, e∗.
When the energies are strictly convex, we will in fact have convergence in measure
of ρk to ρ and qk to q. When strict convexity fails, the convergence property will be
weaker, but will still encode some nontrivial information.

Lemma 3.3. Let e : R → R∪{+∞} be an energy satisfying (e1-e3). Let ek : R →
R∪{+∞} be a sequence of energies satisfying (e1-e3) such that ek converges pointwise
everywhere to e. Suppose we have a sequence of uniformly bounded nonnegative density
and pressure functions ρk ∈ X(ek), qk ∈ Y (e∗k) such that ρkqk = ek(ρk) + e∗k(qk)
almost everywhere and ρk, qk converge weakly in L1

loc(Q∞) to limits ρ, q ∈ L1
loc(Q∞)

respectively. Given ε > 0, we define

Ak,ε = {(t, x) ∈ Q∞ : [ρk(t, x)− ε, ρk(t, x) + ε] ∩ ∂e∗(q(t, x)) = ∅}

and
Bk,ε = {(t, x) ∈ Q∞ : [qk(t, x)− ε, qk(t, x) + ε] ∩ ∂e(ρ(t, x)) = ∅}

If for every nonnegative ϕ ∈ C∞
c (Q∞) we have lim supk→∞

∫

Q∞

ϕρkqk ≤
∫

Q∞

ϕρq,
then

(3.1) lim sup
k→∞

|D ∩Ak,ε|+ |D ∩Bk,ε| = 0

for any compact set D ⊂ Q∞.

Remark 3.4. If ∂e∗ is always a singleton (i.e. e∗ is everywhere differentiable,
equivalently e is strictly convex), then the conditions |ρ − ρk| > ε and [ρk − ε, ρk +
ε] ∩ ∂e∗(q) = ∅ are equivalent. Thus, in this case, the vanishing of Ak,ε would imply
that ρk converges in measure to ρ. The same holds for the convergence of qk to q
with the roles of the energies swapped (i.e. qk will converge strongly in measure to
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q if e is everywhere differentiable or equivalently if e∗ is strictly convex). Even when
we do not have full convergence in measure, the above result can be useful to show
that certain compositions f ◦ ρk, g ◦ qk converge to the correct limits f ◦ ρ, g ◦ q (for
well chosen functions f, g : R → R).

Proof. Fix a compact set D ⊂ Q∞ and ε > 0. From our assumptions and Lemma
3.2, it follows that

lim sup
k→∞

∫

D

ek(ρk)− e(ρ)− q(ρk − ρ) + e∗k(qk)− e∗(q)− ρ(qk − q) = 0.

Note that this line is nearly the sum of two Bregman divergences (also known as
Bregman distances c.f. [BC17]). Thus, we begin by making some manipulations to
transform the quantity into a Bregman divergence.

Let a∞ = sup{a > 0 : e(a) < ∞} and b∞ = sup{b > 0 : e∗(b) < ∞}. By Lemma
A.1, for any δ > 0, ek converges uniformly to e on [0, a∞ − δ] and e∗k converges uni-
formly to e∗ on [0, b∞−δ]. If we define ρk,δ := min

(

ρk, a∞−δ
)

, qk,δ := min
(

qk, b∞−δ
)

,
then from the above considerations, we have

(3.2) lim sup
k→∞

∫

D

e(ρk,δ)− e(ρ)− q(ρk,δ − ρ) + e∗(qk,δ)− e∗(q)− ρ(qk,δ − q)

+

∫

D

ek(ρk)− ek(ρk,δ)− q(ρk − ρk,δ) + e∗k(qk)− e∗k(qk,δ)− ρ(qk − qk,δ) = 0.

The first line in (3.2) is now the sum of two Bregman divergences.
The Bregman divergence associated to any convex function is a premetric, i.e.

it takes two points and returns a nonnegative number, however all the other metric
axioms may fail [BC17]. Nonetheless, Lemma A.3 guarantees the existence of strictly
positive functions λe, λe∗ such that

∫

D

e(ρk,δ)− e(ρ)− q(ρk,δ − ρ) + e∗(qk,δ)− e∗(q)− ρ(qk,δ − q)

≥

∫

D∩Ak,ε,δ

ελe(ρ, q, ε) +

∫

D∩Bk,ε,δ

ελe∗(q, ρ, ε),

where Ak,ε,δ = {(t, x) ∈ Q∞ : [ρk,δ(t, x) − ε, ρk.δ(t, x) + ε] ∩ ∂e∗(q(t, x)) = ∅} and
Bk,ε,δ = {(t, x) ∈ Q∞ : [qk,δ(t, x) − ε, qk,δ(t, x) + ε] ∩ ∂e(ρ(t, x)) = ∅}. Combining
this with (3.2) we have

lim sup
k→∞

ε
(

∫

Ak,ε,δ∩D

λe(ρ, q, ε)+

∫

Bk,ε,δ∩D

λe∗(q, ρ, ε)
)

+

∫

D

ek(ρk)−ek(ρk,δ)+e
∗
k(qk)−e

∗
k(qk,δ)

≤ lim sup
k→∞

∫

D

q(ρk − ρk,δ) + ρ(qk − qk,δ).

We now want to control the right hand side of the inequality.
Let Sk,δ = {(t, x) ∈ D : ρk > ρk,δ+2δ} and let S∗

k,δ = {(t, x) ∈ D : qk > qk,δ+2δ}.
Note that

∫

D

ek(ρk) + e∗k(qk) ≥ |Sk,δ|ek(a∞ + δ)|+ |S∗
k,δ|e

∗
k(b∞ + δ).

Since ek(ρk) + e∗k(qk) is uniformly bounded in L1
loc([0,∞);L1(Rd)), and for any fixed

δ > 0
lim
k→∞

ek(a∞ + δ) = ∞, lim
k→∞

e∗k(b∞ + δ) = ∞,
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it follows that lim supk→∞ |Sk,δ|+ |S∗
k,δ| = 0. Hence, using the inequality

∫

D

q(ρk−ρk,δ)+ρ(qk−qk,δ) ≤ 2δ‖q+ρ‖L1(D)+|Sk,δ|
1/2‖q‖L2(D)‖ρk‖L∞(D)+|S∗

k,δ|
1/2‖ρ‖L∞(D)‖qk‖L2(D),

we obtain

lim
δ→0+

lim sup
k→∞

ε
(

∫

Ak,ε,δ∩D

λe(ρ, q, ε)+

∫

Bk,ε,δ∩D

λe∗(q, ρ, ε)
)

+

∫

D

ek(ρk)−ek(ρk,δ)+e
∗
k(qk)−e

∗
k(qk,δ) ≤ 0

Since e, e∗ are increasing, the last integral is nonnegative, and so we can conclude
from the previous line that

lim
δ→0+

lim sup
k→∞

|Ak,ε,δ ∩D|+ |Bk,ε,δ ∩D| = 0,

for any ε > 0. Finally, we can conclude by noting that Ak,ε ⊂ Ak,ε/4,δ ∪ Sk,δ and
Bk,ε ⊂ Bk,ε/4,δ ∪ S

∗
k,δ whenever δ < ε/4.

Of course, to even be able to use Lemma 3.2, we somehow need to know an upper
semicontinuity type property for the product ρkqk. In practice, this seems to require
establishing the weak convergence of ρkqk to ρq. We will eventually accomplish this
by appealing to spacetime-compensated compactness. In particular, we will exploit
the time regularity of ρk and the space regularity of qk to obtain the weak convergence
of their product (see for instance Lemma 5.1 in [Lio96] for this flavor of compensated
compactness). Hence, we will now turn our attention to estimates and the energy
dissipation structure of the equation

4. Energy dissipation and estimates. We will now begin to analyze the par-
abolic structure of the equation (1.4). In order to do this, we will need to upgrade
the spaces X(e), Y (e∗) into spaces that are more appropriate for solving PDEs

Definition 4.1. Given an energy e satisfying (e1-e3), we define

X (e) := {ρ ∈ X(e) : ρ ∈ L∞
loc([0,∞);L1(Rd) ∩ L∞(Rd)) ∩H1

loc([0,∞);H−1(Rd))},

Y(e∗) := {q ∈ Y (e∗) : q ∈ L2
loc([0,∞); Ḣ1(Rd))},

and

D(e, e∗) = {(ρ, q) ∈ X (e)× Y(e∗) : ρq ∈ L2
loc([0,∞);L1(Rd) ∩ L2(Rd))}.

We begin by proving the energy dissipation relation in a form that is localized in
both space and time.

Proposition 4.2. Given an energy e : R → R∪{+∞} satisfying (e1-e3), suppose
that e(ρ0) ∈ L1(Rd) ∩ L∞(Rd) and ρ0 ∈ L1(Rd). Let (ρ, q) ∈ D(e, e∗) be a density-
pressure pair that satisfy the duality relation ρq = e(ρ) + e∗(q) almost everywhere.
Suppose that µ ∈ L∞( 1ρ ) is a growth rate and V ∈ L2

loc([0,∞);L2(Rd)) is a vector

field such that ∇ · V ∈ L∞(Q∞). If for every ψ ∈ W 1,1
c ([0,∞);L1(ρ) ∩ Ḣ1(Rd)), ρ, q

are weak solutions of the parabolic equation

(4.1)

∫

Rd

ψ(0, x)ρ0(x) dx =

∫

Q∞

∇q · ∇ψ − ρ∂tψ − ρV · ∇ψ − µψ,
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then for any ϕ ∈W 1,∞
c ([0,∞);W 1,∞(Rd)∩ Ḣ1(Rd)), we have the dissipation relation

(4.2)
∫

Rd

ϕ(0, x)e(ρ0(x)) dx =

∫

Q∞

−e(ρ)∂tϕ+ϕ|∇q|
2+q∇q·∇ϕ−ρqV ·∇ϕ+e∗(q)∇·(V ϕ)−ϕµq.

