
Journal of Computational Mathematics

Vol.xx, No.x, 2023, 1–21.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2212-m2021-0231

A COUPLED METHOD COMBINING CROUZEIX-RAVIART
NONCONFORMING AND NODE CONFORMING FINITE
ELEMENT SPACES FOR BOIT CONSOLIDATION MODEL*

Yuping Zeng

School of Mathematics, Jiaying University, Meizhou 514015, China

Email: zeng yuping@163.com

Mingchao Cai

Department of Mathematics, Morgan State University, 1700 E Cold Spring Ln,

Baltimore, MD 21251, USA

Email: cmchao2005@gmail.com

Liuqiang Zhong1)

School of Mathematical Science, South China Normal University, Guangzhou 520631,

Guangdong, China

Email: zhong@scnu.edu.cn

Abstract

A mixed finite element method is presented for the Biot consolidation problem in poroe-

lasticity. More precisely, the displacement is approximated by using the Crouzeix-Raviart

nonconforming finite elements, while the fluid pressure is approximated by using the node

conforming finite elements. The well-posedness of the fully discrete scheme is established,

and a corresponding priori error estimate with optimal order in the energy norm is also

derived. Numerical experiments are provided to validate the theoretical results.
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1. Introduction

Poroelasticity describes the interaction between a fluid flow and a deformable elastic porous

medium that is saturated in the fluid. Its theoretical basis was initially established by Biot [4].

Biot poroelastic theory can be found in a wide range of applications. For example, the math-

ematical models for land subsidence in geomechanics [11, 45], carbon sequestration [43, 44, 46],

safe long-term disposal of wastes in environment engineering [43,46], and brain edema [29], are

all poroelastic models.

In the context of numerical treatments for poroelastic equations, finite element methods

(FEMs) are the most commonly used approaches [40, 41]. It is well known that a direct con-

tinuous Galerkin approximation may cause Poisson locking or nonphysical pressure oscillations

(we call these two phenomenons as poroelaticity locking) [21,42–44,46]. In the literature, there

have been some developed numerical methods to avoid the poroelaticity locking. We review

those which motivated our work: A two-field formulation of the Biot model with the elastic

displacement and pressure being unknowns was approximated by using the MINI element with
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a stabilization term [48]. With the same formulation, discontinuous Galerkin (DG) methods,

weak Galerkin methods and hybrid high order methods were developed in [5,13,14,26,52]. By

introducing an additional fluid flux variable, a new three-field formulation was obtained, and

a numerical method that couples DG methods and mixed FEMs was investigated in [45]. Later,

this method was extended to nonconforming FEMs [27, 36, 54], virtual element methods [51],

weak Galerkin methods [50], locally conservative DG methods [24, 30, 56]. Some numerical

schemes based on four-field formulation can be found in [33,35,55]. Interested readers can also

refer to [10,11,19,31,32] for other study of locking-free numerical methods for the Biot model.

Moreover, for the corresponding fast solvers, some preconditioners which are robust with re-

spect to the physical and discretization parameters have been developed in [1, 3, 12, 25, 37]. As

mentioned above, the key issue in the numerical solution of the Biot problem is to address

two numerical instabilities: Possion locking phenomenon and nonphysical pressure oscillations.

In the two-field formulation these two instabilities have been initially discussed in the earlier

works [40–42] from the regularity point of view. Therein they utilized inf-sup stabilized Stokes

FEMs to discretize equations. However, recently it is shown in [2,48] that only inf-sup condition

is not enough to overcome nonphysical pressure oscillations. They suggested adding a time-

dependent stabilization term to address this issue. On the other hand, in the case of three-field

formulation, the authors in [46] combine numerical tests with heuristic analysis to explain that

the poroelasticity locking typically occurs when the storage coefficient is very close to zero and

the small time step is used. In such a case, the poroelasticity model behaves as an incompressible

model. For a remedy, they suggested using DG scheme or nonconforming FEM to approximate

the displacement variable [45]. Though many works have been devoted to addressing these

issues, most of them only numerically verify whether the constructed elements are locking-free

or pressure-oscillations free, the corresponding mathematical justifications and interpretations

behind these methods are relatively rare. More recently, an interesting result in [24] concluded

that, in the three-field formulation, when the FE pairs for the displacements, Darcy velocity,

and pore pressure satisfy suitable compatibilities, one can obtain a family of parameter-robust

numerical schemes. In the same formulation, another breakthrough in the theoretical aspect

can be found in a recent paper [55], in which the regularity of the Biot model is firstly obtained,

the cause of pressure oscillations is reinvestigated from an algebraic viewpoint, and the Poisson

locking is viewed from the classical FE approximation of linear elasticity. Moreover, based on

the theoretical analysis, the author of [55] developed a new three-field mixed FEM that is free

of locking and nonphysical pressure oscillations. The objective of the present work is to design

a robust two-field FEM for the Biot model. We shall use the nonconforming Crouzeix-Raviart

(CR) [15] finite element to approximate the elastic displacement, and adopt the standard linear

continuous finite element for the pore pressure. It is shown that the error order estimate is

robust with respect to the Lamé constant λ (more details can be found in Remark 5.3 in Sec-

tion 5). In other words, we give a mathematical analysis that explains why nonconforming CR

FEM displacement discretization can overcome Possion locking in poroelasticity. In addition,

motivated by [48], a stabilization term is imposed in order to remove the nonphysical pressure

oscillations arising from the continuous FE approximation. The finite element pair used in this

article was initially proposed and analyzed for Stokes problems [38], in which a stabilization

was suggested. Later, Lamichhane pointed out that the stabilization proposed in [38] is unnec-

essary [34]. It means that such a finite element pair satisfies the inf-sup condition for Stokes

equations. For a two-dimensional linear elasticity problem, a CR finite element was introduced

to overcome the locking phenomenon in [9]. The corresponding three-dimensional case was
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addressed in [47]. More recently, a robust CR element was presented to solve non-stationary

elastic vibration problems [20]. Some developments of CR elements for various application

problems can be found in the review article [7]. In the context of nonconforming finite elements

for the Biot problem, coupling of nonconforming and mixed finite element methods were inves-

tigated in [27,36,54]. Our method is different from [27], because the method therein is based on

a three-field formulation, while our method is based on a two-field formulation, and therefore

fewer variables are involved.

The rest of this article is organized as follows. In the next section, we introduce the Biot

consolidation model and its weak formulation. In Section 3, we provide a fully mixed FEM

with backward Euler time-stepping for the Biot equation. The well-posedness of our numerical

scheme is studied in Section 4. Under certain regularity assumptions on the weak solutions, we

derive an optimal-order a priori error estimates in Section 5. Some numerical experiments are

presented in Section 6 to support our theory. Concluding remarks are made in Section 7.

