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Abstract

A mixed finite element method is presented for the Biot consolidation problem in poroe-
lasticity. More precisely, the displacement is approximated by using the Crouzeix-Raviart
nonconforming finite elements, while the fluid pressure is approximated by using the node
conforming finite elements. The well-posedness of the fully discrete scheme is established,
and a corresponding priori error estimate with optimal order in the energy norm is also
derived. Numerical experiments are provided to validate the theoretical results.
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1. Introduction

Poroelasticity describes the interaction between a fluid flow and a deformable elastic porous
medium that is saturated in the fluid. Its theoretical basis was initially established by Biot [4].
Biot poroelastic theory can be found in a wide range of applications. For example, the math-
ematical models for land subsidence in geomechanics [11,45], carbon sequestration [43,44,46],
safe long-term disposal of wastes in environment engineering [43,46], and brain edema [29], are
all poroelastic models.

In the context of numerical treatments for poroelastic equations, finite element methods
(FEMs) are the most commonly used approaches [40,41]. Tt is well known that a direct con-
tinuous Galerkin approximation may cause Poisson locking or nonphysical pressure oscillations
(we call these two phenomenons as poroelaticity locking) [21,42-44,46]. In the literature, there
have been some developed numerical methods to avoid the poroelaticity locking. We review
those which motivated our work: A two-field formulation of the Biot model with the elastic
displacement and pressure being unknowns was approximated by using the MINT element with
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a stabilization term [48]. With the same formulation, discontinuous Galerkin (DG) methods,
weak Galerkin methods and hybrid high order methods were developed in [5,13,14,26,52]. By
introducing an additional fluid flux variable, a new three-field formulation was obtained, and
a numerical method that couples DG methods and mixed FEMs was investigated in [45]. Later,
this method was extended to nonconforming FEMs [27,36, 54], virtual element methods [51],
weak Galerkin methods [50], locally conservative DG methods [24, 30, 56]. Some numerical
schemes based on four-field formulation can be found in [33,35,55]. Interested readers can also
refer to [10,11,19,31,32] for other study of locking-free numerical methods for the Biot model.
Moreover, for the corresponding fast solvers, some preconditioners which are robust with re-
spect to the physical and discretization parameters have been developed in [1,3,12,25,37]. As
mentioned above, the key issue in the numerical solution of the Biot problem is to address
two numerical instabilities: Possion locking phenomenon and nonphysical pressure oscillations.
In the two-field formulation these two instabilities have been initially discussed in the earlier
works [40-42] from the regularity point of view. Therein they utilized inf-sup stabilized Stokes
FEMs to discretize equations. However, recently it is shown in [2,48] that only inf-sup condition
is not enough to overcome nonphysical pressure oscillations. They suggested adding a time-
dependent stabilization term to address this issue. On the other hand, in the case of three-field
formulation, the authors in [46] combine numerical tests with heuristic analysis to explain that
the poroelasticity locking typically occurs when the storage coefficient is very close to zero and
the small time step is used. In such a case, the poroelasticity model behaves as an incompressible
model. For a remedy, they suggested using DG scheme or nonconforming FEM to approximate
the displacement variable [45]. Though many works have been devoted to addressing these
issues, most of them only numerically verify whether the constructed elements are locking-free
or pressure-oscillations free, the corresponding mathematical justifications and interpretations
behind these methods are relatively rare. More recently, an interesting result in [24] concluded
that, in the three-field formulation, when the FE pairs for the displacements, Darcy velocity,
and pore pressure satisfy suitable compatibilities, one can obtain a family of parameter-robust
numerical schemes. In the same formulation, another breakthrough in the theoretical aspect
can be found in a recent paper [55], in which the regularity of the Biot model is firstly obtained,
the cause of pressure oscillations is reinvestigated from an algebraic viewpoint, and the Poisson
locking is viewed from the classical FE approximation of linear elasticity. Moreover, based on
the theoretical analysis, the author of [55] developed a new three-field mixed FEM that is free
of locking and nonphysical pressure oscillations. The objective of the present work is to design
a robust two-field FEM for the Biot model. We shall use the nonconforming Crouzeix-Raviart
(CR) [15] finite element to approximate the elastic displacement, and adopt the standard linear
continuous finite element for the pore pressure. It is shown that the error order estimate is
robust with respect to the Lamé constant A (more details can be found in Remark 5.3 in Sec-
tion 5). In other words, we give a mathematical analysis that explains why nonconforming CR
FEM displacement discretization can overcome Possion locking in poroelasticity. In addition,
motivated by [48], a stabilization term is imposed in order to remove the nonphysical pressure
oscillations arising from the continuous FE approximation. The finite element pair used in this
article was initially proposed and analyzed for Stokes problems [38], in which a stabilization
was suggested. Later, Lamichhane pointed out that the stabilization proposed in [38] is unnec-
essary [34]. Tt means that such a finite element pair satisfies the inf-sup condition for Stokes
equations. For a two-dimensional linear elasticity problem, a CR finite element was introduced
to overcome the locking phenomenon in [9]. The corresponding three-dimensional case was
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addressed in [47]. More recently, a robust CR element was presented to solve non-stationary
elastic vibration problems [20]. Some developments of CR elements for various application
problems can be found in the review article [7]. In the context of nonconforming finite elements
for the Biot problem, coupling of nonconforming and mixed finite element methods were inves-
tigated in [27,36,54]. Our method is different from [27], because the method therein is based on
a three-field formulation, while our method is based on a two-field formulation, and therefore
fewer variables are involved.

