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Abstract. Reaction cross diffusion systems are a two species generalization of the porous media
equation. These systems play an important role in the mechanical modelling of living tissues and
tumor growth. Due to their mixed parabolic-hyperbolic structure, even proving the existence of
solutions to these equations is challenging. In this paper, we exploit the parabolic structure of
the system to prove the strong compactness of the pressure gradient in L2. The key ingredient
is the energy dissipation relation, which along with some compensated compactness arguments,
allows us to upgrade weak convergence to strong convergence. As a consequence of the pressure
compactness, we are able to prove the existence of solutions in a general setting and pass to the
Hele-Shaw/incompressible limit in any dimension.
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1. Introduction. In this paper, we consider the following two species reaction
cross diffusion system

V) = p1Fi1(p,n) + p2F12(p,n),
V) = p1Fa1(p,n) + p2Faa(p, n),

Orp1 — V- (p1(Vp —
Otpa — V- (p2(Vp —
pp = z(p) + 2*(p),

O — aAn = —n(c1p1 + c2p2),

(1.1)

on the spacetime domain Q.. := [0,00) x R%. The study of these systems has be-
come extremely important in the modelling of tissue growth and cancer [BKMPO3,
PT08, RBET10] and has drawn substantial interest from the mathematical commu-
nity [PQV14, PV15, GPSG19, KT21, BCP20, BPPS19, JKT21, AKY14, BM14]. The
equations model the growth and death of two populations of cells whose densities are
given by pi1, pa. The densities are linked through a convex energy z (and its convex
dual z*), which opposes the concentration of the total density p = p1 +p2. The energy
induces a pressure function p, which dissipates energy by pushing the densities down
Vp. The most common choice for z is a convex power function z,(a) = —5(a™ —a)
for some m > 1, or the incompressible limit zo, where zo(a) = 0 if a € [0,1] and
+o00 otherwise [PQV14, GPSG19]. The coupling relation pp = z(p) + z*(p) is equiv-
alent to the subdifferential condition p € 9z(p) [BC17]. For z,,, one has the explicit
relation p = - (p™~! —1). In the incompressible case, the subdifferential z,.(1) is
not single-valued, and as a result, one cannot directly recover the pressure from the
density (note that this is the typical case for incompressible fluid mechanics). Indeed,
the condition pp = zo(p) + 2%, (p) is equivalent to the two conditions p(1 — p) =0
and p € [0, 1], which only reveals that the pressure is nonzero on the set p = 1. The
lack of an explicit density-pressure coupling for the incompressible setting makes this
case much more challenging (c.f. [GPSG19, BCP20, LX21] and some of the discussion

below). In general, in our subsequent analysis, we will need to expend extra effort to
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tackle cases where 0z is not single-valued, compared to easier cases where we have an
explicit relation p = 2/(p).

In addition to the density-pressure coupling, the other driving forces of the equa-
tion are a fixed external vector field V' and the source terms on the right-hand side of
the equation. The source terms that control the growth/death of the two populations
depend on both the pressure and a nutrient variable n. The nutrient evolves through
a coupled equation that accounts for both diffusion and consumption.

Throughout the paper, we assume that V € L ([0,00); L*(R?)) and V -V €
L>*(Qoo). We will also have the following assumptions on the energy z:

(z1) z: R — RU {400} is proper, lower semicontinuous, and convex,

(z2) z(a) =400 if a < 0 and 2(0) =0,

(z3) there exists 7 > min(1 — 2,0) such that limsup,_,o+ a~"z(a) =0,

as well as the following assumptions on the source terms:

(F1) the F; ; are continuous on R X [0, 00) and uniformly bounded,

(F2) the cross terms Fj 2, F» 1 are nonnegative.

In certain cases, we will need the additional assumption:

(F3) for n fixed, p — (F11(p,n) + Fa1(p,n)) and p — (Fi12(p,n) + Fa2(p,n)) are
decreasing.

Note that the last condition (F3) states that the growth rate of the populations

should decrease as the pressure rises. This corresponds to the biological phenomenon

of contact inhibition, where cells respond to overcrowding by decreasing their growth

rate [PQV14]. While this condition is very natural in most settings, there are some

limited scenarios where it may not hold (for instance one may want to model a scenario

where high pressure might prevent a cancer-killing drug from reaching cells). Hence,

we shall try to only impose (F3) when it is truly necessary for our arguments. A

simple choice for the F; ; that satisfies all 3 requirements is to take functions of the

form (1 —p)4(n — 1)1, but of course many choices are possible.

Constructing weak solutions to the system (1.1) is challenging due to the highest
order nonlinear terms p1Vp, poVp. Given a sequence of approximate solutions, one
needs either strong convergence of the densities or of the pressure gradient to pass to
the limit. Due to the hyperbolic character of the first two equations, the regularity
of the individual densities need not improve over time. Furthermore, it is not clear if
densities with BV initial data will remain BV in dimensions d > 1 (see [CFSS18] and
[BPPS19] for results in one dimension). On the other hand, summing the first two
equations, one sees that the pressure p and the total density p satisfy the parabolic
equation

(1.2) 0yp—V - (p(Vp—V)) = p1(Fi1(p,n) + F21(p,n)) + p2(F1,2(p,n) + F22(p,n)),

(note (1.2) needs to be coupled with the duality relation pp = z(p) + z*(p) in order to
fully appreciate the parabolic structure). Hence, attacking the problem through the
pressure appears to be more promising.

Indeed, recently, several authors have been able to construct solutions to certain
cases of (1.1) by exploiting (1.2) to obtain strong convergence of the pressure gradient
[GPSG19, BCP20, LX21]. In [GPSG19, BCP20], the authors consider the model with
the specific coupling relation p = p™~! for values of m € (1,00). These ideas were ini-
tiated in [GPSGlQ], where the authors obtain precompactness of the pressure gradient
via regularity, by using the parabolic structure to bound the pressure Laplacian in L®.
Combined with any amount of arbitrarily weak time regularity, this implies gradient
compactness via the Aubin-Lions lemma. As it turns out, both space and time regular-
ity can be problematic. It is not clear whether spatial regularity can hold without some
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structural assumptions on the sources terms F; ; or in the presence of a non-zero vector
field V. In particular, when p and p are coupled through the relation p = p™~! they
require the boundedness of p~/ (™= |(Fy 1 (p,n)+Fa1(p,n)) — (F1 2(p,n)+ Fa2(p,n))]
in both (p,n). This condition is somewhat restrictive from a modeling perspective as
it requires both populations to have the same growth behavior when the pressure is
zero. On the other hand, time regularity of the pressure becomes problematic when
attempting to pass to the incompressible limit m — co. Indeed, in the incompressible
case, the coupling between the total density p and the pressure p is degenerate and
it is not clear how to convert time regularity for p (easy) into time regularity for p
(hard). This prevents [GPSG19] from constructing solutions in the incompressible
case. In [BCP20], the authors establish precompactness more directly allowing them
to drop the restrictive assumptions on the source terms from [GPS,G19}7 nonetheless,
this approach still cannot handle the incompressible case. Finally, [LX21] builds upon
the ideas on [BCP20] to construct solutions in the incompressible case, but under ex-
tremely restrictive assumptions on the source terms. In particular, their source terms
cannot have any dependence on the pressure, which excludes many important versions
of the model.

In this paper, we establish the precompactness of the pressure gradient directly
by exploiting the energy dissipation relation associated to (1.2). In order to explain
our strategy more fully, we need to introduce a change of variables that will make our
subsequent analysis easier. Thanks to the duality relation pp = z(p) +2*(p), the term
pVp is equivalent to Vz*(p). This suggests the natural change of variables ¢ = 2*(p).
Since the pressure is only relevant on the set p > 0, we can essentially treat z* as a
strictly increasing function. As a result, we can completely rewrite the system (1.1)
and the parabolic equation (1.2) in terms of ¢ instead of p (c.f. Section 2 and 5 for
the rigorous justification). Doing so, we get the equivalent system

(1.3)
Oip1 =V - (2Vq) + V- (p1V) = prFra (%) (@), n) + paFr2((2%) " (a). ),
Op2 — V - (%Vq) + V- (p2V) = p1Fon ((2)7H(q),n) + p2Fo2((z*) " q), n),

pq = e(p) +€*(q),
On — aAn = —n(c1p1 + cap2),

where e is the unique convex function such that

o(a) = {az(a) —2 [ 2(s)ds if 2(a) # +o0,

400 otherwise.

It is worth noting that the change of variables from p to ¢ is essentially the reverse
direction of Otto’s celebrated interpretation of the porous media equation as a W?2
gradient flow [Ott01]. Indeed, the p variable can be interpreted as a Kantorovich po-
tential for the quadratic optimal transport distance, while the ¢ variable is instead the
dual potential for an H~! distance. While the optimal transport interpretation of the
system is more physically natural, the linearity of the H ' structure is advantageous
for our arguments. Indeed, summing the first two equations of (1.3), we get a more
linear analogue of (1.2):

(1.4) op—ADg+ V- (pV) = p,

where we have defined p := p1 (Fi,1((2*) 71 (q),n)+F2,1((z*) "H(q), n))+p2 (F12((2*) " (q),n) +]]
Fy2((2*)7Y(¢),n)) for convenience.



Now we are ready to give an outline of our strategy. As we mentioned earlier,
the key idea is to exploit the energy dissipation relation associated to (1.4). Given
any test function w € W1>°(]0, 00)) that depends on time only, the energy dissipation
relation states that

(1.5) /]Rd w(0)e(p(x)) dx = / —e(p)Oyw + w|Vq|? + we* (q)V - V — wpg.

oo

where p° is the initial total density and we recall that Qo = [0,00) x R? is the full
space-time domain. Suppose we have a sequence (pg, gk, fx) of solutions to equation
(1.4) with the same initial data p® that converges weakly to a limit point (p,q, ji).
Thanks to the linearity of (1.4), the limit point (p, g, i) will also be a solution of (1.4).
As a result, if we also know that the relation pg = e(p) +e*(¢) holds at the limit, then
both (pk, gk, 1tx) and (p, q, i) satisfy the dissipation relation (1.5). Hence, we could
conclude that

/ —e(pr) 0w + w|Var|? + we* (qp)V - V — wurqp

oo

= / —e(p)Oyw + w|Vq* + we* (Q)V - V — wiiq.
If we can prove that prqr,e(pr), e*(qr) converge weakly to pg, e(p), e*(q) respectively
and

(1.6) lim sup / g < / wiid,

k—o0 o Qoo

then we have the upper semicontinuity property

(1.7) limsup/ w\qu|2§/ w|Vql?

k—o0 o o

which automatically implies that Vg, converges strongly in L2 ([0,00); L2(R%)) to
V3. As a result, the energy dissipation relation gives us a way to upgrade some weak
convergence properties into strong gradient convergence.
Of course, in order to exploit this idea, we need:
(i) enough regularity to ensure that the dissipation relation (1.5) is valid,
(ii) enough compactness to prove the weak convergence of the nonlinear terms
Prak, e(pr), € (qr),

(iii) enough compactness to verify the nonlinear limit (1.6).
The amount of a priori regularity needed for (i) is very low, thus, this point does
not pose much of a problem. However, obtaining the compactness needed for points
(ii) and (iii) is more delicate. Exploiting convex duality, the weak convergence of
the energies e(py),e*(qr) is essentially equivalent to the weak convergence of the
product prgi (c.f. Lemma 3.2). While we may not know strong convergence of either
Pk Or qr separately, we can still obtain the weak convergence of the product through
compensated compactness arguments (c.f. Lemma 5.1 in [Lio96] ). When e* is strictly
convex, the weak convergence of the energy e*(qx) to e*(q) actually implies that g
converges to ¢ locally in measure. Thus, in this case, verifying the limit (1.6) becomes
trivial. When the strict convexity of e* fails, we will still be able to verify the limit
(1.6) as long as we add the additional structural assumption (F3) on the source terms.
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Once we have obtained the strong convergence of the pressure gradient, construct-

ing solutions to the system (1.3) (and hence the system (1.1)) is straightforward via a

vanishing viscosity approach (note adding viscosity to the system is compatible with

our energy dissipation based argument). Furthermore, the above strategy works even

when the energy is allowed to change along the approximating sequence. Hence, we

can also use the above arguments to show that solutions to the system (1.1) with
1

the porous media energy z,(a) = -5 (a™ — a) converge to the incompressible limit

system with the energy zoo(a) = 0 if a € [0, 1] and +oo otherwise.