2. The Biot Consolidation Problem

Let Ω ⊂ R
d, d = 2, 3 be a simply connected bounded convex polygonal or polyhedral domain

with a Lipschitz boundary ∂Ω. We consider the following quasi-static Biot consolidation model

in Ω over a time interval (0, T ] as follows [41, 48]:

−∇ · σ + α∇p = f in Ω× (0, T ], (2.1)

− c0∂tp− α∇ · ∂tu+∇ · (K∇p) = g in Ω× (0, T ]. (2.2)

Here, u(x, t) is the displacement of the solid phase, p(x, t) is the fluid pressure, σ(x, t) denotes

the elasticity stress tensor

σ = λtr
(

ǫ(u)
)

I + 2µǫ(u) with ǫ(u) =
1

2

(

∇u + (∇u)T
)

and I ∈ R
d×d is identity matrix, λ > 0 and µ > 0 are the Lamé constants which are given by

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

Eν

2(1 + ν)
(2.3)

with E being the Young’s modulus and ν being the Poisson’s ratio, c0 ≥ 0 is the storage

coefficient, α > 0 is the Biot-Willis constant which is assumed to be 1 in this work, g is a source

term, f stands for the external force, K(x) ∈ R
d×d is a symmetric and uniformly positive

definite tensor satisfying

kminξ
T ξ ≤ ξTK(x)ξ ≤ kmaxξ

T ξ, ∀ξ ∈ R
d,

where kmin and kmax are two positive constants.

The boundary conditions for the Biot system (2.1)-(2.2) read as

u = 0 and K∇p · n = 0 on Γc × (0, T ], (2.4)

σ · n = β and p = 0 on Γt × (0, T ]. (2.5)

Here, ∂Ω = Γc ∪ Γt, Γc ∩ Γt = ∅ with |Γc| > 0 and |Γt| > 0, n is the unit outward normal

vector. Additionally, the initial conditions are given by

u(x, 0) = u0, p(x, 0) = p0. (2.6)
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In order to state the weak formulation of (2.1)-(2.2), we introduce the standard Sobolev

space Hm(D) with regularity exponent m ≥ 0. The corresponding norm and the semi-norm

are denoted as ‖ · ‖m,D and | · |m,D. When m = 0, H0(D) is reduced to L2(D), and we denote

its inner product by (·, ·)D. For simplicity, when D = Ω, we will omit the index Ω. For the

space Hm(D) = [Hm(D)]d, its norm is still denoted by ‖ · ‖m,D. A subspace of H1(Ω) with

vanishing trace on Γ is denoted by H1
0,Γ(Ω) := {v ∈ H1(Ω) : v|Γ = 0}. For ease of notations,

we set V = [H1
0,Γc

(Ω)]d and Q = H0,Γt
(Ω).

After integrating by parts, we obtain the standard mixed weak formulation of (2.1)-(2.2):

Find (u, p) ∈ V ×Q such that t ∈ (0, T ],

au(u,v)− b(v, p) = (f ,v) + 〈β,v〉Γt
, ∀v ∈ V , (2.7)

−(c0∂tp, q)− b(∂tu, q)− ap(p, q) = (g, q), ∀q ∈ Q, (2.8)

where

au(u,v) = 2µ

∫

Ω

ǫ(u) : ǫ(v)dx + λ

∫

Ω

∇ · u∇ · vdx,

ap(p, q) =

∫

Ω

K∇p · ∇qdx,

b(v, q) =

∫

Ω

∇ · vqdx.

The well-posedness of the continuous variational problem (2.7)-(2.8) can be found in [49].

In the sequel, we shall deal with the functions of time and space. To this end, we introduce

the standard Bochner space Lp(0, T ;Hm(Ω)), which consists of all functions u : [0, T ] → Hm(Ω)

with norm

‖u‖Lp(0,T ;Hm(Ω)) :=

(

∫ T

0

‖u(t)‖pmdt

)
1

p

for 1 ≤ p < ∞. When p = ∞, the space L∞(0, T ;Hm(Ω)) is endowed with the norm

‖u‖L∞(0,T ;Hm(Ω)) := sup
0≤t≤T

‖u(t)‖m.

3. The Mixed Finite Element Method

In this section, we shall provide a mixed finite element scheme to solve (2.1)-(2.2). For ease

of presentation, we only consider the numerical method for the problem in two dimensions.

The extension to the three dimension case and the corresponding analysis can be obtained

straightforwardly by using the results in [34] and the analysis here. Let Th = {K} be a shape-

regular triangulation of Ω. We denote hK as the diameter ofK and h = maxK∈Th
hK . Moreover,

we denote EI
h as the set of interior edges of elements in Th, Ec

h as the set of boundary edges on

Γc, and Et
h as the set of boundary edges on Γt. Hence, the set of all edges Eh = EI

h ∪ Ec
h ∪ Et

h.

he is used to denote the length of an edge e ∈ Eh, and the set EK
h = {e ∈ Eh | e ⊂ ∂K}.

For approximating the displacement, we introduce the nonconforming Crouzeix-Raviart P1

finite element space [15]

V h :=

{

vh ∈ L2(Ω) : vh|K ∈ [P1(K)]2,

∫

e

[vh]edF = 0, ∀e ∈ EI
h and

∫

e

vhdF = 0, ∀e ∈ Ec
h

}

,
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where [vh]e is the jump of the function vh across an edge e, and P1(K) refers to the space

of polynomials of total degree ≤ 1 on K. For approximating the fluid pressure, we apply the

conforming P1 finite element space

Qh :=
{

qh ∈ C0(Ω̄) ∩H1
0,Γt

(Ω) : qh|K ∈ P1(K)
}

.

For the time discretization, we use a uniform mesh for an interval [0, T ] with a time

step ∆t = T/N . For any function ψ(t, x), at each time tn = n∆t, n = 1, . . . , N , we denote

ψn = ψ(tn, x), ∀x ∈ Ω.

The fully discrete scheme for the Biot model (2.1)-(2.2) with the backward Euler scheme in

time reads as: Find (un
h, p

n
h) ∈ V h ×Qh such that

auh (u
n
h,vh)− bh(vh, p

n
h) = (fn,vh) + 〈βn,vh〉Γt

, ∀vh ∈ V h, (3.1)

−(c0∂̄tp
n
h, qh)− bh(∂̄tu

n
h, qh)− aph(p

n
h , qh) = (gn, qh), ∀qh ∈ Qh, (3.2)

where

∂̄tp
n
h =

pnh − pn−1
h

∆t
, ∂̄tu

n
h =

un
h − un−1

h

∆t
,

and

auh (uh,vh) = 2µ
∑

K∈Th

∫

K

ǫ(uh) : ǫ(vh)dx+ λ
∑

K∈Th

∫

K

∇ · uh∇ · vhdx

+ 2µγ
∑

e∈Eh

h−1
e

∫

e

[uh] · [vh]dF ,

aph(ph, qh) =

∫

Ω

K∇ph · ∇qhdx,

bh(vh, qh) = (∇h · vh, qh) =:
∑

K∈Th

∫

K

∇ · vhqhdx.

