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Abstract. Facet-defining inequalities of the symmetric traveling salesman problem (TSP)
polytope play a prominent role in both polyhedral TSP research and state-of-the-art
TSP solvers. In this paper, we introduce a new class of facet-defining inequalities, the
circlet inequalities. These inequalities were first conjectured in Gutekunst and Williamson
[Gutekunst SC, Williamson DP (2019) Characterizing the integrality gap of the subtour LP
for the circulant traveling salesman problem. SIAM J. Discrete Math. 33(4):2452–2478] when
studying the circulant TSP, and they provide a bridge between polyhedral TSP research
and number-theoretic investigations of Hamiltonian cycles stemming from a conjecture
from Marco Buratti in 2007. The circlet inequalities exhibit circulant symmetry by
placing the same weight on all edges of a given length; our main proof exploits this
symmetry to prove the validity of the circlet inequalities. We then show that the circlet
inequalities are facet-defining and compute their strength following Goemans
[Goemans MX (1995) Worst-case comparison of valid inequalities for the TSP. Math.
Programming 69:335–349]; they achieve the same worst case strength as the similarly
circulant crown inequalities of Naddef and Rinaldi [Naddef D, Rinaldi G (1992) The
crown inequalities for the symmetric traveling salesman polytope. Math. Oper. Res.
17(2):308–326] but are generally stronger.
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1. Introduction and Outline
The symmetric traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization, com-
binatorics, and theoretical computer science. An instance consists of a set [n] :� {1, 2, 3, : : : ,n} of n cities and, for
each pair of distinct cities i, j ∈ [n], an associated cost or distance cij � cji ≥ 0 reflecting the cost or distance of trav-
eling from city i to city j. The TSP is then to find a minimum-cost tour visiting each city exactly once. Treating the
cities as vertices of the complete, undirected graph Kn with vertex set V � [n] and edge set E, and treating an
edge {i, j} of Kn as having cost cij, the TSP is equivalent to finding a minimum-cost Hamiltonian cycle on Kn:

Let STSP(n) denote the symmetric traveling salesman problem polytope on n cities: the convex hull of the
edge-incidence vectors of Hamiltonian cycles on Kn. That is,

STSP(n) � conv{χH : H is a Hamiltonian cycle on Kn} ⊂ R|E|:

A substantial theme of TSP research is polyhedral with a particular emphasis on facet-defining inequalities. These
inequalities play an important role in developing TSP algorithms: despite the TSP being a fundamental NP-hard
problem,1 the state-of-the-art TSP solver Concorde (Applegate et al. [1]) has been able to successfully solve struc-
tured instances with nearly 100,000 vertices! (See, e.g., Applegate et al. [3], which certifies the optimality of
pla85900 from TSPLIB (Reinelt [31]).)

Formally, an inequality ax ≥ a0 is valid for STSP(n) if every x ∈ STSP(n) satisfies ax ≥ a0: Facet-defining inequal-
ities are valid inequalities that define a facet of STSP(n) (i.e., letting S � {x ∈ STSP(n) : ax � a0}, the inequality ax ≥ a0
is facet-definingwhen dim(S) � dim(STSP(n)) − 1 so that the inequality induces a facet of STSP(n)). A nice survey of
the prominent role of facet-defining inequalities in TSP research and computation can be found in Applegate et al.
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[2, chapter 5]. See also Grötschel and Padberg [18] and Naddef [26]. Goemans [15] surveys many facet-defining
inequalities for the TSP and provides a way to evaluate the strength of such inequalities. Well-known inequalities
for the TSP include the clique-tree inequalities (Grötschel and Pulleyblank [19]), the comb inequalities (Chvátal [7],
Grötschel and Padberg [17]), the crown inequalities (Naddef and Rinaldi [28]), the path inequalities (Cornuéjols
et al. [9]), the path-tree inequalities (Naddef and Rinaldi [27]), the binested inequalities (Naddef [25]), and the rank
inequalities (Grötschel [16]).

The main result of this paper is a new facet-defining inequality arising from the circulant TSP, a special case of
the TSP for which relatively little is known. Circulant TSP instances are those whose edge costs can be described
by a symmetric, circulant matrix, a condition that imposes substantial symmetry: the cost of edge {i, j} only
depends on (i− j) mod n. The cost of an edge, then, depends only on its length, which we define as

ℓi,j �min{|i− j|,n− |i− j|}:
In analogue to a circulant TSP instance, we define a circulant inequality for the TSP as a valid inequality ax ≥ a0,
where the coefficients of a are circulant (i.e., ai,j � ai′,j′ whenever ℓi,j � ℓi′,j′ ). Of the well-known facet-defining
inequalities for STSP(n), the crown inequalities of Naddef and Rinaldi [28] are circulant.

For a vector x ∈ R|E|, let

ti �
∑

{s, t}∈E:ℓs,t�i
xs,t

denote the total weight of edges of length i. A circulant inequality ax ≥ a0 can be rewritten as

∑d

i�1
citi ≥ a0, (1)

where d �
⌊
n
2

⌋
and ci � a0,i is the cost of any edge of length i.

Notice that any valid inequality of the form of Equation (1) expresses some requirement about edge lengths in
a valid tour. For example, suppose that n is divisible by four. Then, t4 ≤ n− 4 is a simple inequality stating that
you cannot use more than n – 4 edges of length 4: edges of length 4 decompose the graph of Kn into four distinct
cycles, and a valid Hamiltonian cycle must use at most n=4− 1 edges from any of these cycles. Circulant inequal-
ities, thus, offer a way to bridge together polyhedral investigations of the TSP in combinatorial optimization with
related questions in number theory. For example, the following conjecture dates to Marco Buratti in 2007 and
conjectures conditions for a Hamiltonian path using prescribed edge lengths (see Buratti and Merola [5] for an
initial statement, Horak and Rosa [22] for a generalization, and Pasotti and Pellegrini [30] for a rephrasal).

Conjecture 1.1 (Buratti): Let L be a multiset of size n – 1 consisting of edge lengths in 1, 2, ::::,
⌊
n
2

⌋
: There exists a

Hamiltonian path in Kn using edge lengths L if and only if, for every q that divides n,

#{e ∈ L : q | e} ≤ n− q:

Here, {e ∈ L : q|e} is taken as a multiset consisting of all edge lengths in L that are a multiple of q. In the case in
which n � 8, for example, this condition says that Lmust contain at most 8− 2 � 6 edges of even length. Any ana-
logue of Buratti’s condition for Hamiltonian paths would give rise to a circulant inequality for the TSP. Costa
et al. [10], for example, explicitly leave as open finding necessary and sufficient conditions for a graph to have a
Hamiltonian cycle using prescribed edge lengths.

The circulant facet-defining inequality we propose (the circlet inequality) here takes the following form: Sup-
pose that n is divisible by four and let d � n

2 : Then, for any x ∈ R|E| that is a feasible TSP input,

∑d

i�1
citi ≥ n− 2, ci � i, i odd

d− i, i even:

{
(2)

Note that this inequality has an “alternating” structure based on parity: for i odd, the coefficient of ti grows with
i, whereas for i even, the coefficient of ti decreases with i. When n � 12, for example, the inequality is

t1 + 4t2 + 3t3 + 2t4 + 5t5 + 0t6 ≥ 10;

here, for example, t2 expands as

t2 � x1,3 + x2,4 + x3,5 + : : : + x10,12 + x11,1 + x12,2:

Note that this inequality is valid for any arbitrary labeling of the vertices. Hence, for any TSP instance, there are
on the order of n! possible versions that can be applied. Consider a point x ∈ R|E| that may or may not be in
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STSP(n). One can arbitrarily relabel the vertices with any permutation of 1, : : : ,n, determine the “edge lengths”
and ti values based on that new labeling, and apply Inequality (2). If x is not feasible for Inequality (2) under that
relabeling, then x is not in STSP(n).

In addition to the number theoretic connections and interpretations of the circlet inequalities, we highlight
three additional properties of it. First, Inequality (2) was originally conjectured in Gutekunst and Williamson [20]
and motivated by the circulant TSP. Gutekunst and Williamson [20] characterize the integrality gap of the proto-
typical LP relaxation of the TSP, the subtour LP. Specifically, Gutekunst and Williamson [20] show that the worst
case ratio of the subtour LP relative to the TSP is exactly two on circulant TSP instances. Gutekunst and William-
son [20] consider several avenues to improving the integrality gap on circulant TSP instances. They note that
many facet-defining inequalities eliminate the specific solution used to show an integrality gap of two, including
the ladder, chain, and crown inequalities (see Boyd and Cunningham [4], Padberg and Hong [29], and Naddef
and Rinaldi [28]). However, none of these inequalities is robust to a small modification of the specific solution
used. Gutekunst and Williamson [20] conjecture Inequality (2) and note that, if valid, adding Inequality (2)
robustly eliminates the specific solution; see Section 2 for more details. Thus, this paper resolves the circulant
TSP conjecture of Gutekunst and Williamson [20].