The rest of this article is organized as follows. In the next section, we introduce the Biot
consolidation model and its weak formulation. In Section 3, we provide a fully mixed FEM
with backward Euler time-stepping for the Biot equation. The well-posedness of our numerical
scheme is studied in Section 4. Under certain regularity assumptions on the weak solutions, we
derive an optimal-order a priori error estimates in Section 5. Some numerical experiments are
presented in Section 6 to support our theory. Concluding remarks are made in Section 7.

2. The Biot Consolidation Problem

Let Q C R?, d = 2,3 be a simply connected bounded convex polygonal or polyhedral domain
with a Lipschitz boundary 02. We consider the following quasi-static Biot consolidation model
in © over a time interval (0, 7] as follows [41,48]:

—V-o+aVp=Ff in Q x (0,7, (2.1)
—coOp—aV - 0u+ V- (KVp)=g in Qx (0,T]. (2.2)

Here, u(z,t) is the displacement of the solid phase, p(z,t) is the fluid pressure, o (x,t) denotes
the elasticity stress tensor

o = Atr(e(w))I + 2ue(u) with e(u) = = (Vu + (Vu)")

N | =

and I € R is identity matrix, A > 0 and g > 0 are the Lamé constants which are given by

Ev B Ev
QI+ -20) " 20+

(2.3)

with E being the Young’s modulus and v being the Poisson’s ratio, cp > 0 is the storage
coefficient, o > 0 is the Biot-Willis constant which is assumed to be 1 in this work, g is a source
term, f stands for the external force, K(x) € R%*? is a symmetric and uniformly positive
definite tensor satisfying

kmin€T€ S €TK(1')€ S kmax£T€; v& S Rd?

where kpin and knax are two positive constants.
The boundary conditions for the Biot system (2.1)-(2.2) read as

u =0 and KVp-n=0 on I'. x (0,7,
o-n=03 and p=0 on I'y x (0,T7].

Here, 9Q =T, UTy, T.NTy = 0 with |Tc] > 0 and |T;| > 0, n is the unit outward normal
vector. Additionally, the initial conditions are given by

u(z,0) =u’, p(z,0) = p°. (2.6)
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In order to state the weak formulation of (2.1)-(2.2), we introduce the standard Sobolev
space H™ (D) with regularity exponent m > 0. The corresponding norm and the semi-norm
are denoted as || - |l;m,p and | - |;n,p. When m = 0, H%(D) is reduced to L*(D), and we denote
its inner product by (-,-)p. For simplicity, when D = Q, we will omit the index €. For the
space H™(D) = [H™(D)]%, its norm is still denoted by || - ||,n.p. A subspace of H(Q) with
vanishing trace on I is denoted by Hj () := {v € H'(Q) : v|r = 0}. For ease of notations,
we set V = [Hj ()] and Q = Hor, ().

After integrating by parts, we obtain the standard mixed weak formulation of (2.1)-(2.2):
Find (u,p) € V x Q such that ¢ € (0,77,

ay(u,v) = b(v,p) = (f,v) + (8, v)r,, YveV, (2.7)
—(coOip, q) — b(Ou, q) — ap(p,q) = (9,9), Vg€ Q,

where

€(u) : e(v)dx + )\/ V- uV - vdz,
Q

(11, 0) = 2M/

Q

ap(p, q) =/Q KVp-Vqdz,
b(v,q) = / V - vqdz.
Q

The well-posedness of the continuous variational problem (2.7)-(2.8) can be found in [49].
In the sequel, we shall deal with the functions of time and space. To this end, we introduce
the standard Bochner space L?(0,T'; H™(£2)), which consists of all functions v : [0,T] — H™(Q)

with norm )
T P
Ty —— / u(t)|[7,dt
0

for 1 < p < co. When p = oo, the space L>(0,T; H™()) is endowed with the norm

|l Loe 0,71 (@)) = sup |[u(t)||m-
0<t<T

3. The Mixed Finite Element Method

In this section, we shall provide a mixed finite element scheme to solve (2.1)-(2.2). For ease
of presentation, we only consider the numerical method for the problem in two dimensions.
The extension to the three dimension case and the corresponding analysis can be obtained
straightforwardly by using the results in [34] and the analysis here. Let 7, = {K} be a shape-
regular triangulation of 2. We denote hg as the diameter of K and h = maxge7, hx. Moreover,
we denote &£ as the set of interior edges of elements in T, &F as the set of boundary edges on
I'c, and &} as the set of boundary edges on I't. Hence, the set of all edges &, = 5,5 UELUEL.
h. is used to denote the length of an edge e € &, and the set £ = {e € &, |e C IK}.

For approximating the displacement, we introduce the nonconforming Crouzeix-Raviart [Py
finite element space [15]

Vi = {vh € L*(Q) : vk € [P1(K)]?, /[’Uh]edF =0, Ve € & and /’l}hdF =0, Ve e Eﬁ},

€ €
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where [vp]. is the jump of the function vj across an edge e, and P;(K) refers to the space
of polynomials of total degree < 1 on K. For approximating the fluid pressure, we apply the
conforming P; finite element space

Qn = {aqn € C°(Q) N Hyr, () : anlx € P1(K)}.