The stabilization term 2µγ
∑

e∈Eh
h−1
e

∫

e[uh] · [vh]dF in auh (uh,vh) suggested by [22] is used to

satisfy the discrete Korn’s inequality. More details on the properties of Korn’s inequality can

be found in [6]. In practical computations, the stabilization parameter can be set as γ = 1/2

(see [22]).

In petroleum engineering, one can enforce an initial pressure distribution, and then compute

an estimated initial displacement from Eq. (2.1). More precisely, we first set p0h := p0I as the

elliptic projection of p0, that is,

aph(p
0
I , qh) = aph(p

0, qh), ∀qh ∈ Qh, (3.3)

and then let u0
h := u0

I be the solution of

auh (u
0
I ,vh) = (f0,vh) + (β0,vh)Γt

− bh(vh, p
0
I), ∀vh ∈ V h. (3.4)

When the permeability and/or time steps are small, there will be nonphysical pressure

oscillations in numerical approximations. Inspired by [48], in order to avoid nonphysical pressure

oscillations in the pore fluid pressure, we can add a stabilization term

Bstab(ρ, η) =
εh2

λ+ 2µ

∫

Ω

∇∂̄tρ · ∇ηdx (3.5)
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in Eq. (3.2). More precisely, it results in the following discrete scheme: Find (un
h, p

n
h) ∈ V h×Qh

such that

auh (u
n
h ,vh)− bh(vh, p

n
h) = (fn,vh) + 〈βn,vh〉Γt

, ∀vh ∈ V h, (3.6)

−(c0∂̄tp
n
h, qh)− bh(∂̄tu

n
h, qh)− aph(p

n
h, qh)−Bstab(p

n
h, qh) = (gn, qh), ∀qh ∈ Qh. (3.7)

In this work, we take ε = 1/4 as suggested in [48].

Remark 3.1. In this paper, we consider mixed boundary conditions, in particular, we assume

that Γt 6= ∅. When Γt = ∅, one needs to deal with the pure traction problem. For the pure

traction boundary problem, Falk in [18] has proposed a stable CR element that relies on the

projection onto the macro element. We refer readers to [18] to see more details.

Remark 3.2. The authors in [22] suggested that the stabilization term includes all the edges.

Later, in [6] it is pointed that, only interior edges EI
h and boundary edges Et

h on Γt are needed

to satisfy the discrete Korn’s inequality. More recently, in [39], it is proved that the jumps can

be replaced with only the normal component of jumps.

Remark 3.3. Motivated by [48], we have utilized a stabilization term Bstab(p
n
h, qh) to remove

nonphysical pressure oscillations. The finite element pair we used indeed satisfies the inf-

sup condition (see Lemma 4.1 below). However, in [2, 48], it is pointed out that in two-field

formulation, the inf-sup condition is not a sufficient condition to avoid pressure oscillations,

a remedy for this is to add a time-dependent stabilization term Bstab(p
n
h, qh). Moreover, in [48],

it is also shown that this instability may arise from the lack of monotonicity of discrete schemes.

In the three-field formulation, in [24], it is proved that when the finite element pairs satisfy some

suitable inf-sup conditions, one can obtain a family of parameter-robust numerical schemes.

4. Well-Posedness

This section is devoted to the well-posedness of the discrete schemes (3.1)-(3.2). From

(3.1)-(3.2), we can see that, at each time step, we need solve the following linear system: Find

un
h ∈ V h and qnh ∈ Qh such that

auh (u
n
h,vh)− bh(vh, p

n
h) = (fn,vh) + 〈βn,vh〉Γc

, ∀vh ∈ V h, (4.1)

−(c0p
n
h, qh)− bh(u

n
h, qh)−∆taph(p

n
h, qh) = (g̃n, qh), ∀qh ∈ Qh. (4.2)

Here, g̃n = ∆tgn −∇h · un−1
h − c0p

n−1
h . Next, we shall prove the well-posedness of (4.1)-(4.2),

which is equivalent to that of (3.1)-(3.2).

First, we define the following norms on v ∈ V + V h and q ∈ Q+Qh:

‖v‖2V = auh (v,v), ‖q‖2Q = aph(q, q). (4.3)

It is easy to check that

auh (w,v) ≤ ‖w‖V ‖v‖V , (4.4)

bh(v, q) ≤ C‖v‖V ‖q‖0. (4.5)

Then, we have the following inf-sup condition.



A Mixed Finite Element Method for the Biot Consolidation Problem 7

Lemma 4.1. It holds that

sup
vh∈V h

bh(vh, qh)

‖vh‖V
≥ α0‖qh‖0 (4.6)

for all qh ∈ Qh.

Proof. The detailed proof of this result is provided in [34, Theorem 3]. �

Inspired by [26], we define a bilinear form for uh,vh ∈ V h and ph, qh ∈ Qh by

Bh(uh, ph;vh, qh) = auh (uh,vh)− bh(vh, ph)− bh(uh, qh)−∆taph(ph, qh)− (c0ph, qh),

and the weighted norm by

|||(vh, qh)|||∆t =
(

‖vh‖
2
V
+ ‖qh‖

2
0 +∆t‖qh‖

2
Q

)
1

2 . (4.7)

Now, we are in a position to state the main result of this subsection. By using the theoretical

framework stated in [48] and Lemma 4.1, we obtain the following well-posedness result.

Theorem 4.1. It holds that

sup
(vh,qh)∈V h×Qh

Bh(uh, ph;vh, qh)

|||(vh, qh)|||∆t
≥ β0|||(uh, ph)|||∆t, (4.8)

which implies that the discrete linear system (4.1)-(4.2) is well-posed.

5. Error Estimates

In this section, we shall give the detailed a priori error estimates for the fully finite element

scheme (3.1)-(3.2). First, we recall the regularity results for the displacement u (see [55,

Theorem 3.3]).

Theorem 5.1. Let (u, p) be the solutions of (2.1)-(2.2), it holds

sup
0≤t≤T

‖u(t)‖2 + sup
0≤t≤T

λ‖∇ · u(t)‖1

≤ C

{

‖p0‖1 + sup
0≤t≤T

‖f(t)‖0 + sup
0≤t≤T

‖g(t)‖0

+

(
∫ T

0

‖∂tf (s)‖
2
−1ds

)
1

2

+

(
∫ T

0

‖∂tg(s)‖
2
0ds

)
1

2

}

, (5.1)

where C > 0 is a constant depending on the parameter µ, but independent of λ.