Second, Inequality (2) can itself be considered as defining a circulant, nonmetric TSP instance. One places a
cost ci on each edge of length i and verifies if the minimum cost solution to that TSP instance costs at least n – 2;
see Figure 1 for an example of the symmetry of such an instance. Indeed, when investigating this TSP inequality,
we first experimentally tried to verify its validity using Concorde (Applegate et al. [1]). Our instances present
potential computational novelty: despite having solved instances with nearly 100,000 vertices, Concorde
struggled to verify the circlet inequality on even tiny instances.2

Finally, we hope that this paper motivates a search for other circulant facet-defining inequalities. Such inequal-
ities are intimately connected to number theory and may provide a new approach to the TSP: decades of research
have still not resolved many questions about STSP(n), and one might wonder if a more number-theoretic take—
an understanding of the combinations of edge lengths that can constitute a Hamiltonian cycle—might provide
new insights. We specifically consider the projection of STSP(n) to the variables t1, : : : , td: Let

EL(n) :� conv (t1, : : : , td) : x ∈ STSP(n), ti �
∑

{s, t}∈E:ℓs,t�i
xs,t

{ }

denote the edge-length TSP polytope. One might ask if it is possible to characterize EL(n) and if valid inequalities
for EL(n) are useful in solving TSP instances.

Figure 1. (Color online) Circulant symmetry. Edges of a fixed length are indistinguishable. For example, all edges of the form
{v,v+ 1} (where v + 1 is takenmod n to lie in [n]) have the same appearance.
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1.1. Outline
We begin by providing brief background on the circulant TSP and context for our results in Section 2. Then, we
are able to present the two main theorems in this paper: Theorem 3.1, which proves that Inequality (2) is valid,
and Theorem 5.1, which proves that it is facet-defining.

Sections 3 and 4 present the proof of Theorem 3.1, which uses two lemmas that provide contrasting conditions
on potential counterexamples to Inequality (2). Recall that this inequality is of the form

∑d
i�1 citi ≥ n− 2, where

ci, ti ≥ 0 and
∑d

i�1 ti � n: On one hand, c1 � 1, cd � 0 and ci ≥ 2 otherwise. Hence, any possible counterexample to
Inequality (2) requires t1 and td to be large: for

∑d
i�1 citi < n− 2, the cost of an average edge must be strictly less

than one, and all other edges of length i ∉ {1,d} cost at least twice that. We formalize this observation in our first
lemma, Lemma 3.1.

On the other hand, our more technical lemma, Lemma 3.2, argues that a minimal counterexample cannot be
“dense” in edges of length 1 and d: any “window” of four vertices v,v+ 1,v+ d,v+ d+ 1 can include at most two
such edges. By arguing that the conditions of Lemmas 3.1 and 3.2 are mutually incompatible, we can quickly
deduce our main result. We do so in Section 3, in which we provide the proof up to Lemma 3.2. Then, in Section
4, we prove Lemma 3.2. Lemma 3.2 is considerably more involved than Lemma 3.1, and to prove it, we carefully
consider what happens when we contract any window using three edges of length 1 and d. Doing so involves
careful bookkeeping on how edge costs change under contraction in addition to combinatorial observations
about the different types of edges a tour can contain.

In Section 5, we turn to our second main theorem. By presenting a relatively small set of tours and exploiting
symmetry, we can quickly show that Inequality (2) is tight. Finally, in Section 6, we turn toward analyzing the
strength of Inequality (2). We compute its strength following Goemans [15], and we show that the strength of
Inequality (2) is

n2 − 2n − 4

n2 − 3n
≤ 11

10
:

It is equal to 11
10 when n � 8: For comparison, we note that the bound of 11

10 is also attained when n � 8 by the crown
inequality; otherwise, our circlet inequality is marginally stronger than the crown inequality (Naddef and Rinaldi [28]).

2. Background
2.1. Circulant TSP
As noted, circulant TSP instances are those whose edge costs can be described by a symmetric, circulant matrix.
Because the cost of edge {i, j} only depends on (i− j) mod n, the cost matrix is in terms of �n2	 parameters:

C � (c( j−i) mod n)ni,j�1 �

0 c1 c2 c3 ⋯ c1
c1 0 c1 c2 ⋯ c2
c2 c1 0 c1 ⋱ c3
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

c1 c2 c3 c4 ⋯ 0

»
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼½

¾
¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À
, (3)

with c0 � 0 and ci � cn−i for i � 1, : : : , �n2	: Importantly, in the circulant TSP, there is not necessarily an assumption
that the edge costs are metric.

The circulant TSP initially arose from questions of minimizing wallpaper waste in Garfinkel [13] and reconfig-
urable network design in Medova [24]. One of the reasons that the circulant TSP remains so compelling is that
circulant instances seem to provide just enough structure to make an ambiguous set of instances: it is unclear
whether a given combinatorial optimization problem should remain hard or become easy when restricted to cir-
culant instances. Some classic combinatorial optimization problems become easy when restricted to circulant
instances. In the late 1980s, Burkard and Sandholzer [6] show that the decidability question for whether a sym-
metric circulant graph is Hamiltonian can be solved in polynomial time and show that bottleneck TSP is
polynomial-time solvable on symmetric circulant graphs. Bach, Luby, and Goldwasser (cited in Gilmore et al.
[14]) show that one can find minimum-cost Hamiltonian paths in (not necessarily symmetric) circulant graphs in
polynomial time. In contrast, Codenotti et al. [8] show that max clique and graph coloring remain NP-hard when
restricted to circulant graphs and do not admit constant-factor approximation algorithms unless P � NP.

Gutekunst and Williamson [20] analyze the prototypical LP relaxation of STSP(n) on circulant TSP instances.
This LP relaxation is the subtour elimination linear program (also referred to as the Dantzig–Fulkerson–Johnson
relaxation (Dantzig et al. [12]) and the Held–Karp bound (Held and Karp [21]) and which we refer to as the sub-
tour LP and whose feasible region we abbreviate as SP(n)). The subtour LP has a variable xe associated to each
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edge. For S ⊂ V, we denote the set of edges with exactly one endpoint in S by

δ(S) :� {e � {i, j} : |{i, j} ∩ S| � 1}

and let δ(v) :� δ({v}): The subtour LP is then

min
∑
e∈E

cexe

subject to
∑
e∈δ(v)

xe � 2, v � 1, : : : ,n

∑
e∈δ(S)

xe ≥ 2, S ⊂ V : S≠ ∅,S≠ V

0 ≤ xe ≤ 1, e ∈ E:

(4)

Given a Hamiltonian cycle C, there is a feasible solution to the subtour LP attained by setting xe � 1 for each e ∈ C

and xe � 0 otherwise. When edge costs are metric, Wolsey [34], Cunningham [11], and Shmoys and Williamson
[32] show that solutions to this linear program are within a factor of 3

2 of the optimal, integer solution to the TSP.

Theorem 2.1 (Wolsey [34], Cunningham [11], and Shmoys and Williamson [32]). The integrality gap of the subtour
LP on metric TSP instances is at most 3

2 : That is, for any input to the TSP with metric edge costs, the following is true:

Cost of Optimal TSP solution

Cost of Optimal LP Solution
≤ 3

2
:

It is conjectured that the integrality gap of the subtour LP on metric TSP instances is at most 43 , and one motiva-
tion for this conjecture stems from the definition of strength in Goemans [15]. The 3

2 bound, however, remains
state of the art.

Gutekunst and Williamson [20] show that the integrality gap of the subtour LP on circulant instances—the
worst case ratio of the subtour LP relative to the TSP—is exactly two. Figure 2 describes the circulant (but non-
metric) TSP instances and corresponding subtour LP solution used to show that the integrality gap on circulant
instances is at least two. These instances have n � 2k+1 vertices. Edges of length d have cost 0, edges of length 1
have cost 1, and all other edges have arbitrarily large costs. Gutekunst and Williamson [20] argue that the cheap-
est possible tour costs 2k+1 − 2. In contrast, the solution shown in Figure 2 places weight 1/2 on all edges of length
1 and weight 1 on all edges of length d. It is feasible for the subtour LP, and the cost of such a subtour LP solution
is only 2k:

Gutekunst and Williamson [20] note that many facet-defining inequalities eliminate the specific subtour LP
solution indicated in Figure 2, including the ladder, chain, and crown inequalities (see Boyd and Cunningham
[4], Padberg and Hong [29], and Naddef and Rinaldi [28]): any of these inequalities can be added to the subtour
LP to potentially strengthen its integrality gap on circulant TSP instances. Indeed, the crown inequalities of Nad-
def and Rinaldi [28] are also motivated by the exact same subtour LP solution as shown in Figure 2!

Figure 2. An example of a class of instances showing that the integrality gap of the subtour LP restricted to circulant instances is
at least two. The dashed edges have weight 1/2 and cost 1, whereas the full edges have weight 1 and cost 0. All other edges have
arbitrarily large costs.
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However, Gutekunst and Williamson [20] also note that a cursory modification to these subtour LP weights—
marginally increasing the weight on length 1 edges and decreasing the weight on length d edges—yields edge
weights that (1) are feasible for the subtour LP; (2) obey the ladder, chain, and crown inequalities; and (3) still
show that the integrality gap of the subtour LP is two on circulant instances.