1.1. Main results. For the reader’s convenience, in this subsection, we collect
some of our main results. To prevent the introduction from becoming too bloated, we
shall state our results somewhat informally. The rigorous analogues of these results
can be found in Section 5.

Our first result concerns the case where the density-pressure coupling is non-
degenerate i.e. z is differentiable on (0, 00).

THEOREM 1.1. Suppose that z is an energy satisfying assumptions (z1-z3) such
that 0z(a) is a singleton for all a > 0 and suppose that the source terms satisfy
assumptions (F1-F2). Given initial data p9,p3,n° such that e(p} + p9) € L'(R%),
there exists a weak solution (p1, p2,p,n) to the system (1.1).

When the density-pressure coupling becomes degenerate, we need to add the
additional assumption (F3) on the source terms.

THEOREM 1.2. Suppose that z is an energy satisfying assumptions (z1-z3) and
suppose that the source terms satisfy assumptions (F1-F3). Given initial data p?, p3, n°}}
such that e(p9 + p3) € LY (R?), there exists a weak solution (p1, p2,p,n) to the system

(1.1).
In addition to our existence results, we also show that solutions of the system

with the porous media energy z,,(a) := —L5a™ converge to a solution of the system
with the incompressible energy

roola) = 0 if a€10,1]
> " ] +o00 otherwise

as m — 00.

THEOREM 1.3. Let p9,p9,n° be initial data such that p9 + p3 < 1 almost ev-
erywhere. Suppose that the source terms satisfy (F1-F3). If (p1,~, p2,ysDysTy) 1S @
sequence of solutions to the system (1.1) with the energy z, and the fized initial data
(pY, p9,n0), then there exists a limit point of the sequence (p1,c0s P2,00s PoosMoo) that
solves the system (1.1) with the incompressible energy zo.. Furthermore, the limiting
pressure po, satisfies the so called complementarity condition
(1.8)

/ (VPoo—pV )V (pootp) —PPoo (m (F1,1(poo, ) +F1 2 (oo, ) ) +p2 (F2.1 (Poo, 1) +F2 2 (poo n))) - o.I

oo

Theorem 1.3 is just a special case of our more general convergence result, Theorem
5.5, which shows that one can extract limit solutions for essentially any reasonable
sequence of energies. Nonetheless, the statement of Theorem 5.5 is a bit too compli-
cated to be cleanly summarized in the introduction, so we leave it to be stated for the
first time in Section 5.



1.2. Limitations and other directions. Unfortunately, our approach cannot
handle the more challenging case where p1, ps have different mobilities or where p1, p2
flow along different vector fields Vi, V. These cases are known to be extremely diffi-
cult, however see [KM18] and [KT21] for some partial results. When the mobilities
are different, the analogue of (1.4) is a nonlinear parabolic equation with potentially
discontinuous coefficients. As a result, one cannot do much with the limiting variables
p,q. When the densities flow along different vector fields, verifying the upper semi-
continuity property (1.7) requires proving the weak convergence of the terms p; Vi
and p2 ;Vqi. Since this essentially requires knowing strong compactness for Vg, in
the first place, it completely defeats the purpose of the argument.

Nonetheless, it would be interesting to see if this strategy could be applied to
other systems of equations that have some parabolic structure. For instance, if

{Li j}ijeq1,2y are linear operators whose symbols are dominated by (—=A)Y?i.e. their

Fourier transforms satisfy limsup¢|_, liil’él@)‘ = 0, then it should be possible to ex-

tend our arguments to the more general system

(1.9)
Oipr =V - (2Vq) + V- (p1V) + Liapr + Lizpa = prFii () 7' (), n) + p2Fr2((2%) 71 (g),n),
Opz =V - (22Vq) + V- (p2V) + Laapr + Laopz = prFa1 ((2%) 7H(q) n) + p2Fo2((2%) 1 (9), n),

pq = e(p) + € (q),
Oxn — alAn = —n(c1p1 + cap2),

(perhaps with some other mild requirements on the L; ;). However, it is not so clear
that this more general system models physically relevant phenomena, and hence, we
will not pursue this line of inquiry further in this work.

1.3. Paper outline. The rest of the paper is organized as follows. In Section
2, we explore some of the consequences of the change of variables ¢ = z*(p). After
this Section, we will focus only on the transformed system (1.3) until Section 5. In
Section 3, we provide some generic convex analysis and compensated compactness
arguments needed for the weak convergence of the primal and dual energies. In
Section 4, we analyze parabolic PDEs, establishing basic estimates and the energy
dissipation relation. Finally, in Section 5, we combine our work to prove the main
results of the paper.

2. The transformation ¢ = z*(p). In this section, we will explore some of the
consequences of the transformation ¢ = z*(p). Note that the full verification of the
equivalence between the systems (1.1) and (1.3) will not occur until the final section,
Section 5. Throughout this Section and the next we will extensively use properties
of the Legendre transform and convex duality. Consulting the book [BC17], may be
useful for readers who are less familiar with these tools.

Before we begin our work in this section, let us give a bit more motivation for
introducing this change of variables. First of all, the spatial derivative in the parabolic
equation (1.4) is linear with respect to g, whereas the spatial derivative in parabolic
equation for the p variable (1.2) is not. As a result, establishing the strong L? gra-
dient compactness for ¢ is simpler than for p. Furthermore, the ¢ variable is always
nonnegative, while certain choices of z will lead to a p variable that is not bounded
from below. The lack of lower bounds on p leads to some very annoying integrability
issues that are completely absent when one works with ¢ instead.

We begin by establishing the fundamental properties of the transformation ¢ =
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2*(p). In particular, we will show that the transformation is essentially invertible.

LEMMA 2.1. If z is an energy satisfying (z1-z3), then z* is nonnegative, nonde-
creasing, and (z*)~! is well defined and Lipschitz on z*(R) N (0,00). Furthermore,
for any 6 > 0, (2*)~! is uniformly Lipschitz on [§,00)

Proof. Given any b € R, we have

z*(b) =supab— z(a) > 0 —2(0) = 0.
a€R
It is also clear that inf 9z*(b) > 0 since z(a) = +oo for any a < 0. If by < b, then
2*(by) — 2*(b1) > a1 (by — by) > 0 where a; is any element of 9z*(by). Thus, z* is both
nonnegative and nondecreasing,.
Since z is proper, we know that z(a) # —oo for all a. Thus given some ay > 0,

there must exist some by € R such that by < %‘;‘)) It then follows that for all a > aqg

20) _ o0 — 2190)) <,

aby — z(a) < aby — z(ag) — (a — agp) o A

Therefore, for all b < by

supab — z(a) = sup ab— z(a).
a€R a€[0,a0)

Fix € > 0 and let a, € [0,a0] be a decreasing sequence such that z*(—n) <
€ —na, — z(ay,) (note that from the above logic such choices of a,, must exist once n is
sufficiently large). Since a,, is decreasing and bounded from below, it must converge
to a limit point a as n — oco. Thus,

0 < liminf 2*(—n) < e — z(a) — lim sup na,,,
n—oo n—00

which immediately implies that @ = 0. We can then rewrite the above as

liminf z*(—n) < € — limsup na,, <e.
n—oo n—00
Therefore, liminf,, o 2*(—n) = 0.
It now follows that if 2*(b) € (0, 00), then there must exist some by < b such that
2z*(bo) < z*(b). We then have

. z*(b)
f0z*(b) > ————— > 0.
inf 9z*(b) > 20— by) >
Thus, z* is strictly increasing at b whenever z*(b) € (0,00). Since z* is convex, it
follows that for any § > 0 (2*)~! is uniformly Lipschitz on [4, co). |

Perhaps the most significant aspect of the change of variables ¢ = z*(p) is the
change in the energy controlling the primal and dual coupling. Recall that we defined
the new energy e through the formula

e(a) = {az(a) - 2an z(s)ds if z(a) # +o0,

(2.1) .
+00 otherwise.

While this formula appears somewhat mysterious, e is the unique (up to an irrelevant
constant factor) convex function such that de(a) = z* 0 9z(a) when dz(a) # @. Thus,
when p € 9z(p) we will know that ¢ € de(p). Note that the monotonicity of z* is
key, otherwise e would fail to be convex. The following Lemma records the properties
that e inherits from z.



LEMMA 2.2. Suppose that z is an energy satisfying (z1-z3). If we define e : R —
R U {+o0} according to (2.1), then e satisfies the following properties
(el) e: R — RU{+oo} is proper, convezx, and lower semicontinuous.
(e2) e(a) = +oc if a < 0, e(0) =0, and e is increasing on e~ (R).
(e3) limsup,_, o+ e(aa) = 0, liminf,_ @ > 0 and there exists o > max(1 — 2,0)
such that limsup,_,o+ a~* te(a) = 0.
Furthermore, if a > 0, we have

Oe(a) = {ab— z(a) : b € 0z(a)} = {z"(b) : b € 0z(a)},

and so Oe(a) is a singleton if and only if 0z(a) is a singleton.

Proof. It is clear that e(0) = 0 and e(a) = 400 if z(a) = +oo.
Given any two points ag,a; € 2~ !(R), convexity implies that

a1 + ag

(2.2) 2(a; — ag)z( ) < 2/{11 z(s)ds < (a1 — ap)(2(ag) + z(a1)).

ao

Thus, if z(a) # 400, then
0 <e(a) <az(a) — 2az(%) < 0.

Therefore e(a) = +oo if and only if 2(a) = +oo. Thus, the set e !(R) is an in-
terval. Furthermore, the above inequalities combined with (23) clearly imply that
limsup,_,o+ a~* te(a) = 0.

Again using (2.2),

ai

e(ar)—e(ag) = ao(z(al)—z(ao))—i—(al—ao)z(al)—2/

ao

z(s)ds > ao(z(al)—z(ao))—(al—ao)z(ao)l
If by € 9z(ap), then

e(ar) — e(ao) > (a1 — ao) (aobo — z(ao)).