In particular, if ϕ(t, x) = ω(t) where ω ∈ W 1,∞
c ([0,∞)), then the relation simplifies

to

(4.3)

∫

Rd

ω(0)e(ρ0(x)) dx =

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

Proof. Let q̃ ∈ C∞
c (Rd) such that e∗(q̃) ∈ L1(Rd). Extend q backwards in time

by defining q(−t, x) = q̃(x) for all t ∈ (0,∞). Fix ε > 0, and define

qε(t, x) :=
1

ε

∫ t

t−ε

q(s, x) ds

for all (t, x) ∈ R × R
d. By Jensen’s inequality, qε ∈ Y(e∗) and a direct computation

shows that ∂tqε is the linear combination of two Y(e∗) functions for any ε > 0.
Assumption (e3) implies that there exists α0 > 0 such that e is bounded on [0, α0].
Hence, there must exist a point α1 ∈ (0, α0) such that e is differentiable at α1. Hence,
we can split

q = q1 + q0

where q1 = max(q−e′(α1), 0) and q0 = min(q, e′(α1)). Combining this decomposition
with the duality relation e(ρ)+e∗(q) = ρq and the condition ρq ∈ L2

loc([0,∞);L1(Rd)∩
L2(Rd)), it follows that for any T ≥ 0

∫

QT

q1 + q21 ≤
1

min(α1, α2
1)

∫

QT

ρq1 + (ρq1)
2 <∞.

Thus, it follows that

q0 ∈ L∞(Q∞) ∩ L2
loc([0,∞); Ḣ1(Rd)), q1 ∈ L2

loc([0,∞);L1(Rd) ∩H1(Rd)).

Clearly, such a decomposition must hold for qε as well. As a result, given any non-
negative ϕ ∈ W 1,∞

c ([0,∞);W 1,∞(Rd) ∩ Ḣ1(Rd)), it now follows that qεϕ is a valid
test function for the weak equation (4.1). Thus, we have

(4.4)

∫

Rd

qε(0, x)ϕ(0, x)ρ
0(x) dx =

∫

Q∞

−ρ∂t(ϕqε) + (∇q − ρV ) · ∇(qεϕ)− µϕqε,

Note that for almost every (t, x) ∈ Q∞

ρ∂t(ϕqε) = ρ(t, x)qε(t, x)∂tϕ(t, x) + ϕ(t, x)
q(t, x)− q(t− ε, x)

ε
ρ(t, x).

Hence, we can apply Young’s inequality to deduce that

(4.5) (
q(t, x)− q(t− ε, x)

ε
)ρ(t, x) ≥

e∗(q(t, x))− e∗(q(t− ε, x))

ε

By defining

(e∗(q))ε :=
1

ε

∫ t

t−ε

e∗(q(s, x)) ds
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we can write the above inequality in the more compact form

ρ∂tqε ≥ ∂t(e
∗(q))ε

Plugging this into (4.4), we get the inequality
∫

Rd

qε(0, x)ϕ(0, x)ρ
0(x) dx ≤

∫

Q∞

−ρqε∂tϕ−ϕ∂t(e
∗(q))ε+(∇q−ρV ) ·∇(qεϕ)−µϕqε,

Moving time derivatives back on to ϕ, we get the equivalent inequality

(4.6)

∫

Rd

ϕ(0, x)
(

qε(0, x)ρ
0(x)−

(

e∗(q)
)

ε
(0, x)

)

dx

≤

∫

Q∞

∂tϕ((e
∗(q))ε − ρqε) + (∇q − ρV ) · ∇(qεϕ)− µϕqε.

Note that we also have
∫

Rd

ϕ(0, x)
(

qε(0, x)ρ
0(x)−

(

e∗(q)
)

ε
(0, x)

)

dx =

∫

Rd

ϕ(0, x)
(

q̃(x)ρ0(x)− e∗
(

q̃(x)
)

)

dx

thanks to our construction of qε.
Since all of the time derivatives are now on ϕ, we can safely send ε→ 0. Thus, it

follows that
∫

Rd

ϕ(0, x)
(

q̃(x)ρ0(x)− e∗
(

q̃(x)
)

)

dx

≤

∫

Q∞

∂tϕ(e
∗(q)− ρq) + (∇q − ρV ) · ∇(qϕ)− µϕq.

Exploiting the duality relation ρq = e(ρ) + e∗(q), we have arrived at the inequality
∫

Rd

ω(0)
(

q̃(x)ρ0(x)− e∗
(

q̃(x)
)

)

≤

∫

Q∞

−e(ρ)∂tϕ+ (∇q − ρV ) · ∇(qϕ)− µϕq.

q̃ was arbitrary, thus, taking a supremum over q̃ we obtain

(4.7)

∫

Rd

ω(0)e(ρ0(x)) ≤

∫

Q∞

−e(ρ)∂tϕ+ (∇q − ρV ) · ∇(qϕ)− µϕq.

Expanding the right hand side, using the identity ρ∇q = ∇e∗(q)), and integrating by
parts, we obtain one direction of (4.2).

To get the other direction, we instead smooth q forwards in time by defining

q̄ε :=
1

ε

∫ t+ε

t

q(s, x).

The argument will then proceed identically to the above except that the forward-in-
time smoothing does not allow us to conclude that q̄ε(0, x) = q̃. Luckily, Jensen’s
inequality and Young’s inequality are now in our favor, and so we can just estimate
∫

Rd

ϕ(0, x)
(

q̄ε(0, x)ρ
0(x)−

1

ε

∫ ε

0

(e∗
(

q(s, x)
)

ds)
)

dx ≤

∫

Rd

ϕ(0, x)
(

q̄ε(0, x)ρ
0(x)−e∗

(

q̄ε(0, x)
)

)

dx

≤

∫

Rd

ϕ(0, x)e(ρ0(x))dx.

We can extend the formula to general functions ϕ ∈ W 1,∞
c ([0,∞);W 1,∞(Rd) ∩

Ḣ1(Rd)) by noting that the relation is linear in ϕ and any function can be written as
the difference of two nonnegative functions.
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In the next proposition, we will focus on collecting a priori estimates for solutions
to (1.4). In fact, we will consider a slightly modified equation where we add an
additional viscosity term −γ∆ρ for some γ > 0. As we will see, the estimates will
give us uniform control independent of γ when we consider sequences of solutions.

Proposition 4.3. Let e be an energy function satisfying (e1-e3), let V ∈ L∞
loc([0,∞);L2(Rd))

be a vector field such that ∇·V ∈ L∞
loc([0,∞);L∞(Rd)), let µ

ρ ∈ L∞(Q∞) and let γ be

a positive constant. Suppose that ρ ∈ X (e) ∩ L2
loc([0,∞);H1(Rd)), q ∈ Y(e∗) and ρ, q

satisfy the duality relation ρq = e(ρ) + e∗(q) almost everywhere. If e(ρ0) ∈ L1(Rd)
and the variables satisfy the weak equation

(4.8)

∫

Rd

ψ(0, x)ρ0(x) dx =

∫

Q∞

γ∇ρ · ∇ψ +∇q · ∇ψ − ρ∂tψ − ρV · ∇ψ − µψ,

for every test function ψ ∈ W 1,1
c ([0,∞);L1(ρ) ∩ Ḣ1(Rd)), then for any nonnegative

ω ∈W 1,∞
c ([0,∞)) we have the dissipation properties

(4.9)

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq ≤

∫

Rd

ω(0)e(ρ0(x)) dx,

(4.10)
∫

Q∞

ωγ(m− 1)ρm−2|∇ρ|2 − ρm
( 1

m
∂tω + ω(

µ

ρ
−
m− 1

m
∇ · V )

)

≤

∫

Rd

ω(0)

m
(ρ0)m dx,

and setting B = ‖µ
ρ ‖L∞(QT ) + ‖∇ · V ‖L∞(QT ) we have the estimates

(4.11) γ‖∇ρ‖2L2(QT ) ≤ ‖ρ0‖2L2(Rd) +B‖ρ‖2L2(QT ),

(4.12) ‖ρ(T, ·)‖L1(Rd) ≤ ‖ρ0‖L1(Rd) exp(BT )

(4.13) ‖∂tρ‖L2([0,T ];H−1(Rd)) ≤ γ‖∇ρ‖L2(QT )+‖∇q‖L2(QT )+‖µ‖L2(QT )+‖ρV ‖L2(QT )

(4.14) ‖ρ(T, ·)‖L∞(Rd) ≤ ‖ρ0‖L∞(Rd) exp
(

2TB
)

.

Finally, if we choose some α0 > 0 such that e is differentiable at α0 and we set
β = e′(α0) then the following estimates hold where the unspecified constants depend
only on B, T, β, α−1

0 , and d:

(4.15) ‖∇q‖2L2(QT ) . ‖ρ‖
2(d+1)

d

L∞([0,T ];L1(Rd)∩L2(Rd))
+ ‖ρ‖L2([0,T ];L1(Rd)) +

∫

Rd

e(ρ0) dx

(4.16)

‖ρq‖L2([0,T ];L1(Rd)) . ‖ρ‖L2([0,T ];L1(Rd)) + ‖ρ‖
d+1
d

L∞([0,T ];L1(Rd)∩L2(Rd))
‖∇q‖L2(QT )

(4.17) ‖ρq‖L2(QT ) . ‖ρ‖L2(QT ) + ‖ρ‖L∞(QT )‖ρq‖
2

d+2

L2([0,T ];L1(Rd))
‖∇q‖

d
d+2

L2(QT ),

for any set K ⊂ QT with finite measure

(4.18) ‖q‖L2(K) . |K|+ ‖ρq‖L2(QT ),
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and there exists r ∈ (min(1− 2
d , 0), 1] such that

(4.19) ‖ρ log(1 + |x|)‖L∞([0,T ];L1(Rd)) .

eBT
(

‖ρ‖L2(QT )‖V ‖L2(QT )+γ‖ρ‖L1(QT )+1+(‖ρq‖L2(QT )∩L1(QT )+‖ρ‖rL1(QT )+

∫

Rd

log(1+|x|)ρ0(x) dx
)

.