More specifically, consider solutions that place a weight of λ on every edge of length 1 and a weight of 2− 2λ
on every edge of length d. Such a solution is only in STSP(n) if

1− 2

n
≤ λ ≤ 1:

However, adding the crown inequalities, for example, only imposes that

λ ≥ 1

2
+ 2

3n
+ 1

3(n − 6) :

Gutekunst and Williamson [20] conjectured Inequality (2) as a way to eliminate this entire family of bad instan-
ces. Consider instances on n � 2k+1 vertices and potential solutions that place a weight of λ on every edge of
length 1 and a weight of 2− 2λ on every edge of length d. Then, Inequality (2) directly implies

nλ+ 0
n

2

( )
(2− 2λ) ≥ n− 2:

That is, that

λ ≥ 1 − 2

n
:

Inequality (2), thus, takes a canonically bad family of subtour LP solutions and eliminates every single instance
in that family that is outside STSP(n).

3. Theorem 3.1
3.1. Preliminaries: Notation and Lemmas
We briefly recall our notation. Let n � 2d, where d is even. For a TSP instance on [n], let ℓi,j denote the length of
edge {i, j}, so that

ℓi,j �min{|i− j|,n− |i− j|}:
Let xe denote the standard TSP variables associated to each edge e ∈ E of the complete graph. For a vector x ∈ R|E|

and for 1 ≤ i ≤ d, let

ti �
∑

{s, t}∈E:ℓs,t�i
xs,t

denote the total weight of edges of length i. The following is our main theorem, which restates Inequality (2).

Theorem 3.1. For n divisible by four and 1 ≤ i ≤ d, let

ci � i, i odd
d− i, i even:

{

Then, for any x ∈ R|E| that is a feasible TSP input,

∑d

i�1
citi ≥ n− 2:

That is, the circlet inequalities are valid.

Figure 3 shows some instances for which Inequality (2) is tight.
Our proof of Theorem 3.1 uses three ingredients. First, Claim 3.1 provides a base case.

Claim 3.1. Inequality (2) is valid for n � 4:

Proof. When n � 4, the inequality becomes

t1 + 0t2 ≥ 2:

Any Hamiltonian cycle must use four edges, the only possible edge lengths are 1 and 2, and there are only two
distinct edges of length 2. Hence, the claim holds. w
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Our next lemma argues that any counterexample requires many cheap edges: edges of length 1 and d.

Lemma 3.1. Let n > 4 be divisible by four (so that d ≥ 4 and d is even). Suppose that we have a valid TSP instance in
which

∑d

i�1
citi < n− 2:

Then,
t1 + 2td > n + 2:

Proof. In a counterexample,

n − 2 >
∑d

i�1
citi

≥ t1 + 0td + 2
∑d−1

i�2
ti

� t1 + 0 + 2(n − t1 − td)
� 2n − t1 − 2td:

Figure 3. Instances for which Inequality (2) is tight. Any present edges indicate a weight of 1 on the corresponding LP variable.
All other edges have weight 0. The first figure shows a tour using two edges of length d and n – 2 edges of length 1. The second
tour using all d edges of length d, d – 1 edges of length 1, and one edge of length d – 1. The third tour (which includes the edge
{d,d+ 1} indicated by a dashed line) uses three edges of length d, n – 4 edges of length 1, and one edge of length d− 2:

Gutekunst and Williamson: The Circlet Inequalities for the TSP
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Rearranging

n − 2 > 2n − t1 − 2td

yields the desired inequality. w

Finally, we state our technical lemma. Its proof is deferred to Section 4. In the notation of the lemma—and
throughout this paper—vertex labels are implicitly assumed to be taken mod n (e.g., for a vertex v ∈ [n], we write
v + k to denote v+ k modn so that v + k lies in [n]).
Lemma 3.2. Suppose that we have a valid TSP instance in which

∑d

i�1
citi < n − 2,

and consider an instance that is minimal with respect to n. Then, the counterexample cannot have any of the structures
shown in Figure 4. That is, for any u ∈ [n], a minimal counterexample cannot contain the three edges {u+ d,u}, {u,u+
1}, {u+ 1,u+ 1+ d}; a minimal counterexample cannot contain the three edges {u+ 1,u}, {u,u+ d}, {u+ d,u+ 1+ d}; and
a minimal counterexample cannot contain the three edges {u,u+ 1}, {u+ 1,u+ 1+ d}, {u+ 1+ d,u+ d}:

We note that we do not need separate type A1 and A2 cases (as we do with type B1 and B2 in Figure 4). That
is, we do not need a statement about three edges {v,v+ d}, {v+ d,v+ d+ 1}, {v+ d+ 1,v+ 1} in Lemma 3.2: this
statement is already covered by {u+ d,u}, {u,u+ 1}, {u+ 1,u+ 1+ d} by taking u � v+ d � v− d:

3.2. Proof of Theorem 3.1
We can now prove Theorem 3.1. We consider a hypothetical minimal counterexample to Theorem 3.1, that is, a
Hamiltonian cycle in which

∑d

i�1
citi < n − 2:

By Claim 3.1, n ≥ 8: By Lemma 3.2, our Hamiltonian cycle cannot contain any of the structures shown in Figure
4. By Lemma 3.1,

t1 + 2td > n+ 2:

We specifically contradict this claim: we argue that the lack of structures in Figure 4 forces t1 + 2td to be small.
To compute t1 + 2td, we look at induced subgraphs of our Hamiltonian cycle on vertices u,u+ 1,u+ d,u+ d+ 1:

We call such a subgraph of four vertices a window. Figure 5 shows two natural ways to order the vertices and
view a window. Notice that we can move from one window (e.g., u � 1) to the next (e.g., u � 2) by rotating (in
the left picture) or sliding horizontally (on the right picture).

We count the number of edges of length 1 and d by moving through windows. If we count the total number of
edges in each window with u � 1, 2, 3, : : : ,d, we exactly count t1 + 2td: The intuition for this process is shown in
Figure 6, which shows exactly those d windows. Note that every possible length 1 edge is contained in exactly
one window (e.g. 1 ~ 2 is only in the window 1,2, 7, 8), whereas every length d edge is contained in exactly two
windows (e.g., 1 ~ 7 is contained in the windows 1,2, 7, 8 and 12,1, 6, 7).

Figure 4. Lemma 3.2 proves that none of these structures can occur in a minimal TSP instance (with respect to n), where∑d
i�1 citi < n− 2:
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Proof of Theorem 3.1. To formalize our argument, we letWu denote the window u,u+ 1,u+ d,u+ 1+ d. Figure 5,
for example, shows the window W1 � W7 when n � 12: Let Tu denote the total number of length 1 and d edges
within the windowWu :

Tu � 1u~u+1 + 1u+d~u+d+1 + 1u~u+d + 1u+1~u+1+d:

(Here, 1� denotes the indicator function if event � occurs, so that, e.g., 1u~u+1 is one if the edge {u,u+ 1} is in our
Hamiltonian cycle and zero otherwise.)

By Lemma 3.2,

Tu ≤ 2:

Having Tu � 4 implies a subtour, and Tu � 3 leads to one of the bad structures in Figure 4.

Figure 5. (Color online) Two views of a window: a collection of four vertices u,u+ 1,u+ d,u+ d+ 1: In the window shown,
u � 1.

Figure 6. (Color online) Rotating the window from u � 1 to u � d. Each possible edge of length 1 is in one window, whereas
each possible edge of length d is in two.
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Now, we consider rotating the window d times as in Figure 6. We note that

t1 + 2td � T1 + T2 + : : : + Td

≤ 2 + 2 + : : : + 2 (d times)
� 2d
� n:

The fact that t1 + 2td � T1 +T2 + : : : +Td follows by symmetry: any length 1 edge i ~ i+ 1 is included in either Ti

(if i ≤ d) or Ti−d: Because each of the d windows contains two length 1 edges and each of the n length 1 edges is
included in exactly one window, each length 1 edge is counted exactly once. Each length d edge is analogously
included in exactly two windows and counted twice.

This completes our proof as we argue that

t1 + 2td ≤ n < n + 2,

contradicting Lemma 3.1. w

4. Proof of Technical Lemma
Recall our main technical lemma:

Lemma 3.2 (Repeated). Suppose that we have a valid TSP instance in which

∑d

i�1
citi < n − 2,

and consider an instance that is minimal with respect to n. Then, the counterexample cannot have any of the structures
shown in Figure 4. That is, for any u ∈ [n], a minimal counterexample cannot contain the three edges {u+ d,u}, {u,u+
1}, {u+ 1,u+ 1+ d}; a minimal counterexample cannot contain the three edges {u+ 1,u}, {u,u+ d}, {u+ d,u+ 1+ d}; and
a minimal counterexample cannot contain the three edges {u,u+ 1}, {u+ 1,u+ 1+ d}, {u+ 1+ d,u+ d}:

Proving this lemma includes involved casework, some of which is deferred to the appendix. First, we reduce
our work by symmetry, arguing that we only need to consider instances of A and B2 from Figure 4.

Claim 4.1. Suppose we have a counterexample to Theorem 3.1 on n vertices containing an instance of B2 from Figure 4.
Then, there also exists a counterexample to Theorem 3.1 on n vertices containing an instance of B1 from Figure 4.

Proof. Any counterexample with an instance of B1 can be viewed as a counterexample with an instance of B2 by
relabeling the vertices. The circulant symmetry of the ci means that we can relabel vertex i as n – i for all
i � 1, : : : ,n, and then,

ℓi,j �min{|i− j|,n− |i− j|} �min{|(n− i) − (n− j)|,n− |(n− i) − (n− j)|} � ℓn−i,n−j:

Then, a counterexample with a B1 implies a counterexample with a B2 and vice versa. w

Claim 4.2. Suppose we have a counterexample to Theorem 3.1 on n vertices containing an instance of A or B2 from Figure
4. Without loss of generality, we may assume that u � 1.

