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lead to positively stable preconditioned systems if proper signs are selected in
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form other preconditioners if the Schur complements are further approximated
inexactly. Numerical experiments for a 3-field formulation of the Biot model
are provided to verify our predictions.
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1 Introduction

Many application problems will lead to twofold and/or block tridiagonal saddle
point linear systems. Important examples include mixed formulations of the Biot
model [1, 9, 22, 26, 33], the coupling of fluid flow with porous media flow [10, 21,
29], hybrid discontinuous Galerkin approximation of Stokes problem [17], liquid
crystal problem [3,36] and optimization problems [23,26,28,34,38]. Some of these
problems (or after permutations) will lead to a twofold saddle point problem
[3, 12, 21, 23, 24, 38, 40, 41] (or the so-called double saddle point problem) of the
following form:

Ax=




A1 BT
1 0

C1 −A2 BT
2

0 C2 A3







x1

x2

x3


=




f1

f2

f3


. (1.1)

A negative sign in front of A2 is just for the ease of notation. After simple permu-
tations, the system matrix of (1.1) can be rewritten into the following form:

A=




A1 0 BT
1

0 A3 C2

C1 BT
2 −A2


 . (1.2)

We call the system matrix in (1.2) permutation-equivalent to that in (1.1). With-
out causing confusion, we continue to use the notation A for the permuted ma-
trix (1.2). The linear system in (1.2) arises naturally from the domain decomposi-
tion methods [30, 39]. In this work, we only assume that A1 is invertible and the
global system matrix A is invertible. Many special cases, e.g. if A2=0, or A3=0,
or A2= A3 =0 can be cast into the above forms of twofold saddle point systems.
Our discussions will try to cover all these special cases.

The above 3-by-3 block linear problems (1.1) and (1.2) can be naturally ex-
tended to n-tuple cases. For example, when the system matrix in (1.1) is extended
to the n-tuple case, it is the block tridiagonal systems discussed in [38]. When the
system matrix in (1.2) is extended to the n-tuple case, it corresponds to the linear
system resulting from the domain decomposition method for elliptic problems
with n−1 subdomains. In many references, these linear systems are assumed to
be symmetric. No matter whether it is symmetric or not, A is generally indefinite.
For solving such a system in large-scale computations, Krylov subspace methods
with preconditioners are usually applied. The analysis in [25, 31] indicates that
one should employ Schur complement based preconditioners [5, 15, 16, 27] and
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then resort to replacing each exact Schur complement with an approximate one.
If a Krylov subspace method satisfies an optimality or Galerkin property (such as
conjugate gradient method and minimal residual methods [18, 31, 37]), the num-
ber of iterations depends on the degree of the minimal polynomial that the pre-
conditioned matrix T satisfies [25,31,37]. More precisely, the number of iterations
depends on the dimension of the Krylov subspace Span{r,T r,T 2r,T 3r,. . .}. For
a classical 2-by-2 saddle point problem, by employing block-diagonal or block-
triangular preconditioners with the (2,2) block being the Schur complement, it
has been shown that the corresponding preconditioned system satisfies a poly-
nomial of the degree of 4 or 2 [25, 31]. Therefore, devising preconditioners based
on Schur complements is of vital importance.

In this study, we explore two methodologies for designing preconditioners
tailored for 3-by-3 block systems exhibiting block tridiagonal form, as well as
their extensions to n-tuple scenarios. One approach centers around the nested
(or recursive) Schur complement [38]. Unlike the approach presented in [38], our
work adopts a more expansive assumption, allowing A1,A2, and A3 to be non-
symmetric or negative definite. Another approach is founded on the permuted
matrix (1.2). Initially treating the first 2-by-2 block as a unified entity, albeit po-
tentially indefinite, we transform the system into the saddle point form discussed
in [25]. Subsequently, we explore preconditioners based on an additive-type
Schur complement [14, 30, 39]. For 3-by-3 block systems, the additive-type Schur
complement-based preconditioner yields a system that satisfies a polynomial of
degree 2 (block triangular) or 4 (block diagonal), while preconditioners based
on the nested Schur complement satisfy a polynomial with a degree of 3 (block
triangular) or 6 (block diagonal). When extended to n-tuple scenarios, if the pre-
conditioned system is diagonalizable, the degree of the polynomial satisfied by
a nested Schur complement-based preconditioner is significantly higher than that
satisfied by an additive Schur complement-based preconditioner. Thus, from an
algebraic perspective, when employing the GMRES method, the additive-type
preconditioner is favored. The generalization of the form (1.2) to n-tuple cases
corresponds to the linear system resulting from domain decomposition methods,
referencing some literature results on domain decomposition methods.

Commencing with a twofold saddle point problem, we generalize our the-
ory to n-tuple block tridiagonal saddle point problems. Our study demonstrates
that judiciously selecting signs in front of Schur complements in preconditioners
results in a positively stable preconditioned system [16]. By using the Routh-
Hurwitz stability criterion, we prove that the appropriate sign in front of each
Schur complement yields a positively stable preconditioned system [16]. For pos-
itively stable preconditioners, we highlight that they outperform other precondi-
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tioners if further inexact approximations are applied to the corresponding Schur
complements. Numerical experiments, exemplified by a 3-field formulation of
the Biot model, underscore the superior performance of positively stable precon-
ditioners compared to other alternatives. Notably, we refrain from assuming the
positive definiteness of each Ai, and the linear systems investigated in this study
extend beyond saddle point problems. In the concluding remarks, we discuss and
highlight the potential advantages and disadvantages of the two types of precon-
ditioners, particularly when considering their corresponding inexact versions.

The outline of the remainder of this paper is as follows. In Section 2, we briefly
recall the classic saddle point problem and its Schur complement, and introduce
the twofold saddle point problem and the form of Schur complement, we then
construct and analyze the block-triangular and block-diagonal preconditioners
based on Schur complement for twofold saddle point problems. Furthermore,
we extend these results to the n-tuple saddle point problem in Section 3. Some
additive Schur complement based preconditioners are constructed and the corre-
sponding known results in the literature are recalled in Section 4 for twofold sad-
dle point problems. Generalizations to n-tuple cases are provided in Section 5.
In Section 6, numerical experiments for a 3-field formulation of the Biot model
are provided to justify the advantages of using positively stable preconditioners.
Finally, concluding remarks are given in Section 7.

2 Nested Schur complement based preconditioners

for twofold saddle point systems

The matrix form of a classic saddle point problem [5, 25] reads as

A=

[
A BT

C −D

]
.

Following the notation in [38], the Schur complement of A is defined as

Schur(A)=−D−CA−1BT.

In many references, A is assumed to be a symmetric positive definite, if C is as-
sumed to be B and D is zero, then the system is called KKT system or saddle point
system. Usually, D is assumed to be a symmetric and semi-positive definite. In
this paper, we only make some assumptions that can guarantee the invertibility
of A. We assume that A and the Schur complement Schur(A) are invertible. For
the twofold saddle point problem (1.1), following the notations in [38], we denote

S1=A1, S2=A2+C1S−1
1 BT

1 ,
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and denote the nested Schur complement as

S3=A3+C2S−1
2 BT

2 .

