
Journal of Computational and Applied Mathematics 451 (2024) 116118

A
0

a

b

c

d

e

e
o
S
r
G
t
a
a
w
r
t
a

s

s

h
R

Contents lists available at ScienceDirect

Journal of Computational and AppliedMathematics

journal homepage: www.elsevier.com/locate/cam

Low regularity error analysis for an H(div)-conforming
discontinuous Galerkin approximation of Stokes problem
Yuping Zeng a, Liuqiang Zhong b, Feng Wang c, Mingchao Cai d, Shangyou Zhang e,∗
School of Mathematics, Jiaying University, Meizhou 514015, China
School of Mathematical Science, South China Normal University, Guangzhou 520631, China
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
Department of Mathematics, Morgan State University, 1700 E Cold Spring Ln, Baltimore, MD 21251, USA
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

A R T I C L E I N F O

MSC:
65N15
65N30
76D07

Keywords:
Finite elements
Discontinuous Galerkin method
Stokes equations
A medius error estimate

A B S T R A C T

In this paper, we derive an improved error estimate for the 𝑯(div)-conforming discontinuous
Galerkin (DG) approximation of the Stokes equations, assuming only minimal regularity on
the exact solution. The estimate relies on both a priori and a posteriori analysis, and thus
is called a medius error analysis. More precisely, we proved an optimal order error estimate
under the assumption (𝒖, 𝑝) ∈ 𝑯1+𝑠(𝛺) × 𝐻𝑠(𝛺) with any 𝑠 ∈ (0, 1]. Extension to the standard
interior penalty DG methods is also explored. Finally, numerical results are provided to verify
our theoretical findings.

1. Introduction

The Stokes equations are used to model incompressible fluids. Since it is difficult to obtain the analytical solution of these
quations, many researchers turn their attentions to numerical methods. Among them, finite element methods (FEMs) are a class
f most commonly used numerical schemes for addressing such problems. As we known, the key step in designing mixed FEMs for
tokes problem is to check the inf-sup condition. For the classical conforming or nonconforming FEMs that satisfy this condition, we
efer the reader to Girault and Raviart [1], and Brezzi et al. [2] for more detailed presentation. On the other hand, discontinuous
alerkin (DG) method [3] is another effective scheme for solving Stokes equations, see Schötzau et al. [4]. DG methods allow
otally discontinuous functions of piecewise polynomials on the triangulation. Thus, they can easily deal with highly nonuniform
nd unstructured meshes. Moreover, they have flexibility in handling inhomogeneous boundary conditions and curved boundaries,
nd they are also suitable for ℎ𝑝-adaptive computation. Recently, combining interior penalty discontinuous Galerkin (IPDG) methods
ith𝑯(div) mixed finite elements, the authors design a pressure-robust scheme for the Stokes problem [5–9]. Constructing pressure-
obust numerical schemes to discretize for Stokes problem has drawn more and more attentions in recent years. We refer the reader
o [10–22] for more details. It is also worth mentioning that 𝑯(div)-conforming IPDG methods are effective numerical methods for
ddressing Darcy-Stokes problem [23–28].
For the above 𝑯(div) IPDG method, Wang and Ye [7] established a priori error estimate under the assumption that the exact

olution is smooth enough. Later, a residual-based a posterior estimator was developed for the adaptive computation [29]. In this
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work, we shall further derive an improved error estimates for this method under minimal regularity assumption for the exact solution.
To obtain the desired estimate, we utilize some technical tools developed by Gudi [30], which are based on both a priori and a
posteriori error analysis, and thus is called a medius error analysis. Recently, some works have devoted to the convergence analysis
of Stokes equations for various FEMs under minimal regularity assumption. We refer [31] for stable conforming FEMs, and [32] for
nonconforming FEMs. In [32], Li et al. employed an enrichment operator to map the nonconforming FE functions to a conforming FE
space. This approach has been further extended to the other pressure-robust schemes [10,12,16,17,22]. In the context of DG methods,
an error analysis with minimal regularity assumption has been established by [33]. In this work, we shall further investigated the
error estimates for the 𝑯(div) IPDG method. It is worth mentioning that our analysis is different from the one stated in [33], in
which the estimates for the velocities and pressure are processed separately. In particularly, in [33], some more involved techniques
based on 𝑯(div) finite element are needed to derive pressure error estimate. While in this work, we provide the error analysis for
the velocities and pressure via the stability result directly (see Theorem 3.3 below) and in a unified approach. We should note that
similar idea has been explored for stable conforming FEMs [31]. Our work can be viewed an extended approach to the 𝑯(div) IPDG
method. Moreover, we point that our approach is not limited to 𝑯(div) IPDG case, it can be also extended to the standard IPDG
schemes (see Section 5 for more details). Naturally the method remains a pressure robust scheme in solving a low regularity Stokes
problem, i.e., the velocity error is independent of pressure, as we use the 𝐻(div) finite elements.

The rest of our paper is organized as follows. In Section 2, we first introduce the model problem and then describe the 𝑯(div)
IPDG method. The stability result for the 𝑯(div) IPDG method is presented in Section 3. Next, based on the results obtained in
Section 3, we derive a medius error analysis for the 𝑯(div) IPDG method under the minimal regularity assumption in Section 4.
Section 5 mainly discusses how to extend the corresponding error analysis to the standard IPDG method. Some numerical tests are
provided in Section 6 to validate the theory result. Finally, some conclusions are made in Section 7.

. Preliminaries

.1. The Stokes equations

We first introduce some notations. For a bounded domain  ⊂ R2, we denote by 𝐻𝑠()(𝑠 ≥ 0) the standard Sobolev space
ndowed with norm ‖ ⋅ ‖𝑠, and seminorm |⋅|𝑠,. When 𝑠 = 0, 𝐻0() is the Lebesgue space 𝐿2(), and its inner product is denoted
y (⋅, ⋅). We shall drop the subscript  when  = 𝛺. Additionally, we introduce 𝐻1

0 (𝛺) as the subspace of 𝐻1(𝛺), in which the
unctions vanish on 𝜕𝛺, i.e., 𝐻1

0 (𝛺) = {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣|𝜕𝛺 = 0}. By convention, for the vector-valued analogs, we shall use boldface
ype: 𝑯𝑚() = [𝐻𝑚()]2. Moreover, we introduce the Hilbert space 𝑯(div;𝛺) = {𝒗 ∈ 𝑳2(𝛺) ∶ ∇ ⋅ 𝒗 ∈ 𝐿2(𝛺)} with its graph norm
𝒗‖div =

(

‖𝒗‖20 + ‖∇ ⋅ 𝒗‖20
)1∕2. Similarly, we denote by 𝑯0(div;𝛺) the subspace of 𝑯(div;𝛺) with vanishing normal trace on 𝜕𝛺,

amely, 𝑯0(div;𝛺) = {𝒗 ∈ 𝑯(div;𝛺) ∶ 𝒗 ⋅ 𝒏|𝜕𝛺 = 0}.
Let 𝛺 ⊂ R2 be a bounded polygonal domain with boundary 𝜕𝛺. Given the body force 𝒇 ∈ 𝑳2(𝛺), we consider the following

tokes problem

−𝛥𝒖 + ∇𝑝 = 𝒇 in 𝛺, (1)

∇ ⋅ 𝒖 = 0 in 𝛺, (2)

𝒖 = 𝟎 on 𝜕𝛺, (3)

here 𝒖 is the velocity field and 𝑝 is the pressure.
For simplicity, we only consider the model problem (1)–(3) in two dimensions. The corresponding results can be extended to

hree dimensions with straightforward modifications.
It is well known that the weak formulation of the above Stokes problem is to find (𝒖, 𝑝) ∈ 𝑯1

0(𝛺) × 𝐿2
0(𝛺) such that

𝑎(𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = ∫𝛺
𝒇 ⋅ 𝒗𝑑𝑥 ∀𝒗 ∈ 𝑯1

0(𝛺), (4)

𝑏(𝒖, 𝑞) = 0 ∀𝑞 ∈ 𝐿2
0(𝛺), (5)

here

𝑎(𝒖, 𝒗) = ∫𝛺
∇𝒖 ∶ ∇𝒗𝑑𝑥, (6)

𝑏(𝒖, 𝑞) = −∫𝛺
𝑞∇⋅𝒖𝑑𝑥, (7)

nd

𝐿2(𝛺) = {𝑞 ∈ 𝐿2(𝛺) ∶ 𝑞𝑑𝑥 = 0}.
2

0 ∫𝛺
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2.2. 𝑯(div)-conforming DG methods