Proof. Circulant symmetry means that we can relabel vertex i as i− (u− 1) for i � 1, : : : ,n, , and then,

ℓi,j �min{|i− j|,n− |i− j|} �min{|(i− u+ 1) − ( j− u+ 1)|,n− |(i− u+ 1) − ( j− u+ 1)|} � ℓi−u+1,j−u+1: w

Hence, to prove Lemma 3.2, we need only show that a minimal counterexample cannot have either of the edge
sequences shown in Figure 7.

The strategy for both is the same: we show that, if we contract the sequence of five edges from j to k, we attain
a counterexample on four fewer vertices. Figure 8 shows this contraction process explicitly for the leftmost
sequence of edges in Figure 7, which proceeds in two steps.

1. Delete the vertices 1, 2,d+ 1,d+ 2 and replace the edges {j, 1}, {1, 2}, {2,d+ 2}, {d+ 2,d+ 1}, {d+ 1,k}with a sin-
gle edge { j, k}.
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2.We relabel every other vertex s as

s − 2, s ≤ d
s − 4, s > d:

{

In the rightmost sequence of edges in Figure 7, we proceed analogously except replacing the edges {j,d+
2}, {d+ 2, 2}, {2, 1}, {1,d+ 1}, {d+ 1,k} with { j, k} in the first step.

Note that, in both cases, we attain a feasible tour on four fewer vertices. To show that this smaller instance is
also a counterexample requires showing, during contraction, we decrease the cost by at least four.

Figure 8. An example contraction used to prove Lemma 3.2 showing the original graph, the graph after edge deletions/addi-
tions and vertex deletions, and the final graph after relabeling vertices. Notice the addition of the edge {2, 7} (which corresponds
to an edge between vertices 4 and 11 precontraction). The dashed edges do not change.

Figure 7. Proving Lemma 3.2 requires showing that neither of these sequences of edges can occur in a minimal counterexample
to Theorem 3.1.
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Throughout, we denote by s′ the new label of vertex s after contraction:

s′ � s− 2, 2 < s ≤ d
s− 4, s > d+ 2:

{

We let

ci,j :� cℓi,j �
ℓi,j, ℓi,j odd
d − ℓi,j, ℓi,j even

{

denote the cost of edge {i, j}, which has length ℓi,j, before contraction. We denote the length of an edge {i, j} in the
contracted graph

ℓ
′
i,j �min{|i− j|,n− 4− |i− j|}

(where i and j are labels of vertices in the contracted graph). Similarly, we let

c′i,j � c′
ℓi,j

�
ℓ
′
i,j , ℓ

′
i,j odd

d− 2− ℓ
′
i,j , ℓ

′
i,j even

{

denote the cost of edge {i, j} in the contracted graph. Again, in this notation, i and j are labels of vertices in the
contracted graph.

Note that, by design, any vertex s becomes a vertex s′ of the same parity in the contracted graph and the length
of an edge does not change significantly. This means, when we contract, we do not need to worry about an edge
of odd length becoming an edge of even length or vice versa and, thus, potentially radically changing in cost. In
particular, we first show that, after contraction, the cost of edges can only decrease. We use the notation ≡2 to
denote equivalence mod 2 (i.e., a≡2 b means that a and b have the same parity; a 
≡2 b means that a and b have
opposite parity).

Proposition 4.1. Let {s, t} be an edge in the uncontracted graph with s, t ∉ {1, 2,d+ 1,d+ 2}: Then,

ℓ
′
s′,t′ �

ℓs,t, 3 ≤ s, t ≤ d OR d+ 3 ≤ s, t ≤ n
ℓs,t − 2, otherwise:

{

Moreover,

c′s′,t′ �
cs,t, (s, t ≤ d OR d + 3 ≤ s, t) AND s 
≡ 2t
cs,t, (s ≤ d ≤ d + 3 ≤ t OR t ≤ d ≤ d + 3 ≤ s) AND s≡2t
cs,t − 2, else:

⎧⎪⎪⎪«
⎪⎪⎪¬

In particular, any edge {s, t} with s, t ∉ {1, 2,d+ 1,d+ 2} either gets cheaper or remains the same cost after the contraction
process.

For this proof, it is helpful to consider Figure 9, in which the vertices are placed in two groups {3, : : : ,d} and
{d+ 3, : : : ,n}: The preceding proposition indicates that an edge within a group retains its cost if it is of odd
length, and an edge between groups retains its cost if it is of even length. Other edges—those within groups and
of even length or those between groups and of odd length—are lowered in cost by two.

Proof. The first part of Proposition 4.1 about edge length follows from Figure 9: If s, t are in the same group, then
the edge between them does not change in length after contraction. If they are in different groups, then the edge
between them “goes through” either {1, 2} or {d+ 1,d+ 2}, and after contraction, gets shorter by two. More

Figure 9. (Color online) Placing the vertices into two groups.
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formally, if s, t are in the same group, then s′ − s � t′ − t so that s′ − t′ � s− t and |s− t| ≤ d− 3 so that

ℓ
′
s′,t′ �min{|s′ − t′|,n− 4− |s′ − t′|} � |s′ − t′| � |s− t| �min{|s− t|,n− |s− t|} � ℓs,t:

Otherwise, without loss of generality, let s be in the top group so that s < t, s′ < t′, s′ � s− 2, and t′ � t− 4: Then,

|s′ − t′| � t′ − s′ � (t− 4) − (s− 2) � t− s− 2 � |s− t| − 2,

and

n− 4− |s′ − t′| � n− 4− (|s− t| − 2) � n− |s− t| − 2:

Thus,

ℓ
′
s′,t′ � min{|s′ − t′|,n − 4 − |s′ − t′|} � min{|s − t| − 2,n − |s − t| − 2} � min{|s − t|,n − |s − t|} − 2 � ℓs,t − 2:

The statement about costs then uses the new lengths and new cost equation. In two cases,
• If s 
≡2 t, then

c′s′,t′ � ℓ
′
s′,t′ �

{
ℓs,t, 3 ≤ s, t ≤ d OR d+ 3 ≤ s, t ≤ n
ℓs,t−2, s ≤ d ≤ d+ 3 ≤ t OR t ≤ d ≤ d+ 3 ≤ s

� cs,t, 3 ≤ s, t ≤ d OR d+ 3 ≤ s, t ≤ n
cs,t − 2, s ≤ d ≤ d+ 3 ≤ t OR t ≤ d ≤ d+ 3 ≤ s:

{

• If s≡2t, then

c′s′,t′ � d− 2− ℓ
′
s′,t′ �

{
d− 2− ℓs,t, 3 ≤ s, t ≤ d OR d+ 3 ≤ s, t ≤ n
d− 2− (ℓs,t − 2), s ≤ d ≤ d+ 3 ≤ t OR t ≤ d ≤ d+ 3 ≤ s

�
{
cs,t − 2, 3 ≤ s, t ≤ d OR d+ 3 ≤ s, t ≤ n
cs,t, s ≤ d ≤ d+ 3 ≤ t OR t ≤ d ≤ d+ 3 ≤ s:

These cases give the claimed results. w

The only other change, after contraction, is that we contract five edges into one edge {j′,k′}: The following
propositions account for the change in cost after these contractions.

Proposition 4.2. Consider the first case, in which we contract {j, 1}, {1, 2}, {2,d+ 2}, {d+ 2,d+ 1}, {d+ 1,k} into {j′,k′}:
Then,

cj,1 + c1,2 + c2,d+2 + cd+2,d+1 + cd+1,k − c′j′,k′ ≥ 4: (5)

Hence, the cost of the tour resulting from the contraction goes down in cost by at least four.

Proposition 4.3. Consider the second case, in which we contract {j,d+ 2}, {d+ 2, 2}, {2, 1}, {1,d+ 1}, {d+ 1,k} into
{j′, k′}: Then,

cj,d+2 + cd+2,2 + c2,1 + c1,d+1 + cd+1,k − c′j′,k′ ≥ 2 (6)

and is even. Moreover, if

cj,d+2 + cd+2,2 + c2,1 + c1,d+1 + cd+1,k − c′j′,k′ � 2,

then there must have been at least one edge {s, t} in the cycle with s, t ∉ {1, 2,d+ 1,d+ 2} such that c′s′,t′ � cs,t − 2: In either
case, the cost of the tour resulting from the contraction goes down in cost by at least four.

Propositions 4.2 and 4.3 imply that a tour with any of the structures indicated in Lemma 3.2 and Figure 4 can
be contracted to attain a tour on four fewer vertices and whose aggregate cost is at least four cheaper. They, thus,
complete the proof of Lemma 3.2.

For the sake of full precision, we provide analytic formulas for cj,1 + c1,2 + c2,d+2 + cd+2,d+1 + cd+1,k − c′j′,k′ and

cj,d+2 + cd+2,2 + c2,1 + c1,d+1 + cd+1,k − c′j′,k′ : Doing so, however, involves substantial casework. We, thus, defer it to

the appendix. Up to that casework, the propositions follow quickly.