In [38], each Si is assumed to be symmetric positive definite (SPD). From the ex-
pressions, if A is symmetric and all Ai, i=1,.. .,3 are symmetric positive definite,
then Si are SPD. In this work, we only assume that each Si is invertible. Such
assumptions are sufficient enough to guarantee the invertibility of the global sys-
tem. Under such an assumption, the block LDU decomposition of the system
matrix is

A=




I 0 0

C1A−1
1 I 0

0 −C2S−1
2 I







A1 0 0

0 −S2 0

0 0 S3







I A−1
1 BT

1 0

0 I −S−1
2 BT

2

0 0 I


 . (2.1)

For ease of presentation, we will denote the above 3 block matrices as L, D, and U ,
respectively. We study both block-triangular and block-diagonal preconditioners
for the system matrix (1.1). For block-triangular preconditioners, we focus on
a lower triangular type with left preconditioning because an upper triangular one
with right preconditioning can be discussed in a similar way [5, 25]. We consider
the following preconditioner:

PT1
=




A1 0 0

C1 −S2 0

0 C2 S3


=LD. (2.2)

Theorem 2.1. Assume that all Si, i= 1,2,3, are invertible, then, for the preconditioner

(2.2),

P−1
T1

A=U , (2.3)

and P−1
T1

A satisfies the polynomial equation (λ−1)3 = 0. If we further assume that

BT
1 S−1

2 BT
2 is nonzero, then (λ−1)3 is the minimal polynomial.

Proof. From (2.1), because A=LDU , P−1
T1

A=(LD)−1A=U , which is the block

upper triangular matrix of the form in (2.3). On one hand, (P−1
T1

A− I)3 = 0. To

verify whether (λ−1)3 is the minimal polynomial, we assume that there exist

nonzero numbers a,b,c such that aU2+bU+cI=0. We note that

U2=




I 2A−1
1 BT

1 −A−1
1 BT

1 S−1
2 BT

2

0 I −2S−1
2 BT

2

0 0 I


,
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then

aU2+bU+cI=




(a+b+c)I (2a+b)A−1
1 BT

1 −aA−1
1 BT

1 S−1
2 BT

2

0 (a+b+c)I −(2a+b)S−1
2 BT

2

0 0 (a+b+c)I


=0.

Because both A1 is invertible and BT
1 S−1

2 BT
2 is nonzero, from the (1,3) entry of

aU2+bU+cI, we derive that a = 0. Then, from the fact that the (1,2) and (2,3)
entries of aU2+bU+cI are zeros, we conclude b = 0. Lastly, from the diagonal

entries, see that c=0. Therefore, (λ−1)3 is the minimal polynomial of P−1
T1

A.

Other preconditioners which will make the corresponding preconditioned sys-
tems have eigenvalues 1 or −1 are

PT2
=




A1 0 0
C1 S2 0
0 −C2 S3


 , PT3

=




A1 0 0
C1 S2 0
0 −C2 −S3


,

PT4
=




A2 0 0

C1 −S2 0

0 C2 −S3


.

(2.4)

Remark 2.1. For preconditioners listed in (2.4), we have the following conclu-

sions:

P−1
T2

A=




I A−1
1 BT

1 0

0 −I S−1
2 BT

2

0 0 I


 ,

and P−1
T2

A satisfies the polynomial equation (λ−1)2(λ+1)=0,

P−1
T3

A=




I A−1
1 BT

1 0

0 −I S−1
2 BT

2

0 0 −I


 ,

and P−1
T3

A satisfies the polynomial equation (λ−1)(λ+1)2 =0,

P−1
T4

A=




I A−1
1 BT

1 0

0 I −S−1
2 BT

2

0 0 −I


,

and P−1
T4

A satisfies the polynomial equation (λ−1)2(λ+1)=0.
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Definition 2.1. A matrix is said to be stable if the real parts of all the eigenvalues are

negative. Correspondingly, if the real parts of all the eigenvalues of a matrix A are pos-

itive, we say that these eigenvalues are positive real. If a preconditioner P of A satisfies

P−1A is positive real, we call P is a positive stable preconditioner of A.

A sufficient condition to guarantee the eigenvalues of a matrix A is positive
real is the Hermitian part of A, i.e., (A+AH)/2, is SPD. The reverse direction
is not true. There are many matrices whose eigenvalues are positive but their
Hermitian parts are not SPD.

Theorem 2.2. Let the assumptions in Theorem 2.1 hold. We further assume that A2=0

and A3=0. If the block-diagonal preconditioner is

PD1
=




A1 0 0

0 S2 0

0 0 S3


, (2.5)

then

T1=P−1
D1

A=




I A−1
1 BT

1 0

S−1
2 C1 0 S−1

2 BT
2

0 S−1
3 C2 0


, (2.6)

which satisfies the polynomial equation (λ−1)(λ2−λ−1)(λ3−λ2−2λ+1)=0.

Proof. By a simple calculation, one can derive that (2.6) holds. Then, we see that

T 2
1 =




I+A−1
1 BT

1 S−1
2 C1 A−1

1 BT
1 A−1

1 BT
1 S−1

2 BT
2

S−1
2 C1 I+S−1

2 BT
2 S−1

3 C2 0

S−1
3 C2S−1

2 C1 0 I


 ,

T 3
1 =




I+2A−1
1 BT

1 S−1
2 C1 A−1

1 BT
1 (2I+S−1

2 BT
2 S−1

3 C2) A−1
1 BT

1 S−1
2 BT

2

(2I+S−1
2 BT

2 S−1
3 C2)S

−1
2 C1 I 2S−1

2 BT
2

S−1
3 C2S−1

2 C1 2S−1
3 C2 0


,

and

T1− I=




0 A−1
1 BT

1 0

S−1
2 C1 −I S−1

2 BT
2

0 S−1
3 C2 −I


 ,
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T 2
1 −T1− I=




−I+A−1
1 BT

1 S−1
2 C1 0 A−1

1 BT
1 S−1

2 BT
2

0 S−1
2 BT

2 S−1
3 C2 −S−1

2 BT
2

S−1
3 C2S−1

2 C1 −S−1
3 C2 0


 ,

T 3
1 −T 2

1 −2T1+ I=




−I+A−1
1 BT

1 S−1
2 C1 A−1

1 BT
1 (−I+S−1

2 BT
2 S−1

3 C2) 0

(−I+S−1
2 BT

2 S−1
3 C2)S

−1
2 C1 I−S−1

2 BT
2 S−1

3 C2 0

0 0 0


 .

Combining all of the above, one can verify that

(T 2
1 −T1− I)(T1− I)=(T1− I)(T 2

1 −T1− I)

=




0 A−1
1 BT

1 S−1
2 BT

2 S−1
3 C2 −A−1

1 BT
1 S−1

2 BT
2

S−1
2 BT

2 S−1
3 C2S−1

2 C1 −2S−1
2 BT

2 S−1
3 C2 2S−1

2 BT
2

−S−1
3 C2S−1

2 C1 2S−1
3 C2 −I


.