Let ℎ be a family of conforming and shape-regular triangulation of 𝛺. For each element 𝑇 , we denote ℎ𝑇 = diam(𝑇 ), and the
esh size ℎ = max𝑇∈ℎ ℎ𝑇 . We use 𝒏𝑇 to stand for its unit outward normal vector. Additionally, we denote by 𝐼

ℎ the set of interior
dges of ℎ, and by 𝜕

ℎ the set of boundary edges on 𝜕𝛺. Thus, the set of all edges ℎ = 𝐼
ℎ ∪ 𝜕

ℎ . For each 𝑒 ∈ ℎ, its length is
enoted by ℎ𝑒. In particularly, we introduce 𝑇

ℎ to denote the set of edges of an element 𝑇 , that is, 𝑇
ℎ = {𝑒 ∈ ℎ ∶ 𝑒 ⊂ 𝜕𝑇 }. We

lso use 𝑃𝑘() to denote the space of polynomials of degree at most 𝑘 on . Similarly, 𝑷 𝑘() denotes the vector-valued case. In
hat follows, all generic constants (with or without subscripts) in this paper are independent of ℎ but may depend on the shape
egularity of ℎ and the polynomial degree 𝑘.
Let 𝑒 ∈ 𝐼

ℎ be an interior edge, which is shared by two adjacent elements 𝑇
+ and 𝑇 −. For convenience, the global index of 𝑇 + is

ssumed smaller than that of 𝑇 −. For a piecewise smooth scalar, vector or tensor function 𝑣 with 𝑣± = 𝑣|𝑇± , we define their averages
nd jumps by

{𝑣} = 1
2
(𝑣+ + 𝑣−), [𝑣] = 𝑣+ − 𝑣−.

When restricted to a boundary edge 𝑒 ∈ 𝜕
ℎ ∩ 𝜕𝑇 , we set {𝑣} = 𝑣 and [𝑣] = 𝑣. Moreover, we associate each 𝑒 ∈ 𝐼

ℎ with the unit
ormal vector as 𝒏𝑒 = 𝒏𝑇+ |𝑒 = −𝒏𝑇− |𝑒. Similarly, for 𝑒 ∈ 𝜕

ℎ , its outward unit normal vector 𝒏𝑒 is defined along 𝜕𝛺 restricted to 𝑒.
Now we introduce the two finite element spaces 𝑽 ℎ and 𝑃ℎ. More precisely, the fluid velocity is approximated by 𝑩𝑫𝑴 [34]

lement functions, while the pressure is discretized by the piecewise polynomial functions, that is,

𝑽 ℎ =
{

𝒗 ∈ 𝑯0(div;𝛺) ∶ 𝒗|𝑇 ∈ 𝑩𝑫𝑴𝑘(𝑇 ), ∀𝑇 ∈ ℎ
}

,

𝑃ℎ =
{

𝑞 ∈ 𝐿2
0(𝛺) ∶ 𝑞|𝑇 ∈ 𝑃𝑘−1(𝑇 ), ∀𝑇 ∈ ℎ

}

,

here 𝑩𝑫𝑴𝑘(𝑇 ) = 𝑷 𝑘(𝑇 ).
For the standard symmetric IPDG method, it is well known that its bilinear form is defined by (see [3])

𝑎ℎ(𝒘, 𝒗) =
∑

𝑇∈ℎ
∫𝑇

∇𝒘 ∶ ∇𝒗𝑑𝑥 +
∑

𝑒∈ℎ

(

−∫𝑒
{∇𝒘}𝒏𝑒 ⋅ [𝒗]𝑑𝑠

− ∫𝑒
{∇𝒗}𝒏𝑒 ⋅ [𝒘]𝑑𝑠 + 𝛼𝑒ℎ

−1
𝑒 ∫𝑒

[𝒘] ⋅ [𝒗]𝑑𝑠
)

, ∀𝒘, 𝒗 ∈ 𝑽 ℎ.

For any 𝒗 ∈ 𝑽 ℎ, by direct computations, we can decompose 𝒗 as its normal and tangential components 𝒗𝒏𝑒 and 𝒗𝒕𝑒 , that is,

𝒗𝒏𝑒 = (𝒗 ⋅ 𝒏𝑒)𝒏𝑒, 𝒗𝒕𝑒 = (𝒗 ⋅ 𝒕𝑒)𝒕𝑒 = 𝒗 − 𝒗𝒏𝑒 .

oreover, since 𝑽 ℎ ⊂ 𝑯0(div;𝛺), we have [𝒗𝒏𝑒 ] = 0, which yields

𝑎ℎ(𝒘, 𝒗) =
∑

𝑇∈ℎ
∫𝑇

∇𝒘 ∶ ∇𝒗𝑑𝑥 +
∑

𝑒∈ℎ

(

−∫𝑒
{∇𝒘}𝒏𝑒 ⋅ [𝒗𝒕𝑒 ]𝑑𝑠

− ∫𝑒
{∇𝒗}𝒏𝑒 ⋅ [𝒘𝒕𝑒 ]𝑑𝑠 + 𝛼𝑒ℎ

−1
𝑒 ∫𝑒

[𝒘𝒕𝑒 ] ⋅ [𝒗𝒕𝑒 ]𝑑𝑠
)

∀𝒘, 𝒗 ∈ 𝑽 ℎ. (8)

As a consequence, the corresponding 𝑯(div;𝛺)-conforming IPDG method for the problem (1)–(3) is: Find (𝒖ℎ, 𝑝ℎ) ∈ 𝑽 ℎ ×𝑃ℎ such
that

𝑎ℎ(𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ) = (𝒇 , 𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (9)

𝑏(𝒖ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃ℎ. (10)

3. Stability of DG methods

This section aims at establishing the stability property of numerical scheme (9)–(10). The main result is stated in (14), which
will be used for the medius error analysis in Section 5. We begin by defining the following DG norm on 𝒗 ∈ 𝑽 (ℎ) = 𝑽 ℎ +𝑯1

0(𝛺):

‖𝒗‖2DG = ‖𝒗‖21,ℎ +
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗𝒕𝑒 ]‖20,𝑒, (11)

where ‖𝒗‖21,ℎ =
∑

𝑇∈ℎ ‖∇𝒗‖
2
0.

The following boundedness, coerciveness, and the inf-sup condition can be found in [7].

Lemma 3.1. It holds that

|𝑎ℎ(𝒘, 𝒗)| ≤ 𝐶𝑎‖𝒘‖DG‖𝒗‖DG ∀𝒘, 𝒗 ∈ 𝑽 ℎ,

|𝑏(𝒗, 𝑞)| ≤ 𝐶𝑏‖𝒗‖DG‖𝑞‖0 ∀𝒗 ∈ 𝑽 ℎ, 𝑞 ∈ 𝑳2(𝛺)∕R.

Moreover, if the interior penalty parameter 𝛼𝑒 is sufficiently large, we have
2

3

𝑎ℎ(𝒗ℎ, 𝒗ℎ) ≥ 𝐶𝑠‖𝒗ℎ‖DG ∀𝒗ℎ ∈ 𝑽 ℎ.
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Lemma 3.2. There exists a constant 𝜗 > 0 such that

sup
𝒗ℎ∈𝑽 ℎ

𝑏(𝒗ℎ, 𝑞ℎ)
‖𝒗ℎ‖DG

≥ 𝜗‖𝑞ℎ‖0 ∀𝑞ℎ ∈ 𝑃ℎ. (12)

Next, for any 𝒖ℎ, 𝒗ℎ ∈ 𝑽 ℎ and 𝑝ℎ, 𝑞ℎ ∈ 𝑃ℎ, according to the numerical scheme (9)–(10), we define the following bilinear form by

Aℎ(𝒖ℎ, 𝑝ℎ; 𝒗ℎ, 𝑞ℎ) = 𝑎ℎ(𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ) + 𝑏(𝒖ℎ, 𝑞ℎ). (13)

Based on Lemmas 3.1 and 3.2, we can prove the following stability result which is the main result of this section.

Theorem 3.3. Let (𝒖ℎ, 𝑝ℎ) ∈ 𝑽 ℎ × 𝑃ℎ be the solution of (9)–(10), it holds that

sup
(𝒗ℎ ,𝑞ℎ)∈𝑽 ℎ×𝑃ℎ

Aℎ(𝒖ℎ, 𝑝ℎ; 𝒗ℎ, 𝑞ℎ)
‖𝒗ℎ‖DG + ‖𝑞ℎ‖0

≥ 𝛽
(

‖𝒖ℎ‖DG + ‖𝑝ℎ‖0
)

, (14)

which also means that the discrete scheme (9)–(10) is well-posed.

