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ARTICLE INFO ABSTRACT

MSC: In this paper, we derive an improved error estimate for the H(div)-conforming discontinuous
65N15 Galerkin (DG) approximation of the Stokes equations, assuming only minimal regularity on
65N30 the exact solution. The estimate relies on both a priori and a posteriori analysis, and thus
76D07 is called a medius error analysis. More precisely, we proved an optimal order error estimate
Keywords: under the assumption (u,p) € H'**(2) x H*(R2) with any s € (0, 1]. Extension to the standard

Finite elements

Discontinuous Galerkin method
Stokes equations

A medius error estimate

interior penalty DG methods is also explored. Finally, numerical results are provided to verify
our theoretical findings.

1. Introduction

The Stokes equations are used to model incompressible fluids. Since it is difficult to obtain the analytical solution of these
equations, many researchers turn their attentions to numerical methods. Among them, finite element methods (FEMs) are a class
of most commonly used numerical schemes for addressing such problems. As we known, the key step in designing mixed FEMs for
Stokes problem is to check the inf-sup condition. For the classical conforming or nonconforming FEMs that satisfy this condition, we
refer the reader to Girault and Raviart [1], and Brezzi et al. [2] for more detailed presentation. On the other hand, discontinuous
Galerkin (DG) method [3] is another effective scheme for solving Stokes equations, see Schotzau et al. [4]. DG methods allow
totally discontinuous functions of piecewise polynomials on the triangulation. Thus, they can easily deal with highly nonuniform
and unstructured meshes. Moreover, they have flexibility in handling inhomogeneous boundary conditions and curved boundaries,
and they are also suitable for hp-adaptive computation. Recently, combining interior penalty discontinuous Galerkin (IPDG) methods
with H(div) mixed finite elements, the authors design a pressure-robust scheme for the Stokes problem [5-9]. Constructing pressure-
robust numerical schemes to discretize for Stokes problem has drawn more and more attentions in recent years. We refer the reader
to [10-22] for more details. It is also worth mentioning that H(div)-conforming IPDG methods are effective numerical methods for
addressing Darcy-Stokes problem [23-28].

For the above H(div) IPDG method, Wang and Ye [7] established a priori error estimate under the assumption that the exact
solution is smooth enough. Later, a residual-based a posterior estimator was developed for the adaptive computation [29]. In this
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work, we shall further derive an improved error estimates for this method under minimal regularity assumption for the exact solution.
To obtain the desired estimate, we utilize some technical tools developed by Gudi [30], which are based on both a priori and a
posteriori error analysis, and thus is called a medius error analysis. Recently, some works have devoted to the convergence analysis
of Stokes equations for various FEMs under minimal regularity assumption. We refer [31] for stable conforming FEMs, and [32] for
nonconforming FEMs. In [32], Li et al. employed an enrichment operator to map the nonconforming FE functions to a conforming FE
space. This approach has been further extended to the other pressure-robust schemes [10,12,16,17,22]. In the context of DG methods,
an error analysis with minimal regularity assumption has been established by [33]. In this work, we shall further investigated the
error estimates for the H(div) IPDG method. It is worth mentioning that our analysis is different from the one stated in [33], in
which the estimates for the velocities and pressure are processed separately. In particularly, in [33], some more involved techniques
based on H(div) finite element are needed to derive pressure error estimate. While in this work, we provide the error analysis for
the velocities and pressure via the stability result directly (see Theorem 3.3 below) and in a unified approach. We should note that
similar idea has been explored for stable conforming FEMs [31]. Our work can be viewed an extended approach to the H(div) IPDG
method. Moreover, we point that our approach is not limited to H(div) IPDG case, it can be also extended to the standard IPDG
schemes (see Section 5 for more details). Naturally the method remains a pressure robust scheme in solving a low regularity Stokes
problem, i.e., the velocity error is independent of pressure, as we use the H(div) finite elements.

The rest of our paper is organized as follows. In Section 2, we first introduce the model problem and then describe the H(div)
IPDG method. The stability result for the H(div) IPDG method is presented in Section 3. Next, based on the results obtained in
Section 3, we derive a medius error analysis for the H(div) IPDG method under the minimal regularity assumption in Section 4.
Section 5 mainly discusses how to extend the corresponding error analysis to the standard IPDG method. Some numerical tests are
provided in Section 6 to validate the theory result. Finally, some conclusions are made in Section 7.