For the time discretization, we use a uniform mesh for an interval [0,7] with a time
step At =T/N. For any function (¢, ), at each time t" = nAt, n = 1,..., N, we denote

Y =(t", x), Vo € Q.
The fully discrete scheme for the Biot model (2.1)-(2.2) with the backward Euler scheme in
time reads as: Find (u},p}) € Vi, x Qp such that

a’}l:(uz’vh) - bh(vhapZ) = (fn)vh) + </3navh>rta V'Uh S Vha (31)
—(codipiy s an) — bu(Opuy, qn) — af (P an) = (9" an), Yan € Qn,

where )
5 Ph—Phn 5 up — Uy
opy = , O} = ,

tPh At tUp At

and

(uh,vh =2u Z/ uh ’Uh d:L'+>\ Z / V-u,V -vpde

KeT, KeTn

+2uy Y by / [onldr,

e€ly

ay, (Phsqn) = /QKVPh - Vandez,

br(vh, qn) = (Vi - v, qn) /V v qnde.

The stabilization term 2uy Y- ce, bt [, [un] - [va]dr in aff (un, vy) suggested by [22] is used to
satisfy the discrete Korn’s inequality. More details on the properties of Korn’s inequality can
be found in [6]. In practical computations, the stabilization parameter can be set as v = 1/2
(see [22]).

In petroleum engineering, one can enforce an initial pressure distribution, and then compute
an estimated initial displacement from Eq. (2.1). More precisely, we first set p) := p? as the
elliptic projection of p°, that is,

ab (p},an) = ah (p° an), Van € Qn, (3.3)

and then let uh = uI be the solution of
ap(ud,vi) = (£ v1) + (B, v1)r, — ba(vn,pY), Vv, € V. (3.4)

When the permeability and/or time steps are small, there will be nonphysical pressure
oscillations in numerical approximations. Inspired by [48], in order to avoid nonphysical pressure
oscillations in the pore fluid pressure, we can add a stabilization term

2

A+2p

Bgtab(p,n) = / Vop - Vndax (3.5)
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in Eq. (3.2). More precisely, it results in the following discrete scheme: Find (u}, pj') € Vi x Qp
such that

ay (up,vn) = bp(vn, py) = (", vn) + (8", vn)r,, Vv, € Vi, (3.6)
—(codepy, an) — bu(Ovuy, qn) — af, (P, an) — Bstav (D1, an) = (9" an), Van € Q. (3.7)

In this work, we take ¢ = 1/4 as suggested in [48].

Remark 3.1. In this paper, we consider mixed boundary conditions, in particular, we assume
that I'y # @. When I'y = &, one needs to deal with the pure traction problem. For the pure
traction boundary problem, Falk in [18] has proposed a stable CR element that relies on the
projection onto the macro element. We refer readers to [18] to see more details.

Remark 3.2. The authors in [22] suggested that the stabilization term includes all the edges.
Later, in [6] it is pointed that, only interior edges £/ and boundary edges £} on T'; are needed
to satisfy the discrete Korn’s inequality. More recently, in [39], it is proved that the jumps can
be replaced with only the normal component of jumps.

Remark 3.3. Motivated by [48], we have utilized a stabilization term Bgiqs(p}, qn) to remove
nonphysical pressure oscillations. The finite element pair we used indeed satisfies the inf-
sup condition (see Lemma 4.1 below). However, in [2,48], it is pointed out that in two-field
formulation, the inf-sup condition is not a sufficient condition to avoid pressure oscillations,
a remedy for this is to add a time-dependent stabilization term Bgiqs (P}, qn). Moreover, in [48],
it is also shown that this instability may arise from the lack of monotonicity of discrete schemes.
In the three-field formulation, in [24], it is proved that when the finite element pairs satisfy some
suitable inf-sup conditions, one can obtain a family of parameter-robust numerical schemes.

4. Well-Posedness

This section is devoted to the well-posedness of the discrete schemes (3.1)-(3.2). From
(3.1)-(3.2), we can see that, at each time step, we need solve the following linear system: Find
uy € V', and q;) € @, such that

ay (uy,vn) = bp(vn,py) = (f",vn) + (8", vn)r., Yvu € Vi, (4.1)
—(cophs qn) — bn(uy, qn) — Atay, (p,an) = (3" an), Yan € Q. (4.2)

Here, §" = Atg™ — V, - uZ_l — cop’,z_l. Next, we shall prove the well-posedness of (4.1)-(4.2),
which is equivalent to that of (3.1)-(3.2).
First, we define the following norms on v € V4V, and ¢ € Q + Qp:

[0l = ai(v,v), lqllg = af (g, ). (4.3)
It is easy to check that

ay (w,v) < lw|v|v]v, (4.4)
bn(v, q) < Clloflvlgllo-

Then, we have the following inf-sup condition.
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Lemma 4.1. It holds that

br(vn, qn
sup 21on.01) > aollqnllo (4.6)
vnevy,  Vnllv

for all q, € Qp.
Proof. The detailed proof of this result is provided in [34, Theorem 3]. O
Inspired by [26], we define a bilinear form for up, v, € V, and pp, g € Qp by
B, (wh, pri vn, qn) = ay (Wn, v1) — 0n(vn, pr) — bn(wn, qn) — Atay (pr, an) — (copns qn),
and the weighted norm by

ll(vns an)llae = (lonlly + lanlls + Atllgnlid)*- (4.7)

Now, we are in a position to state the main result of this subsection. By using the theoretical
framework stated in [48] and Lemma 4.1, we obtain the following well-posedness result.