Proof. In light of the inf-sup condition (12) stated in Lemma 3.2, for a given 𝑝ℎ ∈ 𝑃ℎ, there exists 𝒘ℎ ∈ 𝑽 ℎ such that

𝑏(𝒘ℎ, 𝑝ℎ) ≥ 𝜗‖𝑝ℎ‖
2
0 and ‖𝑝ℎ‖0 = ‖𝒘ℎ‖DG.

Then, for any 𝒖ℎ ∈ 𝑽 ℎ and 𝑝ℎ ∈ 𝑃ℎ, by setting 𝒗ℎ = 𝒖ℎ − 𝛿𝒘ℎ (𝛿 > 0) and 𝑞ℎ = −𝑝ℎ, and using Lemma 3.1, we arrive at

Aℎ(𝒖ℎ, 𝑝ℎ; 𝒗ℎ, 𝑞ℎ) =𝑎ℎ(𝒖ℎ, 𝒖ℎ − 𝛿𝒘ℎ) − 𝑏(𝒖ℎ − 𝛿𝒘ℎ, 𝑝ℎ) + 𝑏(𝒖ℎ, 𝑝ℎ)

≥𝐶𝑠‖𝒖ℎ‖2DG − 𝛿𝑎ℎ(𝒖ℎ,𝒘ℎ) + 𝛿𝑏(𝒘ℎ, 𝑝ℎ)

≥𝐶𝑠‖𝒖ℎ‖2DG − 𝐶𝑎𝛿‖𝒖ℎ‖DG‖𝒘ℎ‖DG + 𝛿𝑏(𝒘ℎ, 𝑝ℎ)

≥𝐶𝑠‖𝒖ℎ‖2DG −
𝐶𝑠
4
‖𝒖ℎ‖2DG −

𝐶𝑎𝛿2

𝐶𝑠
‖𝒘ℎ‖

2
DG + 𝛿𝜗‖𝑝ℎ‖

2
0

=
3𝐶𝑠
4

‖𝒖ℎ‖2DG + (𝛿𝜗 −
𝐶𝑎𝛿2

𝐶𝑠
)‖𝑝ℎ‖20.

Then we choose 𝛿 = 𝐶𝑠𝜗
2𝐶𝑎

to infer that

Aℎ(𝒖ℎ, 𝑝ℎ; 𝒗ℎ, 𝑞ℎ) ≥ 3𝐶𝑠
4 ‖𝒖ℎ‖2DG + 𝐶𝑠𝜗2

4𝐶𝑎
‖𝑝ℎ‖20

≥ 𝜂1
(

‖𝒖ℎ‖2DG + ‖𝑝ℎ‖20
)

,
(15)

where 𝜂1 = min
{ 3𝐶𝑠

4 , 𝐶𝑠𝜗2

4𝐶𝑎

}

. On the other hand, we have

(

‖𝒗ℎ‖DG + ‖𝑞ℎ‖0
)2 =

(

‖𝒖ℎ − 𝛿𝒘ℎ‖DG + ‖ − 𝑝ℎ‖0
)2

≤ 4‖𝒖ℎ‖2DG + 4𝛿2‖𝒘ℎ‖
2
DG + 2‖𝑝ℎ‖20

≤ 4‖𝒖ℎ‖2DG +
(𝐶2

𝑠 𝜗
2

𝐶2
𝑎

+ 2
)

‖𝑝ℎ‖
2
0

≤ 𝜂2(‖𝒖ℎ‖2DG + ‖𝑝ℎ‖
2
0) (16)

with 𝜂2 = max
{

2, 𝐶
2
𝑠 𝜗

2

2𝐶2
𝑎

+ 1}. Combining (15) with (16) implies that (14) holds with 𝛽 = 𝜂1𝜂
−1∕2
2 .

Moreover, by using the Cauchy–Schwarz inequality, we have

Aℎ(𝒖ℎ, 𝑝ℎ; 𝒗ℎ, 𝑞ℎ) ≤ 𝐶
(

‖𝒖ℎ‖DG + ‖𝑝ℎ‖0
)(

‖𝒗ℎ‖DG + ‖𝑞ℎ‖0
)

. (17)

Thus, we apply the inequalities (14) and (17) and the standard Babuška theory [35] to deduce that the numerical scheme (9)–(10)
is well-posed. □

4. A medius error analysis

To provide an improved a priori error analysis for (9)–(10) under minimal regularity assumptions, we first introduce an error
indicator for any (𝒗ℎ, 𝑞ℎ) ∈ 𝑽 ℎ × 𝑃ℎ as

𝜂2(𝒗ℎ, 𝑞ℎ) =
∑

𝑇∈ℎ

ℎ2𝑇 ‖𝒇 + 𝛥𝒗ℎ − ∇𝑞ℎ‖20,𝑇 +
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗𝒕𝑒ℎ ]‖
2
0,𝑒

+
∑

𝑒∈𝐼ℎ

ℎ𝑒‖[∇𝒗ℎ + 𝑞ℎ𝑰]𝒏𝑒‖20,𝑒.

Utilizing similar bubble function techniques as in Section 4.2 of [29], we have the following lower bound.
4
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Lemma 4.1. Let (𝒖, 𝑝) and be the solution of (4)–(5). For any (𝒗ℎ, 𝑞ℎ) ∈ 𝑽 ℎ × 𝑃ℎ, it holds that

𝜂(𝒗ℎ, 𝑞ℎ) ≤ 𝐶
{

‖𝒖 − 𝒗ℎ‖2DG + ‖𝑝 − 𝑞ℎ‖
2
0 + osc2ℎ(𝒇 )

}1∕2
,

here osc2ℎ(𝒇 ) =
∑

𝑇∈ℎ ℎ
2
𝑇 ‖𝒇 − 𝒇ℎ‖

2
0,𝑇 , with 𝒇ℎ being the 𝑳2 projection of 𝒇 onto 𝑽 ℎ.

To proceed, we first recall the following standard inverse inequality (see [36,37]):

‖𝒗‖0,𝑒 ≤ 𝐶ℎ−1∕2𝑇 ‖𝒗‖0,𝑇 ∀𝒗 ∈ 𝑷 𝑘(𝑇 ), ∀𝑒 ∈ 𝑇
ℎ . (18)

oreover, for any 𝒘ℎ ∈ 𝑽 ℎ, there exists 𝐸ℎ𝒗ℎ ∈ 𝑽 ℎ ∩𝑯1
0(𝛺), such that (see [38])

∑

𝑇∈ℎ

(

‖∇(𝒘ℎ − 𝐸ℎ𝒘ℎ)‖20,𝑇 + ℎ−2𝑇 ‖𝒘ℎ − 𝐸ℎ𝒘ℎ‖
2
0,𝑇

)

≤ 𝐶
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒘ℎ]‖20,𝑒
)

= 𝐶
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒘𝒕𝑒
ℎ ]‖

2
0,𝑒

)

,
(19)

which together with the triangle inequality yields to
∑

𝑇∈ℎ

‖∇(𝐸ℎ𝒘ℎ)‖20,𝑇

≤ 2
(

∑

𝑇∈ℎ

‖∇𝒘ℎ‖
2
0,𝑇 +

∑

𝑇∈ℎ

‖∇(𝒘ℎ − 𝐸ℎ𝒘ℎ)‖20,𝑇
)

≤ 𝐶
(

∑

𝑇∈ℎ

‖∇𝒘ℎ‖
2
0,𝑇 +

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒘ℎ]‖20,𝑒
)

= 𝐶‖𝒘ℎ‖
2
DG.

(20)

In order to prove Theorem 4.6, we shall establish some preliminary results that are stated in Lemmas 4.2–4.5.