The (i, j) block of (T1−I)(T 2
1 −T1−I)(T 3

1 −T 2
1 −2T1+I) is denoted as Aij. Because

A2 and A3 are zeros, and hence Si =Ci−1S−1
i−1BT

i−1, i=2,3. One can verify that

A11=A−1
1 BT

1 S−1
2 BT

2 S−1
3 C2

(
− I+S−1

2 BT
2 S−1

3 C2

)
S−1

2 C1=0,

A12=A−1
1 BT

1 S−1
2 BT

2 S−1
3 C2

(
I−S−1

2 BT
2 S−1

3 C2

)
=0,

A21=S−1
2 BT

2 S−1
3 C2S−1

2 C1

(
− I+A−1

1 BT
1 S−1

2 C1

)

−2S−1
2 BT

2 S−1
3 C2

(
− I+S−1

2 BT
2 S−1

3 C2

)
S−1

2 C1=0,

A22=S−1
2 BT

2 S−1
3 C2S−1

2 C1A−1
1 BT

1

(
− I+S−1

2 BT
2 S−1

3 C2

)

−2S−1
2 BT

2 S−1
3 C2

(
I−S−1

2 BT
2 S−1

3 C2

)
=0,

A31=−S−1
3 C2S−1

2 C1

(
− I+A−1

1 BT
1 S−1

2 C1

)

+2S−1
3 C2

(
− I+S−1

2 BT
2 S−1

3 C2

)
S−1

2 C1=0,

A32=−S−1
3 C2S−1

2 C1A−1
1 BT

1

(
− I+S−1

2 BT
2 S−1

3 C2

)

+2S−1
3 C2

(
I−S−1

2 BT
2 S−1

3 C2

)
=0,

A13=0, A23=0, A33=0.
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We therefore conclude that

(T1− I)(T 2
1 −T1− I)(T 3

1 −T 2
1 −2T1+ I)=0. (2.7)

The proof is complete.

We note that (2.7) can be factorized into distinct linear factors. Correspond-
ingly, the roots of the above polynomial are

−1.2470, −0.6180, 0.4450, 1, 1.6180, 1.8019.

It follows that the eigenvalues of T1 must be among these values. One can use the
method of contradiction to prove that there is no polynomial of degree less than
6 such that T1 satisfies the polynomial equation. Theorem 2.3 in [38] shows that
if A is a symmetric matrix, then the eigenvalues of the preconditioned system T1

are

σp(T1)=

{
2cos

(
2i−1

2j+1
π

)
: j=1,.. .,3, i=1,.. ., j

}
.

Correspondingly, the condition number is

κ(T1)≤
cos(π/7)

sin(π/14)
≈4.05.

Our conclusion for eigenvalues in Theorem 2.2 is consistent with that in [38].
However, the assumption that A is symmetric and is removed in our analysis.

We also consider the following Schur complement based block-diagonal pre-
conditioners:

PD2
=




A1 0 0
0 S2 0
0 0 −S3


, PD3

=




A1 0 0
0 −S2 0
0 0 S3


,

PD4
=




A1 0 0
0 −S2 0
0 0 −S3


.

(2.8)

Furthermore, if A2 = 0 and A3 = 0, we have the following conclusions: If the
preconditioner is PD2

, then

T2=P−1
D2

A=




I A−1
1 BT

1 0

S−1
2 C1 0 S−1

2 BT
2

0 −S−1
3 C2 0


,
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satisfies the polynomial equation (λ−1)(λ2−λ−1)(λ3−λ2−1)=0. Its roots are

−0.618, −0.2328+0.7926i, −0.2328−0.7926i, 1, 1.4656, 1.618;

If the preconditioner is PD3
, then

T3=P−1
D3

A=




I A−1
1 BT

1 0

−S−1
2 C1 0 −S−1

2 BT
2

0 S−1
3 C2 0


,

which satisfies the polynomial equation (λ−1)(λ2−λ+1)(λ3−λ2+2λ−1) = 0.
Correspondingly, the roots are

0.5698, 1, 0.5+0.8660i, 0.5−0.8660i, 0.2151+1.3071i, 0.2151−1.3071i.

If the preconditioner is PD4
, then

T4=P−1
D4

A=




I A−1
1 BT

1 0

−S−1
2 C1 0 −S−1

2 BT
2

0 −S−1
3 C2 0


,

which satisfies the polynomial equation (λ−1)(λ2−λ+1)(λ3−λ2+1) = 0. The
roots are

−0.7549, 1, 0.5+0.8660i, 0.5−0.8660i, 0.8774+0.7449i, 0.8774−0.7449i.

We highlight here that all eigenvalues of T3 have positive real parts. Therefore,
PD3

is a positively stable preconditioner for A. We also comment here that when
the A1 and the Schur complements S2 and S3 are replaced by their inexact ver-
sions, some analysis on the eigenvalue distribution of the preconditioned systems
are obtained in [7].

3 Nested Schur complement based preconditioners

for n-tuple block tridiagonal problems

Now, we will discuss preconditioners for the n-tuple block tridiagonal problem
of the following form:

An=




A1 BT
1

C1 −A2
. . .

. . . . . . BT
n−1

Cn−1 (−1)n−1An




. (3.1)
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Similar to the 3-by-3 block case, we define

Si+1=Ai+1+CiS
−1
i BT

i , i=1,2,.. .,n−1

with the initial setting S1=A1. Here and hereafter, we assume that Si, i=1,2,.. .,n
are invertible. The block tridiagonal system can be written recursively as

Ai+1=

[
Ai BT

i
Ci (−1)i Ai+1

]
.

Here,
B

T
i =[0,.. .,0,Bi]

T, Ci =[0,.. .,0,Ci].

Then, following the notations introduced in [38],

Schur(Ai+1)=(−1)i Ai+1−CiA−1
i B

T
i

=(−1)i
(

Ai+1+CiS
−1
i BT

i

)
,

and
Si+1=(−1)i Schur(Ai+1)=Ai+1+CiS

−1
i BT

i

with S1=A1.
Similar to the factorization (2.1), An can be factorized into

An=LnDnUn, (3.2)

where

Dn=




A1 0

0 −S2
. . .

. . . . . . 0

0 (−1)n−1Sn




, (3.3)

and

Ln=




I 0

C1A−1
1 I

. . .
. . . . . . 0

(−1)n−2Cn−1S−1
n−1 I




,

Un=




I A−1
1 BT

1

0 I
. . .

. . . . . . (−1)n−2S−1
n−1BT

n−1

0 I




.
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Theorem 3.1. Assume that all Si, i=1,2,3,.. .,n are invertible. Let the preconditioner be

Pn=




A1

C1 −S2
. . .

. . .

Cn−1 (−1)n−1Sn


=LnDn,

then P−1
n An=Un, and P−1

n An satisfies the polynomial (λ−1)n=0. Furthermore, if An

is symmetric and Ai, i=1,2,.. .,n are symmetric positive definite, let the preconditioner

be Dn, then all eigenvalues of D−1
n An are positive real.