Theorem 4.1. It holds that

By, (wh, ph; On, qn)
sup

> Bolll (wn, pr)llat, (4.8)
wnaeVix@n  (@ns an)llag

which implies that the discrete linear system (4.1)-(4.2) is well-posed.

5. Error Estimates

In this section, we shall give the detailed a priori error estimates for the fully finite element
scheme (3.1)-(3.2). First, we recall the regularity results for the displacement u (see [55,
Theorem 3.3)).

Theorem 5.1. Let (u,p) be the solutions of (2.1)-(2.2), it holds

sup [lu(t)|l2 + sup AV -u(t)[
0<t<T 0<t<T

SC{IIP°||1+ sup [|F)]lo+ sup [lg(®)]lo
0<t<T 0<t<T

( ) |atf<s>|2;1ds)é +(f ) |atg<s>||3ds>%}, (5.1)

where C' > 0 is a constant depending on the parameter p, but independent of \.

Remark 5.1. In light of [55, Remark 3.4], when the time derivatives of solution and the right-
hand sides of problems (2.1)-(2.2) are smooth enough, similar regularity results are also valid
for Oyu and 9y u.

In addition, for the pressure p, we have the following regularity result.

Theorem 5.2. Let (u,p) be the solutions of (2.1)-(2.2), there holds

T : T 1
sup |p<t>|2sc{||p°|2+( [ taoigas) ([ 1owte)igas)
0<t<T 0 0

+ TI\V-(?tu(s)H%ds %+ TIW-éw(s)H%ds %, (5.2)
(f ) (] )}

where C' > 0 is a constant depending on the parameter u, but independent of \.
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Proof. Tt follows from (2.2) that
coOp—V - (KVp)=—g—aV-du in Qx(0,7T]. (5.3)

From the left-hand side, we see that this is a parabolic equation for p, the standard regularity
result implies that (see [17, Theorem 5, Chapter 7])

T 3 T 1
sup ||p(t)||2§0{|p0||2+< / ||g<s>||%ds> +< / ||atg<s>|8ds>
0<t<T 0 0

N (/OT ||av.atu(s)|gds)é + (/OTlav-attu(s)lﬁds)%}

< c{|p0||2 (] ) ||g<s>||§ds)% (] ) lorg(o)zas)

N (/OT ||v.atu(s)||§ds); + (/OT IIV-attu(S)Iﬁds)%},

which is the desired estimate. 0

Remark 5.2. From Remark 5.1, we see that the term (fOT |V - Opu(s)||2ds)/? + (fOT |V -
Oru(s)||2ds)*/? in (5.2) can be bounded by suitable norms of f and g, and initial conditions
of p. This implies that supg<,<r [|p(t)[l2 < C with C independent of A\. When the time

derivatives of solution and the right-hand sides of problems (2.1)-(2.2) are smooth enough,
similar results are also valid for d;p and Oyup.

5.1. Error estimates for ¢y =0

Similar to the treatment for the initial conditions as stated in (3.3)-(3.4), we begin by
defining the following projections p} € Q) and u} € Vj,:

ap (pY.an) = ay (p", qn), Van € Qn, (5.4)

p
h
ap (uf,vn) = (", vn) + (8", vn)r, — bn(vn,p7), Yo € V.

Moreover, we define the Crouzeix-Raviart interpolation operator I : [HY(K)]? — [P1(K)]?

by (see [15])
/HdeF = /vdp, Ve € EfF.

Then, the global Crouzeix-Raviart interpolation operator II, : H'(Q) — V7, can be con-
structed by
(Hhv)|K:HK(v|K), VK € Ty. (56)

It is well known that the following estimate holds (see [22, Lemma 2.4)):
lo = o]y < Ch((2w)%|[vll2 + A2V - v]h). (5.7)

Based on the above notations and results, we obtain the following useful approximation
properties for p} and u}.
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Lemma 5.1. Assume that p" € H*(Q) for 1 <n < N, for p} given by (5.5) there holds
Ip" = prll@ < Chllp™[l2, (5-8)

Ip"™ = P}l < CR?|[p"l2-

Moreover, assume that u™ € H*(2) and V -u™ € HY(Q), for u} given by (5.4), we have

[u™ —ufllv < Ch((20)2 u”]|2 + A2 |V - u” [l + [[p"]]2)- (5.10)
Proof. (1) Proof of (5.8). The definition of p} in (5.4) implies that

" — %o = inf " — . 5.11
7" = pilo = inf 6"~ anlo G.)

We then obtain the estimate (5.8) by the standard finite element approximate properties
(see [8]).

(2) Proof of (5.9). The desired estimate (5.9) can be obtained by combining (5.8) and
a duality argument. We refer [5, Theorem 3.2] for more details.