Remark 5.1. In light of [55, Remark 3.4], when the time derivatives of solution and the right-

hand sides of problems (2.1)-(2.2) are smooth enough, similar regularity results are also valid

for ∂tu and ∂ttu.

In addition, for the pressure p, we have the following regularity result.

Theorem 5.2. Let (u, p) be the solutions of (2.1)-(2.2), there holds

sup
0≤t≤T

‖p(t)‖2 ≤ C

{

‖p0‖2 +

(∫ T

0

‖g(s)‖20ds

)
1

2

+

(∫ T

0

‖∂tg(s)‖
2
0ds

)
1

2

+

(∫ T

0

‖∇ · ∂tu(s)‖
2
0ds

)
1

2

+

(∫ T

0

‖∇ · ∂ttu(s)‖
2
0ds

)
1

2

}

, (5.2)

where C > 0 is a constant depending on the parameter µ, but independent of λ.
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Proof. It follows from (2.2) that

c0∂tp−∇ · (K∇p) = −g − α∇ · ∂tu in Ω× (0, T ]. (5.3)

From the left-hand side, we see that this is a parabolic equation for p, the standard regularity

result implies that (see [17, Theorem 5, Chapter 7])

sup
0≤t≤T

‖p(t)‖2 ≤ C

{

‖p0‖2 +

(∫ T

0

‖g(s)‖20ds

)
1

2

+

(∫ T

0

‖∂tg(s)‖
2
0ds

)
1

2

+

(
∫ T

0

‖α∇ · ∂tu(s)‖
2
0ds

)
1

2

+

(
∫ T

0

‖α∇ · ∂ttu(s)‖
2
0ds

)
1

2

}

≤ C

{

‖p0‖2 +

(∫ T

0

‖g(s)‖20ds

)
1

2

+

(∫ T

0

‖∂tg(s)‖
2
0ds

)
1

2

+

(∫ T

0

‖∇ · ∂tu(s)‖
2
0ds

)
1

2

+

(∫ T

0

‖∇ · ∂ttu(s)‖
2
0ds

)
1

2

}

,

which is the desired estimate. �

Remark 5.2. From Remark 5.1, we see that the term (
∫ T

0 ‖∇ · ∂tu(s)‖20ds)
1/2 + (

∫ T

0 ‖∇ ·

∂ttu(s)‖20ds)
1/2 in (5.2) can be bounded by suitable norms of f and g, and initial conditions

of p. This implies that sup0≤t≤T ‖p(t)‖2 ≤ C with C independent of λ. When the time

derivatives of solution and the right-hand sides of problems (2.1)-(2.2) are smooth enough,

similar results are also valid for ∂tp and ∂ttp.

5.1. Error estimates for c0 = 0

Similar to the treatment for the initial conditions as stated in (3.3)-(3.4), we begin by

defining the following projections pnI ∈ Qh and un
I ∈ V h:

aph(p
n
I , qh) = aph(p

n, qh), ∀qh ∈ Qh, (5.4)

auh (u
n
I ,vh) = (fn,vh) + 〈βn,vh〉Γt

− bh(vh, p
n
I ), ∀vh ∈ V h. (5.5)

Moreover, we define the Crouzeix-Raviart interpolation operator ΠK : [H1(K)]2 → [P1(K)]2

by (see [15])
∫

e

ΠKvdF =

∫

e

vdF , ∀e ∈ EK
h .

Then, the global Crouzeix-Raviart interpolation operator Πh : H1(Ω) → V h can be con-

structed by

(Πhv)|K = ΠK(v|K), ∀K ∈ Th. (5.6)

It is well known that the following estimate holds (see [22, Lemma 2.4]):

‖v −Πhv‖V ≤ Ch
(

(2µ)
1

2 ‖v‖2 + λ
1

2 ‖∇ · v‖1
)

. (5.7)

Based on the above notations and results, we obtain the following useful approximation

properties for pnI and un
I .
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Lemma 5.1. Assume that pn ∈ H2(Ω) for 1 ≤ n ≤ N , for pnI given by (5.5) there holds

‖pn − pnI ‖Q ≤ Ch‖pn‖2, (5.8)

‖pn − pnI ‖0 ≤ Ch2‖pn‖2. (5.9)

Moreover, assume that un ∈ H2(Ω) and ∇ · un ∈ H1(Ω), for un
I given by (5.4), we have

‖un − un
I ‖V ≤ Ch

(

(2µ)
1

2 ‖un‖2 + λ
1

2 ‖∇ · un‖1 + ‖pn‖2
)

. (5.10)

Proof. (1) Proof of (5.8). The definition of pnI in (5.4) implies that

‖pn − pnI ‖Q = inf
qh∈Qh

‖pn − qh‖Q. (5.11)

We then obtain the estimate (5.8) by the standard finite element approximate properties

(see [8]).

(2) Proof of (5.9). The desired estimate (5.9) can be obtained by combining (5.8) and

a duality argument. We refer [5, Theorem 3.2] for more details.

(3) Proof of (5.10). We first split un−un
I = un−Πhu

n+Πhu
n−un

I . The term Πhu
n−un

I

satisfies

‖Πhu
n − un

I ‖V = sup
vh∈V h

auh (Πhu
n − un

I ,vh)

‖vh‖V
. (5.12)

Recalling fn = −∇ · σn +∇pn, and using (5.5), we have

auh (Πhu
n − un

I ,vh) = auh (Πhu
n,vh)− (fn,vh)− 〈βn,vh〉Γt

+ bh(vh, p
n
I )

=
(

auh (Πhu
n,vh) + (∇ · σn,vh)

)

+
(

bh(vh, p
n
I )− (∇pn,vh)

)

≡ D1 + D2. (5.13)

Integrating by parts, we can estimate the first term D1 as follows:

D1 = auh (Πhu
n − un,vh) +

∑

K∈Th

∑

e∈∂K\Γt

〈σnnK ,vh〉e

= auh (Πhu
n − un,vh) +

∑

K∈Th

∑

e∈∂K\Γt

2µ〈ǫ(un)nK ,vh〉e

+
∑

K∈Th

∑

e∈∂K\Γt

λ〈(∇ · un)nK ,vh〉e

= auh (Πhu
n − un,vh) +

∑

K∈Th

∑

e∈∂K\Γt

2µ
〈(

ǫ(un)− ǫ(un)
)

nK ,vh − vh

〉

e

+
∑

K∈Th

∑

e∈∂K\Γt

λ〈(∇ · un −∇ · un)nK ,vh − vh〉e

≤ ‖Πhu
n − un‖V ‖vh‖V +

∑

K∈Th

∑

e∈∂K\Γt

2µ‖ǫ(un)− ǫ(un)‖0,e‖vh − vh‖0,e

+
∑

K∈Th

∑

e∈∂K\Γt

λ‖∇ · (un)−∇ · (un)‖0,e‖vh − vh‖0,e

≤ ‖Πhu
n − un‖V ‖vh‖V + C

∑

K∈Th

2µh
1

2

K |un|2,K h
1

2

K |vh|1,K

+ C
∑

K∈Th

2λh
1

2

K |∇ · un|1,K h
1

2

K |vh|1,K
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≤ ‖Πhu
n − un‖V ‖vh‖V + Ch

(

∑

K∈Th

(2µ|un|2,K + λ|∇ · un|1,K)2

)
1

2

(

∑

K∈Th

|vh|
2
1,K

)
1

2

≤ ‖Πhu
n − un‖V ‖vh‖V + Ch

(

2µ|un|2 + λ|∇ · un|1
)

|vh|1,h

≤ ‖Πhu
n − un‖V ‖vh‖V + Ch

(

2µ|un|2 + λ|∇ · un|1
)

‖vh‖V , (5.14)

where nK denotes the outer unit normal to ∂K, v̄ is the mean value of v on the edge e. Similarly,

we can bound D2 by

D2 =
∑

K∈Th

(pnI − pn,∇ · vh)K +
∑

K∈Th

∑

e∈∂K\Γt

〈pnnK ,vh〉e

=
∑

K∈Th

(pnI − pn,∇ · vh)K +
∑

K∈Th

∑

e∈∂K\Γt

〈(pn − pn)nK ,vh − vh〉e

≤
∑

K∈Th

‖pnI − pn‖0,K‖∇ · vh‖0,K + Ch|pn|1|vh|V

≤ Ch2‖pn‖2‖vh‖1,h + Ch|pn|1|vh|V

≤ Ch2‖pn‖2‖vh‖V + Ch|pn|1|vh|V . (5.15)

Combining (5.7) and (5.12)-(5.15), and using a triangle inequality, we obtain the desired esti-

mate in (5.10). �

It follows from the Taylor’s expansion that

φn − φn−1

∆t
= ∂tφ

n +
1

∆t

∫ tn

tn−1

(tn−1 − s)∂ttφ(s)ds (5.16)

with ∂tφ
n := ∂tφ(tn).

We are now in a position to state the following error estimates for c0 = 0, which is the main

result in this subsection.

Theorem 5.3. Let (u, p) ∈ V ×Q and (un
h, p

n
h) ∈ V h ×Qh be the solutions of (2.1)-(2.2) and

(3.1)-(3.2), respectively. Additionally, we assume that

u ∈ L∞
(

0, T ;H2(Ω)
)

, ∂tu ∈ L∞
(

0, T ;H2(Ω)
)

, ∂ttu ∈ L2
(

0, T ;H2(Ω)
)

,

∇ · (∂ttu) ∈ L2
(

0, T ;L2(Ω)
)

, p ∈ L∞
(

0, T ;H2(Ω)
)

, ∂ttp ∈ L2
(

0, T ;H2(Ω)
)

.
(5.17)

Then, we have the following error estimate:

max
1≤n≤N

‖un − un
h‖

2
V +∆t

N
∑

n=1

‖pn − pnh‖
2
Q ≤ Ca

(

h2Φ1 + (∆t)2Φ2

)

. (5.18)

Proof. Since the exact solutions un and pn satisfy (2.1)-(2.2) at t = tn, integrating by parts,

using (5.16), we conclude that

auh (u
n,vh)− bh(vh, p

n) = (fn,vh) +
∑

K∈Th

∑

e∈∂K\Γt

〈σnnK ,vh〉e, (5.19)

bh(∂̄tu
n, qh) + aph(p

n, qh) = (gn, qh) +
1

∆t

(∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds, qh

)

(5.20)
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for any (vh, qh) ∈ V h × Qh. Subtracting (3.1) and (3.2) from (5.19) and (5.20), respectively,

we have

auh (u
n − un

h,vh)− (pn − pnh,∇h · vh) =
∑

K∈Th

∑

e∈∂K\Γt

〈σnnK ,vh〉e, (5.21)

(

∇h ·

(

(un − un
h)− (un−1 − un−1

h )

∆t

)

, qh

)

+ aph(p
n − pnh, qh)

=
1

∆t

(∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds, qh

)

(5.22)

for any (vh, qh) ∈ V h ×Qh.

We then split the error pn − pnh into pn − pnh = ξnp + θnp with ξnp = pn − pnI and θnp = pnI − pnh.

Similarly, un − un
h = ξnu + θnu with ξnu = un − un

I and θnu = un
I − un

h. Since the estimates

for ξnp and ξn
u
can be derived by the error bounds stated in (5.8)-(5.10), it remains to estimate

θnp and θn
u
. Using (5.4), we have aph(ξ

n
p , θ

n
p ) = 0, hence we can reformulate the expressions

(5.21)-(5.22) by

auh (θ
n
u
,vh)− (θnp ,∇h · vh)

= −auh (ξ
n
u
,vh) + (ξnp ,∇h · vh) +

∑

K∈Th

∑

e∈∂K\Γt

〈σnnK ,vh〉e, (5.23)

(

∇h ·

(

θn
u
− θn−1

u

∆t

)

, qh

)

+ aph(θ
n
p , qh)

= −

(

∇h ·

(

ξnu − ξn−1
u

∆t

)

, qh

)

+
1

∆t

(∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds, qh

)

(5.24)

for any (vh, qh) ∈ V h × Qh. Setting vh = (θn
u
− θn−1

u
)/∆t and qh = θnp in (5.23)-(5.24) and

adding them together, we obtain

auh (θ
n
u
, θn

u
) + ∆t‖θnp ‖

2
Q = auh (θ

n
u
, θn−1

u
)− auh (ξ

n
u
, θn

u
− θn−1

u
) +

(

ξnp ,∇h · (θn
u
− θn−1

u
)
)

+
∑

K∈Th

∑

e∈∂K\Γt

〈σnnK , θnu − θn−1
u 〉e −

(

∇h · (ξnu − ξn−1
u ), θnp

)

+

(∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds, θ
n
p

)

. (5.25)

Summing (5.25) from 1 to m(≤ N), noting that θ0u = 0, and applying

auh
(

θnu, θ
n−1
u

)

≤
1

2

(

auh (θ
n−1
u , θn−1

u ) + auh (θ
n
u, θ

n
u)
)

(5.26)

to find that
1

2
auh

(

θmu , θmu
)

+∆t

m
∑

n=1

‖θnp ‖
2
Q ≤ T1 + T2 + T3 + T4 + T5, (5.27)

where

T1 = −
m
∑

n=1

auh
(

ξnu, θ
n
u − θn−1

u

)

,

T2 =

m
∑

n=1

(

ξnp ,∇h · (θn
u
− θn−1

u
)
)

,



12 Y.P. ZENG, M.C. CAI, AND L.Q. ZHONG

T3 =
m
∑

n=1

∑

K∈Th

∑

e∈∂K\Γt

〈σnnK , θn
u
− θn−1

u
〉e,

T4 = −
m
∑

n=1

(

∇h · (ξnu − ξn−1
u ), θnp

)

,

T5 =

m
∑

n=1

(∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds, θ
n
p

)

.