Thus, b € 9z(a) implies that ab — 2(a) € de(a) whenever a € e *(R). Thus, the
subdifferential of e is nonempty whenever the subdifferential of z is nonempty. Com-
bining this with the equality z71(R) = e !(R), it follows that e is convex, lower
semicontinuous and proper.

Note that b € 9z(a) implies that z*(b) = ab — z(a). Therefore, {ab — z(a) : b €
9z(a)} = {z7(b) : b € 9z(a)}. Since [; z(s)ds is everywhere differentiable on the
interior of z71(R), every element of de(a) must have the form ab— z(a) for b € dz(a).
Convexity implies that ab — z(a) > —2z(0) = 0, thus e is increasing on the interior
e 1(R).

It remains to show that limp_, e*éb) > 0. Since limsup,_, o+ 6(5) = 0, there must
exist some ag > 0 such that e(ag) < co. Thus,
e*(b e(a

Now that we have established properties of the transformation ¢ = z*(p) we
can temporarily forget about the original system (1.1) and focus on (1.3). We will
eventually return to (1.1) in the final section, where we show that solutions to (1.3)
can be transformed into solutions to (1.1). Until then, our efforts will be concentrated
on establishing the energy dissipation strategy described in the introduction.
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Parameter z energy a € [0, 00) z* energy b € R e energy a € [0,00) | e* energy b € R
m € (0,00] \ {1} —L_(a™ —a) max(%ﬂ)m“m_l) #Ham‘*‘l ey max(b, 0)
m— 1 alog(a) —a exp(b) 2a? 3 max(b,0)?
TABLE 2.1

Some examples of the transformation from z to e.

3. Convex analysis and compensated compactness. In this section, we
collect some results that we will need to establish the weak convergence of the primal
and dual energy terms. We begin by defining some convex spaces that we will work
with throughout the paper.

DEFINITION 3.1. Given an energy e satisfying (el-e3), we define
X(e) = {p € Li.(Qx) : e(p) € L5.([0,00); L' (R))},

Y(e*) = {q € Li,o(Qwo) : €°(q) € Lioe ([0, 00); L' (R))}.
We are now ready to present a result that will play an important role in our argument.

LEMMA 3.2. Lete: R — RU{+o0} be an energy satisfying (el—e3). Letey : R —
RU{+4o00} be a sequence of energies satisfying (el-e3) such that e, converges pointwise
everywhere to e. Suppose we have a sequence of monnegative density and pressure
functions py € X (ex), qr € Y (ey) such that prqr = ex(pr) + €5 (qr) almost everywhere
and pr,qr converge weakly in Li (Qoo) to limits p,q € L (Quo) respectively. If

pq € Li ([0,00); LY(R?)) and for every nonnegative ¢ € C>°(Qoo)

lim sup / PPEAE < / Ppa,
k— o0 Q

oo oo

then p € X(e),q € Y(e*), pg = e(p)+e*(q) almost everywhere, and prqx, ex(pr), ex.(qx)l}
converge weakly in Li ([0, 00); LY(R?)) to pq,e(p),e*(q) respectively.

loc

Proof. Given some nonnegative ¢ € C°(Qw), let D be a compact set containing
the support of ¢. From our assumptions, we have

/ ©pq > lim sup / ©prq, = limsup / wer(pr) + vei(qr).

o k—o0 . k—o0 .

Fix some simple functions g1, g2 € L (D) such that every value of ¢ is a value where
e converges to e* (c.f. Lemma A.1). It then follows that

1imsup/ ¢ (ex(pr)ter(ar)) > limsup/ e (9108 —€4(91)+920r—ex(92)) =/

k— o0 o k—o0 o

90(910_6*(91)+92q—6(92)).l

oo

Taking a supremum over g;, g, we can conclude that

/ Lppqzlimsup/ o(er(por) + ei(ar)) 2/ o(elp) +€*(q)).

o k—o0 o o

On the other hand, Young’s inequality immediately implies that

pq < e(p) +e*(q)
9



almost everywhere. Thus, pg = e(p)+€*(q) almost everywhere. This also now implies
that p € X(e) and g € Y (e*).

The previous calculation shows that ey(pr) + ej(qr) is uniformly bounded in
LL ([0,00); LY(R%)). Thus, for any time 7 > 0, there exists wi,ws € C(Q7)* such
that ex(pr), er(gx) converge (along a subsequence that we will not relabel) to wy, we
respectively. Arguing as in the first paragraph, it follows that

/ @wl:liminf/ @ek(pk)z/ we(p), / @wgzliminf/ @62(%)2/ goe*(q).l
T k—=oo Jor Qr T k—=oo Jor Qr

Hence,

/ @\M*G(P)H@lwz*e*(@l:/ (w1 — e(p) +wz — e*(q)) =
Qr

T

limsup/ e (ex(pr) +eilar) —elp) —e*(q) = 1imsup/ @ (prar — pq) <O0.

k—o0 T k— o0 T o
Thus, w1 = e(p) and wy = e*(g). Since wi,wq and T > 0 were arbitrary, it follows
that e(p), e*(q) are the only weak limit points of ex(px), €} (gx) in L ([0, 00); L}(R?)).

Thus, the full sequences ey (px), €} (gx) must converge weakly in Li ([0, 00); L}(R?))

loc
to e(p) and e*(q) respectively. The weak Li ([0,00); L}(R?)) convergence of prqy to
pq is an immediate consequence.

Knowing the weak convergence of the energy terms actually implies a certain
limited strong convergence property that can be deduced from the convexity of e, e*.
When the energies are strictly convex, we will in fact have convergence in measure
of pr to p and ¢ to g. When strict convexity fails, the convergence property will be
weaker, but will still encode some nontrivial information.

LEMMA 3.3. Lete: R — RU{+o00} be an energy satisfying (el-e3). Let ey : R —
RU{+o0} be a sequence of energies satisfying (e1-e3) such that ey, converges pointwise
everywhere to e. Suppose we have a sequence of uniformly bounded nonnegative density
and pressure functions pr € X(er), g € Y(ej) such that prgr = er(pr) + € (qx)
almost everywhere and py, qr converge weakly in Llloc(Qoo) to limits p,q € Llloc(Qoo)
respectively. Given € > 0, we define

Ape ={(t,x) € Qo : [pr(t,x) — €, pr(t,x) + €] N Oe*(q(t, z)) = &}

and
Bk,e = {(t,l‘) € QOO : [Qk(t7x) - evqk(tvx) + E] n ae(p(tvx)) = Q}

If for every nonnegative p € C°(Qo) we have limsup,,_, . fQ Oprar < fQ ©vpq,
then

(3.1) limsup |[DN Akl +|DNBie =0

k—oco

for any compact set D C Qo

Remark 3.4. If Oe* is always a singleton (i.e. e* is everywhere differentiable,

equivalently e is strictly convex), then the conditions |p — pi| > € and [pr — €, pr +
€] N de*(q) = @ are equivalent. Thus, in this case, the vanishing of Ay . would imply
that py converges in measure to p. The same holds for the convergence of gi to ¢
with the roles of the energies swapped (i.e. g will converge strongly in measure to

10



q if e is everywhere differentiable or equivalently if e* is strictly convex). Even when
we do not have full convergence in measure, the above result can be useful to show
that certain compositions f o pg, g o gx converge to the correct limits f o p, g o g (for
well chosen functions f, g : R — R).

Proof. Fix a compact set D C (o, and € > 0. From our assumptions and Lemma
3.2, it follows that

timsup [ ex() = e(o) = alpx =) +€i(ax) —*0) = plaw — ) = 0.
Note that this line is nearly the sum of two Bregman divergences (also known as
Bregman distances c.f. [BC17]). Thus, we begin by making some manipulations to
transform the quantity into a Bregman divergence.

Let aoo = sup{a > 0: e(a) < oo} and bo, = sup{b > 0: e*(b) < oo}. By Lemma
A.1, for any § > 0, ej, converges uniformly to e on [0, as — d] and e}, converges uni-
formly to e* on [0, boo —0]. If we define py, 5 := min (pk, aoo—é), Qk,s = min (qk, boo—é),
then from the above considerations, we have

(3.2) lim sup/D e(pr,s) — e(p) — q(pr,s — p) + € (ar,5) — €*(q) — p(qr,s — q)

k—oo
4 / ex(or) — ex(Prs) — a(k — prs) + €h(ak) — €hans) — plas — dis) = 0.
D

The first line in (3.2) is now the sum of two Bregman divergences.

The Bregman divergence associated to any convex function is a premetric, i.e.
it takes two points and returns a nonnegative number, however all the other metric
axioms may fail [BC17]. Nonetheless, Lemma A.3 guarantees the existence of strictly
positive functions A., Ao~ such that

/D e(pr.s) — e(0) — a(ors — p) + € (ars) — (@) — plaks — q)

2/ €>\e(p7q,€)+/ 6/\6*(Q7P76)7
DﬁAkﬁfyg DmBk,F,S

where Ag s = {(t,2) € Qoo : [Pro(t, ) — € pro(t,x) + € N de*(q(t,z)) = &} and
Bk,e,6 = {(t,x) S Qoo : [qkﬁ(tam) — € qk,&(tvx) + 6] N ae(p(tw%')) = @} Combining
this with (3.2) we have

lim sup e(/ )\e(p7q,6)+/ Aex (4, p, 6))+/ ek(pk)—ek(Pk,6)+€2(Qk)—ei(%,é)l
k—00 Ag,e,sND Bg,e,sND D

k—o0

< lim sup/ q(pr — pr,s) + P(ak — Qr,s)-
D

We now want to control the right hand side of the inequality.
Let Sk.s = {(t,2) € D : pp > pr,s+20} and let S 5 = {(t,2) € D : qx > qx,s+26}.
Note that

[ o)+ cilan) 2 Sualen(an +0)| + 1St slei 0 + 9)
D

Since ex(pr) + €f(qx) is uniformly bounded in L ([0, 00); L}(R?)), and for any fixed
>0

lim eg(ao +90) =00, lim e} (boo + ) = 00,

k—o0 k—o0
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it follows that limsup,,_, ., [Sk.s| + [S; 5| = 0. Hence, using the inequality

/ q(pr—pr,s)+p(ak—ak,s) < 20[|q+p| 1 (D) +|Sk.s 1/2||q||L2(D)Hpk||L°°(D)+|SZ,5|1/2HPHLW(D)HQk||L2(D)7I
D

we obtain

lim lim sup 6(/ Ae(p;q, €)+/ Aex (¢ p, 6))+/ ex(pr)—ex(pr.s)ter(ar) —er(qrs) < OI
Ak,s,éﬂD BkﬁeygﬁD D

§—=0t koo

Since e, e* are increasing, the last integral is nonnegative, and so we can conclude
from the previous line that

lim limsup |Ages N D]+ |Bg,es ND| =0,
=0t k0o O

for any € > 0. Finally, we can conclude by noting that Ay . C Ay /4,6 U Sk and
By C By cja,5 U Si s whenever § < e/4.