(3) Proof of (5.10). We first split v —u} = v —IIu” +Iu™ — u}. The term ITu™ — ul

satisfies
u n n
ap (Mpu™ — ul, vy)

I, u™ — ulflly = sup (5.12)
whEV), lvonllv
Recalling f" = —V - o™ + Vp", and using (5.5), we have
ay (Ipu" = uf, vn) = aj (Tpu", vp) = (", va) = (8", vn)r, + bn(va, p7)
= (GZ(H}LU”, ’Uh) + (v : a-navh)) + (bh(,vhap?) - (vpn’,vh))

Integrating by parts, we can estimate the first term Dy as follows:

D = ap(ITpu” —u”,vp) + E g (o"NnK, Vh)e

KeTh ecOK\Ty

= ap (TTpu" —u",vp) + Z Z 2ule(u )N, vp)e

KeTh ecOK\Ty

+ > > MV -uMnk,vn)e

KeTh ecOK\Ty

= a (Hpu™ —u", vp) + Z Z 2p((e(u™) — e(um))ng, vh — Tp),

KETh ecOK\T

+ Z Z M(V-u" =V - -uM)ng,vn —Uh)e
KETh e€OK\I

<|Mpu —ullvlonllv + Y D 2ufe(w™) = e(w™)|o,ellvn —Brlo.
KeTn ecOK\I':

+ 3 Y AV @)=V @)

KeTh e€cOK\T'y

< |Mpu” = v oally +C > 2l o i W [only. i
KeTy,

1 1
+C D 2ME|V - ul ik b o)k
KeTy,
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1
< IHhu"—u”lvllvh||v+Ch< > Culutlax + AV - k) ) ( > Ith1K>
KeT KeT

< |TMpu” — u™|v |onllv + Ch(2ulu™|a + AV - w™]1) [vn|in

—~

< [y = wllvllonllv + Ch(2pula™]s + IV - u"y) ol (5.14)

where n i denotes the outer unit normal to K, v is the mean value of v on the edge e. Similarly,
we can bound Dy by

Dy= > 0F—p"V-on)x+ Y, Y. O'nk,vn).

KeTh KeTy, ecOK\T;
= > W= Voox+ Y, > | P, Uh = Vh)e
KeTy KeTn eEBK\Ft
< Y pE =" lo.xlIV - vnllox + Chlp"|1|valv
KeT
< Ch?
< Ch?||p"|l2]|vnllv + Chlp™|1|vn]v. (5.15)

Combining (5.7) and (5.12)-(5.15), and using a triangle inequality, we obtain the desired esti-
mate in (5.10). O

It follows from the Taylor’s expansion that

n _ 4n—1 t"
¢ A‘f = O™ + Ait /tnil(t"_l — §)Bud(s)ds (5.16)

We are now in a position to state the following error estimates for ¢y = 0, which is the main
result in this subsection.

Theorem 5.3. Let (u,p) € V xQ and (u},p}) € Vi, x Qy, be the solutions of (2.1)-(2.2) and
(3.1)-(3.2), respectively. Additionally, we assume that

u e L>(0,T; H*(Q)), du € L™(0,T; H*(Q)), Owu € L*(0,T; H*()), (5.17)
V (8uu) € L*(0,T5L* (), pe L>(0,T; H*(Q)), dup € L*(0,T; H*(2)).
Then, we have the following error estimate:
N
s, " =+ 8¢ D2 1" =iy < G101+ (A0)%8s). (5.18)

Proof. Since the exact solutions u™ and p™ satisfy (2.1)-(2.2) at ¢ = ¢, integrating by parts,
using (5.16), we conclude that

ap(u™, vy) — bp(vp, p") = (f", vn) Z Z (0" N, vp)e (5.19)

KeTn ecOK\I':

~ 1 "
br (O™, qn) + af (", qn) = (9", qn) + At(/
t

n—1

("t — 5)V - (D) (s)ds, qh) (5.20)
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for any (vp,qn) € Vi x Qp. Subtracting (3.1) and (3.2) from (5.19) and (5.20), respectively,
we have

ap(u” —up,vp) = (0" =i, Va-on) = Y Y (0 K, e (5.21)
KETy, e€OK\Iy

u” —u?) — (un— 1 — 1
YRR >),qh)+az<pn_pg,qh>

— Ait (/t:nl(tnl — 5V - (8ttu)(s)ds,qh) (5.22)

for any (vn,qn) € Vi, X Qp.

We then split the error p™ — pj; into p™ — pj; = £ + 0 with £ = p™ —p} and 0} = p7 — pj,.
Similarly, u™ — uy = & + 6;, with & = " — u} and 6;, = u} — uj. Since the estimates
for £ and &;; can be derived by the error bounds stated in (5.8)-(5.10), it remains to estimate
07 and 6;.. Using (5.4), we have aj, (£, 0;) = 0, hence we can reformulate the expressions
(5.21)-(5.22) by

ap (O, vn) — (0, Vi - vp)
= —ap (& on) + (€, Vi) + > D (o "k, vp)e (5.23)

KETh ecOK\T,

(90 (55 ) ) ok
=- (Vh (5“ Atu )th> + é(/t:nl(tnl —5)V - (attu)(s)ds,qh) (5.24)

for any (vh,qn) € Vi, X Qp. Setting vy, = (0 — 0p~")/At and g, = 0} in (5.23)-(5.24) and
adding them together, we obtain

ay (05, 00) + AN 1G = a0, 007") — ai (€, 0 — 007 ") + (& Va - (0 — 0571))

u’r’u ur’u u’u

+ >N otk O — 0 e — (Vi (G — €071, 00)