2. Preliminaries
2.1. The Stokes equations

We first introduce some notations. For a bounded domain D c R?, we denote by H*(D)(s > 0) the standard Sobolev space
endowed with norm || - || and seminorm |-|; . When s =0, H 0(D) is the Lebesgue space L?(D), and its inner product is denoted
by (-,-)p. We shall drop the subscript D when D = Q. Additionally, we introduce Hé (£2) as the subspace of H!(£2), in which the
functions vanish on 9, i.e., H&(Q) ={ve H'(Q) : v|;o = 0}. By convention, for the vector-valued analogs, we shall use boldface
type: H"(D) = [H™(D)]?. Moreover, we introduce the Hilbert space H(div; ) = {v € L*(Q) : V - v € L*(®2)} with its graph norm
2l = (||v||g + ||V - v||§)l/2. Similarly, we denote by H(div; 2) the subspace of H(div; ) with vanishing normal trace on 042,
namely, H(div; 2) = {v e H(div; Q) : v-n|zo = 0}.

Let 2 c R? be a bounded polygonal domain with boundary 0£2. Given the body force f € L*(2), we consider the following
Stokes problem

—Au+Vp=f inQ, 'e))
V-u=0 1in £, 2)
u=0 onoQ, 3)

where u is the velocity field and p is the pressure.

For simplicity, we only consider the model problem (1)-(3) in two dimensions. The corresponding results can be extended to
three dimensions with straightforward modifications.
It is well known that the weak formulation of the above Stokes problem is to find (u, p) € H (1)((2) X L%(Q) such that

a(u, v) + b(w, p) = /Qf “vdx Vv € Hy(Q), )
b(u,q) =0 Vg € L3($), 5)
where
a(u,v) = /Q Vu : Vudx, (6)
b(u,q) = — / qV-udx, @
Q

and

LYQ)={ge LXQ): /qux=0}.
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2.2. H(div)-conforming DG methods

Let 7}, be a family of conforming and shape-regular triangulation of €. For each element T, we denote A, = diam(T), and the
mesh size h = maxyez, hy. We use np to stand for its unit outward normal vector. Additionally, we denote by &/ the set of interior
edges of 7,, and by SZ the set of boundary edges on 0£2. Thus, the set of all edges &, = é‘h’ u é‘h”. For each e € &, its length is
denoted by h,. In particularly, we introduce é‘hT to denote the set of edges of an element T, that is, 5[ =f{ee€ &, : ecdT}. We
also use P, (D) to denote the space of polynomials of degree at most k on D. Similarly, P,(D) denotes the vector-valued case. In
what follows, all generic constants (with or without subscripts) in this paper are independent of 4 but may depend on the shape
regularity of 7, and the polynomial degree k.

Letee 8,{ be an interior edge, which is shared by two adjacent elements T+ and T~. For convenience, the global index of T™ is
assumed smaller than that of T~. For a piecewise smooth scalar, vector or tensor function v with v* = v|;x, we define their averages

and jumps by

{v} = %(U++U_)7 ] =v" -0
When restricted to a boundary edge e € SZ N aT, we set {v} = v and [v] = v. Moreover, we associate each e € S,{ with the unit
normal vector as n, = ny+|, = —ny-|,. Similarly, for e € £/, its outward unit normal vector n, is defined along 922 restricted to e.

Now we introduce the two finite element spaces ¥, and P,. More precisely, the fluid velocity is approximated by BDM [34]
element functions, while the pressure is discretized by the piecewise polynomial functions, that is,

V,={veHydiv;Q) : vl € BDM(T), VT €T,},
P, ={q€ L}(Q) : qly € P_,(T). VT €T,}.

where BDM (T) = P, (T).
For the standard symmetric IPDG method, it is well known that its bilinear form is defined by (see [3])

aw,v) =Y /TVw D Vedx+ Y <—/{Vw}ne~[v]a's

TET, €€y

- /{Vv}ne - [wlds + aehe_] /[w] . [v]ds), Yw,veV,.

e

For any v € V,, by direct computations, we can decompose v as its normal and tangential components v and v', that is,
v =W n)n, ve=(@-t,)t,=v—0v".