Of course, to even be able to use Lemma 3.2, we somehow need to know an upper
semicontinuity type property for the product prgi. In practice, this seems to require
establishing the weak convergence of prqr to pg. We will eventually accomplish this
by appealing to spacetime-compensated compactness. In particular, we will exploit
the time regularity of pj, and the space regularity of ¢x to obtain the weak convergence
of their product (see for instance Lemma 5.1 in [Li096] for this flavor of compensated
compactness). Hence, we will now turn our attention to estimates and the energy
dissipation structure of the equation

4. Energy dissipation and estimates. We will now begin to analyze the par-
abolic structure of the equation (1.4). In order to do this, we will need to upgrade
the spaces X (e),Y (e*) into spaces that are more appropriate for solving PDEs

DEFINITION 4.1. Given an energy e satisfying (el-e3), we define
X(e) == {p € X(e) : p € L5c([0,00); L' (R") N L=(R)) N Hyye ([0, 00); H(RY))},

V() ={g€Y(e"): q € Lt ([0,00); H'(R))},

and
D(e,e*) = {(p,q) € X(e) x V(e*) : pq € L, ([0, 00); L' (RY) N L*(RY))}.

We begin by proving the energy dissipation relation in a form that is localized in
both space and time.

PROPOSITION 4.2. Given an energy e : R — RU{+o00} satisfying (el-e3), suppose
that e(p®) € LY(R?) N L>®(R?) and p° € L*(R?). Let (p,q) € D(e,e*) be a density-
pressure pair that satisfy the duality relation pqg = e(p) + e€*(q) almost everywhere.

Suppose that p € LOO(%) is a growth rate and V € L2 ([0,00); L?(R%)) is a vector

field such that V-V € L™(Quo). If for every i» € WH([0,00); L' (p) N HY(RY)), p, q
are weak solutions of the parabolic equation

(4.1) [ P02 @) do= | Va6 = pdrh = pV - V=
12



then for any ¢ € W1H>([0, 00); WH°(RY) N HY(RY)), we have the dissipation relation

(4.2)

L e0el @ = | —coerelVal +ava VopaV Vore @ (Ve)-ona
R oo

In particular, if p(t,z) = w(t) where w € W1H°([0,00)), then the relation simplifies
to

(4.3) / w(0)elp () dr = / ()0 + w|Val? + wet @)V -V — wpg.

oo

Proof. Let ¢ € C°(R?) such that e*(§) € L'(R?). Extend g backwards in time
by defining ¢(—t,x) = ¢(z) for all t € (0,00). Fix € > 0, and define

qe(t,z) = l/t q(s,x)ds

€ —€

for all (t,z) € R x R%. By Jensen’s inequality, g. € Y(e*) and a direct computation
shows that O:q. is the linear combination of two Y(e*) functions for any e¢ > 0.
Assumption (e3) implies that there exists ap > 0 such that e is bounded on [0, ag].
Hence, there must exist a point oy € (0, ag) such that e is differentiable at ;. Hence,
we can split

q=q1+qo

where ¢; = max(q—e’(a1),0) and gy = min(g, €’'(1)). Combining this decomposition
with the duality relation e(p)+e*(g) = pq and the condition pg € L2 ([0, 00); L*(R%)N
L?(RY)), it follows that for any 7' > 0

2 1 2
@ +aqr < min(ar.o?) pa1 + (pq1)? < oo.
T =1

T

Thus, it follows that
40 € L™ (Qoo) N Life([0,00); H'(RY)), g1 € Liyo([0,00); L' (RY) N H' (RY)).

Clearly, such a decomposition must hold for g. as well. As a result, given any non-
negative p € W1 >([0,00); WH(R%) N H'(R?)), it now follows that g, is a valid
test function for the weak equation (4.1). Thus, we have

@8 [ 00000 @ dr = [ =pdiloa) + (Vo= pV)- Vlacp) ~ moae.

oo

Note that for almost every (¢,2) € Qo

q(t,x) —q(t — € z)

PO:(pqe) = p(t, x)qc(t, x)0p(t, x) + @(t, ) p(t, ).

Hence, we can apply Young’s inequality to deduce that

q(t,z) —q(t —€,2) )olt,z) > e*(qt,x)) —e*(qt — €, 2))

(4.5) (

By defining t
(€ (). = = / ¢*((s,2)) ds

€ Jt—c
13



we can write the above inequality in the more compact form

pOrge > Or(e"(q))e
Plugging this into (4.4), we get the inequality

/Rd (0, 2)p(0,2)p° (x) do < / —pqe0rp — p0i(e*(q))e + (Vg —pV) - V(gep) — pge,

oo

Moving time derivatives back on to ¢, we get the equivalent inequality

(16) [ #0.9)(a.00.0)6°@) = (¢*(@)), 0.0)) da

< , Orp((e"(9))e — pge) + (Vg — pV) - V(gew) — pepge.

Note that we also have

/R (0,2 (4:(0.2)0" (@) = (¢"(@) (0,) ) do = / 0(0,2)(3(@)p"(2) — " (4()) ) do
thanks to our construction of g..
Since all of the time derivatives are now on ¢, we can safely send € — 0. Thus, it

follows that

/Rd (0, ) (d(w)po(m) —e* (éj(m))) dzx

< , Ore(e™(q) — pq) + (Vg — pV) - V(gp) — peg.

Exploiting the duality relation pg = e(p) + €*(q), we have arrived at the inequality

[ 40 (i@~ @) < [ ~eloiing + (Vo pV)-lag) - wen

oo

¢ was arbitrary, thus, taking a supremum over ¢ we obtain

(4.7) /Rd w(0)e(p’(x)) < / —e(p)dp + (Va = pV) - V(ap) — peq.
Expanding the right hand side, using the identity pVq = Ve*(q)), and integrating by
parts, we obtain one direction of (4.2).

To get the other direction, we instead smooth ¢ forwards in time by defining

1 t+e
ALY
t

€

The argument will then proceed identically to the above except that the forward-in-
time smoothing does not allow us to conclude that g.(0,z) = ¢. Luckily, Jensen’s
inequality and Young’s inequality are now in our favor, and so we can just estimate

/]Rd »(0, ) ((jﬁ(O, az:)po(av)—1 /Os(e* (q(s, x)) ds)) dr < /Rd »(0, ) (q}(O,x)pO(x)—e* ((jE(O,x))) de

€

< / p(0,2)e( (@) do 0

~ We can extend the formula to general functions ¢ € W2>°([0,00); Wh>°(R?) N
H'(R%)) by noting that the relation is linear in ¢ and any function can be written as
the difference of two nonnegative functions.

14



In the next proposition, we will focus on collecting a priori estimates for solutions
to (1.4). In fact, we will consider a slightly modified equation where we add an
additional viscosity term —vyAp for some v > 0. As we will see, the estimates will
give us uniform control independent of v when we consider sequences of solutions.

PROPOSITION 4.3. Let e be an energy function satisfying (e1-e3), let V € L2 ([0, 00); L2(R%))}

loc

be a vector field such that V-V € L ([0, 00); L (R%)), let % € L™ (Qoo) and let ~y be

loc

a positive constant. Suppose that p € X(e) N LE ([0,00); HY(R?)), ¢ € Y(e*) and p,q
satisfy the duality relation pq = e(p) + €*(q) almost everywhere. If e(p®) € L*(RY)
and the variables satisfy the weak equation

(4.8) (0, 2)p° (x) dw = / YVp -V +Vq -V — pdyp — pV - Vb —

Rd Qoo
for every test function ¢ € WLh([0,00); L' (p) N HY(RY)), then for any nonnegative

w € W1Eoo([0,00)) we have the dissipation properties

(4.9) / ()0 + w|Val? + wet @V -V — wpg < Adw<o>e<p°<m>>dx,

(4.10)

_ my 1 m—1 w(0 m
/ wy(m —1)p™ 2| Vp|*> —p (Eatw+w(%—TV~V)) S/Rd %(po) dz,

oo

and setting B = ||| 1o (qr) + IV - VL= (@r) we have the estimates

(4.11) ’YHVPH2L2(QT) < HPOHQLZ(Rd) + BHP”%"’(QT)a
(4.12) (T, ) ey < 1p°N| L1 (may exp(BT)
(4.13) 0ol 2 (0,11, 5-1(R)) < VIVPllL2@r) H IVl z2@r) +lz2(@r) 1PV L2 (0r)

(4.14) 10T, ) e ety < N16°] e oy exp (2TB).

Finally, if we choose some ag > 0 such that e is differentiable at oy and we set
B = e (o) then the following estimates hold where the unspecified constants depend
only on B, T, 3, aal, and d:

2(d+1)
d

(415) HVC]”%P(QT) 5 ||p||Lm([O’T];Ll(Rd)ﬁLZ(Rd)) + Hp”LZ([O,T];Ll(]Rd)) + /]Rd e(pO) dx

(4.16)

d+1
”pan?([O,T];Ll(Rd)) S HPHLZ([O,T];Ll(Rd)) + ||p||Lio([O’T];Ll(Rd)mLQ(Rd))||Vq||L2(QT)

2 _a_
(417)  lpalliz@n S Iollea@m + Il @ 199l 20 rsnn o IVall g
for any set K C Qr with finite measure

(4.18) lallzzx) S 1K+ pall2(@qr)s
15



and there exists v € (min(1 — 2,0),1] such that

(4.19)  |[[plog(1 + [ )|l Lo (o, 1301 (RY)) S

" (Iollz@nllV lzr 110l @+ 1+ Ipal2(@mnss @ Hiol s+ | loe(+ahe @) do). |

Proof. The dissipation inequalities (4.9) and (4.10) follow from choosing the test
functions qp and p™~'w respectively. These test functions do not have the required
time regularity, however, by following an identical argument to Proposition 4.2, this
technicality can be overcome. In addition, note that in both inequalities we have
dropped a term involving Vp- Vg, which is nonnegative thanks to the duality relation.

Estimates (4.12) and (4.13) are straightforward consequences of the weak equation
(4.8). Estimate (4.11) follows from (4.10) with m = 2. Estimate (4.14) follows from
applying a Gronwall argument to (4.10) and then sending m — oco.