Proof of Proposition 4.2. Note that

cj,1 + c1,2 + c2,d+2 + cd+2,d+1 + cd+1,k − c′j′,k′ � cj,1 + cd+1,k − c′j′,k′ + 2:
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Casework in the appendix shows that

cj,1 + cd+1,k − c′j′,k′ ≥ 2,

which completes the proof. w

Proof of Proposition 4.3. Note that

cj,d+2 + cd+2,2 + c2,1 + c1,d+1 + cd+1,k − c′j′,k′ � cj,d+2 + cd+1,k − c′j′,k′ + 1:

To show that this equation evaluates to an even integer, we want to show that cj,d+2 + cd+1,k − c′j′,k′ is odd. This fol-
lows because

cj,d+2≡2cd+1,k if and only if c′j′,k′≡21:

(This can also be seen by considering the four cases depending on the parities of j and k.)
Casework in the appendix shows that

cj,d+2 + cd+1,k − c′j′,k′ ≥ 1,

and equality can hold in exactly four cases:
• j, k are even and j, k ≤ d.
• j, k are odd and j, k ≥ d+ 3.
• j is odd, k is even, j ≥ d+ 3, and k ≤ d.
• j is even, k is odd, j ≤ d, and k ≥ d+ 3:
Recall from Proposition 4.1 that, for an edge {s, t} with s, t ∉ {1, 2,d+ 1,d+ 2}, either c′s′,t′ � cs,t or c

′
s′,t′ � cs,t − 2.

The existence of a single edge at which the cost decreases is sufficient to complete the proof of Proposition 4.3.
Hence, we are concerned only with the case in which c′s′,t′ � cs,t for every edge {s, t} in the tour (outside of
{j,d+ 2}, {d+ 2, 2}, {2, 1}, {1,d+ 1}, {d+ 1,k}). From Proposition 4.1, these are exactly the edges {s, t}, where

• (s, t ≤ d OR d+ 3 ≤ s, t) AND s 
≡2 t.
• (s ≤ d ≤ d+ 3 ≤ t OR t ≤ d ≤ d+ 3 ≤ s) AND s≡2t:
Referring again to the groups indicated in Figure 9, these are exactly the within-group edges of odd length and

the across-group edges of even length. We now break the vertices S � {3, 4, : : : ,d,d+ 3,d+ 4, : : : ,n− 1,n} into four
groups as indicated in Figure 10:

{v ∈ S : v ≤ d,v odd}, {v ∈ S : v ≤ d,v even}, {v ∈ S : v > d,v odd}, and {v ∈ S : v > d,v even}:

Figure 10. Placing the vertices into four groups to attain the graphG◦: in general (on the left) and explicitly when n � 12 (on the
right).
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We let S1 denote the groups in which {v ∈ S : v ≤ d,v odd} and {v ∈ S : v > d,v even}: We let S2 denote the other
groups. Let G◦ be the graph shown in Figure 10, in which there is one vertex for each group and edges between
groups in opposite sets S1,S2:

Note that all four groups have equal size (n− 4)=4: The edges between groups in G◦, moreover, indicate exactly
the cases in which cs,t � c′s′,t′ : For example, consider an edge {s, t}, where s, t ≤ d and s≡2t: Using the edge {s, t} in
G corresponds to using the edge between {v ∈ S : v ≤ d,v odd} and {v ∈ S : v ≤ d,v even} in G◦, that is, the top hor-
izontal edge in Figure 10.

Note also that the only cases in which

cj,d+2 + cd+1,k − c′j′,k′ � 1

correspond to cases in which both j, k ∈ S2: Suppose there exists a Hamiltonian tour (in the original, precontracted
graph on n vertices) in which cj,d+2 + cd+1,k − c′j′,k′ � 1 and c′s′,t′ � cs,t for every other edge. That is, consider the only
potential type of tour whose cost does not go down by at least four after contraction.

We trace the n – 4 vertices that connect j to k through S in such a tour. Tracing the vertices we visit in the graph
G◦ corresponds to a walk in G◦ that

1. Starts and ends at one of the S2 vertices (because cj,d+2 + cd+1,k − c′j′,k′ � 1).
2. Visits each of the four nodes in G◦ an equal number of times (because each node in G◦ has an equal number of

vertices).
3. Only uses the four edges in G◦. That is, the walk never uses an edge between the two S2 vertices or an edge

between the two S1 vertices (because we only use edges for which cs,t � c′s′,t′ , which are exactly the edges in G◦).
No such walk can exist: the first and third criteria indicate that the traced walk looks like

S2,S1,S2,S1, ::::,S2,S1,S2: Hence, if it visits vertices in S1 k times, it visits vertices in S2 k + 1 times. Thus, we never
satisfy the second criteria that we visit exactly as many S1 vertices as we visit S2 vertices.

5. Inequality (2) Is Facet-Defining
In the previous two sections, we show that the circlet inequalities are valid for the TSP. We now also prove that
they are facet-defining for the symmetric traveling salesman polytope STSP(n). Recall that χH ∈ {0, 1}|E| denotes
the incidence vector of a Hamiltonian cycle H on Kn. In terms of these incidence vectors, STSP(n) is

STSP(n) � conv{χH :H is a Hamiltonian cycle on Kn} ⊂ R|E|
≥0:

To show that a valid TSP inequality is facet-defining for STSP(n), we follow Naddef and Rinaldi [28, theorem
3.7]: the dimension of STSP(n) is |E| − |V| � n(n−3)

2 ; to show that a valid inequality is facet-defining for the TSP, we
must, thus, find n(n− 3)=2 Hamiltonian cycles for which the circlet inequality is tight and whose incidence vec-
tors are linearly independent.

To show that this inequality is facet-defining, we consider d – 1 distinct types of tours. These tours contain
edges of length 1 and d and up to one edge of a different length k. We index the tours by this extra edge length
and count the number of linearly independent tours of each type. For intuition, consider the case when n � 8. We
consider three types of tours shown in Figure 11.

By construction, the circlet inequality is tight for all tours in Figure 11. We can attain n � 8 versions of the second
and third tour type by “rotating” the vertex labels (replacing every vertex vwith v+ 1 mod8 constitutes one rotation,
as shown in Figure 12); by circulant symmetry, each rotated tour is again tight for the circlet inequality. We can simi-
larly get n=2 � 4 copies of the first tour (as, after four rotations, we return to the original labeling). In total, this gives

4+ 2 · 8 � 20 � 8 · 5
2

� n(n− 3)
2

tours for which the inequality is tight.

Figure 11. Three types of tours when n � 8 : a tour that uses only edges of length 1 and d, a tour that uses one edge of length 3,
and a tour that uses one edge of length 2. Note that we can rotate the labels of each tour (e.g., replacing every vertex v with
v+ 1 mod8) to attain distinct tours of the same type. Doing so traces out four distinct tours of the leftmost type, eight distinct
tours of the middle type, and eight distinct tours of the rightmost type.
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When we generalize this argument, we again consider n=2 tours of the leftmost type (with two edges of length
d and n – 2 edges of length 1). Then, for each of the n

2− 2 possible values of k ∈ 2, 3, : : : , n2− 1
{ }

, we analogously
find a tour using exactly one edge of cost k (and all other edges of length 1 or d).

Theorem 5.1. Let 4|n. Then, the circlet inequalities are facet-defining for STSP(n).
Proof. We follow the intuition outlined earlier:

• There are d � n
2 tours with two edges of length d and n – 2 edges of length 1: one such tour uses the two length-d

edges {1,d+ 1} and {d,n}, and connects them via {1, 2}, {2, 3}, : : : , {d− 1,d} and {d+ 1,d+ 2}, {d+ 2,d+ 3}, : : : , {n−
1,n}: This tour costs

0(2) + (n− 2) � n− 2,

and is tight for the circlet inequality. We then can rotate this tour by adding a constantm to the label of every ver-
tex for m � 1, 2, : : : ,d− 1 and, by circulant symmetry, attain another tight tour.

• For k ∈ {3, : : : ,d}, we find n tours that each have a unique edge of cost k – 1. These, moreover, have k edges of
length d and n− k− 1 edges of length 1. Their total cost is

(k− 1) + 0(k) + (n− k− 1) � n− 2,

and they are indeed tight for the circlet inequality. To find these n tours, we follow the previous process: we start
with a tour with a single edge of cost k− 1, and we rotate it. For these tours, however, we are able to rotate them
by adding any constant m � 1, 2, : : : ,n− 1 to the label of every vertex (as we trace every edge of cost k – 1).

− When k is even, we use the tour type shown in Figure 13. Note that, by construction, it uses k edges of
length d and n− k− 1 edges of length 1. The remaining edge is of length k – 1 and, because k is even, it is of cost
k – 1.

− When k is odd, we use the tour type shown in Figure 14. Again, by construction, it uses k edges of length d
and n− k− 1 edges of length 1. The remaining edge is of length d− (k− 1) and, because k is odd, it is of cost
d− d− (k− 1)( ) � k− 1:

Figure 13. (Color online) Tight tours using exactly one edge of length kwhen k is even. In this example, k � 4.