Moreover, since V, ¢ H(div; £2), we have [v"] = 0, which yields

aw,v) =Y /Vw:Vvdx+ Z(
T

TET), e€y

—/{Vv}ne~[w‘f]ds+agh;' /[w’e]~[v'e]ds> Yw,veV,. (8)

e

—/{Vw}ne -[v'elds

e

As a consequence, the corresponding H (div; £2)-conforming IPDG method for the problem (1)-(3) is: Find (u,, p,) € VX P, such
that

ap(up,vp) + by, pp) = (f,v,) Vv, €V, ()]
b(uy,q,) =0 Vg, € P,. (10)

3. Stability of DG methods

This section aims at establishing the stability property of numerical scheme (9)-(10). The main result is stated in (14), which
will be used for the medius error analysis in Section 5. We begin by defining the following DG normon v € V(h) =V, + H (')(Q):

oG = wl?, + D At vl an

e€éy
where [|v]l}, = Xrer, VO
The following boundedness, coerciveness, and the inf-sup condition can be found in [7].
Lemma 3.1. It holds that

lap(w,v)| < Cllwlpgllviipg  Yw,v €V,
6@, 9)l < Cyllvlipgllglly  Yv €V, g€ LAQ)/R.

Moreover, if the interior penalty parameter «, is sufficiently large, we have

2
apWp,vp) 2 Cillvgllyg You € V.
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Lemma 3.2. There exists a constant 9 > 0 such that
by, q5,)

vyevy, IWsllng

Next, for any u,,,v;, € V, and p,, g, € P,, according to the numerical scheme (9)-(10), we define the following bilinear form by

13

> Ollgully Vay € Py 12)

Ap(up, ppivy. ap) = ap(uy, vy) + by, pp) + b(uy, qp).

Based on Lemmas 3.1 and 3.2, we can prove the following stability result which is the main result of this section.

Theorem 3.3. Let (u;,p;) € V), X P, be the solution of (9)-(10), it holds that

Ap(up, pps vy qp)
sup B > ([l ling + lpallo)s 14
wnaneVpxpy, 1Whllpg + llanlly
which also means that the discrete scheme (9)—(10) is well-posed.

Proof. In light of the inf-sup condition (12) stated in Lemma 3.2, for a given p, € P, there exists w;, € V, such that

2
bwy, pp) 2 dpyplly and  pyllo = llwylipg-

Then, for any u, € V,, and p, € P,, by setting v, = u;, — 6w, (6 > 0) and ¢, = —p,,, and using Lemma 3.1, we arrive at

Ay(up, ppsvp, qp) =apuy, uy, — Swy) — b(uy, — dwy, pp) + b(uy, py)
ZCS”“h”ZDG — dap(up, wy) + 6b(wy,, py)
ch”uh”zDG = Cyolluyllpgllwylipg + 66wy, pp)

C 6
2 s 2 2 2
2C;lluplipg = 4Y lunlipg — é lwy lIng + 691lpallg

s

0

: 2
el

— C-V 2
—T ||uh||DG + (519 -

Then we choose § = zc_g) to infer that

. 3C 12+ S 2
Ay, ppivpoqp) 2 7 llugllpg + ac, lpnly (15)

>y (lupl2g + loal2).

3¢, C,9?
4 4C,

where 5, = min{ }. On the other hand, we have

2
llu, — owpllpg + 1l = Ph”o)

2 2 2 2
< 4||uh”DG + 46 ”wh”DG + zllph”()

CZ 2
< 4luylipg + (= 2) Il

a

< mluglBg + llpylI2) 16)

(Iling + lanlle)”

292
with 7, = max { 2, C;C ?” +1). Combining (15) with (16) implies that (14) holds with § = n,5,"/%.