Lemma 4.2. For any 𝒖 ∈ 𝑯1
0(𝛺) and 𝒗ℎ,𝒘ℎ ∈ 𝑽 ℎ, it holds that

𝑎(𝒖, 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ) ≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖𝒘ℎ‖DG. (21)

Proof. Since 𝐸ℎ𝒘ℎ ∈ 𝑯1
0(𝛺), it follows from the definition of 𝑎ℎ(⋅, ⋅) that

𝑎ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ)

=
∑

𝑇∈ℎ
∫𝑇

∇𝒗ℎ ∶ ∇(𝐸ℎ𝒘ℎ)𝑑𝑥 −
∑

𝑒∈ℎ
∫𝑒
{∇(𝐸ℎ𝒘ℎ)}𝒏𝑒 ⋅ [𝒗

𝒕𝑒
ℎ ]𝑑𝑠

and

𝑎(𝒖, 𝐸ℎ𝒘ℎ) −𝑎ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ) =
∑

𝑇∈ℎ
∫𝑇

∇(𝒖 − 𝒗ℎ) ∶ ∇(𝐸ℎ𝒘ℎ)𝑑𝑥

−
∑

𝑒∈ℎ
∫𝑒
{∇(𝐸ℎ𝒘ℎ)}𝒏𝑒 ⋅ [(𝒖 − 𝒗ℎ)𝒕𝑒 ]𝑑𝑠.

(22)

For the first term, the Cauchy–Schwarz inequality yields

|

|

|

∑

𝑇∈ℎ
∫𝑇

∇(𝒖 − 𝒗ℎ) ∶ ∇(𝐸ℎ𝒘ℎ)𝑑𝑥
|

|

|

≤
(

∑

𝑇∈ℎ

‖∇(𝒖 − 𝒗ℎ)‖20,𝑇
)1∕2( ∑

𝑇∈ℎ

‖∇(𝐸ℎ𝒘ℎ)‖20,𝑇
)1∕2

. (23)

For the second term, we use the Cauchy–Schwarz inequality and the inverse inequality (18) to derive that

|

|

|

∑

𝑒∈ℎ
∫𝑒
{∇(𝐸ℎ𝒘ℎ)}𝒏𝑒 ⋅ [(𝒖 − 𝒗ℎ)𝒕𝑒 ]𝑑𝑠

|

|

|

≤
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[(𝒖 − 𝒗ℎ)𝒕𝑒 ]‖20,𝑒

)1∕2(
∑

𝑒∈ℎ

ℎ𝑒‖{∇(𝐸ℎ𝒘ℎ)}𝒏𝑒‖20,𝑒

)1∕2

≤
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[(𝒖 − 𝒗ℎ)𝒕𝑒 ]‖20,𝑒

)1∕2(
∑

𝑇∈ℎ

‖∇(𝐸ℎ𝒘ℎ)‖20,𝑇

)1∕2
. (24)

Substituting (23) and (24) into (22), and using the estimate (20), we obtain the desired inequality (21). □

Lemma 4.3. For any 𝒖 ∈ 𝑯1
0(𝛺), 𝒗ℎ ∈ 𝑽 ℎ, 𝑠ℎ ∈ 𝑃ℎ, we have
5

𝑏(𝒖, 𝑠ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ) ≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖𝑠ℎ‖0.



Journal of Computational and Applied Mathematics 451 (2024) 116118Y. Zeng et al.
Proof. It follows from the definition of 𝑏(⋅, ⋅) and the Cauchy–Schwarz inequality that

𝑏(𝒖, 𝑠ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ) = −
∑

𝑇∈ℎ
∫𝑇

∇ ⋅ (𝒖 − 𝒗ℎ)𝑠ℎ𝑑𝑥

≤ ‖∇ ⋅ (𝒖 − 𝒗ℎ)‖0‖𝑠ℎ‖0
≤ 𝐶‖𝒖 − 𝒗ℎ‖1,ℎ‖𝑠ℎ‖0
≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖𝑠ℎ‖0.

The proof is completed. □

Lemma 4.4. For any 𝑝 ∈ 𝐿2(𝛺), 𝒘ℎ ∈ 𝑽 ℎ, 𝑞ℎ ∈ 𝑃ℎ, there holds that

𝑏(𝐸ℎ𝒘ℎ, 𝑝) − 𝑏(𝐸ℎ𝒘ℎ, 𝑞ℎ) ≤ 𝐶‖𝑝 − 𝑞ℎ‖0‖𝒘ℎ‖DG.

Proof. Combining (7) and (20) implies that

𝑏(𝐸ℎ𝒘ℎ, 𝑝) − 𝑏(𝐸ℎ𝒘ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ
∫𝑇

∇ ⋅ (𝐸ℎ𝒘ℎ)(𝑝 − 𝑞ℎ)𝑑𝑥

≤ ‖𝑝 − 𝑞ℎ‖0‖∇ ⋅ (𝐸ℎ𝒘ℎ)‖0
≤ 𝐶‖𝑝 − 𝑞ℎ‖0‖𝐸ℎ𝒘ℎ‖1,ℎ

= 𝐶‖𝑝 − 𝑞ℎ‖0‖𝐸ℎ𝒘ℎ‖DG

≤ 𝐶‖𝑝 − 𝑞ℎ‖0‖𝒘ℎ‖DG,

which is the desired assertion. □

Lemma 4.5. Let 𝒇 ∈ 𝑳2(𝛺). For any 𝒘ℎ, 𝒗ℎ ∈ 𝑽 ℎ, 𝑞ℎ ∈ 𝑃ℎ, it holds that

(𝒇 ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑏(𝒘ℎ − 𝐸ℎ𝒘ℎ, 𝑞ℎ)

≤𝐶𝜂(𝒗ℎ, 𝑞ℎ)‖𝒘ℎ‖DG.

Proof. Denote by 𝝋ℎ = 𝒘ℎ − 𝐸ℎ𝒘ℎ, integrating by parts, we have
∑

𝑇∈ℎ
∫𝑇

∇𝒗ℎ ∶ ∇𝝋ℎ𝑑𝑥

= −
∑

𝑇∈ℎ
∫𝑇

𝛥𝒗ℎ ⋅ 𝝋ℎ𝑑𝑥 +
∑

𝑇∈ℎ
∫𝜕𝑇

(∇𝒗ℎ𝒏𝑇 ) ⋅ 𝝋ℎ𝑑𝑠

= −
∑

𝑇∈ℎ
∫𝑇

𝛥𝒗ℎ ⋅ 𝝋ℎ𝑑𝑥 +
∑

𝑒∈ℎ
∫𝑒
{∇𝒗ℎ}𝒏𝑒 ⋅ [𝝋ℎ]𝑑𝑠

+
∑

𝑒∈𝐼ℎ
∫𝑒
[∇𝒗ℎ]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠

= −
∑

𝑇∈ℎ
∫𝑇

𝛥𝒗ℎ ⋅ 𝝋ℎ𝑑𝑥 +
∑

𝑒∈ℎ
∫𝑒
{∇𝒗ℎ}𝒏𝑒 ⋅ [𝝋

𝒕𝑒
ℎ ]𝑑𝑠

+
∑

𝑒∈𝐼ℎ
∫𝑒
[∇𝒗ℎ]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠, (25)

and noting that 𝝋ℎ ∈ 𝑯0(div;𝛺) implies

𝑏(𝝋ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ
∫𝑇

∇ ⋅ 𝝋ℎ𝑞ℎ𝑑𝑠

=
∑

𝑇∈ℎ
∫𝑇

∇𝑞ℎ ⋅ 𝝋ℎ𝑑𝑠 −
∑

𝑇∈ℎ
∫𝜕𝑇

𝑞ℎ(𝝋ℎ ⋅ 𝒏𝑇 )𝑑𝑠

=
∑

𝑇∈ℎ
∫𝑇

∇𝑞ℎ ⋅ 𝝋ℎ𝑑𝑠 −
∑

𝑒∈𝐼ℎ
∫𝑒
[𝑞ℎ𝑰]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠. (26)

Recalling the definition of 𝑎ℎ(⋅, ⋅) in (8), and utilizing (25) and (26), we then obtain

(𝒇 ,𝝋ℎ) − 𝑎ℎ(𝒗ℎ,𝝋ℎ) − 𝑏(𝝋ℎ, 𝑞ℎ)

=
∑

∫𝑇
(𝒇 + 𝛥𝒗ℎ − ∇𝑞ℎ) ⋅ 𝝋ℎ𝑑𝑥 −

∑

𝐼
∫𝑒
[∇𝒗ℎ − 𝑞ℎ𝑰]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠
6

𝑇∈ℎ 𝑒∈ℎ
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T

+
∑

𝑒∈ℎ
∫𝑒
{∇𝝋ℎ}𝒏𝑒 ⋅ [𝒗

𝒕𝑒
ℎ ]𝑑𝑠 −

∑

𝑒∈ℎ

𝛼𝑒ℎ
−1
𝑒 ∫𝑒

[𝒗𝒕𝑒ℎ ] ⋅ [𝝋
𝒕𝑒
ℎ ]𝑑𝑠

= 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4. (27)

Applying the Cauchy–Schwarz inequality, we infer for the first term 𝐴1 that

|𝐴1| ≤
(

∑

𝑇∈ℎ

ℎ2𝑇 ‖𝒇 + 𝛥𝒗ℎ − ∇𝑞ℎ‖20,𝑇
)1∕2( ∑

𝑇∈ℎ

ℎ−2𝑇 ‖𝒘ℎ − 𝐸ℎ𝒘ℎ‖
2
0,𝑇

)1∕2
.