Proof. The dissipation inequalities (4.9) and (4.10) follow from choosing the test
functions qϕ and ρm−1ω respectively. These test functions do not have the required
time regularity, however, by following an identical argument to Proposition 4.2, this
technicality can be overcome. In addition, note that in both inequalities we have
dropped a term involving ∇ρ ·∇q, which is nonnegative thanks to the duality relation.

Estimates (4.12) and (4.13) are straightforward consequences of the weak equation
(4.8). Estimate (4.11) follows from (4.10) with m = 2. Estimate (4.14) follows from
applying a Gronwall argument to (4.10) and then sending m→ ∞.

The estimates (4.15-4.18) are all linked. Fix a time T > 0, and consider ‖ρq‖L2([0,T ];L1(Rd)).
We begin by splitting q = q0 + q1 where q0 = min(q, β) and q1 = max(q− β, 0). From
our choice of β we know that ρ ≥ α0 > 0 on the support of q1. Therefore, q1 must have
finite support. Combining this with the coercivity of e∗ and the bound e∗(q) ∈ L1(QT )
it follows that q1 ∈ L1(QT ). Thus,

(4.20) ‖ρq‖L2([0,T ];L1(Rd)) ≤ β‖ρ‖L2([0,T ];L1(Rd)) + ‖ρq1‖L2([0,T ];L1(Rd)

and it is now at least clear that the quantity is finite.
Working in Fourier space, we have

‖ρq1‖
2
L2([0,T ];L1(Rd)) ≤

∫ T

0

(

∫

Rd

|ρ̂(t, ξ)q̂1(t, ξ)| dξ
)2

dt

≤

∫ T

0

(

|BR|‖ρ(t, ·)‖L1(Rd)‖q1(t, ·)‖L1(Rd) +

∫

|ξ|>R

|ρ̂(t, ξ)q̂1(t, ξ)| dξ
)2

dt

where R > 0 and BR is the ball of radius R. Using the estimate
∫

|ξ|>R

|ρ̂(t, ξ)q̂1(t, ξ)| dξ ≤ (2πR)−1‖ρ(t, ·)‖L2(Rd)‖∇q1(t, ·)‖L2(Rd),

optimizing over R and dropping dimensional constants, it follows that

‖ρq1‖
2
L2([0,T ];L1(Rd)) .d

∫ T

0

‖ρ(t, ·)‖
2

d+1

L1(Rd)
‖q1(t, ·)‖

2
d+1

L1(Rd)
‖ρ(t, ·)‖

2d
d+1

L2(Rd)
‖∇q(t, ·)‖

2d
d+1

L2(Rd)
.

≤ ‖ρ‖2L∞([0,T ];L1(Rd)∩L2(Rd))‖∇q‖
2d

d+1

L2(QT )‖q1‖
2

d+1

L2([0,T ];L1(Rd))
.

Recalling the inequality q1 ≤ α−1
0 ρq1, we now see that

‖ρq1‖L2([0,T ];L1(Rd)) .d α
− 1

d+1

0 ‖ρ‖L∞([0,T ];L1(Rd)∩L2(Rd))‖∇q‖
d

d+1

L2(QT )‖ρq1‖
1

d+1

L2([0,T ];L1(Rd))
,

which gives

‖ρq1‖L2([0,T ];L1(Rd)) .d α
− 1

d

0 ‖ρ‖
d+1
d

L∞([0,T ];L1(Rd)∩L2(Rd))
‖∇q‖L2(QT ).

Combining this with (4.20), we obtain (4.16).
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Next, let us estimate ‖ρq‖L2(QT ). Again,

‖ρq‖L2(QT ) ≤ β‖ρ‖L2(QT ) + ‖ρ‖L∞(QT )‖q1‖L2(QT ).

Gagliardo-Nirenberg gives us

‖q1‖
2
L2(QT ) .d

∫ T

0

‖q1(t, ·)‖
4

d+2

L1(Rd)
‖∇q(t, ·)‖

2d
d+2

L2(Rd)
dt ≤ ‖q1‖

4
d+2

L2([0,T ];L1(Rd))
‖∇q‖

2d
d+2

L2(QT ).

Combining our work, we see that

‖ρq‖L2(QT ) .d β‖ρ‖L2(QT ) + α
− 2

d+2

0 ‖ρ‖L∞(QT )‖ρq‖
2

d+2

L2([0,T ];L1(Rd))
‖∇q‖

d
d+2

L2(QT ),

where we have used q1 ≤ α−1
0 ρq. We have now attained the bound in (4.17).

Next, we estimate ‖∇q‖L2(QT ). From the dissipation relation (4.9), we have

∫

Q∞

ω|∇q|2 − e(ρ)∂tω + ωe∗(p)∇ · V − ωµq ≤

∫

Rd

ω(0)e(ρ0) dx

for any nonnegative ω ∈ W 1,∞
c ((0,∞)). Fix a time T > 0 that is a Lebesgue point

for the mapping T 7→ ‖∇q‖L2(QT ). Assume that ω is a decreasing function supported
on [0, T ] and ω ≤ 1 everywhere. We can then eliminate the term −e(ρ)∂tω. Thus, it
follows from our previous work and the dissipation relation that

∫

Q∞

ω|∇q|2 ≤

∫

Rd

e(ρ0) dx+B‖ρq‖L1(QT )

Using our previous work, we see that
∫

Q∞

ω|∇q|2 is

.d

∫

Rd

e(ρ0) dx+BT 1/2
(

β‖ρ‖L2([0,T ];L1(Rd))+α
− 1

d

0 ‖ρ‖
d+1
d

L∞([0,T ];L1(Rd)∩L2(Rd))
‖∇q‖L2(QT )

)

Letting ω approach the characteristic function of [0, T ], the above bound holds for
‖∇q‖2L2(QT ). Using the quadratic formula, it follows that ‖∇q‖2L2(QT ) .d c

2
1+c0 where

c1 = BT 1/2α
− 1

d

0 ‖ρ‖
d+1
d

L∞([0,T ];L1(Rd)∩L2(Rd))
, c0 =

∫

Rd

e(ρ0) dx+BT 1/2β‖ρ‖L2([0,T ];L1(Rd)).

The estimate on ‖q‖L2(K) follows from the inequality q ≤ β + q1 ≤ β + α−1
0 ρq.

Finally, it remains to prove the estimate for (4.19). Let η : [0,∞) → [0, 1] be
a smooth increasing function such that η(r) = 0 if r ≤ 1

2 and η(r) = 1 if r ≥ 1.
Given some nonnegative ω ∈ W 1,∞

c ([0,∞)) and any ε > 0 we define ψε(t, x) :=
ω(t) log(1+ |x|)η(|x||)e−ε|x| which is a valid test function for (4.8). Since ψε is smooth
in space, we can integrate by parts in (4.8) to obtain

∫

Rd

ϕε(0, x)ρ
0(x) dx = −

∫

Q∞

ρ∂tϕε + (q + γρ)∆ϕε + ρV · ∇ϕε + µϕε

Fix some T > 0 such that the support of ω is contained in [0, T ]. ∇ϕε and ∆ϕε are
both uniformly bounded in L∞(QT ). Hence, we have

∫

QT

−ρ∂tϕε . ‖ρ‖L2(QT )‖V ‖L2(QT )+γ‖ρ‖L1(QT )+

∫

QT

Bρϕε+q∆ϕε+

∫

Rd

ϕε(0, x)ρ
0(x) dx.
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Thus, the only potentially problematic term is q∆ϕε since L
1(QT ) bounds on q might

not hold.
To estimate

∫

QT
q∆ϕε we choose some set K ⊂ R

d with finite measure such that
K contains the unit ball. We then have
∫

QT

q∆ϕε ≤ ‖q‖L1([0,T ]×K)+

∫

[0,T ]×(Rd\K)

q∆ϕε . β|K|+α−1
0 ‖ρq‖L2(QT )+

∫

[0,T ]×(Rd\K)

q∆ϕε

On |x| > 1, η = 1, hence ∇ϕε(t, x) =

ω(t)e−ε|x|
( 1)

1 + |x|
− εϕε(t, x)

) x

|x|
,

∆ϕε(t, x) =

(
(d− 1)

|x|
− 2ε)∇ϕε(t, x) ·

x

|x|
− ω(t)e−ε|x| 1

(1 + |x|)2
,

and max(∆ϕε(t, x), 0) ≤

ω(t)e−ε|x|
( (d− 1)

|x|(1 + |x|)
+ 2ε2 log(1 + |x|)

)

If we set fε(t, x) = ω(t)e−ε|x|
(

(d−1)
max(|x|,1)(1+|x|) + 2ε2 log(1 + |x|)

)

for all (t, x) ∈ QT ,

then combining our work thus far, we have
∫

QT

q∆ϕε . 1 + ‖ρq‖L2(QT ) +

∫

QT

qf.

We again decompose q = q0 + q1 where q0 = min(q, β) and q1 = max(q − β, 0).
Since f is uniformly bounded and q1 ≤ α−1

0 ρq we get
∫

QT
qf . ‖ρq‖L1(QT ) +

∫

QT
q0f . Fix some v > min(1 − 2

d , 0) and let r = min(v, 1). If we define Cr =

supa∈[0,α0] a
−r sup ∂e(a), assumption (e3) implies that Cr < ∞. From the definition

of Cr, we see that q0 . Crρ
r, therefore

∫

QT
q0f ≤ ‖ρ‖rL1(QT )‖f‖L

1
1−r (QT )

. Since

1
1−r > d/2 and for any fixed δ > 0

∫

QT

e−ε|x|

(1 + |x|)d+δ
+ εd+δ log(1 + |x|)d+δe−ε|x|

are uniformly bounded from above with respect to ε, it now follows that
∫

QT

q∆ϕε . 1 + ‖ρq‖L2(QT ) + ‖ρq‖L1(QT ) + ‖ρ‖rL1(QT )

Finally, we have obtained
∫

QT

−ρ(∂tϕε +Bϕε) .