Proof. Combining LnDn in (3.2), the first part of the conclusion is obvious. For

the second part, noting that if An is symmetric and Ai, i=1,2,.. .,n, are symmetric

positive definite, then the matrix

Sn=




S1

S2
. . .

Sn


 (3.4)

is symmetric positive definite [38]. We therefore can define S1/2
n , in which the i-th

diagonal block is S1/2
i . To prove the eigenvalues of D−1

n An are positive real, we

apply a similarity transform to D−1
n An, that is, left multiplying by S1/2

n and right

multiplying by S−1/2
n to D−1

n An, we have

S
1
2
n D−1

n AnS− 1
2

n

=




I S
− 1

2
1 BT

1 S
− 1

2
2

−S
− 1

2
2 B1S

− 1
2

1 S
− 1

2
2 A2S

− 1
2

2
. . .

. . . . . . (−1)n−2S
− 1

2
n−1BT

n−1S
− 1

2
n

(−1)n−1S
− 1

2
n Bn−1S

− 1
2

n−1 S
− 1

2
n AnS

− 1
2

n




.

We note that the Hermitian part of S1/2
n D−1

n AnS−1/2
n is

1

2

[(
S

1
2
n D−1

n AnS− 1
2

n

)
+
(
S

1
2
n D−1

n AnS− 1
2

n

)T
]
=




I 0

0 S
− 1

2
2 A2S

− 1
2

2
. . .

. . . . . . 0

0 S
− 1

2
n AnS

− 1
2

n



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is symmetric positive definite. Therefore, we conclude that all eigenvalues of

D−1
n An are positive real.

Remark 3.1. In [38], Sn is taken as a preconditioner of the block tridiagonal sys-

tem An. The advantage is that Sn is SPD. However, the eigenvalues of S−1
n An

may not be positive real. In comparison, Dn is a positively stable preconditioner

for An.

Theorem 3.2. Assume that Ai = 0 for i = 2,3,.. .,n in An. If the Schur complement

based preconditioner is Dn in (3.3), then the eigenvalues of Tn =D−1
n An are the roots of

polynomial

p̄i =λp̄i−1+ p̄i−2, i=2,3,4,.. .,n (3.5)

with p̄0(λ)=1, p̄1(λ)=λ−1. Moreover, all the roots of p̄i, i=1,2,.. .,n, lie in the right

half-plane. If Tn =D−1
n An is further assumed to be diagonalizable, then Tn satisfies the

polynomial equation ∏
n
i=0 p̄i =0.

Proof. To verify the first part of the theorem, we let

Ci =S−1
i+1Ci, BT

i =S−1
i BT

i , i=1,2,.. .,n−1.

Because Ai =0, i=2,.. .,n, we see that CiBT
i = I and the preconditioned system Tn

degenerates to

Tn=D−1
n An=




I BT
1

−C1 0
. . .

. . . . . . (−1)n−2BT
n−1

(−1)n−1Cn−1 0




. (3.6)

Let λ be an eigenvalue and x=(x1,x2,. . .,xn)T be the corresponding eigenvector,

we have Tnx=λx. More clearly,

x1+BT
1 x2=λx1,

C1x1+BT
2 x3=−λx2,

...

Cn−2xn−2+BT
n−1xn=(−1)n−2λxn−1,

Cn−1xn−1=(−1)n−1λxn.

(3.7)
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From the first equation of (3.7),

BT
1 x2= p̄1(λ)x1, where p̄1(λ)=λ−1.

Setting x2=x3=···=xn=0, and x1 6=0, we note that λ11=1, the root of p̄1(λ), is an

eigenvalue. If λ 6=λ11, from the second equation and replacing x1 by BT
1 x2/p̄1(λ),

we then obtain

BT
2 x3=−C1x1−λx2=− 1

p̄1(λ)
C1BT

1 x2−λx2=− 1

p̄1(λ)
x2−λx2=−R2(λ)x2,

where

R2(λ)=λ+
1

p̄1(λ)
=

p̄2(λ)

p̄1(λ)

with

p̄2(λ)=λp̄1(λ)+1=λp̄1(λ)+ p̄0(λ).

By setting x3 = ···= xn = 0, we see that the two roots of the polynomial p̄2(λ),
denoted as λ21 and λ22, are eigenvalues. Repeating this procedure leads to

BT
j xj+1=(−1)j−1Rj(λ)xj, j=2,.. .,n−1,

and

0=(−1)n−1Rn(λ)xn with Rj(λ)=
p̄j(λ)

p̄j−1(λ)
,

where the polynomials p̄j(λ) are recursively given by

p̄0(λ)=1, p̄1(λ)=λ−1, p̄i+1(λ)=λ p̄i(λ)+ p̄i−1(λ), i≥1.

Thus, the eigenvalues of Tn are the roots of the polynomials p̄1(λ), p̄2(λ),. . . , p̄n(λ).

For proving the second part of the conclusion, we note that all eigenvalues

of D−1
n An are the roots of p̄i, i= 1,2,.. .,n. We are going to show that all roots of

the polynomials p̄i, i = 1,2,.. .,n, lie on the right half-plane by using the Routh-

Hurwitz stability criterion [2, 20].

The stability of a polynomial can be determined by the Routh-Hurwitz stabil-

ity criterion which suggests using a tabular method [2]: For a general k-th degree

polynomial

pk(λ)= akλk+ak−1λk−1+···+a1λ+a0
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its Routh table is a matrix of k+1 rows, which has the following structure:

RTk
=




r01 r02 r03 ···
r11 r12 r13 ···
r21 r22 r23 ···
...

...
...

. . .




. (3.8)

In (3.8), the first two rows, which come from the coefficients directly, are ordered

as

(r0j)=(ak ,ak−2,ak−4,. . .), (r1j)=(ak−1 ,ak−3,ak−5,. . .). (3.9)

Other entries are computed as follows:

rij=
−1

ri−1,1
det

[
ri−2,1 ri−2,j+1

ri−1,1 ri−1,j+1

]
, i=2,3,4,.. . .

When the table is completed, the number of sign changes in the first column is

the number of roots in the right half-plane [2]. Note that the entries of the Routh

table are uniquely determined once the first two rows are fixed, i.e., the Routh

table is uniquely dependent on the coefficients of pk.

For the polynomial p̄k generated by (3.5), its key coefficients (for the leading

terms and the constant) are

āk =1, āk−1=−1, ā0=(−1)k. (3.10)

Such a conclusion can be proved by the method of mathematical induction by

using the recurrence formula (3.5). From (3.10), in general, we have

p̄k =λk−λk−1+ āk−2λk−2+ āk−3λk−3+ āk−4λk−4+···+ ā2λ2+ ā1λ+(−1)k.