To bound the first term T1, we need the following equality:

m
∑

n=1

(fn − fn−1)gn−1 = fmgm − f0g0 −
m
∑

n=1

fn(gn − gn−1). (5.28)

Moreover, recall the Taylor’s expansion

ξnu − ξn−1
u

∆t
= ∂tξ

n
u
+

1

∆t

∫ tn

tn−1

(tn−1 − s)∂ttξu(s)ds (5.29)

with ∂tξ
n
u
= ∂tξu(tn). Then, using (5.28), (5.29), (5.5) and Young’s inequality, and noting that

θ0u = 0, we infer that

T1 = −
m
∑

n=1

auh
(

ξnu, θ
n
u − θn−1

u

)

= −auh
(

ξm
u
, θm

u

)

+
m
∑

n=1

auh (ξ
n
u
− ξn−1

u
, θn−1

u
)

≤ ǫ1‖θ
m
u
‖2
V
+ C

(

‖ξm
u
‖2
V
+ (∆t)2

∫ tm

0

‖∂ttξu(s)‖
2
V
ds

+∆t

m
∑

n=1

‖∂tξ
n
u
‖2V +∆t

m−1
∑

n=1

‖θn
u
‖2V

)

. (5.30)

Similarly, since θ0u = 0, then T2 can be bounded as follows:

T2 =

m
∑

n=1

(

ξnp ,∇h · (θnu − θn−1
u )

)

=
(

ξmp ,∇h · θm
u

)

−
m
∑

n=1

(

ξnp − ξn−1
p ,∇h · θn−1

u

)

≤ ǫ2‖θ
m
u
‖2
V
+ C

(

‖ξmp ‖20 + (∆t)2
∫ tm

0

‖∂ttξp(s)‖
2
0ds

+∆t

m
∑

n=1

‖∂tξ
n
p ‖

2
0 +∆t

m−1
∑

n=1

‖θn
u
‖2V

)

. (5.31)

Applying some techniques used in (5.14), utilizing (5.16), and Young’s inequality, we deduce

that

T3 =

m
∑

n=1

∑

K∈Th

∑

e∈∂K\Γt

〈

σnnK , θnu − θn−1
u

〉

e
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=
∑

K∈Th

∑

e∈∂K\Γt

〈

σmnK , θm
u

〉

e
−

m
∑

n=1

∑

K∈Th

∑

F∈∂K\Γt

〈

(σn − σn−1)nK , θn−1
u

〉

e

=
∑

K∈Th

∑

e∈∂K\Γt

〈

(σm − σm)nK , θmu − θmu
〉

e

−
m
∑

n=1

∑

K∈Th

∑

F∈∂K\Γt

〈(

σn − σn−1 − σn − σn−1
)

nK , θn−1
u − θn−1

u

〉

e

≤ ǫ3‖θ
m
u
‖2
V
+ C

(

h2
(

2µ|um|22 + λ|∇ · um|21
)

+ h2

∫ tm

0

(

2µ|∂tu(s)|
2
2 + λ|∇ · (∂tu)(s)|

2
1

)

ds+∆t

m−1
∑

n=0

‖θnu‖
2
V

)

. (5.32)

Application of (5.29) for T4 yields

T4 = −
m
∑

n=1

(

∇h · (ξnu − ξn−1
u ), θnp

)

≤ C

(

(∆t)2
∫ tm

0

‖∂ttξu(s)‖
2
V
ds+∆t

m
∑

n=1

(

‖θnp ‖
2
0 + ‖∂tξ

n
u
‖2
V

)

)

. (5.33)

It follows from the Cauchy-Schwarz inequality that

T5 =

m
∑

n=1

(∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds, θ
n
p

)

≤
m
∑

n=1

∥

∥

∥

∥

∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds

∥

∥

∥

∥

0

‖θnp ‖0.

Moreover, there holds

∥

∥

∥

∥

∫ tn

tn−1

(tn−1 − s)∇ · (∂ttu)(s)ds

∥

∥

∥

∥

0

≤ (∆t)
3

2

(∫ tn

tn−1

‖∇ · (∂ttu)(s)‖
2
0ds

)
1

2

.

Thus, we further deduce that

T5 ≤ C

(

∆t

m
∑

n=1

‖θnp ‖
2
0 + (∆t)2

∫ tm

0

‖∇ · (∂ttu)(s)‖
2
0ds

)

. (5.34)

On the other hand, subtracting (4.1) from (5.5) leads to

auh (θ
n
u
,vh) = −bh(vh, θ

n
p ). (5.35)

By using the inf-sup condition (4.6), we see that

‖θnp ‖0 ≤
1

α0
sup

vh∈V h

bh(vh, θ
n
p )

‖vh‖V
=

1

α0
sup

vh∈V h

−auh (θ
n
u
,vh)

‖vh‖V
=

1

α0
‖θnu‖V . (5.36)

Combining (5.27), (5.30)-(5.34), and (5.36), we have

(1− ǫ1 − ǫ2 − ǫ3)‖θ
m
u
‖2
V
+∆t

m
∑

n=1

‖θnp ‖
2
Q
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≤ C

(

∆t

m
∑

n=1

‖θnu‖
2
V + ‖ξmu ‖2V + ‖ξmp ‖2Q +∆t

m
∑

n=1

(

‖∂tξ
n
u
‖2V + ‖∂tξ

n
p ‖

2
0

)

+ (∆t)2
∫ tm

0

‖∂ttξp(s)‖
2
0ds+ (∆t)2

∫ tm

0

‖∇ · (∂ttu)(s)‖
2
0ds

+ (∆t)2
∫ tm

0

‖∂ttξu(s)‖
2
V
ds+ h2

(

2µ|um|22 + λ|∇ · um|21
)