‖ρ‖L2(QT )‖V ‖L2(QT )+γ‖ρ‖L1(QT )+1+‖ρq‖L2(QT )∩L1(QT )+‖ρ‖rL1(QT )+

∫

Rd

ϕε(0, x)ρ
0(x) dx.

ω was arbitrary, hence, Gronwall’s inequality gives us

‖ρ log(1 + |x|)e−ε|x|‖L∞([0,T ];L1(Rd)) .

eBT
(

‖ρ‖L2(QT )‖V ‖L2(QT ) + γ‖ρ‖L1(QT ) + 1 + (‖ρq‖L2(QT )∩L1(QT ) + ‖ρ‖rL1(QT ) +

∫

Rd

log(1 + |x|)e−ε|x|ρ0(x) dx
)

.

The unspecified constants are independent of ε and so sending ε→ 0 we are done
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5. Main results. At last, we are ready to combine our work to prove the main
results of this paper. We will begin by constructing solutions to the system (1.3) and
then we will show that these can be converted into solutions to the original system
(1.1). The key result we will prove in this Section is Theorem 5.5, which guarantees
that one can construct solutions to (1.3) using a vanishing viscosity approach. Once
we have established Theorem 5.5, it essentially only remains to show that solutions
to (1.3) can be converted into solutions to (1.1). This will be done in Proposition 5.6.
With these two results in hand, we will then be able to prove our main Theorems 1.1,
1.2, and 1.3, as straightforward corollaries.

As we mentioned above, the construction of solutions to (1.3) is based on a vanish-
ing viscosity approach. To that end, we consider a viscous analogue of system (1.3)
where we add viscosity to both of the species ρ1, ρ2. Given a viscosity parameter
γ ≥ 0, we introduce the system:
(5.1)


















∂tρ1 − γ∆ρ1 −∇ · (ρ1

ρ ∇q) +∇ · (ρ1V ) = ρ1F1,1

(

(z∗)−1(q), n
)

+ ρ2F1,2

(

(z∗)−1(q), n
)

,

∂tρ2 − γ∆ρ2 −∇ · (ρ2

ρ ∇q) +∇ · (ρ2V ) = ρ1F2,1

(

(z∗)−1(q), n
)

+ ρ2F2,2

(

(z∗)−1(q), n
)

,

(ρ1 + ρ2)q = e(ρ1 + ρ2) + e∗(q),

∂tn− α∆n = −n(c1ρ1 + c2ρ2).

We define weak solutions to this system as follows.

Definition 5.1. Given a viscosity parameter γ ≥ 0 and initial data ρ01, ρ
0
2 ∈ X(e)

and n0 ∈ L2(Rd), we say that (ρ1, ρ2, q, n) ∈ X (e)×X (e)×Y(e∗)×L2
loc([0,∞);H1(Rd))

is a weak solution to the system (5.1) with initial data (ρ01, ρ
0
2, n

0), if ρq = e(ρ)+e∗(q)
almost everywhere, (ρ, q) ∈ D(e, e∗), γ∇ρ1, γ∇ρ2 ∈ L2

loc([0,∞);L2(Rd)), and for
every test function ψ ∈ H1

c ([0,∞);H1(Rd))
(5.2)
∫

Rd

ψ(0, x)ρ01 =

∫

Q∞

∇ψ·
(ρ1
ρ
∇q+γ∇ρ1−ρ1V

)

−ρ1∂tψ−ψ
(

ρ1F1,1

(

(z∗)−1(q), n
)

+ρ2F1,2

(

(z∗)−1(q), n
))

,

(5.3)
∫

Rd

ψ(0, x)ρ02 =

∫

Q∞

∇ψ·
(ρ2
ρ
∇q+γ∇ρ2−ρ2V

)

−ρ2∂tψ−ψ
(

ρ1F2,1

(

(z∗)−1(q), n
)

+ρ2F2,2

(

(z∗)−1(q), n
))

,

(5.4)

∫

Rd

ψ(0, x)n0 =

∫

Q∞

α∇ψ · ∇n− n∂tψ + n(c1ρ1 + c2ρ2)ψ

where ρ = ρ1 + ρ2.

When γ > 0, the existence of weak solutions to (5.1) is straightforward, as the
individual densities will be bounded in L2

loc([0,∞);H1(Rd))∩H1
loc([0,∞);H−1(Rd)).

Since this space is compact in L2
loc([0,∞);L2(Rd)), one can construct the solutions

as limits of an even more regularized system (with enough regularity existence of
solutions can be shown with a standard but tedious Picard iteration). Thus, we can
assume the existence of a sequence (ρ1,k, ρ2,k, qk, nk) such that for each k the variables
are a weak solution to (5.1) with viscosity parameter γk > 0. We will then use our
efforts from the past two sections to show that when γk → 0 we can still pass to the
limit in equations (5.2-5.4) to obtain a solution to (1.3). In fact, we will show that we
can pass to the limit even when the underlying energy function ek is changing along
the sequence.
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We begin with a result that establishes conditions under which the sequence of
pressure variables converges strongly in L2

loc([0,∞);H1
loc(R

d)) .

Proposition 5.2. Let ek be a sequence of energy functions satisfying (e1-e3) and
suppose there exists an energy e satisfying (e1-e3) such that ek converges pointwise
everywhere to e. Let (ρk, qk) ∈ D(ek, e

∗
k), and µk ∈ L∞( 1

ρk
) be sequences of densities,

pressure, and growth terms that converge weakly in L1
loc(Q∞) to limits ρ ∈ X (e), q ∈

Y(e∗), µ ∈ L∞( 1ρ ). Suppose that for all k the duality relation ρkqk = ek(ρk) + e∗k(qk)

holds almost everywhere and the product ρkqk converges weakly to ρq in L1
loc(Q∞).

Furthermore, suppose that for every nonnegative ω ∈W 1,∞
c ([0,∞)) the variables sat-

isfy the energy dissipation properties

(5.5)

∫

Q∞

−ek(ρk)∂tω + ω|∇qk|
2 + ωe∗k(qk)∇ · V − ωµkqk ≤

∫

Rd

ω(0)ek(ρ
0(x)) dx,

and

(5.6)

∫

Rd

ω(0)e(ρ0(x)) dx ≤

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

If log(1 + |x|)ρk(t, x) is uniformly bounded with respect to k in L1
loc([0,∞);L1(Rd))

and for every compact set D ⊂ Q∞

(5.7) lim sup
k→∞

∫

D

ωµkqk ≤

∫

D

ωµq,

then qk converges strongly in L2
loc([0,∞);L2

loc(R
d) ∩ Ḣ1(Rd)) to q.

Proof. Given some nonnegative ω ∈W 1,∞
c ([0,∞)) we can combine (5.5) and (5.6)

to obtain

lim sup
k→∞

∫

Q∞

−ek(ρk)∂tω + ω|∇qk|
2 + ωe∗k(qk)∇ · V − ωµkqk

≤

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

Applying Lemma 3.2, it follows that that ek(ρk), e
∗
k(qk) and ρkqk converge weakly

in L1
loc([0,∞);L1(Rd)) to e(ρ) and e∗(q) respectively. The uniform boundedness of

log(1+ |x|)ρk(t, x) implies that (5.7) holds when D is replaced by Q∞. In addition, it
implies that log(1 + |x|)1/2ρkqk is uniformly bounded in L1

loc([0,∞);L1(Rd)). Thus,
the weak convergence of ek(ρk), e

∗
k(qk) against test functions in L1

loc(QT ) can be
extended to test functions in W 1,∞

c ([0,∞)) that are independent of space. From
these weak convergence properties we obtain

lim sup
k→∞

∫

Q∞

ω|∇qk|
2 ≤

∫

Q∞

ω|∇q|2.

Since ω ∈ W 1,∞
c ([0,∞)) was arbitrary, this automatically implies that ∇qk con-

verges strongly to ∇q in L2
loc([0,∞);L2(Rd)). It follows that qk converges strongly in

L2
loc(Q∞) to qk.

The next two Lemmas are technical results that will help us guarantee that we
can pass to the limit in all of the terms in (5.2) and (5.3).
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Lemma 5.3. Let ek be a sequence of energies satisfying (e1-e3) and suppose there
exists an energy e satisfying (e1-e3) such that ek converges pointwise everywhere to
e. Let (ρk, qk) ∈ D(ek, e

∗
k) be sequences of uniformly bounded density and pressure

variables that satisfy the duality relation ρkqk = ek(ρk) + e∗k(qk) almost everywhere.
If qk converges strongly in L2

loc([0,∞);H1
loc(R

d)) to a limit q and ρk converges weakly
in L2

loc([0,∞);L2(Rd)) to a limit ρ, then

lim sup
k→∞

∫

D

|ρ− ρk||∇q|
2 = 0

for any compact set D ⊂ Q∞

Proof. Clearly for any ϕ ∈ C∞
c (Q∞) we have

lim sup
k→∞

∫

Q∞

ϕρkqk =

∫

Q∞

ϕρq.

Thus, by Lemma 3.2, the limiting variables satisfy the duality relation ρq = e(ρ)+e∗(q)
almost everywhere.