The estimates (4.15-4.18) are all linked. Fix a time 7" > 0, and consider || pq|| .2((0,17; 1 (r4)) |}
We begin by splitting ¢ = qo + ¢1 where ¢y = min(q, 8) and ¢; = max(q — ,0). From
our choice of 5 we know that p > «g > 0 on the support of ¢g;. Therefore, g; must have
finite support. Combining this with the coercivity of e* and the bound e*(q) € L*(Q7)
it follows that ¢; € L'(Qr). Thus,

(4.20) lpall 20, ;01 ey < BllellL2 om0 ay) + lparll L2¢jo, ;01 (re)

and it is now at least clear that the quantity is finite.
Working in Fourier space, we have

T A P
vorizr@y = o\ 1P )

T 2
< [ (Ballote sl + [ 150t 9)1de) "

where R > 0 and Bp is the ball of radius R. Using the estimate
/ISI . (t, ) (t, &) de < (27 R)Hlp(t, ) 2@y IVar (E, )l 2wy
>

optimizing over R and dropping dimensional constants, it follows that

2d 2d
d+1 d+1 d+1 d+1

1901113 o 171y S / o0t s Ty s (5 Vs 108 M by V)

_2d_
< HPH%N([O,T];Ll(Rd)ﬂLQ(Rd)) ||VQ\|23(IQT) g1 IIET [0,T]:L1 (R9))"

Recalling the inequality ¢ < oy 1pg1, we now see that
||PQ1||L2([0 T);L1 (R4)) Sd ao ||p||L°° ([0,T];LY (RE)N L2(Rd))HVQ||L2 Qﬂ”ﬂ‘h”ﬁl[o T); Ll(Rd))I
which gives

1 de1
gl rz (om0 (ma)) Sa g HpHLZO([O,T];Ll(Rd)ﬂLQ(]Rd))||VqHL2(QT)'

Combining this with (4.20), we obtain (4.16).
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Next, let us estimate ||pg||z2(q,)- Again,

lpallzz@r) < Bllolrzr) + llollne@mllallzz(@r)-

Gagliardo-Nirenberg gives us

_a_ _2d_ _2d_
vl ey Sa | a2y 19000 WLyt < a8 00 ey IVl o
Combining our work, we see that

lpall2(@qr) Sa Bllpllzqr) + ag ) ol Lo (@) ||PQHZ§(20 T (RY) ”quz;?QT)’

where we have used ¢1 < o ! pq. We have now attained the bound in (4.17).
Next, we estimate ||V¢|12(g,). From the dissipation relation (4.9), we have

| elVal — e+ we' @)YV —wng < [ wOe(e)do

Qoo R4
for any nonnegative w € W1 >°((0,00)). Fix a time T' > 0 that is a Lebesgue point
for the mapping 7'+ ||Vq||z2(q,)- Assume that w is a decreasing function supported

on [0,7] and w < 1 everywhere. We can then eliminate the term —e(p)dww. Thus, it
follows from our previous work and the dissipation relation that

| wlvaP < [ () dat Blpaluson

oo

Using our previous work, we see that fQ w|Vql|? is

_1 a+1
Ny /]Rd 6(/70) dQﬁLBTl/Q (BH/)”LQ([O,T];Ll(]Rd))+O‘O ¢ ||p||LgO([O,T];L1(Rd)mLz(Rd)) ||VCI||L2(QT))I

Letting w approach the characteristic function of [0, 7], the above bound holds for
|\Vq||%2(QT). Using the quadratic formula, it follows that ||Vq||2L2(QT) <a ¢ +co where

12, =415 0 1/2
¢ = BT *a, ”p”LOO([O,T];Ll(Rd)ﬂLQ(Rd))’ co = RdG(P)dm—kBT Blloll L2 (o,13;:01 Re) -

The estimate on ||q|[z2(x) follows from the inequality ¢ < 8 +q1 < 5+ ag pg.
Finally, it remains to prove the estimate for (4.19). Let 7 : [0,00) — [0,1] be
a smooth increasing function such that n(r) = 0if r < 1 and n(r) = 1if r > 1.
Given some nonnegative w € W1h([0,00)) and any € > 0 we define ¢(t,x) =
w(t)log(1+ |z[)n(|x||)e~<!*! which is a valid test function for (4.8). Since v, is smooth

in space, we can integrate by parts in (4.8) to obtain

/Rd ©c(0,2)p" () do = */ POrpe + (g +vp)Ape + pV - Vo + e

oo

Fix some T > 0 such that the support of w is contained in [0,T]. Ve, and Ap, are
both uniformly bounded in L*°(Qr). Hence, we have

/ —pOrpe S IIPL2<QT>|V|L2(QT>+7pIILl(QT)Jr/Q Bpsoe+quoe+/Rd ©c(0,2)p" () da:.l
T

Qr

17



Thus, the only potentially problematic term is gA¢p, since L'(Qr) bounds on ¢ might
not hold.

To estimate fQT qAp. we choose some set K C R? with finite measure such that
K contains the unit ball. We then have

/ qAp. < HQHLl([O,T]xK)JF/ qApe S BIKIJrOéEalqIIm(QTﬁ/ quel
Qr [0,T]x (R4\K) [0,T] x (RI\K)

On |z| > 1, n =1, hence V. (t,z) =

—€|T 1) X
wit)e™ I(Tm _we(t,x))m,
Apc(t,z) = (@ ) .
— ) _ ) -2 (e <l
( |z] 26)Vee(t, z) 2] (t) 1+ |22
and max(Aep.(t,z),0) <
w(t)e el 7@_1) e“lo T
O (e +2¢ los +12D)

If we set fo(t,z) = w(t)e "l (m + 2¢% log(1 + |x\)) for all (¢,2) € Qr,

then combining our work thus far, we have

/ qApe S 1+ lpall2qqr) +/ qaf.
QT

T
We again decompose ¢ = qo + ¢1 where ¢ = min(q, §) and ¢; = max(¢ — 3,0).
Since f is uniformly bounded and ¢; < ag'pg we get fQT af S llpalleiory +
fQT qof. Fix some v > min(l — 2,0) and let r = min(v,1). If we define C, =
SUPge[0,a0] @ SUP Oe(a), assumption (e3) implies that C; < co. From the definition

of C,, we see that g9 < C,p", therefore fQT af < llelzgmllfll Since

& > d/2 and for any fixed § > 0

1 .
L1=7(Qr)

—e|z|

€ 5 5 —e

/Q A+ + €90 log(1 + |z|) e el
T

are uniformly bounded from above with respect to €, it now follows that
[ oo 1+ loalisian + loallascon + ol
T

Finally, we have obtained

/ (O + Bpd) <

HP\|L2(QT)HV\|L2(QT)+7HP||Ll(QT)+1+||pQ||L2(QT)mL1(QT)+||P||21(QT)+/Rd ©e(0,2)p°(x) d93~|
w was arbitrary, hence, Gronwall’s inequality gives us
Iplog(1 + |z])e™ V! oo 0,77 00 (Ra)) S

7 (Iollz@n IV lz2(@n) + Vlellrar) + 1+ (lpalz@nrzsan + Iollisgn + [ log + lahe @) ). |

d
The unspecified constants are independent of € and so sending € — 0 we are done
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5. Main results. At last, we are ready to combine our work to prove the main
results of this paper. We will begin by constructing solutions to the system (1.3) and
then we will show that these can be converted into solutions to the original system
(1.1). The key result we will prove in this Section is Theorem 5.5, which guarantees
that one can construct solutions to (1.3) using a vanishing viscosity approach. Once
we have established Theorem 5.5, it essentially only remains to show that solutions
to (1.3) can be converted into solutions to (1.1). This will be done in Proposition 5.6.
With these two results in hand, we will then be able to prove our main Theorems 1.1,
1.2, and 1.3, as straightforward corollaries.

As we mentioned above, the construction of solutions to (1.3) is based on a vanish-
ing viscosity approach. To that end, we consider a viscous analogue of system (1.3)
where we add viscosity to both of the species p1,p2. Given a viscosity parameter
v > 0, we introduce the system:

(5.1)

Op1 —7Ap1 =V - (2Vq) + V- (mV) = p1F1,1 ()7 (9), ) + p2F12((2%) 7 (@), m),
Opz —7Ap2 =V - (22Vq) + V- (paV) = p1 o1 ()71 (9), 1) + p2Fa2((2%) " (), m),
(p1+ p2)a = e(p1 + p2) + €"(q),
Oxn — aAn = —n(c1p1 + capa).

We define weak solutions to this system as follows.

DEFINITION 5.1. Gliven a viscosity parameter v > 0 and initial data p?, p9 € X (e)
andn® € L2(RY), we say that (p1, p2,q,n) € X(e)xX(e)xY(e*)x L2 ([0,00); H'(RY))
is a weak solution to the system (5.1) with initial data (p3, p3,n°), if pq = e(p) +e*(q)
almost everywhere, (p,q) € D(e,e*), YVp1,7Vpe € L2 ([0,00); L*(RY)), and for
every test function ¢ € H}([0,00); H*(R?))

(5.2)

Lpomst= [ 9BTan V) -mon-v(pnFa () @ m) taFa () @)

(5.3)
o ¥ (0, l‘)pg = / Vl/*(%VCI-WV,Oz—PzV) —p23t¢—¢(P1F2,1 ((Z*)_l(Q)v n)"‘p?FQ’Q(('Z*)_l(Q)? n))ﬂl

oo

(5.4) y (0, 2)n° = / aVip - Vn — nowp + n(erpr + cap2)t

oo

where p = p1 + p2.

When v > 0, the existence of weak solutions to (5.1) is straightforward, as the
individual densities will be bounded in L2 ([0, 00); H*(R%)) N HL ([0, 00); H~1(RY)).
Since this space is compact in L2 ([0, 00); L2(R?)), one can construct the solutions
as limits of an even more regularized system (with enough regularity existence of
solutions can be shown with a standard but tedious Picard iteration). Thus, we can
assume the existence of a sequence (p1 x, p2 &, gk, i) such that for each k the variables
are a weak solution to (5.1) with viscosity parameter -y, > 0. We will then use our
efforts from the past two sections to show that when 7, — 0 we can still pass to the
limit in equations (5.2-5.4) to obtain a solution to (1.3). In fact, we will show that we
can pass to the limit even when the underlying energy function ey is changing along
the sequence.
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We begin with a result that establishes conditions under which the sequence of

pressure variables converges strongly in L2 ([0, 00); H (R?)) .

PROPOSITION 5.2. Let ey, be a sequence of energy functions satisfying (el-e3) and
suppose there exists an energy e satisfying (el-e3) such that ey converges pointwise
everywhere to e. Let (pi,qr) € D(ex, er), and py € LOO(ka) be sequences of densities,
pressure, and growth terms that converge weakly in Li, .(Quo) to limits p € X(e),q €
Y(e*),p € LOO(%). Suppose that for all k the duality relation prqr = ex(pr) + €5 (qx)
holds almost everywhere and the product prqi converges weakly to pq in LIIOC(QOO).
Furthermore, suppose that for every nonnegative w € W>°([0,00)) the variables sat-
isfy the energy dissipation properties

(5.5) / —er(pr)Ow + w|Var)? + wep () V - V — wirqe g/ w(0)er(p°(x)) dz,
oo R4

and

(5.6) / w0l () o < / ()0 + w|Val? + wet @)V -V — wpg.

oo

If log(1 + |z|)p(t,x) is uniformly bounded with respect to k in L ([0,00); L*(R?))
and for every compact set D C Qo

(5.7) lim sup / Witkqr < / wpg,
D D

k—o0

then qi converges strongly in L2 _([0,00); L2 _(RY) N H'(RY)) to q.

loc loc

Proof. Given some nonnegative w € W2°([0, 00)) we can combine (5.5) and (5.6)
to obtain

lim sup/ —ek(pr) 0w + w\qu|2 +wer(qe)V -V — wukqr

k— o0 o

< / —e(p)Ow + w|Vql* + we* (q)V - V — wug.