+ h2

∫ tm

0

(

2µ|∂tu(s)|
2
2 + λ|∇ · ∂tu(s)|

2
1

)

ds

)

. (5.37)

Choosing ǫi, i = 1, 2, 3 such that 1 − ǫ1 − ǫ2 − ǫ3 > 0, then using the discrete Gronwall’s

inequality [23, 28], some approximation properties (see (5.8)-(5.10)), and noting that (5.37)

holds for any 1 ≤ m ≤ N , we conclude that

max
1≤n≤N

‖θnu‖
2
V +∆t

N
∑

n=1

‖θnp ‖
2
Q ≤ C

(

h2Φ1 + (∆t)2Φ2

)

, (5.38)

where

Φ1 = max
1≤m≤N

(

2µ‖um‖22 + λ‖∇ · um‖21
)

+

(∫ T

0

(

2µ|∂tu(s)|
2
2 + λ|∇ · (∂tu)(s)|

2
1

)

ds

)

+ max
1≤m≤N

‖pm‖22, (5.39)

Φ2 = h4

∫ T

0

‖∂ttp(s)‖
2
2ds+

∫ T

0

‖∇ · (∂ttu)(s)‖
2
0ds

+ h2

∫ T

0

2µ|∂ttu(s)|
2
2 + λ|∇ · (∂ttu)(s)|

2
1ds. (5.40)

Combining this bound with the error estimates for ξnp , ξ
n
u (see Lemma 5.1), and using the

triangle inequality, we obtain

max
1≤n≤N

‖un − un
h‖

2
V
+∆t

N
∑

n=1

‖pn − pnh‖
2
Q ≤ Ca

(

h2Φ1 + (∆t)2Φ2

)

, (5.41)

which is the desired estimate (5.18). �

5.2. Error estimates for c0 > 0

When c0 > 0, proceeded as in Theorem 5.3, we have a result analogous to (5.27)

1

2
auh (θ

m
u , θmu ) +

c0
2
‖θmp ‖20 +∆t

m
∑

n=1

‖θnp ‖
2
Q ≤ T1 + T2 + T3 + T4 + T5. (5.42)

Based on this formulation, utilizing a similar derivation procedure as that in Theorem 5.3, we

obtain a slightly stronger conclusion for this case.

Theorem 5.4. Let (u, p) ∈ V ×Q and (un
h, p

n
h) ∈ V h ×Qh be the solutions of (2.1)-(2.2) and

(3.1)-(3.2), respectively. Under the assumptions stated in Theorem 5.3, it holds that

max
1≤n≤N

‖un − un
h‖

2
V
+ max

1≤n≤N
‖pn − pnh‖

2
0 +∆t

N
∑

n=1

‖pn − pnh‖
2
Q ≤ Cb

(

h2Φ1 + (∆t)2Φ3

)

. (5.43)
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Here,

Φ3 = Φ2 +

∫ T

0

‖∂ttp(s)‖
2
0ds

with Φ2 being defined in (5.40).

Now, we show that the functions Φ1,Φ2 (see (5.18)) and Φ3 (see (5.43)) can be bounded by

the constants independent of λ. For Φ1, it satisfies

Φ1 = max
1≤m≤N

(

2µ‖um‖22 + λ‖∇ · um‖21
)

+

(∫ T

0

(2µ|∂tu(s)|
2
2 + λ|∇ · (∂tu)(s)|

2
1)ds

)

+ max
1≤m≤N

‖pm‖22

, Φ11 +Φ12 +Φ13. (5.44)

The λ independent bounds for Φ11,Φ12 and Φ13 can be derived from Theorem 5.1, Remarks 5.1

and 5.2, respectively. For Φ2, we have

Φ2 = h4

∫ T

0

‖∂ttp(s)‖
2
2ds+

∫ T

0

‖∇ · (∂ttu)(s)‖
2
0ds

+ h2

∫ T

0

2µ|∂ttu(s)|
2
2 + λ|∇ · (∂ttu)(s)|

2
1ds

, Φ21 +Φ22 +Φ23. (5.45)

The λ independent bound for Φ21 is obtained from Remark 5.2, and the bounds for Φ22 and

Φ23 are derived from Remark 5.1. Since

Φ3 = Φ2 +

∫ T

0

‖∂ttp(s)‖
2
0ds,

the bounds for
∫ T

0
‖∂ttp(s)‖20ds (see Remark 5.2) and Φ2 gives the desired estimate for Φ3.

Remark 5.3. Here, we also needed to use Gronwall’s inequality [23,28] in (5.37) to derive the

error estimates. The constants Ca (in (5.18)) and Cb (in (5.43)) depend on the exponentially

growing factor exp(
∑N

n=1(∆t/(1−∆t))), which is independent of λ. Furthermore, we used

the regularity results in [55] to prove that the functions Φ1,Φ2 and Φ3 are bounded by the

constants independent of λ. Thus, our estimates stated in Theorems 5.3 and 5.4 depend on

the parameter µ, but are robust in the limit that λ → ∞.

Remark 5.4. In this paper, we combine the CR and the conforming P1 finite elements to dis-

cretize the Biot model. This method is not a mass-conserved scheme, which is a disadvantage of

the proposed method. However, it is worth mentioning that, if the displacement approximation

is replaced by interior penalty DG (IPDG) method (with linear discontinuous finite element),

the error analysis in this work can be extended to such a case with minor modifications. In fact,

the IPDG-P1 pair also satisfies inf-sup condition (see [16]), and IPDG can also overcome Possion

locking in linear elasticity. Thus, our work can be seen as an extension of the two-field MINI

elements [48] to the CR-P1 and IPDG-P1 schemes. Comparing with the three-field CR-RT-P0

scheme [48], we can approximate the pressure with second-order accuracy in the L2 sense (see

the numerical results), while the CR-RT-P0 scheme only has a first-order accuracy.
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Remark 5.5. In the following numerical tests, we observed that the pressure has the second-

order accuracy in L2 norm, see Tables 6.1-6.3. We may resort to recent work [53] to prove this

result in a rigorous theory. This issue is an interesting topic which involve some Aubin-Nitsche

arguments, but another long story. We will carefully investigate the theoretical analysis in a

future work.

6. Numerical Experiments

To test the accuracy of our method, we introduce the following benchmark model. The true

solution is the same as that in [54], although the coefficient setting and the boundary condition

are slightly different (but will not affect the conclusions on accuracy). In the following, we use

Qr = λ/µ to denote the quotient of the Lamé constants.

Example 6.1. Let Ω = (0, 1)× (0, 1) with the boundary being

Γ1 = {(1, y); 0 ≤ y ≤ 1}, Γ2 = {(x, 0); 0 ≤ x ≤ 1},

Γ3 = {(0, y); 0 ≤ y ≤ 1}, Γ4 = {(x, 1); 0 ≤ x ≤ 1}.