Let M = supk‖ρk‖L∞(D) < ∞. Define ē∗k and ē∗ such that ē∗k(0) = 0, ē∗(0) = 0,
and

∂ē∗k(b) = {min(a,M) : a ∈ ∂e∗k(b)}, ∂ē∗(b) = {min(a,M) : a ∈ ∂e∗(b)}

Let ēk = (ē∗k)
∗ and ē = (ē∗)∗. Clearly, we still have the duality relations ρkqk =

ē(ρk)+ ē
∗(qk) and ρq = ē(ρ)+ ē∗(q) almost everywhere. It also follows that ē∗k, ē

∗ are
uniformly Lipschitz on the entire real line and uniformly bounded on compact subsets
of R. As a result, ē∗k must converge uniformly on compact subsets of R to ē∗.

Fix some δ > 0. Convexity and the duality relation imply that

ρk ≤
ē∗k(qk + δ)− ē∗k(qk)

δ
, ρ ≤

ē∗(q + δ)− ē∗(q)

δ
,

and

ρk ≥
ē∗k(qk)− ē∗k(qk − δ)

δ
, ρ ≥

ē∗k(q)− ē∗(q − δ)

δ
.

Therefore,
∫

D

|ρ− ρk||∇q|
2

≤

∫

D

(

|
ē∗k(qk + δ) + ē∗(q − δ)− ē∗k(qk)− ē∗(q)

δ
|+|

ē∗(q + δ) + ē∗k(qk − δ)− ē∗k(qk)− ē∗(q)

δ
|
)

|∇q|2.

Thus, it follows that

lim sup
k→∞

∫

D

|ρ− ρk||∇q|
2 ≤ 2

∫

D

|
ē∗(q + δ) + ē∗(q − δ)− 2ē∗(q)

δ
||∇q|2

If ē∗ is continuously differentiable at a point b ∈ R, then

lim
δ→0

ē∗(b+ δ) + ē∗(b− δ)− 2ē∗(b)

δ
= 0.

The singular set S ⊂ R of values where ē∗ is not continuously differentiable is at most
countable. Therefore, |∇q| is zero almost everywhere on the set {(t, x) ∈ D : q(t, x) ∈
S}. Hence, by dominated convergence,

lim
δ→0

2

∫

D

|
ē∗(q + δ) + ē∗(q − δ)− 2ē∗(q)

δ
||∇q|2 = 0.
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Lemma 5.4. Let zk be a sequence of energies satisfying (z1-z3) and suppose there
exists an energy z satisfying (z1-z3) such that zk converges pointwise everywhere to
z. Define ek, e by formula (2.1). Suppose that (ρ1,k, ρ2,k, qk, nk) ∈ X (ek) × X (ek) ×
Y(e∗k)×L

2
loc([0,∞);H1(Rd)) is a sequence such that (ρ1,k+ρ2,k)qk = ek(ρ1,k+ρ2,k)+

e∗k(qk) almost everywhere. Suppose that ρ1,k, ρ2,k converge weakly in Lr
loc([0,∞);Lr(Rd)

to limits ρ1, ρ2 ∈ X (e), qk converges strongly in L2
loc([0,∞);H1

loc(R
d)) to a limit q,

and nk converges strongly in L2
loc([0,∞);L2(Rd)) to a limit n. If the growth terms Fi,j

satisfy assumptions (F1-F2), then ρj,kFi,j

(

z−1
k (qk), nk

)

converges weakly in Lr
loc(Q∞)

to ρjFi,j

(

z−1(q), n)
)

for all i, j ∈ {1, 2} and any r <∞.

Proof. It suffices to prove the convergence of ρ1,kF1,1

(

z−1
k (qk), nk

)

to ρ1F1,1

(

z−1(q), n
)

,
the argument for the other terms is identical. Let ϕ ∈ C∞

c (Q∞) and let D ⊂ Q∞ be
a compact set containing the support of ϕ. For N ∈ R define Sk,N := {(t, x) ∈ D :
qk(t, x) + nk(t, x) > N}. From the uniform bounds on the norms of qk, nk it follows
that limN→∞ supk |Sk,N | = 0. Thus, we can assume without loss of generality that
qk, nk are uniformly bounded by some M > 0 (and of course this same logic applies
to q, n as well).

Let b∞ = sup{b ∈ R : z∗(b) < ∞}. Fix ε ∈ (0, z∗(b∞)/2) and let qk,ε =
min(max(ε, qk), z

∗(b∞) − ε), qε = min(max(ε, q), z∗(b∞) − ε). It now follows that
(z∗k)

−1(qk,ε), (z
∗)−1(qε) are uniformly bounded in L∞(D). Thanks to Lemma A.1,

we know that (z∗k)
−1 converges uniformly to (z∗)−1 on (ε, z∗(b∞) − ε). Combining

this with properties (F1-F2), and the various convergence properties of qk, nk, ρ1,k it
follows that

lim sup
k→∞

∣

∣

∣

∫

Q∞

ϕ
(

ρ1,kF1,1

(

(z∗k)
−1(qk,ε), nk

)

− ρ1F1,1

(

(z∗)−1(qε), n
)

)∣

∣

∣
= 0.

Thus, it remains to show that

(5.8) lim
ε→0+

∣

∣

∣

∫

Q∞

ϕρ1

(

F1,1

(

(z∗)−1(qε), n
)

− F1,1

(

(z∗)−1(q), n
)

)
∣

∣

∣
= 0

and

(5.9) lim
ε→0+

lim sup
k→∞

∣

∣

∣

∫

Q∞

ϕρ1,k

(

F1,1

(

(z∗k)
−1(qk,ε), nk

)

− F1,1

(

(z∗k)
−1(qk), nk

)

)∣

∣

∣
= 0.

To do this we will exploit the density pressure duality relationship. Thanks to
the relationship between e and z, we can express the duality relation as (ρ1,k +
ρ2,k)(z

∗
k)

−1(qk) = zk(ρ1,k + ρ2,k) + qk. Fix some δ > 0 and split the support of ρ1,k
into the sets ρ1,k < δ and ρ1,k ≥ δ. Again using duality, we have

0 ≤ ρ1,k ≤ ρ1,k + ρ2,k ∈ ∂z∗k ◦ (z∗k)
−1 ◦ qk

Thus, for almost every (t, x) where ρ1,k(t, x) ≥ δ, it follows that (z∗k)
−1 is at worst δ−1

Lipschitz at the value qk(t, x) and (z∗k)
−1(qk(t, x)) is uniformly bounded with respect

to k. Thus,

∣

∣

∣

∫

Q∞

ϕρ1,k

(

F1,1

(

(z∗k)
−1(qk,ε), nk

)

− F1,1

(

(z∗k)
−1(qk), nk

)

)
∣

∣

∣

≤ Bδ‖ϕ‖L1(D) + ωδ(2εδ
−1)‖ρ1,k‖L1(D)‖ϕ‖L∞(D) + ‖ρ1,kϕ‖L∞(D)|Dk,ε|
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where B is a bound on F1,1 and ωδ is the modulus of continuity of F1,1 on the bounded

set
(

⋃

k{(z
∗
k)

−1(qk(t, x)) : ρ1,k(t, x) ≥ δ}
)

× [0,M ] and Dk,ε = {(t, x) ∈ D : qk(t, x) >

z∗(b∞)+ε}. The convergence of zk to z implies that lim supk→∞ |Dk,ε| = 0 for all fixed
ε > 0. Thus, sending k → ∞, then ε→ 0+, and then δ → 0+, we get (5.9). The strong
convergence of qk implies that the duality relation (ρ1+ρ2)(z

∗)−1(q) = z(ρ1+ρ2)+ q
holds, thus we can use a similar argument to obtain (5.8).

At last, we are ready to prove our main result, which will let us pass to the
limit when we consider sequences of weak solutions to (5.1). Note that the following
theorem applies in the case where the viscosity is decreasing to zero along the sequence,
as well as when the viscosity is zero along the entire sequence.

Theorem 5.5. Let zk be a sequence of energies satisfying (z1-z3). Suppose there
exists an energy z satisfying (z1-z3) such that zk converges pointwise everywhere to
z. Define ek, e by formula (2.1). Let ρ01, ρ

0
2 ∈ L1(Rd) ∩ L∞(Rd), n0 ∈ L2(Rd) be

initial data such that e(ρ01 + ρ02) ∈ L1(Rd). Let V ∈ L2
loc([0,∞);L2(Rd)) be a vector

field such that ∇ · V ∈ L∞(Q∞) and let Fi,j be source terms satisfying (F1-F2).
Let ρ1,k, ρ2,k ∈ X (ek), qk ∈ Y(e∗k), nk ∈ L2

loc([0,∞);H1(Rd)) be sequences of density
pressure and nutrient variables such that for each k, the variables are weak solutions to
the system (5.1) with energy ek, viscosity constant γk ≥ 0, and initial data (ρ01, ρ

0
2, n

0).
Furthermore, suppose that γk∇ρ1,k, γk∇ρ2,k ∈ L2

loc([0,∞);L2(Rd)). If γk converges
to 0 and at least one of the following two conditions hold:
(a) ∂z(a) is a singleton for all a ∈ (0,∞),
(b) the source terms satisfy the additional condition (F3),
then any limit point (ρ1, ρ2, q, n) of the sequence is a solution of (1.3).

Proof. Step 1: Uniform bounds, basic convergence properties, and parabolic struc-
ture.

Summing the first two equations of (5.1) together, we see that for any test function
ψ ∈W 1,1

c ([0,∞);H1(Rd)) ρk, qk are weak solutions to the parabolic equation

(5.10)

∫

Rd

ψ(0, x)ρ0 =

∫

Q∞

−ρk∂tψ +∇ψ · (∇qk + γk∇ρk)− ρk∇ψ · V − ψµk

where ρk = ρ1,k + ρ2,k, µk = µ1,k + µ2,k and µi,k = ρ1,kFi,1

(

(z∗k)
−1(qk, nk)

)

+

ρ2,kFi,2

(

(z∗k)
−1(qk, nk)

)

.
Thanks to Proposition 4.2, ρk, qk, µk must satisfy the energy dissipation inequality
∫

Q∞

−e(ρk)∂tω + ω|∇qk|
2 + ωe∗(qk)∇ · V − ωµkqk ≤

∫

Rd

ω(0)e(ρ0(x)) dx,

for every nonnegative ω ∈ W 1,∞([0,∞)) and the estimates (4.11)-(4.18). After plug-
ging estimate (4.11) into estimate (4.13), it follows that all of the estimates (4.12)-
(4.18) are independent of k and only depend on ρ0, V the bounds on Fi,j , and the

constants β1,k := min(1, 12 lim infb→∞
e∗k(b)

b ), β2,k := inf{b ≥ 0 : α0 ≤ inf ∂e∗(b)}.