For the term 𝐴2, it follows from the Cauchy–Schwarz inequality and the inverse inequality (18) that

|𝐴2| ≤
(

∑

𝑒∈𝐼ℎ

ℎ𝑒‖[∇𝒗ℎ − 𝑞ℎ𝑰]𝒏𝑒‖20,𝑒

)1∕2(
∑

𝑒∈𝐼ℎ

ℎ−1𝑒 ‖{𝒘ℎ − 𝐸ℎ𝒘ℎ}‖20,𝑒

)1∕2

≤ 𝐶
(

∑

𝑒∈𝐼ℎ

ℎ𝑒‖[∇𝒗ℎ − 𝑞ℎ𝑰]𝒏𝑒‖20,𝑒

)1∕2(
∑

𝑇∈ℎ

ℎ−2𝑇 ‖𝒘ℎ − 𝐸ℎ𝒘ℎ‖
2
0,𝑇

)1∕2
.

imilarly, the term 𝐴3 can be bounded as follows:

|𝐴3| ≤
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗𝒕𝑒ℎ ]‖
2
0,𝑒

)1∕2(
∑

𝑒∈ℎ

ℎ𝑒‖{∇(𝒘ℎ − 𝐸ℎ𝒘ℎ)}𝒏𝑒‖20,𝑒

)1∕2

≤ 𝐶
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗𝒕𝑒ℎ ]‖
2
0,𝑒

)1∕2(
∑

𝑇∈ℎ

‖∇(𝒘ℎ − 𝐸ℎ𝒘ℎ)‖20,𝑇

)1∕2
.

he term 𝐴4 can be estimated by

|𝐴4| ≤
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗𝒕𝑒ℎ ]‖
2
0,𝑒

)1∕2(
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[(𝒘ℎ − 𝐸ℎ𝒘ℎ)𝒕𝑒 ]‖20,𝑒

)1∕2
.

Plugging the above four estimates into (27), using the approximation property in (19) and the Cauchy–Schwarz inequality, we obtain
the desired result. □

Now, we are in a position to prove the main result of this section.

Theorem 4.6. Let (𝒖, 𝑝) and (𝒖ℎ, 𝑝ℎ) be the solutions of (4)–(5) and (9)–(10), respectively. Then it holds that

‖𝒖 − 𝒖ℎ‖DG + ‖𝑝 − 𝑝ℎ‖0

≤ 𝐶
{

inf
𝒗ℎ∈𝑽 ℎ

‖𝒖 − 𝒗ℎ‖DG + inf
𝑞ℎ∈𝑃ℎ

‖𝑝 − 𝑞ℎ‖0 + oscℎ(𝒇 )
}

. (28)

Furthermore, if (𝒖, 𝑝) ∈ 𝑯𝑠+1(𝛺) ×𝐻𝑠(𝛺) with 𝑠 > 0, we have

‖𝒖 − 𝒖ℎ‖DG + ‖𝑝 − 𝑝ℎ‖0 ≤ 𝐶
(

ℎmin(𝑠,𝑘)(
‖𝒖‖𝑠+1 + ‖𝑝‖𝑠

)

+ oscℎ(𝒇 )
)

. (29)

Proof. Let (𝒗ℎ, 𝑞ℎ) ∈ 𝑽 ℎ × 𝑃ℎ be arbitrary. By the stability estimate (14), there exits (𝒘ℎ, 𝑠ℎ) ∈ 𝑽 ℎ × 𝑃ℎ with

‖𝒘ℎ‖DG + ‖𝑠ℎ‖0 = 1, (30)

and
7

‖𝒖ℎ − 𝒗ℎ‖DG + ‖𝑝ℎ − 𝑞ℎ‖0 ≤ 𝐶Aℎ(𝒖ℎ − 𝒗ℎ, 𝑝ℎ − 𝑞ℎ;𝒘ℎ, 𝑠ℎ).
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Noting that 𝑎(𝒖, 𝐸ℎ𝒘ℎ) + 𝑏(𝐸ℎ𝒘ℎ, 𝑝) = (𝒇 , 𝐸ℎ𝒘ℎ), by adding and subtracting terms in the above inequality, we can further obtain
that

𝐶−1(
‖𝒖ℎ − 𝒗ℎ‖DG + ‖𝑝ℎ − 𝑞ℎ‖0

)

≤ Aℎ(𝒖ℎ − 𝒗ℎ, 𝑝ℎ − 𝑞ℎ;𝒘ℎ, 𝑠ℎ)

= Aℎ(𝒖ℎ, 𝑝ℎ;𝒘ℎ, 𝑠ℎ) − Aℎ(𝒗ℎ, 𝑞ℎ;𝒘ℎ, 𝑠ℎ)

= 𝑎ℎ(𝒖ℎ,𝒘ℎ) + 𝑏(𝒘ℎ, 𝑝ℎ) + 𝑏(𝒖ℎ, 𝑠ℎ) − 𝑎ℎ(𝒗ℎ,𝒘ℎ)

−𝑏(𝒘ℎ, 𝑞ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ)

= (𝒇 ,𝒘ℎ) − 𝑎ℎ(𝒗ℎ,𝒘ℎ) − 𝑏(𝒘ℎ, 𝑞ℎ) + 𝑏(𝒖ℎ, 𝑠ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ)

=
[

(𝒇 ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑏(𝒘ℎ − 𝐸ℎ𝒘ℎ, 𝑞ℎ)
]

+
[

𝑎(𝒖, 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ)
]

+
[

𝑏(𝐸ℎ𝒘ℎ, 𝑝) − 𝑏(𝐸ℎ𝒘ℎ, 𝑞ℎ)
]

+
[

𝑏(𝒖ℎ, 𝑠ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ)
]

=
[

(𝒇 ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑏(𝒘ℎ − 𝐸ℎ𝒘ℎ, 𝑞ℎ)
]

+
[

𝑎(𝒖, 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ)
]

+
[

𝑏(𝐸ℎ𝒘ℎ, 𝑝) − 𝑏(𝐸ℎ𝒘ℎ, 𝑞ℎ)
]

+
[

𝑏(𝒖, 𝑠ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ)
]

= 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4,

(31)

where in the last second line we have used the fact that 𝑏(𝒖ℎ, 𝑠ℎ) = 𝑏(𝒖, 𝑠ℎ) = 0.
By combining Lemmas 4.5 and 4.1, we bound 𝐵1 as

𝐵1 = (𝒇 ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑏(𝒘ℎ − 𝐸ℎ𝒘ℎ, 𝑞ℎ)

≤ 𝐶𝜂(𝒗ℎ, 𝑞ℎ)‖𝒘ℎ‖DG

≤ 𝐶
{

‖𝒖 − 𝒗ℎ‖DG + ‖𝑝 − 𝑞ℎ‖0 + oscℎ(𝒇 )
}

‖𝒘ℎ‖DG. (32)

From Lemma 4.2, we have

𝐵2 = 𝑎(𝒖, 𝐸ℎ𝒘ℎ) − 𝑎ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ) ≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖𝒘ℎ‖DG. (33)

Additionally, it follows from Lemma 4.4 that

𝐵3 = 𝑏(𝐸ℎ𝒘ℎ, 𝑝) − 𝑏(𝐸ℎ𝒘ℎ, 𝑞ℎ) ≤ 𝐶‖𝑝 − 𝑞ℎ‖0‖𝒘ℎ‖DG. (34)

Moreover, from Lemma 4.3, we find that

𝐵4 = 𝑏(𝒖, 𝑠ℎ) − 𝑏(𝒗ℎ, 𝑠ℎ) ≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖𝑠ℎ‖0. (35)

Then, submitting (32)–(35) into (31) and using (30), we arrive at (28).
At last, combining (28) together with the standard finite element approximation estimates, yields (29). The proof is

completed. □

5. Extension to the standard IPDG method

In this section, we shall utilize the approach used in the above section to establish the medius error estimate for the standard
symmetric IPDG method. We first introduce the discrete space for velocities and pressure:

𝑽 𝑠
ℎ =

{

𝒗 ∈ 𝑳2(𝛺) ∶ 𝒗|𝑇 ∈ 𝑷 𝑘(𝑇 ), ∀𝑇 ∈ ℎ
}

,

𝑃ℎ =
{

𝑞 ∈ 𝐿2
0(𝛺) ∶ 𝑞|𝑇 ∈ 𝑃𝑘−1(𝑇 ), ∀𝑇 ∈ ℎ

}

.