Figure 12. One version of the leftmost tour from Figure 11 and one rotation, for which each vertex label v is replaced with
v+ 1 mod8. This corresponds to rotating the labels 45◦ counterclockwise.
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In total, these give

n

2
+ n

2
− 2

( )
n � n

2
+ n(n − 4)

2
� n(n − 3)

2

tight tours. Their characteristic vectors are linearly independent: suppose that there is a nontrivial linear depend-
ency and some nontrivial linear combination of these characteristic vectors added to zero. First, none of the tours
with a unique edge of cost k – 1 can be used in such a nontrivial linear dependency: they contain an edge e that is
not used by any other tour in this set of tight tours. From there, the remaining tours with two edges of length d
and n – 2 edges of length 1 also cannot be used in any nontrivial linear dependency as each contains a unique
edge e of length d not used by any of the remaining tours. Hence, any linear dependency must be trivial.

6. The Strength of the Circlet Inequalities
Goemans [15] provides a way of evaluating the strength of facet-defining inequalities for the TSP. This notion is
with respect to the graphic traveling salesman problem GTSP(n). Whereas STSP(n) is the convex hull of incidence
vectors of Hamiltonian cycles on Kn, GTSP(n) is the convex hull of incidence vectors of Eulerian sub(multi)graphs
on Kn: vectors χS ∈ N|E|, where S is a multiset of edges in Kn such that the multigraph ([n],S) is connected and
every vertex has even degree. Unlike STSP(n), GTSP(n) is full-dimensional. Similarly, χH ∈ GTSP(n) for any
Hamiltonian cycle H on Kn:

Goemans’ [15] definition of strength of a TSP inequality is relative to the prototypical TSP relaxation, the sub-
tour LP, whose feasible region we abbreviate as SP(n). Goemans [15, theorem 2.11] shows that any nontrivial
inequality in tight triangular form that is facet-defining for STSP(n) defines a facet of GTSP(n). An inequality fx ≥
f0 is in tight triangular form if

• fij + fjk ≥ fik for all distinct triples i, j, k.
• For all j ∈ V, there exist some i,k ∈ V\{j} such that fi,j + fj,k � fi,k:
See Goemans [15, section 2]; one converts an inequality to tight triangular form by adding/subtracting multi-

ples of the degree constraints.
Given an inequality ax ≥ b in tight triangular form, its strength relative to the subtour elimination polyhedron

SP(n) is

b

min{ax : x ∈ SP(n)} :

In tight triangular form, the circlet inequalities can be stated as

fx ≥ n2

2
− n − 2, fe � d − 2 + ℓe, ℓe odd

d − 2 + (d − ℓe), ℓe even:

{

We can rewrite this in the form of Inequality (2) as

∑d

i�1
fiti ≥

n2

2
− n − 2, fi � d − 2 + i, i odd

d − 2 + (d − i), i even:

{
(7)

These are obtained from Inequality (2) by adding 1
2 (d− 2) copies of each degree constraint: for any solution χH ∈

STSP(n), we have that
∑

e∈δ(v)(χH)e � 2 for any v ∈ V by the degree constraints. Every edge e is incident to exactly

Figure 14. (Color online) Tight tours using exactly one edge of length kwhen k is odd. In the figure, k � 5.
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two vertices, so by adding the degree constraints over all v ∈ V, we obtain

2
∑
e∈E

(χH)e � 2n:

Multiplying this by 1
2 (d− 2) yields that

(d− 2)
∑
e∈E

(χH)e � n(d− 2):

Because this equality is satisfied by every χH ∈ STSP(n), we can add it to Inequality (2). Doing so yields Inequal-
ity (7): we add d – 2 to the coefficient of every edge and add n(d− 2) to the right-hand side:

n− 2+ n(d− 2) � n− 2+ n

2
(n− 4) � 2n− 4+ n(n− 4)

2
� n2 − 2n− 4

2
� n2

2
− n− 2:

Hence, Inequality (7) remains valid and facet-defining. It remains to show that Inequality (7) is in tight triangular
form.

Lemma 6.1. Inequality (7) is in tight triangular form.

Proof. First, we argue that fij + fjk ≥ fik for all distinct triples i, j, k. Note that, for any edge e, d− 2 ≤ fe ≤ d− 2+ (d− 1):
If either fij ≥ d− 1 or fjk ≥ d− 1 (or both), we have that

fik ≤ d− 2+ (d− 1) ≤ fij + fjk:

Hence, fij + fjk ≥ fik except possibly in the case in which fij � fjk � d− 2: This case, however, requires that both {i, j}
and { j, k} be edges of length d � n=2 so that i and k are not distinct. Thus, fij + fjk ≥ fik:

We must also show that, for each j ∈ V, there exist some i, k ∈ V\{j} such that fi,j + fj,k � fi,k: By circulant symme-
try, if this holds for some j ∈ V, it holds for all j ∈ V. Without loss of generality, take j � d+ 1: Then, we take i � 1
and k � d so that {1,d} is an edge of length d – 1:

fi,k � f1,d � d− 2+ (d− 1) � f1,d+1 + fd+1,d � fi,j + fj,k:

Thus, Inequality (7) is in tight triangular form. w

We can now readily compute the strength of our inequality.

Theorem 6.1. The strength of Inequality (7) is

n2 − 2n − 4

n2 − 3n
≤ 11

10
:

It is equal to 11
10 when n � 8:

Proof. By Goemans [15, theorem 2.11], its strength relative to the subtour elimination polyhedron SP(n) is

n2

2 − n − 2

min{ fx : x ∈ SP(n)} :

Gutekunst and Williamson [20, theorems 3.1 and 4.1] show that min{ fx : x ∈ SP(n)} is attained by

xe �
1

2
, ℓe � 1

1, ℓe � d
0, else:

⎧⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

In the notation of Inequality (7), we find that f1 � d− 2+ 1 � d− 1, whereas fd � d− 2: This solution places a total
weight d across all edges of length d, a total weight of d across all edges of length 1, and a total weight of zero on
all other edges. Hence,

min{ fx : x ∈ SP(n)} � d(d− 1) + d(d− 2)
� d(2d− 3)
� n

2
(n− 3):

Thus, the strength of the circlet inequality is
n2

2 − n − 2

min{ fx : x ∈ SP(n)} �
n2

2 − n − 2
n2

2 − 3n
2

� n2 − 2n − 4

n2 − 3n
: w
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We note that the circlet inequality appears to be marginally stronger than that of the crown inequality of
Naddef and Rinaldi [28], which was also motivated by the subtour LP solution placing 1/2 weight on every
length 1 edge and 1 weight on every length d edge. The crown inequality has strength

3d d
2 − 1
( )

− 1

3d d
2 − 1
( )

− d
2

� 3n(n − 4) − 8

3n(n − 4) − 2n
� 3n2 − 12n − 8

3n2 − 14n
≤ 11

10
:

The bound of 11
10 is also attained when n � 8 by the crown inequality; otherwise, ours is marginally stronger. For

comparison, Goemans [15] also gives the strength of the comb inequalities (109 ) and the clique tree inequalities (87).

7. Conclusions
The main results of this paper introduce a new facet-defining inequality for the TSP. This inequality is compara-
ble to the crown inequalities of Naddef and Rinaldi [28] in terms of the standard definition of strength. We note,
however, that this standard notation of strength is not as applicable to the circulant TSP. If edge costs are metric,
then a minimum-cost Hamiltonian cycle costs exactly the same as a minimum-cost Eulerian sub(multi)graph:
because a Hamiltonian cycle is itself Eulerian,

Cost of cheapest Eulerian sub(multi)graph ≤ Cost of minimum-cost Hamiltonian cycle:

When edge costs are metric, any Eulerian sub(multigraph) can, however, also be shortcut (see Williamson and
Shmoys [33, section 2.4] for details of shortcutting) to obtain a Hamiltonian cycle of no greater cost. Hence,

Cost of cheapest Eulerian sub(multi)graph ≥ Cost of minimum-cost Hamiltonian cycle:

On typical metric instances, then, optimizing over STSP(n) and optimizing over GTSP(n) yields the same solu-
tion. That is not the case with circulant instances.

For example, consider the circulant TSP instances motivating Inequality (2): instances in which 4|n, edges of
length 1 cost 1, and edges of length d cost 0. As argued in Gutekunst andWilliamson [20], the optimal TSP solution
(i.e., the minimum cost Hamiltonian cycle) uses two length-d edges and, hence, costs n− 2: In contrast, Figure 15
shows a minimum-cost Eulerian sub(multi)graph of cost d � n=2: Hence, on this circulant instance, optimizing
overGTSP(n) instead of STSP(n) is nearly a factor of two off.

It is this discrepancy between STSP(n) and GTSP(n) on circulant instances that lends to the circlet inequality’s
weak strength: the circulant TSP is primarily concerned with understanding what combinations of edge lengths
lead to a Hamiltonian tour, and shortcutting a Eulerian sub(multi)graph fundamentally changes edge lengths.

We end this paper by asking three questions. First, given a solution to the subtour LP, can we efficiently deter-
mine whether it violates a circlet inequality (and, if so, the labeling of the nodes that gives rise to the violated
inequality)? Second, what is the right analogue of strength for circulant TSP inequalities? Finally, the crown
inequalities are also circulant. What other circulant facet-defining inequalities are there for the TSP? Such
inequalities may help define the edge-length polytope of the TSP:

EL(n) :� conv (t1, : : : , td) : x ∈ STSP(n), ti �
∑

{s, t}∈E:ℓs,t�i
xs,t

{ }
:

We hope that further polyhedral results on EL(n) might open the door to new TSP results more generally and
bridge connections between combinatorial optimization and number theory.