Thanks to property (e3) and the convergence of e∗k to e∗ it follows that β−1
1,k and β2,k

are uniformly bounded in k (c.f. Lemma A.1). Thus, ρk, qk are uniformly bounded
in the norms estimated in (4.12)-(4.18). As a result, there must exist ρ ∈ X (e),
q ∈ Y(e∗) and µ ∈ L∞

loc([0,∞);L∞(Rd)∩L1(Rd)) such that ρk, qk, µk converge weakly
in L2

loc(Q∞) (along a subsequence that we do not relabel) to ρ, q, µ respectively. Note
that for ρk, µk the weak convergence in fact holds in Lr

loc(Q∞) for any r < ∞. Fur-

thermore, the convexity of the mapping (α, β) 7→ |α|
β over R × (0,∞) implies that

µ ∈ L∞( 1ρ ).
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Property (F2) implies that 0 ≤ ρ1,k, ρ2,k ≤ ρk. Hence, ρ1,k, ρ2,k are uniformly
bounded in L∞

loc([0,∞);L1(Rd) ∩ L∞(Rd)) and there exist limit points ρ1, ρ2 (and a
subsequence that we do not relabel) such that ρ1,k, ρ2,k converge weakly in Lr

loc([0,∞);L1(Rd)∩
Lr(Rd)) to ρ1, ρ2 respectively for any r < ∞. Furthermore, the bounds on ρ1,k, ρ2,k
combined with standard results for the heat equation imply that nk is uniformly
bounded in L2

loc([0,∞);H1(Rd)) ∩ H1
loc([0,∞);H−1(Rd)). Hence, the Aubin-Lions

Lemma implies that there exists a limit point n ∈ L2
loc([0,∞);H1(Rd)) and a subse-

quence (that we do not relabel) such that nk converges to n in L2
loc([0,∞);L2(Rd)).

Thanks to the linear structure of equation (5.10), the convergence properties we
have established are strong enough to send k → ∞. Thus, ρ, q, µ satisfy the weak
equation

(5.11)

∫

Rd

ψ(0, x)ρ0(x) dx =

∫

Q∞

∇q · ∇ψ − ρ∂tψ − ρV · ∇ψ − µψ

for any ψ ∈ W 1,1
c ([0,∞);H1(Rd)). After taking the limit, the bounds on ρ, q, µ

inherited from the estimates (4.12-4.18) allow us to conclude that (5.11) holds for any
ψ ∈W 1,1

c ([0,∞);L1(ρ) ∩ Ḣ1(Rd)).
Step 2: Weak convergence of the products ρ1,kqk, ρ2,kqk.

We want to use Lemma 5.1 from [Lio96] to prove that ρi,kqk converges weakly
to ρiq for i = 1, 2. This will imply that ρkqk converges weakly to ρq. Thanks to
estimates (4.12-4.15), it follows that

sup
k

‖∂tρi,k‖L2([0,T ];H−1(Rd)) + ‖∇qk‖L2(QT ) <∞.

Thus, we can apply Lemma 5.1 to conclude that ρi,kqk converges weakly in (Cc(Q∞))∗

to ρiq for i = 1, 2. The uniform boundedness of ρi,kqk in L2
loc([0,∞);L2(Rd)) gives us

the automatic upgrade to weak convergence in L2
loc([0,∞);L2(Rd)). Now Lemma 3.2

implies that ρq = e(ρ)+ e∗(q) almost everywhere and ρkqk, e(ρk) and e
∗(qk) converge

weakly in L1
loc([0,∞);L1(Rd)) to ρq, e(ρ) and e∗(q) respectively. Now we can use

Proposition 4.2 to conclude that for every ϕ ∈ W 1,∞
c ([0,∞);L1(ρ) ∩ Ḣ1(Rd)) the

limit variables ρ, µ, q satisfy the energy dissipation relation (4.2).
Step 3: Strong convergence of ∇qk to ∇q in L2

loc(Q∞)
We now want to use our work in Proposition 5.2 to prove the strong convergence of

the pressure gradient. From Proposition 4.3, we know that (5.5) holds. The pointwise
everywhere convergence of zk to z implies the pointwise everywhere convergence of
ek to e. From step 2, we know that ρkqk converges weakly to ρq and that (4.2)
holds for the limit variables. Thus, to apply Proposition 5.2 it remains to show
that lim supk→∞

∫

D
ωµkqk ≤

∫

D
ωµq for every ω ∈ W 1,∞

c ([0,∞)) and compact set
D ⊂ Q∞. We will split our work into two cases.
Step 3a: Scenario (a) holds. When ∂z(a) is a singleton for all a ∈ (0,∞), it follows
that ∂e(a) is a singleton for all a ∈ (0,∞). Thus, Lemma 3.3 implies that qk converges
in measure to q. Since qk is uniformly bounded in L2

loc(Q∞) ∩ L2
loc([0,∞); Ḣ1(Rd)),

we can upgrade the convergence in measure to strong convergence in Lr
loc(Q∞) for any

r < 2. Thus, Proposition 5.2 implies that ∇qk converges strongly to ∇q in L2
loc(Q∞).

Step 3b: Scenario (b) holds
Without strict convexity of the dual energy, the weak convergence of e∗k(qk) does

not give us strong convergence of qk. Thus, we will instead need to pass to the limit
in the (nonlinear) source terms even though we do not have access to any strong con-
vergence properties. To succeed in this endeavor, we will employ a delicate argument
that exploits the structure of the product qkµk
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We begin by fixing some δ > 0 and letting Jδ be a space time mollifier. Set
qk,δ := Jδ ∗ qk and qδ := q ∗ Jδ. It is clear that qk,δ converges strongly to qδ in
L2
loc([0,∞);L2(Rd)) and qδ converges strongly to q in L2

loc([0,∞);L2(Rd)). Thus, it
will be enough to show that

lim inf
δ→0

lim sup
k→∞

∫

D

ω(qk − qk,δ)µi,k ≤ 0,

for i = 1, 2.
We focus on the case i = 1 (the argument for i = 2 is identical). Assump-

tion (F3) and the monotonicity of (z∗k)
−1 guarantees that q 7→ F1,1

(

(z∗k)
−1(q), n

)

+

F1,2

(

(z∗k)
−1(q), n

)

is decreasing for each fixed value of n. As a result, there must exist a
function fk : [0,∞)×[0,∞) → R such that for each fixed value of n, we have fk(0, n) =
0, q 7→ fk(q, n) is convex, and −∂qfk(q, n) = F1,1

(

(z∗k)
−1(q), n

)

+ F1,2

(

(z∗k)
−1(q), n

)

.
The structure of µ1,k combined with the convexity of fk implies that

∫

D

ω(qk − qk,δ)µi,k ≤

∫

D

ωρ1,k
(

fk(qk,δ, nk)− fk(qk, nk)).

Since F1,1 + F1,2 is uniformly bounded over R× [0,∞), it follows that fk is uni-
formly Lipschitz in the first argument. Uniform equicontinuity in the second argument
is clear when q = 0. For q > 0, fix some ε ∈ (0, q) and consider n1, n2 ≥ 0. We see
that

|fk(q, n1)− fk(q, n2)| ≤

2
∑

i=1

∫ q

0

|F1,i

(

(z∗k)
−1(a), n1

)

− F1,i

(

(z∗k)
−1(a), n2

)

|da.

≤ 2Bε+ q sup
b∈[(z∗

k
)−1(ε),(z∗

k
)−1(q)]

2
∑

i=1

|F1,i(b, n1
)

− F1,i

(

b, n2
)

|,

where B is a bound on F1,1 + F1,2. Assumption (z3) and the pointwise everywhere
convergence of zk to z implies that (z∗k)

−1(ε), (z∗k)
−1(q) are uniformly bounded with

respect to k. Thus, it now follows that fk is uniformly equicontinuous in the second
argument on compact subsets of [0,∞)2. As a result, fk must converge uniformly on
compact subsets of [0,∞)2 (possibly along some subsequence that we do not relabel)
to a limit function f that is convex in the first variable and continuous in the second.

For all k we have |fk(q, n)| ≤ Bq. Thus, it is now clear that

lim inf
δ→0

lim sup
k→∞

∫

D

ωρ1,k

(

|fk(qk,δ, nk)−f(q, n)|+|fk(qk, nk)−f(qk, nk)|+|f(qk, n)−f(qk, nk)|
)

= 0.

It remains to prove that

lim sup
k→∞

∫

D

ωρ1,k
(

f(q, n)− f(qk, n)) ≤ 0.

Let f∗(a, n) = supq∈[0,∞) aq− f(q, n). Given any smooth function ψ ∈ C∞
c (Q∞),

we have
∫

D

ωρ1,k
(

f(q, n)− f(qk, n)) ≤

∫

D

ωρ1,k
(

f(q, n)− qkψ) + ωρ1,kf
∗(ψ, n).
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Using the weak convergence of the product ρ1,kqk to ρ1q we see that

lim sup
k→∞

∫

D

ωρ1,k
(

f(q, n)− qkψ) + ρ1,kf
∗(ψ, n) =

∫

D

ωρ1
(

f(q, n)− qψ) + ωρ1f
∗(ψ, n).