As in (11), to carry out the error analysis, we define the following DG norm on 𝒗 ∈ 𝑽 𝑠(ℎ) = 𝑽 𝑠
ℎ +𝑯1

0(𝛺)

‖𝒗‖2DG = ‖𝒗‖21,ℎ +
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗]‖20,𝑒.

Note that here use the symbol ‖ ⋅ ‖DG, which is different from the one ‖ ⋅ ‖DG stated in (11).
Recall that the bilinear form of IPDG method, which is used to discretize the diffusion term, is defined as

𝑎𝑠ℎ(𝒘, 𝒗) =
∑

𝑇∈ℎ
∫𝑇

∇𝒘 ∶ ∇𝒗𝑑𝑥 −
∑

𝑒∈ℎ
∫𝑒
{∇𝒘}𝒏𝑒 ⋅ [𝒗]𝑑𝑠

−
∑

𝑒∈ℎ
∫𝑒
{∇𝒗}𝒏𝑒 ⋅ [𝒘]𝑑𝑠 +

∑

𝑒∈ℎ

𝛼𝑒ℎ
−1
𝑒 ∫𝑒

[𝒘] ⋅ [𝒗]𝑑𝑠, ∀𝒘, 𝒗 ∈ 𝑽 𝑠
ℎ, (36)

and the discretization of pressure–velocity coupling is defined by

𝑐ℎ(𝒗, 𝑞) = −
∑

∫ 𝑞∇ ⋅ 𝒗𝑑𝑥 +
∑

∫ [𝒗] ⋅ 𝒏𝑒{𝑞}𝑑𝑠.
8

𝑇∈ℎ 𝑇 𝑒∈ℎ 𝑒
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Thus the standard IPDG approximation for Stokes equations (1)–(3) is to find (𝒖𝑠ℎ, 𝑝
𝑠
ℎ) ∈ 𝑽 𝑠

ℎ × 𝑃ℎ such that

𝑎𝑠ℎ(𝒖
𝑠
ℎ, 𝒗ℎ) + 𝑐ℎ(𝒗ℎ, 𝑝𝑠ℎ) = (𝒇 , 𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 𝑠

ℎ, (37)

𝑐ℎ(𝒖𝑠ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃ℎ. (38)

Analogous to (13), for any 𝒖𝑠ℎ, 𝒗ℎ ∈ 𝑽 𝑠
ℎ and 𝑝𝑠ℎ, 𝑞ℎ ∈ 𝑃ℎ, we define the following bilinear form induced by (37)–(38).

Bℎ(𝒖𝑠ℎ, 𝑝
𝑠
ℎ; 𝒗ℎ, 𝑞ℎ) = 𝑎𝑠ℎ(𝒖

𝑠
ℎ, 𝒗ℎ) + 𝑐ℎ(𝒗ℎ, 𝑝𝑠ℎ) + 𝑐ℎ(𝒖𝑠ℎ, 𝑞ℎ). (39)

e then have the stability result similar to Theorem 3.3.

heorem 5.1. Let (𝒖𝑠ℎ, 𝑝
𝑠
ℎ) ∈ 𝑽 𝑠

ℎ × 𝑃ℎ be the solution of (37)–(38), there holds

sup
(𝒗ℎ ,𝑞ℎ)∈𝑽 𝑠

ℎ×𝑃ℎ

Bℎ(𝒖𝑠ℎ, 𝑝
𝑠
ℎ; 𝒗ℎ, 𝑞ℎ)

‖𝒗ℎ‖DG + ‖𝑞ℎ‖0
≥ 𝛽𝑠

(

‖𝒖𝑠ℎ‖DG + ‖𝑝𝑠ℎ‖0
)

.

roof. For simplicity, we only sketch the proof. We first have (see [39])

𝑎𝑠ℎ(𝒘, 𝒗) ≤ 𝐶𝛼‖𝒘‖DG‖𝒗‖DG ∀𝒘, 𝒗 ∈ 𝑽 𝑠
ℎ,

𝑐ℎ(𝒗, 𝑞) ≤ 𝐶𝛽‖𝒗‖DG‖𝑞‖0 ∀𝒗 ∈ 𝑽 𝑠
ℎ, 𝑞 ∈ 𝑳2(𝛺)∕R.

dditionally, when the penalty parameter 𝛼𝑒 is sufficiently large, there holds (see [39])

𝑎ℎ(𝒗ℎ, 𝒗ℎ) ≥ 𝐶𝜎‖𝒗ℎ‖2DG ∀𝒗ℎ ∈ 𝑽 𝑠
ℎ.

lso, we have the following inf-sup condition (see [39])

sup
𝒗ℎ∈𝑽 𝑠

ℎ

𝑐ℎ(𝒗ℎ, 𝑞ℎ)
‖𝒗ℎ‖DG

≥ 𝜗𝑠‖𝑞ℎ‖0 ∀𝑞ℎ ∈ 𝑃ℎ.

Using the above results, similar arguments as in Theorem 3.3 give the desired estimate. □

The error indicator used for (37)–(38) is stated as

𝜂2𝑠 (𝒗
𝑠
ℎ, 𝑞

𝑠
ℎ) =

∑

𝑇∈ℎ

ℎ2𝑇 ‖𝒇 + 𝛥𝒗𝑠ℎ − ∇𝑞𝑠ℎ‖
2
0,𝑇 +

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗𝑠ℎ]‖
2
0,𝑒

+
∑

𝑒∈𝐼ℎ

ℎ𝑒‖[∇𝒗𝑠ℎ + 𝑞𝑠ℎ𝑰]𝒏𝑒‖
2
0,𝑒,

for (𝒗𝑠ℎ, 𝑞
𝑠
ℎ) ∈ 𝑽 𝑠

ℎ × 𝑃ℎ. It satisfies the following lower bound (see [33]).

Lemma 5.2. Let (𝒖, 𝑝) and be the solution of (4)–(5). For any (𝒗𝑠ℎ, 𝑞
𝑠
ℎ) ∈ 𝑽 𝑠

ℎ × 𝑃ℎ, it holds that

𝜂𝑠(𝒗𝑠ℎ, 𝑞
𝑠
ℎ) ≤ 𝐶

{

‖𝒖 − 𝒗𝑠ℎ‖
2
DG + ‖𝑝 − 𝑞𝑠ℎ‖

2
0 + osc2ℎ(𝒇 )

}1∕2
,

where osc2ℎ(𝒇 ) =
∑

𝑇∈ℎ ℎ
2
𝑇 ‖𝒇 − 𝒇ℎ‖

2
0,𝑇 , with 𝒇ℎ being the 𝑳2 projection of 𝒇 onto 𝑽 𝑠

ℎ.

Next, in order to establish the medius error analysis, we shall prove some results that are parallel to Lemmas 4.2–4.5. One main
difference between (9)–(10) and (37)–(38) is that the pressure–velocity coupling term is not the same. This makes Lemma 5.4 is
more involved than that in Lemma 4.3.

Lemma 5.3. For any 𝒖 ∈ 𝑯1
0(𝛺) and 𝒗ℎ,𝒘ℎ ∈ 𝑽 𝑠

ℎ, it holds that

𝑎(𝒖, 𝐸ℎ𝒘ℎ) − 𝑎𝑠ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ) ≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖𝒘ℎ‖DG.

Proof. Since 𝐸ℎ𝒘ℎ ∈ 𝑯1
0(𝛺), we then have

𝑎(𝒖, 𝐸ℎ𝒘ℎ) − 𝑎𝑠ℎ(𝒗ℎ, 𝐸ℎ𝒘ℎ) =
∑

𝑇∈ℎ
∫𝑇

∇(𝒖 − 𝒗ℎ) ∶ ∇(𝐸ℎ𝒘ℎ)𝑑𝑥

−
∑

𝑒∈ℎ
∫𝑒
{∇(𝐸ℎ𝒘ℎ)}𝒏𝑒 ⋅ [(𝒖 − 𝒗ℎ)]𝑑𝑠.