KeTh ecOK\I'y

t’ﬂ
+ </ ("1 — 5)V - (Oyu)(s)ds, 92). (5.25)
tn—1
Summing (5.25) from 1 to m(< N), noting that 62 = 0, and applying
1
(0, 007) < 5 (a (0L, 007) + a0, 00) (5.26)
to find that .
5% (0w, 0%) +At2||93||2<2 <Ti+ Ty +Ts+Ts+Ts, (5.27)
n=1
where
gua en _ en 1)

i
i o — g11),
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Ts = Z > (o, 0n - 0n ),
n=1KeT, ecOK\TI'y
- LW

71)3 92)3

i(/ " S)v'(attu)(S)dS,HZ),

To bound the first term T;, we need the following equality:

Z(fn _ fn—l)gn—l — fmgm _ fO 0 __ Z fn(gn _ gn—l). (528)
n=1 n=1
Moreover, recall the Taylor’s expansion
n __ ¢n—1 1 t"
Su Aﬁ" = 0, + Kt/ ("1 — 5)04&u(s)ds (5.29)

with 0:&ll = 0¢&u (t,). Then, using (5.28), (5.29), (5.5) and Young’s inequality, and noting that
0% =0, we infer that

== a(€n. 0n — 057"

n=

= —aj (&', 00)) +Z PGS

—

-
<€1|9m|v+c<||€m|v /O [0kl (s)][3 ds
m—1
+AtZ||at£::||2v+AtZ |93|2v>- (5.30)
n=1 n=1

Similarly, since 6% = 0, then Ty can be bounded as follows:

m

To=Y (&, Va-(0n —05"))

n=1
m

= (G Vi 00) =Y (G -7 Va0

L

S€2|9L”|%f+0<||§;”|3+(m)2/0 10285 () 15ds

m—1
+Atz 05115 + At |9”|v> (5.31)

n=1 n=1

Applying some techniques used in (5.14), utilizing (5.16), and Young’s inequality, we deduce
that

T; = Z Z Z (o"ng, 00 — 00 "),

n=1 KeTh ecOK\I'¢
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— Z Z <0mnK,9$>e—i Z Z <(0'”fo'"*1)nK,9371>e

KTy, e€OK\T n=1KeT, FEOK\T,

=Y > o™ o)k, b0y —b),

KETh ecOK\T

—iZ Yo ((o" =0t —or— o D, 0y -0,

n=1 KT, FEOK\T;
< lom + c(wzmum@ AT W)

+ h2/0 (2uloiu(s)[3 + AV - (Bu)(s)|7)ds + At i ||9;;||%,>. (5.32)

n=0

Application of (5.29) for T, yields

Ty= =3 (V- (€0 — & h),07)

n=1

< c((Aw? /

It follows from the Cauchy-Schwarz inequality that

tm

10eeu(9)]13ds + At (16315 + |3t§3|@)>- (5.33)

n=1

T, = i </:1(tn1 — V. (Qttu)(s)ds,92>
< i /tnl(t"1 = 5)V - (Ouu)(s)ds|| [|67]o-
e 0

Moreover, there holds

<@t( [ v <attu><s>|3ds)%.

tn

] " Y (Gu(s)ds

tn—1

0
Thus, we further deduce that

T; < c(AtZ 10213 + (At / Iv- <attu><s>||3ds>- (5.34)

n=1
On the other hand, subtracting (4.1) from (5.5) leads to
a}f(GZ, ’Uh) = —bh(vh, 9;) (5.35)
By using the inf-sup condition (4.6), we see that

1 bu(vn,07) 1 —ap (0, vp 1
1050 < — sup ————F= = — sup UAGALIY —||0ullv- (5.36)
Q0 v,ev, |[vnllv @0 v,ev,  lvnllv o

Combining (5.27), (5.30)-(5.34), and (5.36), we have

(1 —ea—e) 0013 + At (o]

n=1
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C<At S0 + 1€ + 16718 + At D> (10215 + 11943 115)

n=1 n=1

(A / 100y ()1 2ds + (At)? / IV - (Burw)(s)|2ds
0 0
tm

F 02 [ 106 (6) Brds + 12 2w+ AV )
0

+ h2/0 (2u|0cu(s)[3 + AV - 8m(s)|?)ds>. (5.37)

Choosing ¢;, i = 1,2,3 such that 1 — e; — €2 — €3 > 0, then using the discrete Gronwall’s
inequality [23, 28], some approximation properties (see (5.8)-(5.10)), and noting that (5.37)
holds for any 1 < m < N, we conclude that

N
s 10515 + 80 D 10317 < O+ (20)%8s), (5.38)

where

_ mi|2 U 2
@1 = max (a3 + AV u” )

+ (/0 (2u|3tu(s)|§ + AV ((9tu)(s)|§)d ) + max_||p"|3, (5.39)

1<m<N
T T
By =t / 10up(s)]12ds + / IV - (@) (s)2ds
0 0
T
+h2/ 21l Dy (s) % + NIV - (Burr) ()| 2ls. (5.40)
0

Combining this bound with the error estimates for £, & (see Lemma 5.1), and using the
triangle inequality, we obtain

N
s I i+ A0S 10" gl < (1P + (30°02), (5.41)
which is the desired estimate (5.18). O

5.2. Error estimates for ¢y > 0

When ¢y > 0, proceeded as in Theorem 5.3, we have a result analogous to (5.27)

—ah(em om) ||9’”||0+At2||9"||Q < Ty +Ts+Ts+ Ty +Ts. (5.42)
n=1
Based on this formulation, utilizing a similar derivation procedure as that in Theorem 5.3, we
obtain a slightly stronger conclusion for this case.