Taking an infimum over ψ, we get

lim sup
k→∞

∫

D

ωρ1,k
(

f(q, n)− f(qk, n)) ≤ 0.

as desired.
Step 4: Passing to the limit in the weak equations

Now that we have obtained the strong convergence of the pressure gradient, we
are ready to pass to the limit in the weak equations. In Lemma 5.4, we showed
that the source terms converge weakly to the desired limit under the convergence
properties that we have established. The weak convergence of the remaining terms is
clear except for the weak convergence of the product

ρi,k

ρk
∇qk to ρi

ρ ∇q. Given some

δ > 0 and a compact set D ⊂ Q∞ it follows from Lemma 5.3 that 1
ρk+δ∇qk converges

strongly in L2
loc(D) to 1

ρ+δ∇q. Thus, if we can show that

(5.12) lim inf
δ→0

(

∫

D

δρi
ρ(ρ+ δ)

|∇q|2 + lim sup
k→∞

∫

D

δρi,k
ρk(ρk + δ)

|∇qk|
2
)

= 0,

then it will follow that
ρi,k

ρk
∇qk converges weakly in L2

loc(D) to ρi

ρ ∇q.

Since ρi,k ≤ ρk and ρi ≤ ρ, the left hand side of (5.12) is bounded above by

lim inf
δ→0

(

∫

D

δ

ρ+ δ
|∇q|2 + lim sup

k→∞

∫

D

δ

ρk + δ
|∇qk|

2
)

= lim inf
δ→0

∫

D

2δ

ρ+ δ
|∇q|2,

where we have used Lemma 5.3 to go from the first line to the second. The property

lim supa→0+
e(a)
a = 0 combined with the duality relation implies that q = 0 whenever

ρ = 0. As a result, |∇q| gives no mass to the set of points where ρ = 0. By dominated
convergence

lim inf
δ→0

∫

D

2δ

ρ+ δ
|∇q|2 = 0.

Our main results nearly follow directly from Theorem 5.5. The only remaining
thing we need to check is that solutions to the system (1.3) can be converted into
solutions to (1.1).

Proposition 5.6. Let z be an energy satisfying (z1-z3) and define e by formula
(2.1). Suppose that ρ01, ρ

0
2 ∈ L1(Rd) ∩ L∞(Rd), n0 ∈ L2(Rd) is initial data such

that e(ρ01 + ρ02), z(ρ
0
1 + ρ02) ∈ L1(Rd). If (ρ1, ρ2, q, n) ∈ X (e) × X (e) × Y(e∗) ×

L2
loc([0,∞);H1(Rd)) is a weak solution to the system (1.3) and we set p = (z∗)−1(q)

then (ρ1, ρ2, p, n) ∈ X (e)×X (e)×L2
loc([0,∞);L1

loc(ρ))∩Ḣ
1(ρ))×L2

loc([0,∞);H1(Rd))
is a weak solution of (1.1).

Proof. The duality relation ρq = e(ρ)+ e∗(q) is equivalent to pρ = z(ρ)+ z∗(p) =
z(ρ)+q. Since ρ ∈ L∞

loc([0,∞);L∞(Rd)) it follows that z(ρ) is bounded from below on
any compact subset of Q∞. If there exists a1 > 0 such that lima→a1

z(a) = +∞, then
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there must be some 0 ≤ a2 < a1 such that z is increasing on [a2, a1) and decreasing
on [0, a2]. Let a3 = max(a2,

3
4a1). We can then compute

lim
a→a1

z(a)

e(a)
≤ lim

a→a1

z(a)

az(a)− 2
∫ a

a2
z(s) ds

≤ lim
a→a1

z(a)
a1

2 z(a)− 2(a3 − a2)z(a3)
=

2

a1
<∞.

Therefore, e(ρ) ∈ L∞
loc([0,∞);L1(Rd)) implies that z(ρ) ∈ L∞

loc([0,∞);L1
loc(R

d)).
Since q ∈ L2

loc(Q∞) it now follows that p ∈ L2
loc([0,∞);L1

loc(ρ)).
If (z∗)−1 is uniformly Lipschitz on [0,∞), then the chain rule for Sobolev functions

implies that ∇p = 1
ρ∇q and ∇p ∈ L2

loc([0,∞);L2(Rd)). In this case, it is now clear

that (ρ1, ρ2, p, n) is a solution to the system (1.1). The regularity of p can then be
improved by arguing as in Propositions 4.2.

Now we suppose that (z∗)−1 is not uniformly Lipschitz on [0,∞). Fix some δ > 0
and define qδ := max(q, δ), and pδ := (z∗)−1(qδ). The monotonicity of z∗ implies that
pδ is decreasing with respect to δ. Therefore,

∫

D

ρ|pδ − p| =

∫

D

ρ(pδ − p) ≤

∫

D

z∗(pδ)− z∗(p) =

∫

D

qδ − q ≤ δ|D|.

Hence, pδ converges to p in L1
loc(ρ). Since (z∗)−1 is Lipschitz on [δ,∞), the chain

rule for Sobolev functions allows us to compute ∇pδ = χδ(q)
ρ ∇q where χδ is the

characteristic function of the interval [δ,∞). A direct computation reveals that
∫

D

ρ|∇pδ1 −∇pδ0 | =

∫

D

|∇q||χδ1(q)− χδ0(q)|.

Since |∇q| vanishes almost everywhere on the set {(t, x) ∈ Q∞ : q(t, x) = 0}, it follows
that ∇pδ is a Cauchy sequence in L1

loc(ρ) that converges to 1
ρ∇q. In particular, for

any smooth vector field v with compact support we can conclude that

lim
δ→0

|

∫

Q∞

(ρi∇pδ −
ρi
ρ
∇q) · v| = 0.

for i = 1, 2.
It remains to show that limδ→0 ∇pδ = ∇p in the sense of distributions. Fix some

ε > 0 and let ηε : R → R be a smooth increasing function such that ηε(a) = 0 if

a ≤ ε/2 and ηε(a) = 1 if a ≥ ε. Since lim supa→0+
e(a)
a = 0, it follows that 1

ρ is

bounded on the set q ≥ ε. Hence, ηε(q) and η′ε(q) are absolutely continuous with
respect to ρ. Given a test function ϕ ∈ L∞

c ([0,∞);W 1,∞
c (Rd)), we can compute

∫

Q∞

p∇ · (ϕηε(q)) = lim
δ→0

∫

Q∞

pδ∇ · (ϕηε(q)) = − lim
δ→0

∫

Q∞

∇pδ · (ϕηε(q))

= − lim
δ→0

∫

Q∞

χδ(q)

ρ
ηε(q)∇q · ϕ = −

∫

Q∞

ηε(q)

ρ
∇q · ϕ

Thus, ∇p = 1
ρ∇q = limδ→0 ∇pδ in the sense of distributions when tested against

functions of the form ϕηε(q). When z∗ fails to be Lipschitz on [0,∞) it follows that ρ
approaches zero wherever q approaches zero. Thus by sending ε→ 0 we can conclude
that ∇p = 1

ρ∇p on ρ > 0. It now follows that (ρ1, ρ2, p, n) is a solution to the system

(1.1). Again, the regularity of p can then be improved by arguing as in Propositions
4.2.
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At last, we can now prove our three main results.

Proof of Theorem 1.1. For γk = 1
k , the existence of a solution (ρ1,k, ρ2,k, qk, nk)

to the system (5.1) for the fixed energy e is straightforward. Using this sequence,
we can pass to the limit as k → ∞ using Theorem 5.5 to get a solution (ρ1, ρ2, q, n)
to (1.3). We can then use Proposition 5.6 to convert (ρ1, ρ2, q, n) into a solution
(ρ1, ρ2, p, n) to (1.1).

Proof of Theorem 1.2. We use an identical argument to the previous proof.

Proof of Theorem 1.3. The energies zm(a) = 1
m−1a

m correspond to the energies

em(a) = 1
m+1a

m+1 after making the transformation q = z∗(p). It is clear that em
converges pointwise everywhere to the incompressible energy e∞. We can use Theorem
1.1 to construct weak solutions (ρ1,m, ρ2,m, qm, nm) of (1.3) for each m > 0. We can
then use Theorem 5.5 to pass to the limit m→ ∞ to obtain a solution (ρ1, ρ2, q, n) to
(1.3) with the energy e∞. Next, we can use Proposition 5.6 to convert the solutions
(ρ1,m, ρ2,m, qm, nm) and (ρ1, ρ2, q, n) to (1.3) into solutions (ρ1,m, ρ2,m, pm, nm) and

(ρ1, ρ2, p, n) to (1.1). Since we know that qm = ( (m−1)pm

m )
m

m−1 and q = p, it follows
that lim supm→∞‖qm − pm‖L1(QT ) = 0 for any T > 0. Therefore, (ρ1, ρ2, p, n) is a
weak limit point of (ρ1,m, ρ2,m, pm, nm).

Finally, it remains to establish the complementarity condition (1.8). Since p and
q are identical, we can do this for the solution (ρ1, ρ2, q, n). Note that the complemen-
tarity condition is precisely the energy dissipation relation (4.2) applied to the sum
of the first two equations of (1.3). Indeed, since ρ01 + ρ02 ≤ 1, it follows that e(ρ0) = 0
and e(ρ) = 0 almost everywhere. Thus, (4.2) simplifies to (1.8).

Appendix A. Some properties of convex functions.

Lemma A.1. Let f : R → R ∪ {+∞} be a proper, lower semicontinuous, convex
function such that f−1(R) is not a singleton. If fk : R → R ∪ {+∞} is a sequence
of proper, lower semicontinuous convex functions such that fk converges pointwise
everywhere to f then the following properties hold:

1. If f is differentiable at a point a ∈ R, then

lim sup
k→∞

max
(

| sup ∂fk(a)− f ′(a)| , | inf ∂fk(a)− f ′(a)|
)

= 0.