The force term f and g in (2.1)-(2.2) are chosen such that the exact solution is given by

u = e−t







c sin(2πy)
(

cos(2πx)− 1
)

+
1

µ+ λ
sin(πx) sin(πy)

sin(2πx)
(

1− cos(2πy)
)

+
1

µ+ λ
sin(πx) sin(πy)






,

p = e−t sin(πx) sin(πy).

Note that the solution is designed to satisfy divu = πe−t sin(π(x+y))/(µ+λ) → 0 as λ → +∞

at any time t. Pure Dirichlet boundary condition is imposed. As the key parameters are the

Poisson ratio ν and the permeability K, the parameters E is fixed to be 1. In all the tests,

uniform grids with an initial size h = 1/8 are used. The mesh refinement is based on linking

the midpoints of the edges.

In Tables 6.1 and 6.2, we test the approximation properties of our method under different

Poisson ratios. The hydraulic conductivity is fixed to be K = I and the time step is fixed to be

∆t = 1.0× 10−4. We test both the compressible case (ν = 0.3) and the almost incompressible

case (ν = 0.499). The test results are obtained by using (3.1)-(3.2). Tables 6.1 and 6.2

correspond to the numerical errors and the convergence orders for the case ν = 0.3 and ν = 0.499

separately. From the numerical results, we observe that no matter ν = 0.499 or ν = 0.3, the

H1 error orders of u and p are around 1, while the L2 error orders of u and p are around 2.

This means that the numerical results exhibit optimal approximation orders in both the energy

norm and the L2 norm.

In Table 6.3, we test the approximation properties of our method under a small permeability,

which usually causes pressure oscillations. The hydraulic conductivity is set be K = 10−6I and

the time step is again ∆t = 1.0× 10−4. The Poisson ratio is set to be ν = 0.3. The numerical

errors and the convergence orders are reported in Table 6.3. The test results are obtained by

using (3.6)-(3.7). From the numerical results, we observe that the H1 and L2 error orders of u

are optimal. The H1 error orders of p are around 1, while the L2 error orders of p are smaller

than 2. This means that the numerical results exhibit optimal approximation orders in the

energy norm.
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Table 6.1: Rate of convergence for ν = 0.3 (Qr = 5) , fixed K = I.

N L2 & H1 errs of u Orders L2 & H1 errs of p Orders

8 5.329e-2 & 2.223e+0 5.039e-2 & 7.099e-1

16 1.360e-2 & 1.108e+0 1.97 & 1.00 1.361e-2 & 2.802e-1 1.89 & 1.34

32 3.432e-3 & 5.526e-1 1.99 & 1.00 3.540e-3 & 1.200e-1 1.94 & 1.22

64 8.613e-4 & 2.759e-1 1.99 & 1.00 8.950e-4 & 5.588e-2 1.98 & 1.10

128 2.157e-4 & 1.378e-1 2.00 & 1.00 2.244e-4 & 2.736e-2 2.00 & 1.03

Table 6.2: Rate of convergence for ν = 0.499 (Qr = 999.999), fixed K = I.

N L2 & H1 errs of u Orders L2 & H1 errs of p Orders

8 5.599e-2 & 2.204e+0 2.095e-2 & 4.306e-1

16 1.445e-2 & 1.101e+0 1.95 & 1.00 5.329e-3 & 2.167e-1 1.98 & 0.99

32 3.659e-3 & 5.491e-1 1.98 & 1.00 1.338e-3 & 1.086e-1 1.99 & 1.00

64 9.191e-4 & 2.741e-1 1.99 & 1.00 3.349e-4 & 5.430e-2 2.00 & 1.00

128 2.302e-4 & 1.369e-1 2.00 & 1.00 8.374e-5 & 2.715e-2 2.00 & 1.00

Table 6.3: Rate of convergence for K = 10−6
I, fixed ν = 0.3 (Qr = 5).

N L2 & H1 errs of u Orders L2 & H1 errs of p Orders

8 5.252e-2 & 2.214e+0 2.342e-2 & 4.927e-1

16 1.339e-2 & 1.104e+0 1.97 & 1.00 9.922e-3 & 2.564e-1 1.24 & 0.94

32 3.385e-3 & 5.509e-1 1.98 & 1.00 3.318e-3 & 1.287e-1 1.58 & 0.99

64 8.514e-4 & 2.751e-1 1.99 & 1.00 9.854e-4 & 6.485e-2 1.75 & 0.99

128 2.135e-4 & 1.374e-1 2.00 & 1.00 2.819e-4 & 3.367e-2 1.81 & 0.95

To further check whether the proposed method can resolve the pressure oscillation problem

in solving the Biot model, we consider the cantilever bracket problem [19, 55]. In our tests,

all settings including physical parameters, boundary and initial conditions, and discretization

parameters, are the same as those in [19, 55].

Example 6.2. The computational domain and Γ are the same as those in Example 6.1. The

material parameters are

E = 105, ν = 0.4, c0 = 0, α = 1.0, K = 1× 10−7I, ∆t = 0.001.

Thus, the quotient of the Lamé constants Qr = λ/µ = 10. There is no force term or source

term, that is, f = 0 and g = 0. The boundary conditions are taken as

∇p · n = 0 on ∂Ω,

u = 0 on Γ3 × (0, T ),

σn− αpn = h on Γj × (0, T ), j = 1, 2, 4,
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where h = (h1, h2) with

h1 = 0 on Γj , j = 1, 2, 4,

h2 =

{

0 on Γj × (0, T ), j = 1, 2,

−1 on Γ4 × (0, T ).

The zero initial conditions are assigned for both u and p [19, 55].

In the numerical simulation, we set h = 1/32, ∆t = 0.001, and run 1 step of time evolution.

The test results are obtained by using (3.6)-(3.7). In Fig. 6.1, we display the surface and color

plot of the computed pressure by using the proposed stabilized finite element method. From the

results, one can see clearly that the numerical solutions do not suffer from pressure oscillation.

(a) The color plot of pressure. (b) The surface plot of pressure.

Fig. 6.1. The pressure distribution for Example 6.2.

7. Concluding Remarks

In this work, we propose and analyze a mixed finite element method for solving the Biot

consolidation model. In our method, the solid displacement is discretized by the nonconforming

CR element, while the fluid pressure is approximated by a linear conforming element. The

existence and uniqueness of solutions of the fully discrete scheme are established. Then, under

some assumptions on the regularities of the solutions, we derive optimal order a priori error

estimates for each variable. In future work, we will concentrate on developing the corresponding

a posteriori error estimates.
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