For completing the Routh table of p̄k, let us write out the expression of p̄k−1 in

terms of the coefficients of p̄k. From the recurrence formula (3.5), we note that the

expression of p̄k−1 will have small differences for the case k odd and the case k

even

p̄k−1=λk−1−λk−2− āk−3λk−3−(āk−4+ āk−5)λ
k−4− āk−5λk−5

−(āk−6+ āk−7)λ
k−6 ···−(ā5+ ā4)λ

5− ā4λ4−(ā3+ ā2)λ
3

− ā2λ2−(ā1+ ā0)λ− ā0, if k is odd, (3.11)

p̄k−1=λk−1−λk−2− āk−3λk−3−(āk−4+ āk−5)λ
k−4− āk−5λk−5

−(āk−6+ āk−7)λ
k−6 ···− ā5λ5−(ā4+ ā3)λ

4− ā3λ3

−(ā2+ ā1)λ
2− ā1λ−1, if k is even. (3.12)
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For ease of presentation, let us assume that k is even (then k−1 and k+1 are odd.

The case k is odd can be proved similarly by slightly changing the notations in the

following arguments). We denote the matrix RTk
as the Routh table of polynomial

p̄k. The first two rows of RTk
are

[
āk =1 āk−2 āk−4 ··· ā2 ā0=1

āk−1=−1 āk−3 āk−5 ··· ā1 0

]
. (3.13)

Then, the first two rows of RTk−1
are

[
1 −āk−3 −āk−5 ··· −ā1

−1 −(āk−4+ āk−5) −(āk−6+ āk−7) ··· −1

]
, (3.14)

the first two rows of RTk+1
are

[
1 āk−2− āk−1 āk−4− āk−3 ··· ā2− ā3 ā0− ā1

−āk =−1 −āk−2 −āk−4 ··· −ā2 −ā0

]
, (3.15)

and RTk+1
satisfy the following relationship:

RTk+1
=

[
1 āk−2− āk−1 āk−4− āk−3 ··· ā2− ā3 ā0− ā1

−RTk

]
. (3.16)

One only needs to verify that the derivation from (3.13) to (3.15) is correct. To

check this, by using (3.5), there holds

p̄k+1=λp̄k+ p̄k−1

=λ
(
λk−λk−1+ āk−2λk−2+ āk−3λk−3+ āk−4λk−4 . . .+ ā2λ2+ ā1λ+ ā0

)
+λk−1

−λk−2− āk−3λk−3−(āk−4+ āk−5)λ
k−4− āk−5λk−5 ···−(āk−6+ āk−7)λ

k−6

−(ā5+ ā4)λ
5− ā4λ4−(ā3+ ā2)λ

3− ā2λ2−(ā1+ ā0)λ− ā0

=λk+1−λk+(āk−2+1)λk−1+(āk−3−1)λk−2+(āk−4− āk−3)λ
k−3− āk−4λk−4

+(āk−6− āk−5)λ
k−5− āk−6λk−6 . . .+(ā4− ā3)λ

2− ā3λ3+(ā1− ā2)λ
2− ā1λ+1.

As k is even, k+1 is odd, the expression of p̄k+1 satisfies the first equation in (3.11),

and the first two rows of the Routh table of p̄k+1 are

[
1 āk−2− āk−1 āk−4− āk−3 ··· ā2− ā3 ā0− ā1

−āk =−1 −āk−2 −āk−4 ··· −ā2 −ā0

]
.
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Thus, (3.15) is verified. As the entries of the Routh table are uniquely determined

by the first two rows, the rest of the verifications are straightforward: for verify-

ing (3.16), one can directly check the entries row-by-row by using (3.9). Actually,

the entries of the 3-rd row of RTk+1
are

r21=
−1

−1
det

[
1 āk−2− āk−1

−1 −āk−2

]
=−āk−1=1,

r22=
−1

−1
det

[
1 āk−4− āk−3

−1 −āk−4

]
=−āk−3,. . .,

r2j=
−1

−1
det

[
1 āk−2j− āk−2j+1

−1 −āk−2j

]
=−āk−2j+1 for a general j.

By comparing these entries with the 2nd row of (3.13), one sees that (3.16) is

verified.

We conclude that the entries of the first row of RTk
change values from 1 to −1

alternatingly. Therefore, the number of sign changes in the first column is k. Thus,

according to the Routh-Hurwitz stability criterion [2, 20] and the fact that there

is no zero root, the number of roots of p̄k which are lying in the right half-plane

equals k. Therefore, all the roots of p̄i, i=1,2,.. .,n, lie in the right half-plane.

If Tn=D−1
n An is further assumed to be diagonalizable, then there exists an in-

vertible matrix, say Qn, such that Q−1
n TnQn is a diagonal matrix with the diagonal

entries being the eigenvalues. By a direct verification, Tn satisfies the polynomial

equation ∏
n
i=0 p̄i =0.

Remark 3.2. We highlight here that in the assumption of Theorem 3.2, we do not

require that An is symmetric. Moreover, under the same assumption of Theo-

rem 3.2, if Sn in (3.4) is the preconditioner, then the eigenvalues of S−1
n An are the

roots of the polynomial of the form ∏
n
i=0 p̃i, where p̃0(λ)=1, p̃1(λ)=λ−1 and

p̃i =λp̃i−1− p̃i−2, i=2,3,4,.. .,n.

The proof of this conclusion is the same as that provided in [38], which is for the

symmetric case. However, Sn is not a positively stable preconditioner. In com-

parison, we show that Dn is a positively stable preconditioner for An no matter

whether it is symmetric or not.

Remark 3.3. We comment here that if An is symmetric, the proof for verifying

Dn is positively stable can be carried out similarly to that for Theorem 3.1. More
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clearly, we left multiply by S1/2
n and right multiply by S−1/2

n to D−1
n An, and de-

note Hn=S1/2
n D−1

n AnS−1/2
n . Then, we have

Hn=




I S
− 1

2
1 BT

1 S
− 1

2
2

−S
− 1

2
2 B1S

− 1
2

1 0
. . .

. . . . . . (−1)n−2S
− 1

2
n−1BT

n−1S
− 1

2
n

(−1)n−1S
− 1

2
n Bn−1S

− 1
2

n−1 0




.

We note that the Hermitian part of S1/2
n D−1

n AnS−1/2
n is

1

2

[(
S

1
2
n D−1

n AnS− 1
2

n

)
+
(
S

1
2
n D−1

n AnS− 1
2

n

)T
]
=




I 0

0 0
. . .

. . . . . . 0

0 0




.

Let us denote λ as an eigenvalue of Hn, λ̄ as its conjugate, and x as the corre-

sponding eigenvector. As Hn is invertible, λ is nonzero and x is not a zero vector.

We have

xTHnx=λ‖x‖2, xTHT
n x= λ̄‖x‖2.

Summing the two equations together and noting from the expression of Hn, we

have

xT
(
Hn+HT

n

)
x=2Re(λ)‖x‖2,

2‖x1‖2=2Re(λ)‖x‖2. (3.17)

Here, x1 is the first component of x and Re(λ) is the real part of λ. We assert that

x1 is nonzero. This conclusion can be proved by the method of contradiction. If x1

is 0, starting with the first equation of (3.7), we have x2∈Ker(BT
1 ). However, BT

1

must be of full column rank because B1BT
1 = I. It follows that x2 is 0. Repeating

this procedure as presented in (3.7), and noting that BT
i is of full column rank as

BiBT
i = I, we will have x3 = ···= xn = 0. It contradicts the fact that x is nonzero.