Figure 15. Aminimum-cost Eulerian sub(multi)graph when length 1 edges cost 1, length d edges cost 0, and all other edge costs
are arbitrarily large. The dashed edge “wraps around,” connecting d to d + 1.
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Appendix

A.1. A Casework for Propositions 4.2 and 4.3

Throughout the casework, we refer to the groups indicated in the block picture.

The top group consists of vertices s at which 3 ≤ s ≤ d, whereas the bottom group consists of vertices s at which
d+ 3 ≤ s ≤ n:

A.1.1. Casework for Proposition 4.2.

We first consider casework for Proposition 4.2. We want to show that

cj,1 + cd+1,k − c′j′,k′ ≥ 2,

and so we show

cj,1 + cd+1,k − c′j′ ,k′ − 2 ≥ 0:

To do so, we consider the possible parities of j and k that determine, for example, if cj,1 � ℓj,1 or cj,1 � d− ℓj,1:
Case 1: the values j and k are both even. In this case,

cj,1 + cd+1,k − c′j′ ,k′ − 2 � ℓ1,j + ℓd+1,k − (d − 2 − ℓ
′
j′,k′ ) − 2: (A.1)

• If j, k are in the same group, then ℓ
′
j′ ,k′ � ℓj,k � | j− k|: Without loss of generality, suppose that j, k are in the top group. Then,

Equation (A.1) becomes

cj,1 + cd+1,k − c′j′ ,k′ − 2 � ( j− 1) + (d+ 1− k) − (d− 2− | j− k|) − 2 � j− k+ | j− k| ≥ 0,

because x+ |x| ≥ 0. (If they were in the bottom group, it would be k− j+ |k− j| ≥ 0.)
• If j is on top and k is on bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 � (k − j) − 2, k < d + j

n − (k − j) − 2, else:

{

Then, Equation (A.1) becomes

cj,1 + cd+1,k − c′j′ ,k′ − 2 � ( j − 1) + (k − (d + 1)) − (d − 2 − ℓ
′
j′,k′ ) − 2

� j + k − n − 2 + ℓ
′
j′ ,k′

� j + k − n − 2 +
{
(k − j) − 2, k < d + j
n − (k − j) − 2, else

� 2k − n − 4, k < d + j
2j − 4, else:

{

Both are nonnegative as j ≥ 3 and k ≥ d+ 3:

• If k is on top and j is on bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 � ( j − k) − 2, j < d + k

n − ( j − k) − 2, else:

{

Then, Equation (A.1) becomes

cj,1 + cd+1,k − c′j′ ,k′ − 2 � (n − j + 1) + (d + 1 − k) − (d − 2 − ℓ
′
j′,k′ ) − 2

� n − j − k + 2 + ℓ
′
j′,k′

� n − j − k + 2 +
{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else

�
{
n − 2k, j < d + k
2n − 2j, else:

Both are nonnegative as k ≤ d and j ≤ n:
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Case 2: j and k are both odd.
In this case,

cj,1 + cd+1,k − c′j′ ,k′ − 2 � d − ℓ1,j + d − ℓd+1,k − (d − 2 − ℓ
′
j′,k′ ) − 2 � d − ℓ1,j − ℓd+1,k + ℓ

′
j′,k′ : (A.2)

• If j, k are in the same group, then ℓ
′
j′ ,k′ � ℓj,k � | j− k|: Without loss of generality, suppose that j, k are in the top group. Then,

Equation (A.2) becomes

d− ℓ1,j − ℓd+1,k + ℓ
′
j′ ,k′ � d− ( j− 1) − (d+ 1− k) + | j− k| � k− j+ |k− j| ≥ 0,

because x+ |x| ≥ 0. (If they were in the bottom group, it would be j− k+ | j− k| ≥ 0.)
• If j is on top and k is on bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
(k − j) − 2, k < d + j
n − (k − j) − 2, else:

Equation (A.2) becomes

d − ℓ1,j − ℓd+1,k + ℓ
′
j′,k′ � d − ( j − 1) − (k − (d + 1)) + ℓ

′
j′ ,k′

� n + 2 − j − k + ℓ
′
j′ ,k′

� n + 2 − j − k +
{
(k − j) − 2, k < d + j
n − (k − j) − 2, else

�
{
n − 2j, k < d + j
2n − 2k, else:

Both are nonnegative as j ≤ d and k ≤ n:

• If k is on top and j is on bottom, then

ℓ
′
j′,k′ � ℓj,k − 2 � { ( j − k) − 2, j < d + k

n − ( j − k) − 2, else:

Equation (A.2) becomes

d − ℓ1,j − ℓd+1,k + ℓ
′
j′,k′ � d − (n − j + 1) − (d + 1 − k) + ℓ

′
j′ ,k′

� j + k − n − 2 + ℓ
′
j′,k′

� j + k − n − 2 +
{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else

� 2j − n − 4, j < d + k
2k − 4, else:

{

Both are nonnegative as j ≥ d+ 3 and k ≥ 3:
Case 3: j and k have opposite parity.

Without loss of generality, we let j be odd and k be even. Then,

cj,1 + cd+1,k − c′j′,k′ − 2 � d − ℓ1,j + ℓd+1,k − ℓ
′
j′ ,k′ − 2: (A.3)

• If j, k are both in the top group, then ℓ
′
j′ ,k′ � ℓj,k � | j− k|: Then, Equation (A.3) becomes

d− ℓ1,j + ℓd+1,k − ℓ
′
j′ ,k′ − 2 � d− ( j− 1) + (d+ 1− k) − | j− k| − 2 � n− j− k− | j− k| �

{
n− 2j, j > k
n− 2k, else:

Both are nonnegative because j, k ≤ d.
• If j, k are both in the bottom group, then ℓ

′
j′ ,k′ � ℓj,k � | j− k|: Equation (A.3) becomes

d− ℓ1,j + ℓd+1,k − ℓ
′
j′ ,k′ − 2 � d− (n− j+ 1) + (k− (d+ 1)) − | j− k| − 2 � j+ k− | j− k| − n− 4 �

{
2k− n− 4, j > k
2j− n− 4, else;

which is nonnegative because j, k ≥ d+ 3.
• If j is on top and k is on bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
(k − j) − 2, k < d + j
n − (k − j) − 2, else:
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Equation (A.3) becomes

d − ℓ1,j + ℓd+1,k − ℓ
′
j′ ,k′ − 2 � d − ( j − 1) + (k − (d + 1)) − ℓ

′
j′ ,k′ − 2

� k − j − 2 − ℓ
′
j′,k′

� k − j − 2 −
{
(k − j) − 2, k < d + j
n − (k − j) − 2, else

�
{
0, k < d + j
2k − 2j − n else:

Both are nonnegative as in the second case 2k− 2j ≥ 2d � n:
• If k is on top and j is on bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else:

Equation (A.3) becomes

d − ℓ1,j + ℓd+1,k − ℓ
′
j′,k′ − 2 � d − (n − j + 1) + (d + 1 − k) − ℓ

′
j′ ,k′ − 2

� j − k − 2 − ℓ
′
j′,k′

� j − k − 2 −
{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else

�
{
0, j < d + k
2j − 2k − n, else:

Both are nonnegative as in the second case 2j− 2k ≥ 2d � n:
Up to symmetry, this shows that, in all possible cases,

cj,1 + cd+1,k − c′j′ ,k′ − 2 ≥ 0:

For completeness, we include formulas for when j is even and k is odd. These are
• If j, k are in the top, j+ k− | j− k| − 4:
• If j, k are in the bottom, 2n− j− k− | j− k|:
• If j is on the top and k is on the bottom,

{
0, k > d + j
n + 2j − 2k, else:

• If j is on the bottom and k is on the top,
{
0, j > d + k
n − 2j + 2k, else:

A.2. A Casework for Proposition 4.3

The computations for Proposition 4.3 follow as before. We want to show that

cj,d+2 + cd+1,k − c′j′ ,k′ − 1 ≥ 0,

and compute the left-hand side. Here, we just write the results, highlighting those when the inequality can be tight.
Case 1: j and k are both even. In this case,

cj,d+2 + cd+1,k − c′j′,k′ − 1 � d − ℓj,d+2 + ℓd+1,k − (d − 2 − ℓ
′
j′ ,k′ ) − 1: (A.4)

• If j, k are in the top, ℓ′j′,k′ � ℓj,k � | j− k|: Then, Equation (A.4) becomes

d− ℓj,d+2 + ℓd+1,k − (d− 2− ℓ
′
j′,k′ ) − 1 � d− (d+ 2− j) + (d+ 1− k) − (d− 2− | j− k|) − 1 � j− k+ | j− k|:

This is zero when j < k.
• If j, k are in the bottom, then Equation (A.4) becomes

d − ℓj,d+2 + ℓd+1,k − (d − 2 − ℓ
′
j′ ,k′ ) − 1 � d − ( j − (d + 2)) + (k − (d + 1)) − (d − 2 − | j − k|) − 1 � 2 + | j − k| − ( j − k):

This is never zero because |x| − x ≥ 0.
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• If j is on the top and k is on the bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
(k − j) − 2, k < d + j
n − (k − j) − 2, else:

Equation (A.4) becomes

d − ℓj,d+2 + ℓd+1,k − (d − 2 − ℓ
′
j′,k′ ) − 1 � d − (d + 2 − j) + (k − (d + 1)) − (d − 2 − ℓ