2. The convergence of fk to f is uniform on compact subsets of the interior of
f−1(R).

3. f∗k converges pointwise everywhere to f∗ except possibly at the two exceptional
values b+∞ = sup{b ∈ R : f∗(b) <∞}, b−∞ = inf{b ∈ R : f∗(b) <∞}.

4. If f∗ is differentiable at a point b ∈ R, then

lim sup
k→∞

max
(

| sup ∂f∗k (b)− f∗ ′(b)| , | inf ∂f∗k (b)− f∗ ′(b)|
)

= 0,

and the convergence of f∗k to f∗ is uniform on compact subsets of the interior
of (f∗)−1(R).

Proof. Let a be a point of differentiability for f . Since f ′(a) exists and is finite,
there exists δ0 > 0 such that f is finite on [a− δ0, a+ δ0]. Fix some δ ∈ (0, δ0). The
convergence of fk to f implies that there must exist some N,B sufficiently large such
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that |fk(a)|, |fk(a − δ)|, |fk(a + δ)| < B for all k > N . Now we can use convexity to
bound

fk(a)− fk(a− δ)

δ
≤ inf ∂fk(a) ≤ sup ∂fk(a) ≤

fk(a+ δ)− fk(a)

δ
.

Thus,

lim sup
k→∞

max
(

| sup ∂fk(a)−f
′(a)| , | inf ∂fk(a)−f

′(a)|
)

≤ |
f(a)− f(a− δ)

δ
−f ′(a)|+|

f(a+ δ)− f(a)

δ
−f ′(a)|.

Sending δ → 0 and using the fact that f is differentiable at a, we get the desired
result.

Now suppose that [a0, a1] is an interval in the interior of f−1(R) and choose some
δ > 0 such that [a0 − δ, a1 + δ] is still in the interior of f−1(R) and f is differentiable
at a0 − δ, a1 + δ. Given any a ∈ [a0, a1], we have

f ′(a0 − δ) ≤ inf ∂f(a) ≤ sup ∂f(a) ≤ f ′(a1 + δ).

It then follows from our above work that ∂fk(a) is uniformly bounded on [a0, a1] for
all k sufficiently large. Hence, fk is uniformly equicontinuous on [a0, a1] and thus
converges uniformly to f .

Now we consider f∗. Given any b ∈ R, if we choose some a ∈ f−1(R), then

lim inf
k→∞

f∗k (b) ≥ lim inf
k→∞

ab− fk(a) = ab− f(a).

Taking a supremum over a, it follows that lim infk→∞ f∗k (b) ≥ f∗(b). Hence we only
need to worry about b ∈ (f∗)−1(R).

Let b ∈ (f∗)−1(R)\{b−∞, b
+
∞}. It then follows that ∂f∗(b) 6= ∅ and so we can define

a0 := inf ∂f∗(b) and a1 := sup ∂f∗(b). Again since b /∈ {b−∞, b
+
∞} a0, a1 must be finite.

If we fix some δ > 0 then f(a1+δ)−f(a1)
δ > b and similarly f(a0)−f(a0−δ)

δ < b. Thus, the

pointwise convergence of fk to f implies that fk(a1+δ)−fk(a)
δ > b and f(a0)−f(a0−δ)

δ < b
for all k sufficiently large. Thus,

f∗k (b) = sup
a∈[a0−δ,a1+δ]

ab− fk(a),

for all k sufficiently large.
If a0 < a1, then there exists a point a′ ∈ (a0, a1) such that f is differentiable at

a′. Choose b′k ∈ ∂fk(a
′) and note that our earlier work shows that b′k converges to

f ′(a′) = b. Hence,

f∗k (b) ≤ sup
a∈[a0−δ,a1+δ]

ab−fk(a
′)−b′k(a−a

′) ≤ max(|a0−δ||b−b
′
k|, |a1+δ||b−b

′
k|)+b

′
ka

′−fk(a
′).

So we obtain limk→∞ f∗k (b) ≤ f ′(a′)a′− f(a′) = f∗(b) where the final equality follows
from the fact that f ′(a′) = b.

Now suppose that a0 = a1. Since f−1(R) is not a singleton, there exists a point
aδ ∈ [a0− δ, a0+ δ] such that f is differentiable at aδ (note that we can always choose
our aδ such that aδ is either increasing or decreasing with respect to δ). If we choose
bk,δ ∈ ∂fk(aδ), then we have

f∗k (b) ≤ sup
a∈[a0−δ,a1+δ]

ab− fk(aδ)− bk,δ(a− aδ) ≤ a0b− fk(aδ) + δ|b|+ δ|bk,δ|.
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Since bk,δ must converge to f ′(aδ), it follows that

lim
k→∞

f∗k (b) ≤ a0b− f(aδ) + δ|b|+ δ|f ′(aδ)|.

If aδ is increasing with respect to δ then limδ→0 f
′(aδ) = inf ∂f(a0) while limδ→0 f

′(aδ) =
sup ∂f(a0) if it is decreasing. Since either inf ∂f(a0) or sup ∂f(a0) is finite, we can
assume that we chose aδ such that lim supδ→0 |f

′(aδ)| <∞. Hence, sending δ → 0, we
can conclude that limk→∞ f∗k (b) ≤ a0b− f(a0) = f∗(b). This completes the argument
that limk→∞ f∗k (b) = f∗(b) if b /∈ {b−∞, b

+
∞}.

Now that we have proven that limk→∞ f∗k (b) = f∗(b) for all b ∈ R \ {b−∞, b
+
∞} we

can use the arguments we applied to fk to conclude property (4).

Lemma A.2. Let z : R → R ∪ {+∞} be an energy satisfying (z1-z3) and let
zk : R → R∪{+∞} be a sequence of energies satisfying (z1-z3) such that zk converges
pointwise everywhere to z. If we set b∞ = inf{b ∈ R : z∗(b) = +∞} then (z∗k)

−1

converges uniformly to (z∗)−1 on compact subsets of
(

0, z∗(b∞)
)

.

Proof. If z∗(b∞) = 0, then there is nothing to prove. Otherwise, given ε ∈
(0, z∗(b∞)) there must exist bε/2 < bε ∈ R such that z∗(bε/2) = ε/2 and z∗(bε) = ε. It
then follows that for all b ≥ bε and k sufficiently large

ε

4(bε − bε/2)
≤ inf ∂z∗k(b).

As a result, (z∗k)
−1 is uniformly Lipschitz on [ε, z∗(b∞)). Choose some value a ∈

[ε, z∗(b∞)) and let b̄ = (z∗)−1(a). Let ak = z∗k(b̄) and note that once k is sufficiently
large we must have a ∈ z∗k(R). Thus,

|(z∗)−1(a)− (z∗k)
−1(a)| = |b̄− (z∗k)

−1(ak + a− ak)| ≤ Lε|a− ak| = Lε|z
∗(b̄)− z∗k(b̄)|

Now the uniform convergence of z∗k to z∗ on compact subsets of (−∞, b∞) combined
with the Lipschitz bound implies the uniform convergence of (z∗k)

−1 to (z∗)−1 on
compact subsets of (0, z∗(b∞)).

Lemma A.3. Let f : R → R ∪ {+∞} be a proper, convex, lower semicontinuous
function and let f∗ : R → R∪{+∞} be its convex conjugate. Suppose that a ∈ f−1(R)
and there exists some b ∈ ∂f(a). Given any ε > 0, there exists λf (a, b, ε) > 0 such
that

f(ᾱ)− f(a)− b(ᾱ− a) ≥ ελf (a, b, ε)

for any ᾱ ∈ {α ∈ R : [α− ε, α+ ε] ∩ ∂f∗(b) = ∅}.

Proof. Define

α+
f (a, b, ε) := inf{α > a : [α− ε, α] ∩ ∂f∗(b) = ∅},

α−
f (a, b, ε) := sup{α < a : [α, α+ ε] ∩ ∂f∗(b) = ∅},

λ+f (a, b, ε) :=

{

sup
b̄∈∂f

(

α+
f
(a,ε)

) b̄− b if ∂f
(

α+
f (a, ε)

)

6= ∅,

+∞ else,

λ−f (a, b, ε) :=

{

inf
b̄∈∂f

(

α+
f
(a,ε)

) b̄− b if ∂f
(

α−
f (a, ε)

)

6= ∅,

+∞ else,
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Since subdifferentials are closed sets [BC17], it follows that λ+f (a, b, ε), |λ
−
f (a, b, ε)| > 0

for all ε > 0. With these definitions, we now see that for any α0 ∈ {α < a :
[α, α+ ε] ∩ ∂f∗(b) = ∅} we have

f(α0)− f(a)− b(α0 − a)

≥ f
(

α−
f (a, b, ε)

)

− f(a)− b
(

α−
f (a, b, ε)− a

)

+ λ−f (a, b, ε)
(

α0 − α−
f (a, b, ε)

)

≥ λ−f (a, b, ε)
(

α0 − α−
f (a, b, ε)

)

≥ ε|λ−f (a, b, ε)|.

Similarly, for any α1 ∈ {α > a : [α, α+ ε] ∩ ∂f∗(b) = ∅} we have

f(α1)− f(a)− b(α0 − a)

≥ f
(

α+
f (a, b, ε)

)

− f(a)− b
(

α+
f (a, b, ε)− a

)

+ λ+f (a, b, ε)
(

α1 − α+
f (a, b, ε)

)

≥ λ+f (a, b, ε)
(

α1 − α+
f (a, b, ε)

)

≥ ελ+f (a, b, ε).

Finally, if we define λf (a, b, ε) := min(λ+f (a, b, ε), |λ
−
f (a, b, ε)|), then it follows that for

any ᾱ ∈ {α ∈ R : [α− ε, α+ ε] ∩ ∂f∗(b) = ∅}, we have

f(ᾱ)− f(a)− b(ᾱ− a) ≥ ελf (a, b, ε) > 0.
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