Applying Lemma 3.2, it follows that that ex(px), €;(gx) and prgr converge weakly
in L{ ([0,00); L*(R?)) to e(p) and e*(q) respectively. The uniform boundedness of
log(1+ |z|)pk (¢, ) implies that (5.7) holds when D is replaced by Q. In addition, it
implies that log(1 + |x|)'/2prqs is uniformly bounded in Li ([0,00); L'(R%)). Thus,
the weak convergence of ex(px), ej(qx) against test functions in Ll _(Qr) can be
extended to test functions in W1>°([0,00)) that are independent of space. From
these weak convergence properties we obtain

limsup/ w| Ve |? S/ w|Vq|?.

k—o0

|

oo oo

Since w € W2([0,00)) was arbitrary, this automatically implies that Vg con-
verges strongly to Vg in L2 ([0,00); L2(R%)). It follows that i converges strongly in
LIZOC(QOO) to q.-

The next two Lemmas are technical results that will help us guarantee that we
can pass to the limit in all of the terms in (5.2) and (5.3).
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LEMMA 5.3. Let e be a sequence of energies satisfying (el-e3) and suppose there
exists an energy e satisfying (el-e3) such that ey converges pointwise everywhere to
e. Let (pr,qr) € D(er,€}) be sequences of uniformly bounded density and pressure
variables that satisfy the duality relation prqr = ex(pr) + €(qr) almost everywhere.
If g converges strongly in L2, _([0,00); HL . (R?)) to a limit q and py, converges weakly
in L2,.([0,00); L2(RY)) to a limit p, then

limsup/ o= prlIVgl* =0
D

k—o0
for any compact set D C Qo
Proof. Clearly for any ¢ € C°(Q~) we have

lim sup / OPKqL = / ©pq-
k—o00 Q

oo oo

Thus, by Lemma 3.2, the limiting variables satisfy the duality relation pg = e(p)+e*(q)
almost everywhere.

Let M = supy||pk||z(p) < oo. Define €; and &* such that €5 (0) = 0,e*(0) = 0,
and

0er(b) = {min(a, M) : a € dej(b)}, 90e*(b) = {min(a, M) : a € 0e*(b)}

Let e, = (€5)* and € = (e*)*. Clearly, we still have the duality relations prqr =
é(px) +e*(gr) and pg = &(p) +&*(g) almost everywhere. It also follows that €}, e* are
uniformly Lipschitz on the entire real line and uniformly bounded on compact subsets
of R. As a result, e must converge uniformly on compact subsets of R to e*.

Fix some § > 0. Convexity and the duality relation imply that

L < e (qr +90) _EZ(%)’ p< e*(g+9) —5*(11),
1) 1)
and 5% S ¥ S
o > i lar) — exlan —5)’ p> eilg) —e(g—9)
1) 1)
Therefore,
[ lo=ouliva
D
enlqe +9) +e"(q—9) —eplar) —e*(q), e (qg+ ) +eplq — ) —éplar) — e (q
S/D(k(k ) +e( 5) % (qx) ()|+|( ) k(ké) i (qr) ()>|vq|2.|

Thus, it follows that

) e (qg+46)+e*(¢g—46)—2e
hmsup/ lp— pr||Va|? < 2/ | (g+9) ((;1 ) @ |Vq|?
D D

k— o0

If e* is continuously differentiable at a point b € R, then

lim e*(b+0)+e*(b—9) —2e*(b)

6—0 ) =0

The singular set S C R of values where é* is not continuously differentiable is at most
countable. Therefore, |Vq| is zero almost everywhere on the set {(t,x) € D : ¢q(t,x) €
S}. Hence, by dominated convergence,

/ |€*(q +0) +¢é* (g — 9) — 2e*(q)
5 5
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LEMMA 5.4. Let 2z, be a sequence of energies satisfying (z1-2z3) and suppose there
exists an energy z satisfying (z1-z3) such that z, converges pointwise everywhere to
z. Define e, e by formula (2.1). Suppose that (p1,k, P2k, @k, k) € X(er) x X(eg) X
Y(er) x L2 .([0,00); HY(R?)) is a sequence such that (p1k+ p2.k)qr = ex(p1 .k +p2.k) +
ek(qk) almost everywhere. Suppose that py i, e, converge weakly in LT, ([0, 00); L™ (R
to limits p1,p2 € X(e), qr converges strongly in L% _([0,00); HL (R?)) to a limit g,
and ny, converges strongly in L2 ([0,00); L?(RY)) to a limit n. If the growth terms F; ;
satisfy assumptions (F1-F2), then p; 1 F; ; (z;l(qk), nk) converges weakly in L], (Qx)

to piF; (27 (q),n)) for alli,j € {1,2} and any r < cc.

Proof. It suffices to prove the convergence of p1 1 Fi 1 (zk_l (qr), nk) to p1Fi1 (zfl (q), n) 7I
the argument for the other terms is identical. Let ¢ € C(Q~) and let D C Qo be
a compact set containing the support of 9. For N € R define Sy, v := {(t,z) € D :
qr(t,x) + ng(t,x) > N}. From the uniform bounds on the norms of gx,ny it follows
that limy_,o0 supy, |Sk,n| = 0. Thus, we can assume without loss of generality that
gk, ng are uniformly bounded by some M > 0 (and of course this same logic applies
to g, n as well).

Let boo = sup{b € R : 2*(b) < oo}. Fix ¢ € (0,2*(bo)/2) and let g =
min(max(e, ¢x), 2*(boo) — €),¢e = min(max(e,q), z*(boo) — €). It now follows that
(z5) " (gr,e), (2*) "' (qe) are uniformly bounded in L°°(D). Thanks to Lemma A.1,
we know that (z})~! converges uniformly to (2*)~! on (e, 2*(bo) — €). Combining
this with properties (F1-F2), and the various convergence properties of ¢, ng, p1 5 it
follows that

lim sup ‘ /Q s&(pl,kFLl((ZZ)*l(Qk,e)vnk) - PlFl,l((z*)*l(Qe),n))’ =0.

k—o0

Thus, it remains to show that

(5.8) lim

e—0+

L e (a0 m) ~ Bl @m)| =0
and

(5.9) lim limsup ’/Q ©P1,k (Fl,l((zZ)fl(qkﬁ),nk) —Fa ((zZ)fl(qk),nk))‘ =0.

e=0T koo

To do this we will exploit the density pressure duality relationship. Thanks to
the relationship between e and z, we can express the duality relation as (p1x +
pgyk)(zZ)*l(qk) = zi(p1,k + p2.k) + qr. Fix some 6 > 0 and split the support of p;
into the sets p1 ; < 6 and p; , > J. Again using duality, we have

0<pig <pii+por€0z50(21) L oqr

Thus, for almost every (¢, z) where py x(t, z) > 4, it follows that (z;) ! is at worst 6~

Lipschitz at the value g (t,z) and (z}) (g k(_t )) is uniformly bounded with respect
to k. Thus,

| /Q epr (Fra((z0) (g me) = Fia () (a)om) )|

< Bélloll iy + ws(2¢6 Dllprill Loyl Loy + o180l Lo (D) | Drse u|
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where B is a bound on F} ; and ws is the modulus of continuity of F} ; on the bounded
set. (Ul (z0) 7 (@u(t,2)) : pra(t @) = 8}) x [0, M] and Dy = {(t,2) € D s qu(t,2) >
2*(boo)+€}. The convergence of 2, to z implies that lim sup;,_, . |Dg.| = 0 for all fixed
€ > 0. Thus, sending k — oo, then ¢ — 0T, and then § — 0%, we get (5.9). The strong
convergence of g implies that the duality relation (p1 + p2)(2*)~1(q) = 2(p1 + p2) +q
holds, thus we can use a similar argument to obtain (5.8).

At last, we are ready to prove our main result, which will let us pass to the
limit when we consider sequences of weak solutions to (5.1). Note that the following
theorem applies in the case where the viscosity is decreasing to zero along the sequence,
as well as when the viscosity is zero along the entire sequence.

THEOREM 5.5. Let zj, be a sequence of energies satisfying (z1-23). Suppose there
exists an energy z satisfying (z1-z3) such that zj, converges pointwise everywhere to
z. Define ey, e by formula (2.1). Let p9,0 € L'(RY) N L>®(R%),n° € L2(R?) be
initial data such that e(p9 + p3) € L*(R?). Let V € L2 ([0,00); L2(R%)) be a vector
field such that V-V € L®(Qx) and let F;; be source terms satisfying (F1-F2).
Let p1y, p2 € X(ex), qr € V(e}), ni € LE ([0,00); HY(R?)) be sequences of density
pressure and nutrient variables such that for each k, the variables are weak solutions to
the system (5.1) with energy ey, viscosity constant v, > 0, and initial data (p?, p3,n°).
Furthermore, suppose that v,V p1 k, V2 € L2 ([0,00); L2(R?)). If vy converges
to 0 and at least one of the following two conditions hold:

(a) 0z(a) is a singleton for all a € (0,00),
(b) the source terms satisfy the additional condition (F'3),
then any limit point (p1, p2,q,n) of the sequence is a solution of (1.5).

Proof. Step 1: Uniform bounds, basic convergence properties, and parabolic struc-
ture.

Summing the first two equations of (5.1) together, we see that for any test function
W € WE1([0,00); HY(R?)) pg, gr are weak solutions to the parabolic equation

(510) [ w020 = / kB + V- (Vo + 1V r) — eV V — i
R o0
where pi, = p1k + pok, Bk = Pk + p2e and pip = preFa((z5) 7 aw, ne)) +

P2 Fi2((25) " (qrsmi)) -
Thanks to Proposition 4.2, pg, g, it must satisfy the energy dissipation inequality

/Q —elp )0+l Vil + (@) -V = vt < [ wl0)e(s(a) do
for every nonnegative w € W1°°([0,0)) and the estimates (4.11)-(4.18). After plug-
ging estimate (4.11) into estimate (4.13), it follows that all of the estimates (4.12)-
(4.18) are independent of k and only depend on p°, V the bounds on Fj ;, and the
constants 51 j = min(l,%liminquoo e’:éb)), Bor = inf{b > 0 : a9 < infde*(b)}.
Thanks to property (e3) and the convergence of e}, to e* it follows that 51_ ,i and B2
are uniformly bounded in k (c.f. Lemma A.1). Thus, p,gr are uniformly bounded
in the norms estimated in (4.12)-(4.18). As a result, there must exist p € X(e),
q € Y(e*) and p € L2 ([0,00); L= (RY) N L(R?)) such that py, g, pr converge weakly

in L .(Qo) (along a subsequence that we do not relabel) to p, ¢, u respectively. Note

that for pg, i the weak convergence in fact holds in L, (Qo) for any r < co. Fur-
lo]

thermore, the convexity of the mapping (a, 8) +—
pe L>(5).

over R x (0,00) implies that
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Property (F2) implies that 0 < pq ,p21 < pr. Hence, p1, p2r are uniformly
bounded in L{2 ([0, 00); L (RY) N L>(R9)) and there exist limit points p1, p2 (and a
subsequence that we do not relabel) such that p; j, p2, i converge weakly in LI ([0, 00); L*(RY)N]
L"(R%)) to p1, pa respectively for any r < co. Furthermore, the bounds on p1 , p2.x
combined with standard results for the heat equation imply that nj is uniformly
bounded in L% ([0,00); H*(R?)) N HE _([0,00); H~1(R?)). Hence, the Aubin-Lions
Lemma implies that there exists a limit point n € L2 ([0,00); H*(R?)) and a subse-
quence (that we do not relabel) such that ny, converges to n in L2 ([0, 00); L2(R%)).