Noting that (19) and (20) also hold for 𝒗ℎ ∈ 𝑽 𝑠
ℎ, similar arguments as in Lemma 4.2 yields the assertion. □

Lemma 5.4. For any 𝒖 ∈ 𝑯1
0(𝛺), 𝒗ℎ ∈ 𝑽 𝑠

ℎ, 𝑠ℎ ∈ 𝑃ℎ, we have
9

𝑐ℎ(𝒖, 𝑠ℎ) − 𝑐ℎ(𝒗ℎ, 𝑠ℎ) ≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖{𝑠ℎ}‖0.
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Proof. Combining the definition of 𝑐ℎ(⋅, ⋅), the Cauchy–Schwarz inequality and the inverse inequality (18), we have

𝑐ℎ(𝒖, 𝑠ℎ) − 𝑐ℎ(𝒗ℎ, 𝑠ℎ)

= −
∑

𝑇∈ℎ
∫𝑇

∇ ⋅ (𝒖 − 𝒗ℎ)𝑠ℎ𝑑𝑥 +
∑

𝑒∈ℎ
∫𝑒
[𝒖 − 𝒗ℎ] ⋅ 𝒏𝑒{𝑠ℎ}𝑑𝑠

≤
∑

𝑇∈ℎ

‖∇ ⋅ (𝒖 − 𝒗ℎ)‖0,𝑇 ‖𝑠ℎ‖0,𝑇 +
∑

𝑒∈ℎ

ℎ−1∕2𝑒 ‖[𝒖 − 𝒗ℎ]‖0,𝑒ℎ
1∕2
𝑒 ‖{𝑠ℎ}‖0,𝑒

≤
(

∑

𝑇∈ℎ

‖∇ ⋅ (𝒖 − 𝒗ℎ)‖20,𝑇
)1∕2( ∑

𝑇∈ℎ

‖𝑠ℎ‖
2
0,𝑇

)1∕2

+
(

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒖 − 𝒗ℎ]‖20,𝑒
)1∕2(∑

𝑒∈ℎ

ℎ𝑒‖{𝑠ℎ}‖20,𝑒
)1∕2

≤ 𝐶‖𝒖 − 𝒗ℎ‖DG‖{𝑠ℎ}‖0.

The proof is completed. □

Lemma 5.5. For any 𝑝 ∈ 𝐿2(𝛺), 𝒘ℎ ∈ 𝑽 𝑠
ℎ, 𝑞ℎ ∈ 𝑃ℎ, it is true that

𝑐ℎ(𝐸ℎ𝒘ℎ, 𝑝) − 𝑐ℎ(𝐸ℎ𝒘ℎ, 𝑞ℎ) ≤ 𝐶‖𝑝 − 𝑞ℎ‖0‖𝒘ℎ‖DG.

Proof. Since 𝐸ℎ𝒘ℎ ∈ 𝑯1
0(𝛺), we thus have

𝑐ℎ(𝐸ℎ𝒘ℎ, 𝑝) − 𝑐ℎ(𝐸ℎ𝒘ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ
∫𝑇

∇ ⋅ (𝐸ℎ𝒘ℎ)(𝑝 − 𝑞ℎ)𝑑𝑥.

Similar arguments as in Lemma 4.4 conclude the proof. □

emma 5.6. Let 𝒇 ∈ 𝑳2(𝛺). For any 𝒘ℎ, 𝒗ℎ ∈ 𝑽 𝑠
ℎ, 𝑞ℎ ∈ 𝑃ℎ, there have

(𝒇 ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑎𝑠ℎ(𝒗ℎ,𝒘ℎ − 𝐸ℎ𝒘ℎ) − 𝑐ℎ(𝒘ℎ − 𝐸ℎ𝒘ℎ, 𝑞ℎ)

≤𝐶𝜂𝑠(𝒗ℎ, 𝑞ℎ)‖𝒘ℎ‖DG.

roof. Denote by 𝝋ℎ = 𝒘ℎ − 𝐸ℎ𝒘ℎ, integrating by parts, we have
∑

𝑇∈ℎ
∫𝑇

∇𝒗ℎ ∶ ∇𝝋ℎ𝑑𝑥 = −
∑

𝑇∈ℎ
∫𝑇

𝛥𝒗ℎ ⋅ 𝝋ℎ𝑑𝑥

+
∑

𝑒∈ℎ
∫𝑒
{∇𝒗ℎ}𝒏𝑒 ⋅ [𝝋ℎ]𝑑𝑠 +

∑

𝑒∈𝐼ℎ
∫𝑒
[∇𝒗ℎ]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠,

(40)

nd

𝑐ℎ(𝝋ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ
∫𝑇

∇ ⋅ 𝝋ℎ𝑞ℎ𝑑𝑠 +
∑

𝑒∈ℎ
∫𝑒
[𝝋ℎ] ⋅ 𝒏𝑒{𝑞ℎ}𝑑𝑠

=
∑

𝑇∈ℎ
∫𝑇

∇𝑞ℎ ⋅ 𝝋ℎ𝑑𝑠 −
∑

𝑇∈ℎ
∫𝜕𝑇

𝑞ℎ(𝝋ℎ ⋅ 𝒏𝑇 )𝑑𝑠

+
∑

𝑒∈ℎ
∫𝑒
[𝝋ℎ] ⋅ 𝒏𝑒{𝑞ℎ}𝑑𝑠

=
∑

𝑇∈ℎ
∫𝑇

∇𝑞ℎ ⋅ 𝝋ℎ𝑑𝑠 −
∑

𝑒∈𝐼ℎ
∫𝑒
[𝑞ℎ𝑰]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠.

(41)

Recalling the definition of 𝑎𝑠ℎ(⋅, ⋅) in (37), and utilizing (40) and (41), we then obtain

(𝒇 ,𝝋ℎ) − 𝑎𝑠ℎ(𝒗ℎ,𝝋ℎ) − 𝑐ℎ(𝝋ℎ, 𝑞ℎ)

=
∑

𝑇∈ℎ
∫𝑇

(𝒇 + 𝛥𝒗ℎ − ∇𝑞ℎ) ⋅ 𝝋ℎ𝑑𝑥 −
∑

𝑒∈𝐼ℎ
∫𝑒
[∇𝒗ℎ − 𝑞ℎ𝑰]𝒏𝑒 ⋅ {𝝋ℎ}𝑑𝑠

+
∑

𝑒∈ℎ
∫𝑒
{∇𝝋ℎ}𝒏𝑒 ⋅ [𝒗ℎ]𝑑𝑠 −

∑

𝑒∈ℎ

𝛼𝑒ℎ
−1
𝑒 ∫𝑒

[𝒗ℎ] ⋅ [𝝋ℎ]𝑑𝑠

= 𝐷1 +𝐷2 +𝐷3 +𝐷4.

irect imitations of the proofs in Lemma 4.5, we can give bounds for 𝐷1–𝐷4 and then obtain the result asserted. □
10

Based on Theorem 5.1 and Lemmas 5.2–5.6, using the techniques as in Theorem 4.6, we have the following medius error analysis.
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Fig. 1. The first two levels of triangular grids for Tables 1 and 2.

Fig. 2. The 𝑃 2
2 -𝑃

dis
1 finite element solutions 𝒖1,ℎ (top left), 𝒖2,ℎ (top right) and 𝑝ℎ (bottom) for singular problem (43) on Grid 5, shown in Fig. 1.

Theorem 5.7. Let (𝒖, 𝑝) and (𝒖𝑠ℎ, 𝑝
𝑠
ℎ) be the solutions of (4)–(5) and (37)–(38), respectively. Then it holds that

‖𝒖 − 𝒖𝑠ℎ‖DG + ‖𝑝 − 𝑝𝑠ℎ‖0

≤ 𝐶
{

inf
𝒗ℎ∈𝑽 𝑠

ℎ

‖𝒖 − 𝒗ℎ‖DG + inf
𝑞ℎ∈𝑃ℎ

‖𝑝 − 𝑞ℎ‖0 + oscℎ(𝒇 )
}

.

urthermore, if (𝒖, 𝑝) ∈ 𝑯𝑚+1(𝛺) ×𝐻𝑚(𝛺) with 𝑚 > 0, we have

‖𝒖 − 𝒖𝑠ℎ‖DG + ‖𝑝 − 𝑝𝑠ℎ‖0 ≤ 𝐶
(

ℎmin(𝑚,𝑘)(
‖𝒖‖𝑚+1 + ‖𝑝‖𝑚

)

+ oscℎ(𝒇 )
)

.