Theorem 5.4. Let (u,p) € V xQ and (u},p}) € Vi x Qp, be the solutions of (2.1)-(2.2) and
(3.1)-(3.2), respectively. Under the assumptions stated in Theorem 5.3, it holds that

N

- - n __ ,nl2 < 2 2 . .
s o =l + s 1o = 2RI + A D 10" = #il < Cu(h0 + (8070s).. (543)
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Here,
T
Ba =0yt [ oup(s) s
0
with ®o being defined in (5.40).

Now, we show that the functions ®1, ®5 (see (5.18)) and P3 (see (5.43)) can be bounded by
the constants independent of A\. For @4, it satisfies

o m||2 M 2
@ = max (2w |3+ NV w3

T
+< / (2u|8tu(8)|2+AIV~(8tu)(8)|1)d8>+ max_[[p™|2

1<m<N
£ Pyg + Pro + Pus. (5.44)

The X independent bounds for @11, 15 and ®13 can be derived from Theorem 5.1, Remarks 5.1
and 5.2, respectively. For @5, we have

T T
By = / 10ep(s)[12ds + / IV - () (s) 2ds

T
+ h2/ 20| Opsu(s) |2 + NV - (Oppu)(s)|2ds
0
2 Byy + Doy + Pos. (5.45)

The X independent bound for ®9; is obtained from Remark 5.2, and the bounds for ®95 and
®oy3 are derived from Remark 5.1. Since

T
By = By + / 1Becp(s) 13,
0

the bounds for fOT 10:p(s)]|3ds (see Remark 5.2) and @5 gives the desired estimate for ®s3.

Remark 5.3. Here, we also needed to use Gronwall’s inequality [23,28] in (5.37) to derive the
error estimates. The constants C, (in (5.18)) and Cy (in (5.43)) depend on the exponentially
growing factor exp(zgzl(At/ (1 — At))), which is independent of A\. Furthermore, we used
the regularity results in [55] to prove that the functions ®1,®5 and ®3 are bounded by the
constants independent of A. Thus, our estimates stated in Theorems 5.3 and 5.4 depend on
the parameter p, but are robust in the limit that A\ — oc.

Remark 5.4. In this paper, we combine the CR and the conforming P; finite elements to dis-
cretize the Biot model. This method is not a mass-conserved scheme, which is a disadvantage of
the proposed method. However, it is worth mentioning that, if the displacement approximation
is replaced by interior penalty DG (IPDG) method (with linear discontinuous finite element),
the error analysis in this work can be extended to such a case with minor modifications. In fact,
the IPDG-P; pair also satisfies inf-sup condition (see [16]), and IPDG can also overcome Possion
locking in linear elasticity. Thus, our work can be seen as an extension of the two-field MINI
elements [48] to the CR-P; and IPDG-P; schemes. Comparing with the three-field CR-RT-Pg
scheme [48], we can approximate the pressure with second-order accuracy in the L? sense (see
the numerical results), while the CR-RT-Pj scheme only has a first-order accuracy.
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Remark 5.5. In the following numerical tests, we observed that the pressure has the second-
order accuracy in L? norm, see Tables 6.1-6.3. We may resort to recent work [53] to prove this
result in a rigorous theory. This issue is an interesting topic which involve some Aubin-Nitsche
arguments, but another long story. We will carefully investigate the theoretical analysis in a
future work.

6. Numerical Experiments

To test the accuracy of our method, we introduce the following benchmark model. The true
solution is the same as that in [54], although the coefficient setting and the boundary condition
are slightly different (but will not affect the conclusions on accuracy). In the following, we use
Qr = N/ to denote the quotient of the Lamé constants.

Example 6.1. Let Q = (0,1) x (0,1) with the boundary being

I ={(1,y;0<y <1}, I'y={(20);0<az<1},
I3 ={(0,y);0<y <1}, Ty={(x,1);0<z <1}

The force term f and ¢ in (2.1)-(2.2) are chosen such that the exact solution is given by

csin(2my) (cos(2mz) — 1) + sin(ma) sin(7y)

—t ‘LL + )\
1
in(2 1- 2 +
sin(2mx) (1 — cos(2my)) Y

sin(mz) sin(ry)
p = e 'sin(nz) sin(ry).

Note that the solution is designed to satisfy divu = e ' sin(r(x+y))/(1+ ) — 0 as A — +oo
at any time ¢. Pure Dirichlet boundary condition is imposed. As the key parameters are the
Poisson ratio v and the permeability K, the parameters F is fixed to be 1. In all the tests,
uniform grids with an initial size h = 1/8 are used. The mesh refinement is based on linking
the midpoints of the edges.

In Tables 6.1 and 6.2, we test the approximation properties of our method under different
Poisson ratios. The hydraulic conductivity is fixed to be K = I and the time step is fixed to be
At =1.0 x 107, We test both the compressible case (v = 0.3) and the almost incompressible
case (v = 0.499). The test results are obtained by using (3.1)-(3.2). Tables 6.1 and 6.2
correspond to the numerical errors and the convergence orders for the case v = 0.3 and v = 0.499
separately. From the numerical results, we observe that no matter v = 0.499 or v = 0.3, the
H' error orders of w and p are around 1, while the L? error orders of u and p are around 2.
This means that the numerical results exhibit optimal approximation orders in both the energy
norm and the L? norm.