′
j′,k′ ) − 1

� j + k − 2 − n + ℓ
′
j′ ,k′

�
{
j + k − n + (k − j) − 4, k < d + j
j + k − n + n − (k − j) − 4, else

�
{
2k − n − 4, k < d + j
2j − 4, else:

Because j ≥ 3 and k ≥ d+ 3, these are never zero.
• If j is on the bottom and k is on the top, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else:

Equation (A.4) becomes

d − ℓj,d+2 + ℓd+1,k − (d − 2 − ℓ
′
j′ ,k′ ) − 1 � d − ( j − (d + 2)) + (d + 1 − k) − (d − 2 − ℓ

′
j′,k′ ) − 1

� n − j − k + 4 + ℓ
′
j′ ,k′

�
{
n − 2k + 2, j < d + k
2n − 2j + 2, else:

Because j ≤ n and k ≤ d, these are never zero.
Case 2: j and k are both odd.

n this case,

cj,d+2 + cd+1,k − c′j′,k′ − 1 � ℓj,d+2 + (d − ℓd+1,k) − (d − 2 − ℓ
′
j′ ,k′ ) − 1 � ℓj,d+2 − ℓd+1,k + ℓ

′
j′,k′ + 1: (A.5)

• If j, k are in the top, ℓ′j′,k′ � ℓj,k � | j− k|: Then, Equation (A.5) becomes

ℓj,d+2 − ℓd+1,k + ℓ
′
j′ ,k′ + 1 � (d+ 2− j) − (d+ 1− k) + | j− k| + 1 � 2+ |k− j| + (k− j):

This is never zero because |x| + x ≥ 0:
• If j, k are in the bottom, ℓ′j′ ,k′ � ℓj,k � | j− k|: Then, Equation (A.5) becomes

ℓj,d+2 − ℓd+1,k + ℓ
′
j′ ,k′ + 1 � ( j− (d+ 2)) − (k− (d+ 1)) + |k− j| + 1 � | j− k| + j− k:

This is zero when j < k.
• If j is on the top and k is on the bottom,

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
(k − j) − 2, k < d + j
n − (k − j) − 2, else:

Then, Equation (A.5) becomes

ℓj,d+2 − ℓd+1,k + ℓ
′
j′,k′ + 1 � (d + 2 − j) − (k − (d + 1)) + ℓ

′
j′ ,k′ + 1

� n + 4 − j − k + ℓ
′
j′,k′

� n + 4 − j − k +
{
(k − j) − 2, k < d + j
n − (k − j) − 2, else

�
{
n + 2 − 2j, k < d + j
2n + 2 − 2k, else:

Because k ≤ n and j ≤ d, these are never zero.
• If j is on the bottom and k is on the top,

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else:
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Then, Equation (A.5) becomes

ℓj,d+2 − ℓd+1,k + ℓ
′
j′,k′ + 1 � ( j − (d + 2)) − (d + 1 − k) + ℓ

′
j′ ,k′ + 1

� j + k − n − 2 + ℓ
′
j′,k′

� j + k − n − 2 +
{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else

�
{
2j − n − 4, j < d + k
2k − 4, else:

Because k ≥ 3 and j ≥ d+ 3, these are never zero.
Case 3: j is odd and k is even.

In this case,

cj,d+2 + cd+1,k − c′j′ ,k′ − 1 � ℓj,d+2 + ℓd+1,k − ℓ
′
j′ ,k′ − 1: (A.6)

• If j, k are in the top, then ℓ
′
j′,k′ � ℓj,k � | j− k|: Equation (A.6) becomes

ℓj,d+2 + ℓd+1,k − ℓ
′
j′,k′ − 1 � (d+ 2− j) + (d+ 1− k) − | j− k| − 1 � n+ 2− j− k− | j− k| �

{
n+ 2− 2j, j > k
n+ 2− 2k, else:

These are never zero because j,k ≤ d:
• If j, k are in the bottom, then ℓ

′
j′ ,k′ � ℓj,k � | j− k|: Equation (A.6) becomes

ℓj,d+2 + ℓd+1,k − ℓ
′
j′,k′ − 1 � j− (d+ 2) + k− (d+ 1) − | j− k| − 1 � j+ k− | j− k| − n− 4 �

{
2k− n− 4, j > k
2j− n− 4, else:

These are never zero because j,k ≥ d+ 3:
• If j is on the top and k is on the bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
(k − j) − 2, k < d + j
n − (k − j) − 2, else:

Equation (A.6) becomes

ℓj,d+2 + ℓd+1,k − ℓ
′
j′ ,k′ − 1 � (d + 2 − j) + (k − (d + 1)) − ℓ

′
j′ ,k′ − 1

� k − j − ℓ
′
j′,k′

� k − j −
{
(k − j) − 2, k < d + j
n − (k − j) − 2, else

�
{
2 k < d + j
2k − 2j − n + 2 else:

Because the second case occurs only when k ≥ d+ j⇒ 2k− 2j− n ≥ 0, these are never zero.
• If j is on the bottom and k is on the top, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else:

Equation (A.6) becomes

ℓj,d+2 + ℓd+1,k − ℓ
′
j′,k′ − 1 � ( j − (d + 2)) + (d + 1 − k) − ℓ

′
j′ ,k′ − 1

� j − k − 2 − ℓ
′
j′ ,k′

� j − k − 2 −
{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else

�
{
0, j < d + k
2j − 2k − n, else:

The second case is not zero whenever j > d+ k: Hence, the equation is zero when j ≤ d+ k.
Case 4: j is even and k is odd.

In this case,

cj,d+2 + cd+1,k − c′j′ ,k′ − 1 � (d − ℓj,d+2) + (d − ℓd+1,k) − ℓ
′
j′ ,k′ − 1 � n − ℓj,d+2 − ℓd+1,k − ℓ

′
j′ ,k′ − 1: (A.7)
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• If j, k are in the top, then ℓ
′
j′,k′ � ℓj,k � | j− k|: Equation (A.7) becomes

n− ℓj,d+2 − ℓd+1,k − ℓ
′
j′ ,k′ − 1 � n− (d+ 2− j) − (d+ 1− k) − | j− k| − 1 � j+ k− | j− k| − 4 �

{
2k− 4, j > k
2j− 4, else:

These are never zero because j,k ≥ 3:
• If j, k are in the bottom, then ℓ

′
j′ ,k′ � ℓj,k � | j− k|: Equation (A.7) becomes

n− ℓj,d+2 − ℓd+1,k − ℓ
′
j′ ,k′ − 1 � n− ( j− (d+ 2)) − (k− (d+ 1)) − | j− k| − 1 � 2n+ 2− j− k− | j− k|

and

2n+ 2− j− k− | j− k| �
{
2n+ 2− 2j, j > k
2n+ 2− 2k, else:

These are never zero because j,k ≤ n:
• If j is on the top and k is on the bottom, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
(k − j) − 2, k < d + j
n − (k − j) − 2, else:

Equation (A.7) becomes

n − ℓj,d+2 − ℓd+1,k − ℓ
′
j′,k′ − 1 � n − (d + 2 − j) − (k − (d + 1)) − ℓ

′
j′ ,k′ − 1

� n + j − k − 2 − ℓ
′
j′ ,k′

� n + j − k − 2 −
{
(k − j) − 2, k < d + j
n − (k − j) − 2, else

�
{
n + 2j − 2k, k < d + j
0, else:

The first case is not zero because d+ j− k > 0: Hence, the equation is zero when k ≥ d+ j.
• If j is on the bottom and k is on the top, then

ℓ
′
j′ ,k′ � ℓj,k − 2 �

{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else:

Equation (A.7) becomes

n − ℓj,d+2 − ℓd+1,k − ℓ
′
j′ ,k′ − 1 � n − ( j − (d + 2)) − (d + 1 − k) − ℓ

′
j′,k′ − 1

� n − j + k − ℓ
′
j′ ,k′

� n − j + k −
{
( j − k) − 2, j < d + k
n − ( j − k) − 2, else

�
{
n + 2 − 2j + 2k, j < d + k

��
2

√
,

2 else:

The first case is not zero because j < d+ k implies 0 < n+ 2k− 2j:
In all cases,

cj,d+2 + cd+1,k − c′j′ ,k′ − 1 ≥ 0,

with equality only when
• j,k ≤ d, both j, k even, and j < k:
• j,k ≥ d+ 3, both j, k odd, and j < k:
• j ≥ d+ 3 and odd, k ≤ d and even, and j ≤ d+ k:
• j ≤ d and even, k ≥ d+ 3 and odd, and k ≥ d+ j:
This means that equality can hold only in those cases mentioned in the proof of Proposition 4.3.

Endnotes
1 For results on hardness see, for example, Williamson and Shmoys [33, theorem 2.9]. Even with more restrictive assumptions, such as that
the edge costs are metric (i.e., cij ≤ cik + ckj for all distinct i, j, k ∈ [n]), it is known to be NP-hard to approximate TSP solutions in polynomial
time to within any constant factor α < 123

122 (see Karpinski et al. [23]).
2 Bill Cook, one of the authors of Concorde, generously ran our instances on Concorde and it took more than 40 hours to verify the circlet
inequality when n � 32. He noted that he sometimes found difficult small instances for Concorde to solve, “but [that] 32 nodes might be a
record.”
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