Thanks to the linear structure of equation (5.10), the convergence properties we
have established are strong enough to send k& — oo. Thus, p,q, u satisfy the weak

equation

(5.11) s )p’(x) de = : Vq -V — pdep — pV - Vip —
for any 1 € Wh1([0,00); H'(R?)). After taking the limit, the bounds on p,q, u
inherited from the estimates (4.12-4.18) allow us to conclude that (5.11) holds for any
b € WE([0,00); L' (p) N H'(RY)).
Step 2: Weak convergence of the products p1 kqk, p2,kqk-

We want to use Lemma 5.1 from [Lio96] to prove that p; xqr converges weakly
to p;q for ¢ = 1,2. This will imply that pgqi converges weakly to pg. Thanks to
estimates (4.12-4.15), it follows that

Slép 19cpi kel 220,155~ (R)) + IV L2(Qr) < 00

Thus, we can apply Lemma 5.1 to conclude that p; rqx converges weakly in (Ce(Qoo))*
to p;q for i = 1,2. The uniform boundedness of p; rqr in L, ([0, 00); L?(R%)) gives us
the automatic upgrade to weak convergence in L2 _([0,00); L?(R)). Now Lemma 3.2
implies that pg = e(p) + e*(¢q) almost everywhere and prqi, e(pr) and e*(gi) converge
weakly in L ([0,00); L} (R?)) to pg,e(p) and e*(q) respectively. Now we can use
Proposition 4.2 to conclude that for every ¢ € W2>°([0,00); L' (p) N H'(R?)) the
limit variables p, i, ¢ satisfy the energy dissipation relation (4.2).

Step 3: Strong convergence of Vi to Vq in L2 (Qeo)

We now want to use our work in Proposition 5.2 to prove the strong convergence of

the pressure gradient. From Proposition 4.3, we know that (5.5) holds. The pointwise
everywhere convergence of z; to z implies the pointwise everywhere convergence of
er to e. From step 2, we know that ppqp converges weakly to pg and that (4.2)
holds for the limit variables. Thus, to apply Proposition 5.2 it remains to show
that limsup,,_, ., [pwuege < [pwpug for every w € W2*°([0,00)) and compact set
D C Q. We will split our work into two cases.
Step 3a: Scenario (a) holds. When 0z(a) is a singleton for all a € (0, 00), it follows
that de(a) is a singleton for all a € (0, 00). Thus, Lemma 3.3 implies that ¢;, converges
in measure to ¢. Since g is uniformly bounded in L2 (Q.) N L2 ([0, 00); H' (R%)),
we can upgrade the convergence in measure to strong convergence in L] (Qo) for any
r < 2. Thus, Proposition 5.2 implies that Vgj, converges strongly to Vg in L (Q)-
Step 3b: Scenario (b) holds

Without strict convexity of the dual energy, the weak convergence of e (gx) does
not give us strong convergence of g. Thus, we will instead need to pass to the limit
in the (nonlinear) source terms even though we do not have access to any strong con-
vergence properties. To succeed in this endeavor, we will employ a delicate argument
that exploits the structure of the product qxpx
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We begin by fixing some § > 0 and letting Js be a space time mollifier. Set
gr,s = Js * qr and g5 := q * Js. It is clear that g s converges strongly to ¢s in
L2 (0,00); L*(R%)) and g5 converges strongly to ¢ in L2 ([0, 00); L?(R%)). Thus, it

will be enough to show that

lim inf lim sup / wlak — qus)tiig <0,
6—0 k—s 00 D
fori=1,2.

We focus on the case ¢ = 1 (the argument for ¢ = 2 is identical). Assump-
tion (F3) and the monotonicity of (z};)~! guarantees that ¢ — Fy1((z) ' (q),n) +
F12((25) " (q), n) is decreasing for each fixed value of n. As a result, there must exist a
function f, : [0, 00) %[0, 00) — R such that for each fixed value of n, we have f(0,n) =
0, ¢ — fr(g,n) is convex, and —09, fx(q,n) = F171((z,’;)71(q),n) + Flyg((zZ)’l(q),n).
The structure of 17 5, combined with the convexity of f; implies that

/ W(qr — qr,s) ik < / wpr k(S (@5, %) = fo(@r, ).
D D

Since Fi 1 + Fi 2 is uniformly bounded over R x [0, 00), it follows that fi is uni-
formly Lipschitz in the first argument. Uniform equicontinuity in the second argument
is clear when ¢ = 0. For ¢ > 0, fix some € € (0,¢) and consider ni,ns > 0. We see
that

|fr(q,n1) — fe(g,n2)| < Z/Oq |F1,i((ZZ)71(a)7”1) - Fl,i((ZZ)il(a)7n2)|da'

2

< 2Be+q sup Z\Fu(b,m) — Fi,i(b,n2)],
be[(z;;) =1 (e),(z5) " )] ;=1

where B is a bound on Fj; + Fj 2. Assumption (z3) and the pointwise everywhere

convergence of zj to z implies that (z;)7!(e), (2;)~!(g) are uniformly bounded with

respect to k. Thus, it now follows that fj is uniformly equicontinuous in the second

argument on compact subsets of [0,00)2. As a result, fx must converge uniformly on

compact subsets of [0,00)? (possibly along some subsequence that we do not relabel)

to a limit function f that is convex in the first variable and continuous in the second.
For all k we have |fx(¢q,n)| < Bg. Thus, it is now clear that

1iminflimSUP/DwP1,k<|fk(Qk,5,nk)—f(q,n)|+|fk(%,nk)—f(%,nk)\ﬂf(%ﬂ)—f(%,nk)\) = O-I

=0 koo

It remains to prove that

limsup/prl,k(f(q, n) — f(qk,n)) < 0.

k—o0

Let f*(a,n) = supgcp,00) g — f(g,n). Given any smooth function ¢ € C(Q),
we have

/ wpri(F@m) — Flawm) < / wpri (F(gm) — k) + wpr (1, m).
D D
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Using the weak convergence of the product pq rqr to p1g we see that

1imsup/pr1,k(f(q,n)—qk¢)+p1,kf*(w,n)=/ wpr (f(g,n) — q¥) +wpr f* (¥, n).

k—o0 D

Taking an infimum over ¢, we get

limsup/prl,k (f(% n) — f(qx,n)) <O0.

k—o0

as desired.
Step 4: Passing to the limit in the weak equations

Now that we have obtained the strong convergence of the pressure gradient, we
are ready to pass to the limit in the weak equations. In Lemma 5.4, we showed
that the source terms converge weakly to the desired limit under the convergence
properties that we have established. The weak convergence of the remaining terms is
clear except for the weak convergence of the product %qu. to %Vq. Given some

6 > 0 and a compact set D C @, it follows from Lemma 5.3 that ﬁqu converges

strongly in L (D) to ﬁVq. Thus, if we can show that

. dpi . dpi k
5.12 lim inf /7V 2 4 limsu /7’V 2) =0,
(5.12) min ( b pp o) VA | ) ol

then it will follow that ppi—;c’“qu converges weakly in L2 (D) to £Vq.

loc

Since p;r < pr and p; < p, the left hand side of (5.12) is bounded above by
liminf(/ L|V |* 4 lim su / L \Y \2>
o0 \Jppro ! o Jp e+ 8

L 26 )
=R, stV

where we have used Lemma 5.3 to go from the first line to the second. The property
limsup,_, o+ '3(;) = 0 combined with the duality relation implies that ¢ = 0 whenever
p = 0. As aresult, |Vq| gives no mass to the set of points where p = 0. By dominated

convergence

. 26 5
llglgélf/D m|Vq\ =0. 0

Our main results nearly follow directly from Theorem 5.5. The only remaining
thing we need to check is that solutions to the system (1.3) can be converted into
solutions to (1.1).

PROPOSITION 5.6. Let z be an energy satisfying (z21-23) and define e by formula
(2.1). Suppose that p9,p9 € L*(R?) N L*(RY),n° € L*(R?) is initial data such
that e(p} + p9),2(p? + p3) € L'(R?). If (p1,p2,q,n) € X(e) x X(e) x Y(e*) x
L% ([0,00); HY(R?)) is a weak solution to the system (1.3) and we set p = (z*)"1(q)
then (p1, p2,p,n) € X(e) x X(e) x L& ([0,00); L. .(p)) NH (p)) x LE ([0, 00); H(R?))
is a weak solution of (1.1).

Proof. The duality relation pqg = e(p) + e*(q) is equivalent to pp = z(p) + z*(p) =
2(p)+q. Since p € L2 ([0, 00); L (R?)) it follows that z(p) is bounded from below on

loc
any compact subset of Q.. If there exists a; > 0 such that lim,_,,, 2(a) = +00, then
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there must be some 0 < as < aj such that z is increasing on [ag, a;) and decreasing
on [0,az]. Let ag = max(az, %al). We can then compute

lim @ < lim 2(a) < lim 2(a) = — <
a—ar e(a) ~ a—a1 az(a) — 2f52 2(s)ds ~ a—a Lz(a) — 2(as — as)z(az) @ '

Therefore, e(p) € L2 ([0,00); L' (R?)) implies that z(p) € L2 ([0,00); Li (R?)).
Since ¢ € LIOC(QOO) it now follows that p € L2 ([0, 00); L. (p)).

If (2*) =t is uniformly Lipschitz on [0, o), then the chain rule for Sobolev functions
implies that Vp = 1Vq and Vp € L2 _([0,00); L2(R%)). In this case, it is now clear
that (p1, p2,p,n) is a solution to the system (1.1). The regularity of p can then be
improved by arguing as in Propositions 4.2.

Now we suppose that (2*)~! is not uniformly Lipschitz on [0, 00). Fix some ¢ > 0
and define g5 := max(q, §), and ps := (2*)~1(gs). The monotonicity of z* implies that
ps is decreasing with respect to . Therefore,

/Dplm—pI:/Dp(pa—p)S/DZ*(ps)—z*(p)=/Dq5—q§5|D|~

Hence, ps converges to p in Li (p). Since (2*)~! is Lipschitz on [4,00), the chain
rule for Sobolev functions allows us to compute Vps = XET((’?)V(] where ys is the
characteristic function of the interval [§,00). A direct computation reveals that

/ pIVps, — Vpso| = / Vallxs: (@) — v ().
D D

Since |V¢| vanishes almost everywhere on the set {(¢,z) € Q : ¢(t, ) = 0}, it follows
that Vps is a Cauchy sequence in Li (p) that converges to %Vq. In particular, for
any smooth vector field v with compact support we can conclude that

. Pi
1 Vs — 2i¥g) o] = 0.
élgg)/%(p Vps qu) v|=0
fori=1,2.