In Table 6.3, we test the approximation properties of our method under a small permeability,
which usually causes pressure oscillations. The hydraulic conductivity is set be K = 1076T and
the time step is again At = 1.0 x 10~*. The Poisson ratio is set to be v = 0.3. The numerical
errors and the convergence orders are reported in Table 6.3. The test results are obtained by
using (3.6)-(3.7). From the numerical results, we observe that the H! and L? error orders of u
are optimal. The H! error orders of p are around 1, while the L? error orders of p are smaller
than 2. This means that the numerical results exhibit optimal approximation orders in the
energy norm.
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Table 6.1: Rate of convergence for v = 0.3 (Qr = 5) , fixed K = I.

N L? & H* errs of u Orders L? & H' errs of p Orders

8 | 5.329e-2 & 2.223e+0 5.039¢-2 & 7.099e-1

16 | 1.360e-2 & 1.108e+0 | 1.97 & 1.00 | 1.361e-2 & 2.802e-1 | 1.89 & 1.34
32 3.432e-3 & 5.526e-1 | 1.99 & 1.00 | 3.540e-3 & 1.200e-1 | 1.94 & 1.22
64 | 8.613e-4 & 2.759e-1 | 1.99 & 1.00 | 8.950e-4 & 5.588e-2 | 1.98 & 1.10
128 | 2.157e-4 & 1.378e-1 | 2.00 & 1.00 | 2.244e-4 & 2.736e-2 | 2.00 & 1.03

Table 6.2: Rate of convergence for v = 0.499 (Qr = 999.999), fixed K = I.

N L? & H' errs of u Orders L? & H' errs of p Orders

8 5.599e-2 & 2.204e+0 2.095e-2 & 4.306e-1

16 | 1.445e-2 & 1.101e+0 | 1.95 & 1.00 | 5.329e-3 & 2.167e-1 | 1.98 & 0.99
32 | 3.659e-3 & 5.491e-1 | 1.98 & 1.00 | 1.338e-3 & 1.086e-1 | 1.99 & 1.00
64 9.191e-4 & 2.741e-1 | 1.99 & 1.00 | 3.349e-4 & 5.430e-2 | 2.00 & 1.00
128 | 2.302e-4 & 1.369e-1 | 2.00 & 1.00 | 8.374e-5 & 2.715e-2 | 2.00 & 1.00

Table 6.3: Rate of convergence for K = 107°1, fixed v = 0.3 (Qr = 5).

N L? & H* errs of u Orders L? & H' errs of p Orders

8 5.252e-2 & 2.214e+0 2.342e-2 & 4.927e-1

16 | 1.339e-2 & 1.104e+0 | 1.97 & 1.00 | 9.922e-3 & 2.564e-1 | 1.24 & 0.94
32 3.385e-3 & 5.509e-1 | 1.98 & 1.00 | 3.318e-3 & 1.287e-1 | 1.58 & 0.99
64 8.514e-4 & 2.751e-1 | 1.99 & 1.00 | 9.854e-4 & 6.485e-2 | 1.75 & 0.99
128 | 2.135e-4 & 1.374e-1 | 2.00 & 1.00 | 2.819e¢-4 & 3.367e-2 | 1.81 & 0.95

To further check whether the proposed method can resolve the pressure oscillation problem
in solving the Biot model, we consider the cantilever bracket problem [19,55]. In our tests,
all settings including physical parameters, boundary and initial conditions, and discretization
parameters, are the same as those in [19, 55].

Example 6.2. The computational domain and I' are the same as those in Example 6.1. The
material parameters are

E=10°, v=04, ¢ =0 a=10 K=1x10"I, At=0.001.

Thus, the quotient of the Lamé constants @» = A/ = 10. There is no force term or source
term, that is, f = 0 and g = 0. The boundary conditions are taken as

Vp-n=20

u=20

on 012,
on T's x (0,7),

on—apn=h on I'; x(0,T7), j=1,2,4,
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where h = (hy, ha) with

hi =0 on T, j=1,2.4,

Lo Tk =12,
’ —1 on Ty x (0,7).

The zero initial conditions are assigned for both u and p [19,55].

In the numerical simulation, we set h = 1/32, At = 0.001, and run 1 step of time evolution.
The test results are obtained by using (3.6)-(3.7). In Fig. 6.1, we display the surface and color
plot of the computed pressure by using the proposed stabilized finite element method. From the
results, one can see clearly that the numerical solutions do not suffer from pressure oscillation.

0 0.2
0.2 e
P 02 -0.25
203 -0.3
20.35 -0.4 -0.35
-04 -0.4
-0.45 06 0.45
-0.5 ~
084 0.5
-0.55 1 0.55
1
-0.6
0 0.5 0.5 -0.6
0 02 04 06 08 1 0 0
(a) The color plot of pressure. (b) The surface plot of pressure.

Fig. 6.1. The pressure distribution for Example 6.2.

7. Concluding Remarks

In this work, we propose and analyze a mixed finite element method for solving the Biot
consolidation model. In our method, the solid displacement is discretized by the nonconforming
CR element, while the fluid pressure is approximated by a linear conforming element. The
existence and uniqueness of solutions of the fully discrete scheme are established. Then, under
some assumptions on the regularities of the solutions, we derive optimal order a priori error
estimates for each variable. In future work, we will concentrate on developing the corresponding
a posteriori error estimates.
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