Therefore, from (3.17), we conclude that Re(λ)>0.
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4 Additive Schur complement based preconditioners

for twofold saddle point problems

In this section, we discuss how to design preconditioners when the twofold sad-
dle point system is permuted into (1.2). Such a form of the linear system arises
naturally from domain decomposition methods with two subdomains [39]. With-
out confusion, we introduce simplified notation

A=

[
A1 0

0 A3

]
, BT =

[
BT

1

C2

]
, C=

[
C1 BT

2

]
. (4.1)

Here, A3 can degenerate to 0. If A1 and A3 are invertible, then A is invertible, and
the Schur complement simply reads as

S=A2+CA−1BT.

Furthermore, if S is assumed to be invertible, then the following results hold
[19, 25].

Proposition 4.1. If A and S are invertible and the preconditioner is

Q1=

[
A 0

C −S

]
,

then

Q−1
1 A=

[
I A−1BT

0 I

]
,

which satisfies the polynomial equation (λ−1)2=0. Moreover, if A2=0 and the precon-

ditioner is

QD1
=

[
A 0

0 S

]
,

then

TQD1
=Q−1

D1
A=

[
I A−1BT

S−1C 0

]
,

which satisfies the polynomial equation (λ(λ−1))2=λ(λ−1). The non-zero eigenvalues

of TQD1
are

1,
1±

√
5

2
.
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The proof of this proposition can be found in [25, 31].

Based on the formulation (4.1), if the preconditioner is

Q2=

[
A 0

C S

]
,

then

Q−1
2 A=

[
I A−1BT

0 −I

]
,

which satisfies the polynomial equation (λ−1)(λ+1)=0. Moreover, if A2=0 and
the preconditioner is

QD2
=

[
A 0

0 −S

]
,

then

TQD2
=Q−1

D2
A=

[
I A−1BT

−S−1C 0

]
,

which satisfies the polynomial equation(λ(λ−1))2 =−λ(λ−1). The non-zero
roots are

1,
1±

√
3i

2
.

We note that the polynomial equations for Qi and QDi
have a lower degree than

Pi and PDi
discussed in Section 2. From a purely algebraic point of view, if the

GMRES method is applied, Q1 is more favored than P1, QD2
is more favored than

PDi
, i=1,2,3,4. However, on the other hand, it might be not easy to directly de-

rive a proper approximation for the additive Schur complement for some specific
problems [30, 39]. For the nested Schur complement based preconditioners, they
actually provide a recursive approach for solving block-tridiagonal systems.

5 Additive Schur complement based preconditioners

from the viewpoint of domain decomposition

In this section, we generalize the discussion of Section 4 to the n-tuple case. We
consider a system
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An=




A1 0 ... BT
1

0 −A2
. . .

...
...

. . . . . . BT
n−1

C1 . . . Cn−1 (−1)n−1An




. (5.1)

Formally, the system matrix (5.1) arises naturally from the domain decomposi-
tion method for an elliptic problem with n−1 subdomains. Like in Section 4, one
can define A,C, BT, and D. The additive Schur complement preconditioner and
the corresponding theory in Section 4 can still be applied. The resulting precondi-
tioned system satisfies a polynomial of degree 2 (block triangular preconditioner)
or 4 (block-diagonal preconditioner).

For some special forms of (5.1), for example, 3-by-3 block systems, it is pos-
sible to reorder [30, 37] the interior and interface unknowns subdomain by sub-
domain in a sequential manner and reduce them to the block tridiagonal systems
discussed in Section 3. If an additive Schur complement based preconditioner
is applied, then the degree of the polynomial equation that the preconditioned
system satisfies is 2 (block triangular preconditioners) or 4 (block-diagonal pre-
conditioners). See [25, 31] for the proof. In contrast, the preconditioners based on
the nested Schur complement satisfy polynomials with degrees may be as high
as n (block triangular) or n! (block-diagonal). Therefore, an additive Schur com-
plement based preconditioner is more favored than a nested Schur complement
based preconditioner. The Schur complement of (5.1), which corresponds to the
Steklov-Poincaré operator [30,39], is an additive type. Algebraically inverting the
Schur complement directly is typically challenging, as there is no reduction in
operational costs. Instead, various preconditioning techniques such as Dirichlet-
Neumann, (balancing) Neumann-Neumann, fractional Sobolev norm-based pre-
conditioners, vertex space preconditioners, and others can be developed, par-
ticularly for elliptic problems. For more detailed information and discussions,
interested readers are directed to [30, 39]. For some specific PDE problems, for
example, the Biot model [26, 33] or models from fluid dynamics [8, 10, 21], it is
possible to derive an analytic approximation of the additive type Schur comple-
ment from a Fourier analysis point of view [8, 11]. In this work, for a special
3-field reformulation of the Biot model, based on its block tridiagonal form, we
design nested Schur complement based preconditioners. In our experiments, the
Schur complements are firstly approximated by using a Fourier analysis deriva-
tion, then are further approximated by using incomplete Cholesky factorizations.
The detailed numerical experiments are provided in Section 6.

If n> 3, we realize that not all block tridiagonal systems can be directly per-
muted into the domain decomposition form (5.1), although the number of non-
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zero blocks of (5.1) and that of (3.1) are the same for the non-degenerate cases.
Therefore, it is also important to investigate the nested Schur complement based
preconditioners.

6 Numerical experiments based on a 3-field

formulation of the Biot model

A 3-field formulation of the Biot model reads as [26, 33]

−2µdiv
(
ǫ(u)

)
+∇ξ= f , (6.1)

−divu− 1

λ
ξ+

α

λ
p=0, (6.2)

((
c0+

α2

λ

)
p− α

λ
ξ

)

t

−Kdiv
(
∇p−ρ f g

)
=Qs. (6.3)

Here, u is the displacement, p is the fluid pressure, and ξ=−αp+λdivu is the total
pressure with α being Biot constant, K is the permeability, f is the body force, Qs

is the source term

ǫ(u) :=
1

2

(
∇u+∇uT

)
,

and

λ=
Eν

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
. (6.4)

The boundary conditions are

u=0 on Γd, (6.5)

σ(u)n−αpn=h on Γt, (6.6)

p=0 on Γp, (6.7)

K
(
∇p−ρ f g

)
·n= g2 on Γ f . (6.8)

The measures of the Dirichlet boundary Γd and Γp are assumed to be greater
than 0. For the wellposedness of the Biot problem with the above boundary con-
ditions, we refer the readers to [26, 33]. Without loss of generality, the Dirichlet
conditions in (6.5)-(6.8) are assumed to be homogeneous. The initial conditions
are

u(0)=u0 and p(0)= p0 . (6.9)

We apply the Taylor-Hood element pair for the discretization of u and ξ, and P1

elements for p. The corresponding finite element spaces are denoted as Vh, Qh,
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and Wh. We apply a backward Euler scheme with a time stepsize ∆t for (6.3).
After the time and spatial discretizations, the resulting linear system is of the
following form:

Ax=




Au BT
uξ 0

Buξ −Aξ BT
ξ p

0 Bξ p Ap







ū

ξ̄

p̄


=b. (6.10)

Here, ū, ξ̄, and p̄ are unknowns associated with u, ξ, and p respectively, Au, Buξ ,
Aξ , Bξ p, and Ap are the matrices resulted from the following bilinear forms:

au(u,v)=2µ
(

ǫ(u),ǫ(v)
)

, buξ(u,φ)=−(φ,divu) ,

aξ(ξ,φ)=
1

λ
(ξ,φ), bξ p(ξ,ψ)=

α

λ
(ξ,ψ) ,

ap(p,ψ)=−
((

c0+
α2

λ

)
p,ψ

)
−∆tK(∇p,∇ψ) .