It remains to show that lims_,g Vps = Vp in the sense of distributions. Fix some
€ > 0 and let . : R — R be a smooth increasing function such that n.(a) = 0 if
a < ¢€/2 and ne(a) = 1if a > e ela) _ , it follows that % is

a
bounded on the set ¢ > e. Hence, n.(¢q) and n.(¢q) are absolutely continuous with

respect to p. Given a test function ¢ € L3°([0, 00); W2 (R?)), we can compute

/ PV - (¢ne(q)) —hm/ psV - (ne(q =—hm/ Vps - (#ne(q))

6—0
. q e(q
=—§1m/ xal )ns(q)qup:—/ n()Vq-w
—0 Q(x) p p

Thus, Vp = %Vq = limg_,o Vps in the sense of distributions when tested against

oo

oo

functions of the form ¢n.(q). When z* fails to be Lipschitz on [0, 00) it follows that p
approaches zero wherever g approaches zero. Thus by sending € — 0 we can conclude
that Vp = %Vp on p > 0. It now follows that (p1, p2,p,n) is a solution to the system
(1.1). Again, the regularity of p can then be improved by arguing as in Propositions
4.2 d
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At last, we can now prove our three main results.

Proof of Theorem 1.1. For ~, = %, the existence of a solution (p1 k, P2.ks Qs k)
to the system (5.1) for the fixed energy e is straightforward. Using this sequence,
we can pass to the limit as k — oo using Theorem 5.5 to get a solution (p1, p2,q, n)
to (1.3). We can then use Proposition 5.6 to convert (p1,p2,q,n) into a solution

(p17P2ap7”) to (11) o
Proof of Theorem 1.2. We use an identical argument to the previous proof. 0
Proof of Theorem 1.3. The energies z,,(a) = ﬁam correspond to the energies

em(a) = mL_Ham+1 after making the transformation ¢ = z*(p). It is clear that e,,

converges pointwise everywhere to the incompressible energy e.,. We can use Theorem
1.1 to construct weak solutions (p1,m, P2,m, @m, "m) of (1.3) for each m > 0. We can
then use Theorem 5.5 to pass to the limit m — oo to obtain a solution (p1, p2, ¢, n) to
(1.3) with the energy es. Next, we can use Proposition 5.6 to convert the solutions
(P1,m> P2,m> Gm, m) and (p1, p2,q,n) to (1.3) into solutions (p1.m,P2.m;Pm,m) and
(p1, p2,p,m) to (1.1). Since we know that ¢, = (%)Tﬁl and ¢ = p, it follows
that limsup,, ... [|¢m — PmllL1(@r) = 0 for any T > 0. Therefore, (p1, p2,p,n) is a
weak limit point of (p1,m, P2,m, Pm, om)-

Finally, it remains to establish the complementarity condition (1.8). Since p and
q are identical, we can do this for the solution (p1, p2, ¢, n). Note that the complemen-
tarity condition is precisely the energy dissipation relation (4.2) applied to the sum
of the first two equations of (1.3). Indeed, since p{ + p9 < 1, it follows that e(p") = 0
and e(p) = 0 almost everywhere. Thus, (4.2) simplifies to (1.8). 0

Appendix A. Some properties of convex functions.

LEMMA A.l. Let f: R — RU{+o0} be a proper, lower semicontinuous, convex
function such that f~1(R) is not a singleton. If fi, : R — R U {+oc} is a sequence
of proper, lower semicontinuous convex functions such that fi converges pointwise
everywhere to f then the following properties hold:

1. If f is differentiable at a point a € R, then

lim sup max (| supdfx(a) — f'(a)|, |inf O fx(a) — f’(a)|) = 0.

k—o0

2. The convergence of fi to f is uniform on compact subsets of the interior of
FUR).

3. fi converges pointwise everywhere to f* except possibly at the two exceptional
values b, = sup{b € R : f*(b) < co},by, = inf{b e R: f*(b) < co}.

4. If f* is differentiable at a point b € R, then

limsup maxx (| sup 9 (6) = £/(0)| . [inf O (6) = £/ ()]) =0,

k—o0

and the convergence of fii to f* is uniform on compact subsets of the interior
of (F)"\(R).
Proof. Let a be a point of differentiability for f. Since f’(a) exists and is finite,

there exists dp > 0 such that f is finite on [a — dg,a + Jp]. Fix some ¢ € (0,dp). The
convergence of fi to f implies that there must exist some N, B sufficiently large such
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that |fi(a)l,|fx(a —8)|,|frx(a+ )| < B for all kK > N. Now we can use convexity to
bound

fr(a+9) — fi(a)
5 .

Jr(a) — gk(a —9) < inf 8 fx(a) < supdfi(a) <

Thus,
9)

timsupma (| sup fea) (@), [if 0fi()—f'(a)]) < | LD IO prigy ot D) = Tla)

k—o0

Sending 6 — 0 and using the fact that f is differentiable at a, we get the desired
result.

Now suppose that [ag, a;] is an interval in the interior of f~!(R) and choose some
§ > 0 such that [ag — §,a; + 4] is still in the interior of f~1(R) and f is differentiable
at ag — d,a1 + 0. Given any a € [ag, a1], we have

f(ag —d) <infdf(a) <supdf(a) < f'(a; +9).

It then follows from our above work that 0f;(a) is uniformly bounded on [ag, a;] for
all k sufficiently large. Hence, fj is uniformly equicontinuous on [ag,a;] and thus
converges uniformly to f.

Now we consider f*. Given any b € R, if we choose some a € f~!(R), then

liminf f;(b) > liminf ab — fx(a) = ab— f(a).
k—o0 k—o0

Taking a supremum over a, it follows that liminfy_,o f(b) > f*(b). Hence we only
need to worry about b € (f*)71(R).

Let b € (f*)"1(R)\{bz,bL}. It then follows that 3 f*(b) # & and so we can define
ap == inf f*(b) and ay := sup df*(b). Again since b ¢ {b, bl } ao,a; must be finite.
If we fix some 6 > 0 then M > b and similarly M < b. Thus, the

pointwise convergence of fj to f implies that M > b and M <b
for all k sufficiently large. Thus,

fu) = sup ab — fr(a),
a€lap—0b,a1+46]

for all k sufficiently large.
If ap < a1, then there exists a point a’ € (ag,a1) such that f is differentiable at

a’. Choose b} € 0fi(a’) and note that our earlier work shows that b) converges to
f'(a’) = b. Hence,

fr(0) < W ]ab*fk(a/)*bk(a*a/) < max(\a0—6||b—b§€|,|a1+5||b—b§c|)+b§€a’—fk(a/).l
a€lag—0d,a1+0

So we obtain limy_, f5(b) < f'(a’)a’ — f(a') = f*(b) where the final equality follows
from the fact that f/(a’) = b.

Now suppose that ag = a;. Since f~!(R) is not a singleton, there exists a point
as € [ag — 9, ag+ 0] such that f is differentiable at a5 (note that we can always choose
our ag such that as is either increasing or decreasing with respect to §). If we choose
br,s € Ofr(as), then we have

) < [ suép : ab — fr(as) — brs(a — as) < apb — fr(as) + 8|b| + 6]by. 5.
a€lap—9d,a1+
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Since by, s must converge to f’(as), it follows that
lim f;(b) < apb — f(as) + 8|b| + 6| f (as)|- 0
k—o00

If as is increasing with respect to § then lims_,o f’(as) = inf 0 (ag) while lims_,¢ f'(as) =|}
sup df(ap) if it is decreasing. Since either inf df(ag) or sup df(ap) is finite, we can
assume that we chose as such that limsupy_,, | f'(as)| < co. Hence, sending § — 0, we
can conclude that limg_, o fi(b) < agb— f(ag) = f*(b). This completes the argument
that limy,_,e f7(b) = £7(b) if b ¢ {bm, b ).

Now that we have proven that limy_, f;(b) = f*(b) for all b € R\ {b,, b1} we
can use the arguments we applied to f; to conclude property (4).

LEMMA A.2. Let z : R — R U {400} be an energy satisfying (z1-z3) and let
zi : R = RU{+00} be a sequence of energies satisfying (z1-z3) such that zi, converges
pointwise everywhere to z. If we set boo = inf{b € R : 2*(b) = +oo} then (z})~!
converges uniformly to (2*)~% on compact subsets of (0, z*(boo)).

Proof. If 2*(bs) = 0, then there is nothing to prove. Otherwise, given € €
(0, 2" (boo)) there must exist b2 < b € R such that 2*(be2) = ¢/2 and 2*(be) = €. It
then follows that for all b > b, and k sufficiently large

€

————— < inf 9z] ().
4(b5 — be/2) o k( )

1

As a result, (2;)7" is uniformly Lipschitz on [e,2%(bs)). Choose some value a €

€, 2% (b)) and let b= (z*)"1(a). Let aj, = 2;(b) and note that once k is sufficiently
large we must have a € z;(R). Thus,

(=) (@) = ()" (@) = b= (25) "M (ax + a — ax)| < Lela — ax| = Le|2" () — 2(0)]

ad
Now the uniform convergence of z}, to z* on compact subsets of (—00,bs) combined
with the Lipschitz bound implies the uniform convergence of (z})~! to (2*)~! on
compact subsets of (0, 2*(bs))-

LEMMA A.3. Let f: R — RU{+oo} be a proper, convex, lower semicontinuous
function and let f* : R — RU{+o0} be its convex conjugate. Suppose that a € f~(R)
and there exists some b € 0f(a). Given any € > 0, there exists A¢(a,b,€) > 0 such
that

f(@) = fla) —b(a—a) > 6)‘f(a" b,e)
foranya e {aeR:[a—¢a+eNaf*(b) =o}.
Proof. Define
a?(a,b, €):=inf{a>a:[a—¢alNIf*(b) =0},
oy (a,be) :==sup{a <a:[a,a+eNIf (b) = o},

beos (ot (@) b—b if af(a)f(a,e)) #+ &,

400 else,
Eeaf(aj(a,e)) b—b if af(a;(a,e)) #+ @,

400 else,
30
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)\Jf(a, b,e) := {

inf

Ay (a,b,€) := {



Since subdifferentials are closed sets [BC17], it follows that )\;{(a, b€),|Af (a,b,€)] >0
for all € > 0. With these definitions, we now see that for any oy € {a < a :
[, + €N Of*(b) = @} we have

flao) = f(a) = b(ag — a)

> f(oz]?(a, b.e)) — f(a) — b(a;(a,b, €)—a)+ At (a,b,e€) (o0 — oy (a,b, €))

> As(a,b,e) (a0 — o (a,b, €))
> e\)\]?(a,b,e)|.

Similarly, for any oy € {a > a : [o, 0 + €] N Of*(b) = @} we have

flaa) = fla) = b(ag — a)

> f(a;f(a,b,e)) — f(a) — b(a}'(a,b, €)—a)+ )\}'(a,b, €)(a1 — a}'(a,b, €))

> A; (a7 ba 6) (al - ij[ (a7 ba 6))
> e/\}'(a, b,€).

Finally, if we define A¢(a,b,€) := min()\;{(a, b.€),|A; (a,b,¢€)|), then it follows that for
any @ € {a € R: [a —¢,a+ ¢ NIf*(b) = @}, we have
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£(@) = f(a) — b(@— a) > erp(a,b,€) > 0. O
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