. Numerical experiments

In this section, we report some numerical experiments, in which the exact solutions are smooth, or have some corner singularities,
o validate our theoretical results. More precisely, we solve first the problem (1)–(3) in the 𝐿-shape domain 𝛺 = (−1, 1)2 ⧵ [0, 1) ×
(−1, 0], where the exact solution is chosen a smooth one as (similar to the examples in [32,40])

𝒖 =
(

−2𝑟4 cos 4𝜃2𝑟4 sin 4𝜃
)

, 𝑝 = 𝑟 cos 𝜃 + 𝑟 sin 𝜃, (42)

where 𝑟 =
√

𝑥2 + 𝑦2 and tan 𝜃 = 𝑦∕𝑥. In this case, the solution is smooth and we should obtain optimal orders of convergence for
the finite element solutions.

In Table 1, we list the computational results for the smooth solution (42) on uniform triangular meshes shown in Fig. 1. As
predicted by the standard theory, all finite element solutions converge at the optimal orders in all norms.

Next we solve the Stokes problem (1)–(3) in the 𝐿-shape domain 𝛺 = (−1, 1)2 ⧵ [0, 1) × (−1, 0] again, but with a singular solution

𝒖 =
(

−2𝑟1∕9 cos(𝜃∕9)
2𝑟1∕9 sin(𝜃∕9)

)

, 𝑝 = 𝑟 cos 𝜃 + 𝑟 sin 𝜃. (43)

In Table 2, the errors of the two finite element solutions are listed, when solving (43) on the uniform grids shown in Fig. 1.
ince 𝒖 ∈ 𝑯1+1∕9, the proved order of convergence in 𝑯1 norm is 0.11, which is verified by Table 2. Here the solution regularity
s of 𝐻1+1∕9 and the domain regularity is of 𝐻1+2∕3. Thus the order of 𝐿2-convergence should be 1∕9 + 2∕3 = 0.778. The numerical
11
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Table 1
Computed errors for (42) on uniform meshes shown in Fig. 1.
Grid ‖𝒖 − 𝒖ℎ‖0 𝑂(ℎ𝑟) ‖∇(𝒖 − 𝒖ℎ)‖0 𝑂(ℎ𝑟) ‖𝑝 − 𝑝ℎ‖0 𝑂(ℎ𝑟)

By the BDM 𝑃 2
1 -𝑃

dis
0 finite element.

4 0.4792E−01 1.84 0.1381E+01 1.28 0.5224E+01 1.26
5 0.1285E−01 1.90 0.5325E+00 1.38 0.2414E+01 1.11
6 0.3344E−02 1.94 0.1975E+00 1.43 0.1177E+01 1.04

By the BDM 𝑃 2
2 -𝑃

dis
1 finite element.

3 0.5836E−02 2.96 0.2696E+00 1.85 0.3837E+00 2.14
4 0.7401E−03 2.98 0.7093E−01 1.93 0.9239E−01 2.05
5 0.9355E−04 2.98 0.1819E−01 1.96 0.2271E−01 2.02

Table 2
Computed errors for (43) on uniform meshes shown in Fig. 1.
Grid ‖𝒖 − 𝒖ℎ‖0 𝑂(ℎ𝑟) ‖∇(𝒖 − 𝒖ℎ)‖0 𝑂(ℎ𝑟) ‖𝑝 − 𝑝ℎ‖0 𝑂(ℎ𝑟)

By the BDM 𝑃 2
1 -𝑃

dis
0 finite element.

4 0.6606E−01 0.68 0.1517E+01 0.10 0.1271E+01 0.33
5 0.3931E−01 0.75 0.1400E+01 0.12 0.1097E+01 0.21
6 0.2299E−01 0.77 0.1287E+01 0.12 0.9767E+00 0.17

By the BDM 𝑃 2
2 -𝑃

dis
1 finite element.

3 0.2989E−01 0.82 0.1109E+01 0.12 0.7899E+00 0.20
4 0.1679E−01 0.83 0.1017E+01 0.12 0.7061E+00 0.16
5 0.9498E−02 0.82 0.9312E+00 0.13 0.6385E+00 0.15

Table 3
Computed errors for (42) on irregular meshes shown in Fig. 3.
Grid ‖𝒖 − 𝒖ℎ‖0 𝑂(ℎ𝑟) ‖∇(𝒖 − 𝒖ℎ)‖0 𝑂(ℎ𝑟) ‖𝑝 − 𝑝ℎ‖0 𝑂(ℎ𝑟)

By the BDM 𝑃 2
1 -𝑃

dis
0 finite element.

4 0.1955E−01 2.06 0.2277E+01 1.09 0.1590E+01 0.91
5 0.4811E−02 2.02 0.1098E+01 1.05 0.8227E+00 0.95
6 0.1196E−02 2.01 0.5388E+00 1.03 0.4189E+00 0.97

By the BDM 𝑃 2
2 -𝑃

dis
1 finite element.

3 0.2473E−01 2.98 0.1496E+01 1.95 0.7366E+00 2.16
4 0.3107E−02 2.99 0.3802E+00 1.98 0.1720E+00 2.10
5 0.3895E−03 3.00 0.9579E−01 1.99 0.4146E−01 2.05

Table 4
Computed errors for (43) on irregular meshes shown in Fig. 3.
Grid ‖𝒖 − 𝒖ℎ‖0 𝑂(ℎ𝑟) ‖∇(𝒖 − 𝒖ℎ)‖0 𝑂(ℎ𝑟) ‖𝑝 − 𝑝ℎ‖0 𝑂(ℎ𝑟)

By the BDM 𝑃 2
1 -𝑃

dis
0 finite element.

4 0.7066E−01 0.77 0.3414E+01 0.12 0.1972E+01 0.19
5 0.3976E−01 0.83 0.3135E+01 0.12 0.1780E+01 0.15
6 0.2206E−01 0.85 0.2873E+01 0.13 0.1621E+01 0.14

By the BDM 𝑃 2
2 -𝑃

dis
1 finite element.

3 0.2283E+00 1.00 0.1037E+02 0.12 0.6581E+01 0.18
4 0.1117E+00 1.03 0.9494E+01 0.13 0.5967E+01 0.14
5 0.5514E−01 1.02 0.8679E+01 0.13 0.5441E+01 0.13

results for the 𝑃1 BDM match this order well in Table 2. The numerical order of 𝐿2-convergence for the 𝑃2 BDM is slightly higher.
To view roughly the error in 𝐿∞-norm, we plot the 𝑃 2

2 -𝑃
dis
1 finite element solution on Grid 5 in Fig. 2.

We recompute above two problems on slightly irregular meshes, shown as in Fig. 3. For the smooth solution problem (42), the
rror and the order of convergence are listed in Table 3. We can see that the optimal order of convergence is achieved for both finite
lements. Comparing the results with that from the computation on the uniform triangular meshes, the method is less accurate on
he irregular meshes.
In Table 4, we list the results for the two finite elements for solving singular solution (43) on irregular meshes shown in Fig. 3.
e expected the finite element solution behaves better this case as there are two more mesh lines at the singular points, comparing
o the uniform triangulations shown in Fig. 1. It is surprising that the order of 𝐿2-convergence on irregular meshes is even higher
han that on the regular meshes. We get about orders 0.85 and 1.02 for the 𝑃1 and 𝑃2 solutions, respectively, while the theoretic
rder is 1∕9+2∕3 = 0.778. We may guess that the extra mesh line at the re-entrant corner, cf. Fig. 3, can improve the 𝐿2-convergence.
12
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Fig. 3. The first two levels of triangular grids for Tables 3 and 4.

Fig. 4. The 𝑃 2
2 -𝑃

dis
1 finite element solutions 𝒖1,ℎ, 𝒖2,ℎ and 𝑝ℎ for the singular problem (43) on Grid 5 shown in Fig. 3.

Finally, in Fig. 4 we plot the 𝑃 2
2 -𝑃

dis
1 finite element solution for the singular solution (43). Comparing to the solution in Fig. 2,

the error near the singularity populates to a larger region and the error oscillates more.

7. Conclusions

We have established an improved a priori error estimate for an 𝑯(div)-conforming IPDG method of Stokes equations. More
precisely, we proved this numerical scheme is quasi-optimal up to higher-order data oscillations. How to extend this approach to
a more complicated Darcy-Stokes singular perturbation problem [26] is an interesting topic, that will be carefully investigated in
future work.
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