We comment here that Ap is negative definite based on the weak form it repre-
sents. Nevertheless, the presentation in this section is consistent with the nota-
tions in the previous sections.

Applying a Fourier analysis derivation [8,9,11] firstly, we note that the differ-
ential operator for solving (6.1)-(6.9) is

A=




−2µ∂2
x−µ∂2

y −µ∂y∂x ∂x 0

−µ∂y∂x −µ∂2
x−2µ∂2

y ∂y 0

−∂x −∂y −1/λ α/λ
0 0 α/λ −(c0+α2/λ)+K∆t∆


 .

The Fourier mode of Â is

Â=




2µk2+µl2 µkl ik 0
µkl 2µl2+µk2 il 0
−ik −il −1/λ α/λ

0 0 α/λ −(c0+α2/λ)−K∆t(k2+ l2)


.

Thus, the Fourier mode for Sξ =Aξ+Buξ A−1
u BT

uξ is

Ŝξ =
1

λ
+[−ik −il]

[
2µk2+µl2 µkl

µkl 2µl2+µk2

]−1[
ik
il

]
=

1

λ
+

1

2µ
.
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Then, the Fourier mode for Sp=Ap+Bξ pS−1
ξ BT

ξ p is

Ŝp=−
(

c0+
α2

λ

)
−K∆t(k2+ l2)+

α

λ

(
1

λ
+

1

2µ

)−1 α

λ

=−
(

c0+
α2

λ

)
−K∆t(k2+ l2)+

2µα2

λ(λ+2µ)

=−
(

c0+
α2

2µ+λ

)
−K∆t(k2+ l2).

From the above Fourier analysis, it is easy to see that Ŝξ and Ŝp correspond to the
following matrices:

Sξ =

(
1

λ
+

1

2µ

)
Mξ and Sp=Ap+

2µα2

λ(λ+2µ)
Mp.

Here, Mξ and Mp are mass matrices that correspond to the identity operators in

Qh and Wh, respectively. Therefore, one can take the above two as the approx-
imations of Sξ and Sp, respectively. In the implementation, one only needs to

generate the mass matrices in Qh and Wh and put the proper scalings as shown
above. In alignment with the formulations for PT1

, PT2
, PT3

, and PT4
presented

in Eqs. (2.1) and (2.2), the corresponding preconditioners are represented as P̄T1
,

P̄T2
,P̄T3

, and P̄T4
, respectively. This representation is achieved by substituting the

exact Schur complements with the aforementioned approximations. Likewise,
for the counterparts PD1

,PD2
,PD3

, and PD4
in Eqs. (2.4) and (2.7), the resulting

preconditioners are denoted as P̄D1
,P̄D2

,P̄D3
, and P̄D4

, respectively.
For practical implementation, for each of Au, Sξ and −Sp (because Sp is nega-

tive definite), we apply an incomplete Cholesky factorization, i.e.,

Â=LLT+R

with a drop tolerance. Then Â−1 is approximated by L−T L−1. We comment here
that other types of inexact solvers can also be applied, for example, the methods
introduced in [13,14,32]. We denote the corresponding inexact approximations of

P̄D1
to P̄D4

as P̂D1
to P̂D4

. Similarly, we denote the corresponding inexact approx-

imations of P̄T1
to P̄T4

as P̂T1
to P̂T4

. The implementation code, numerical results,
and eigenvalues calculations are available at https://github.com/cmchao2005/
Preconditioners-for-Biot-model.

In our numerical experiments, ν = 0.499, and λ and µ are computed by us-
ing (6.4). All the other physical parameters are set to be 1. The computational
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domain is a unit square. The Dirichlet type boundaries Γd and Γp are the two ver-
tical lines. Other parts of the boundary are Neumann-type. In Table 1, we report
the GMRES iteration counts for all preconditioners with the drop tolerance for
the incomplete factorizations being 10−3. In Table 2, we summarize the GMRES
iteration counts for all preconditioners with the drop tolerance for the incom-
plete factorizations being 10−4. In all tests, the stopping criterion for the GMRES
method is set to be that the l2 norm of the relative residual is smaller than 1.0E−6.
From the numerical experiments, we see that the results based on P̂−1

D1
are almost

the same as those based on P̂−1
D2

, the results based on P̂−1
T2

are almost the same as

those based on P̂−1
T3

. In comparison, P̂D3
outperforms among the block diagonal

preconditioners, and P̂T1
outperforms among the block triangular precondition-

ers. Note that we have theoretically proved that PD3
and PT1

are positively stable
preconditioners. The numerical experiments clearly illustrate the advantages of
the positively stable preconditioners. Although we do not rigorously prove that
P̄D3

and P̄T1
are positively stable preconditioners in this draft, the corresponding

numerical spectral verifications are provided in our code.

Table 1: Comparisons of the different preconditioners. GMRES iteration counts (and CPU time in
seconds). The drop tolerance for the incomplete Cholesky factorizations is set to be 1.0E−3.

Block Diagonal Preconditioners

h P̂−1
D1

P̂−1
D2

P̂−1
D3

P̂−1
D4

1/16 55 (0.0135) 56 (0.0129) 50 (0.0122) 67 (0.0172)

1/32 108 (0.2671) 108 (0.2605) 96 (0.2213) 127 (0.3559)

1/64 229 (2.645) 229 (2.586) 204 (2.170) 273 (3.538)

1/128 470 (28.94) 470 (29.03) 449 (28.03) 593 (62.61)

1/256 1057 (1027) 1067 (1029) 934 (957.9) 1767 (1765)

Block Triangular Preconditioners

h P̂−1
T1

P̂−1
T2

P̂−1
T3

P̂−1
T4

1/16 27 (0.0069) 49 (0.0118) 49 (0.0116) 36 (0.0092)

1/32 55 (0.1004) 97 (0.2237) 97 (0.2187) 72 (0.1350)

1/64 118 (0.936) 206 (2.225) 206 (2.196) 157 (1.432)

1/128 261 (11.00) 434 (42.44) 434 (42.83) 345 (28.44)

1/256 569 (382.1) 947 (980.6) 947 (977.5) 782 (685.1)
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Table 2: Comparisons of the different preconditioners. GMRES iteration counts (and CPU time in
seconds). The drop tolerance for the incomplete Cholesky factorizations is set to be 1.0E−4.

Block Diagonal Preconditioners

h P̂−1
D1

P̂−1
D2

P̂−1
D3

P̂−1
D4

1/16 36 (0.0127) 36 (0.0114) 32 (0.0118) 41 (0.0139)

1/32 51 (0.3073) 51 (0.2624) 45 (0.2210) 57 (0.3436)

1/64 92 (0.988) 92 (0.947) 80 (0.810) 97 (1.007)

1/128 187 (8.88) 188 (8.96) 167 (7.83) 205 (10.54)

1/256 373 (89.18) 373 (86.59) 353 (82.71) 455 (119.4)

Block Triangular Preconditioners

h P̂−1
T1

P̂−1
T2

P̂−1
T3

P̂−1
T4

1/16 15 (0.0073) 31 (0.0111) 31 (0.0110) 19 (0.0085)

1/32 24 (0.0961) 45 (0.2188) 45 (0.2415) 29 (0.1259)

1/64 45 (0.414) 84 (0.854) 84 (0.841) 54 (0.502)

1/128 97 (4.31) 170 (7.81) 170 (7.88) 119 (5.05)

1/256 206 (39.28) 350 (80.22) 350 (79.07) 267 (54.99)

7 Concluding remarks

In this paper, both nested Schur complement and additive Schur complement
based preconditioners are constructed for the twofold and block tridiagonal lin-
ear systems. The polynomial equations of the preconditioned matrices are an-
alyzed. It is shown that by properly selecting the sign in front of each Schur
complement, some preconditioners are positively stable. Numerical experiments
based on the Biot model are provided to show that positively stable precondition-
ers outperform other preconditioners. More clearly, when inexact elliptic approx-
imations are incorporated, the inexact versions of the positively stable precondi-
tioners are more efficient.

For block tridiagonal systems, by comparing the theoretical analysis for the
nested Schur complement based preconditioners and that for the additive type
preconditioners, our argument is that permutation is important and necessary
when designing preconditioners. These results are instructive for devising the
corresponding inexact versions of the preconditioners and iterative methods [4].
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Appendix A. An alternative analysis of the Hurwitz

stability of polynomials (3.5)

A multivariate f ∈C[z1,. . .,zn] is said to be weakly Hurwitz stable if f is either
identically zero or nonvanishing whenever ℜ(zi)>0 for any i∈ [n], where ℜ(z) is
the real part of z for z∈C. Denote by {ri} and {sj} the all real zeros of f , g∈R[x],
respectively. We say that g alternates left of f if deg( f )=deg(g)=n and

sn≤ rn≤···≤ s2≤ r2≤ s1≤ r1, (A.1)

and that g interlaces f if deg( f )=deg(g)+1=n and

rn≤ sn−1≤···≤ s2≤ r2≤ s1≤ r1. (A.2)

Let g� f denote either g alternates left f or g interlaces of f . Here, we denote
g≪ f if g� f (resp., f �g) and the leading coefficients of f , g have the same (resp.,
opposite) sign.

Assume that a polynomial f (x)=∑
n
k=0 fkxk has degree n, then let

f E(x)=
⌊n/2⌋
∑
k=0

f2kxk and f O(x)=
⌊(n−1)/2⌋

∑
k=0

f2k+1xk.

Theorem A.1 (Hermite-Biehler Theorem [6,35, Theorem 6.3.4]). A polynomial f (x)
with real coefficients is weakly Hurwitz stable if and only if f E(x) and f O(x) have only

real and nonpositive zeros, and f O(x)≪ f E(x).

Theorem A.2. Let pn(x) satisfy the recurrence relation (3.5) with p0(x)= 1, p1(x)=
x−1. Then, for any n≥0, all zeros of polynomial pn(x) lie in the right half-plane.

Proof. Obviously, all zeros of pn(x) lie in the right half-plane if and only if all

zeros of pn(−x) lie in the left closed half-plane, i.e., weakly Hurwitz stable. Let

fn(x)=
n

∑
k=0

fkxk :=(−1)n pn(−x).

Hence, fn(x) satisfies recurrence relation

fn(x)= x fn−1(x)+ fn−2(x), (A.3)

where f0(x)=1 and f1(x)=x+1. Note that fn(x) has only nonnegative coefficients

for all n≥0.
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Let

f E
n (x)=

⌊n/2⌋
∑
k=0

f2kxk and f O
n (x)=

⌊(n−1)/2⌋
∑
k=0

f2k+1xk.

Due to Theorem A.1, it suffices to show that f O
n (x)≪ f E

n (x) for any n≥0. By the

recurrence (A.3), we get that

f E
n (x)= f E

n−2(x)+x f O
n−1(x), (A.4)

f O
n (x)= f E

n−1(x)+ f O
n−2(x). (A.5)

By induction on n, it is easy to see that

f E
2n(x)= f E

2n+1(x) and f O
2n−1(x)= f O

2n(x). (A.6)

Subsequently, we will prove the following results through an induction argu-

ment based on n:

(1) f E
n−2(x)≪ f E

n (x), (2) f O
n−2(x)≪ f O

n (x),

(3) f O
n−1(x)≪ f E

n−2(x), (4) f O
n−1(x)≪ f E

n (x).

Firstly, f O
n (x)≪ f E

n (x) follows from interlacing relations (3) and (4) by (A.6). When

n=4, by Table 3 it is routine to verify that (1)-(4) are true by Table 4. Assume that

(1)-(4) are true for an n>4. We need to prove that

(a) f E
n−1(x)≪ f E

n+1(x), (b) f O
n−1(x)≪ f O

n+1(x),

(c) f O
n (x)≪ f E

n−1(x), (d) f O
n (x)≪ f E

n+1(x).

By (A.5) and the interlacing relations

f O
n (x)≪ f E

n−1(x)+ f O
n−2(x) and f O

n (x)≪− f O
n−2(x),

Table 3: The terms of pn(x) for 1≤n≤4.

n pn(x)

1 x−1

2 x2−x+1

3 x3−x2+2x−1

4 x4−x3+3x2−2x+1

Table 4: The terms of f O
n (x) and f E

n (x) for
2≤n≤4.

n f O
n (x) f E

n (x)

2 1 x+1

3 x+2 x+1

4 x+2 x2+3x+1
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we have f O
n (x)≪ f E

n−1(x), i.e., (c) holds. Moreover, by (A.4) and combining

f E
n−1(x)≪ x f O

n (x) and f E
n−1(x)≪ f E

n−1(x)

we derive that f E
n−1(x)≪ f E

n+1(x), i.e., (a) holds. Note that f O
n+1(x) = f E

n (x)+

f O
n−1(x), hence (b) follows from (4) and f O

n−1(x) ≪ f O
n−1(x). Similarly, due to

f E
n+1(x)= f E

n−1(x)+x f O
n (x) by (A.4), (d) is immediately derived by (c) and f O

n (x)≪
x f O

n (x). This completes the proof.
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