Moreover, by using the Cauchy-Schwarz inequality, we have
ApQup, ppvpsap) < C(llugllng + lealle) (1ogllpg + llaxllo)- 17)

Thus, we apply the inequalities (14) and (17) and the standard Babuska theory [35] to deduce that the numerical scheme (9)-(10)
is well-posed. []

4. A medius error analysis

To provide an improved a priori error analysis for (9)-(10) under minimal regularity assumptions, we first introduce an error
indicator for any (v,.q;) € V, X P, as
- t
P @pap) = Y. RIS+ dv, = Va2 + Y kIR,
TET, e€Ey
+ Y RlVY, + g, Tin, 3 -
eeé‘}{

Utilizing similar bubble function techniques as in Section 4.2 of [29], we have the following lower bound.
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Lemma 4.1. Let (u, p) and be the solution of (4)—(5). For any (v, q,) € Vj, X Py, it holds that

2 2 2 12
1wy a) < C{llu= vl + 19 = aull3 + 0se (N }
where osc;(f) = Xrer, h7IIf - fh||%,T: with f, being the L? projection of f onto V.
To proceed, we first recall the following standard inverse inequality (see [36,37]):

Ivllpe < Ch;lwllgr Vv € PU(T), VeE €] (18)

Moreover, for any w, € V,, there exists E,v, € V,,n H (1)(.(2), such that (see [38])

Y (I1VGwy = Eywpl2, + b lwy, - Eywy )
TeTy,

<c( X m wali, ) = o X n iz, ).
e€ty

e€sy

19

which together with the triangle inequality yields to
DIV w2,

TET,

<2 Y IVl + Y IV, - By, ) 20)
TEeTy, TeTy,

<c( Y IVwilz, + X h w3, ) = Cllwy .
TeTy, e€éy

In order to prove Theorem 4.6, we shall establish some preliminary results that are stated in Lemmas 4.2-4.5.

Lemma 4.2. For any u € H(l)(.Q) and v, w;, € V,, it holds that

a(u, Eywy) — a,(vy, Eyw),) < Cllu — vy llpg llwy,llpg- 21D

Proof. Since E,w, € H (1)(!2), it follows from the definition of a,(, ) that
a,(vy,, Eywy,)
=Y [ Vv, V(Euwpdx— Y /{V(Ehwh)}ne W) )ds
Ter, /T ee&y /e
and
a(u, Eywy) —ay vy, Eyw,) = Y /V(u—u,,) ¢ V(E,w,)dx
T

TEeT, (22)
=Y [ (VEwyin, - [@—v,)elds.

ee&p e
For the first term, the Cauchy-Schwarz inequality yields

) 2 /TV(u—vh> : V(Ehwh)dx‘

TET),

(3 vw-ei,) (3 1w, )" 23

TET, TETy,
For the second term, we use the Cauchy-Schwarz inequality and the inverse inequality (18) to derive that

| 2 [{VEwpin, - (@ - vy 1ds]

ee&, /e

1/2 1/2
S( Z R — vh)t"]llae> < 2 he”{V(Ehwh)}ne”é‘e>

e€Ey e€Ey

1/2 1/2
s( > i - vh>'el||3,e> < > ||V<Ehwh>||3j> : 24

e€Ey TETy,

Substituting (23) and (24) into (22), and using the estimate (20), we obtain the desired inequality (21). []

Lemma 4.3. For any u € H(l)(.Q), v, €V, s, € P, we have

b(u, sp) — b(vy, sp) < Cllu —vylipglisyllo-



Y. Zeng et al. Journal of Computational and Applied Mathematics 451 (2024) 116118
Proof. It follows from the definition of b(-,-) and the Cauchy-Schwarz inequality that

b(u, s,) — b(vy, sp) = — /V (u—vy)spdx
TEeTy,

<V @=wvp)lolisallo
< Cllu=wplly pllspllo
< Cllu = wvplipgllsallo-

The proof is completed. []

Lemma 4.4. For any p € L*(Q), w, €V, q), € P,, there holds that

b(Eywy, p) — b(Epwy, q,) < Clip = qpllollwpllpg-
Proof. Combining (7) and (20) implies that

b(E,wy, p) — b(Ejwy, qp,) = — /V (Epwy)(p— qp)dx
TeT,

<lp=apllollV - (Epwp)lly
< Cllip—aulloll Exwplly
=Cllp — apllol Exwpllng
< Cllp = gpllollwylipg,

which is the desired assertion. []

Lemma 4.5. Let f € L%(Q). For any w),,v, €V, q, € P,, it holds that
(f.wy, = Eqwy,) — a, (v, wy, — Eqwy) — bwy, — Eywy, qp,)

<Cn(wy, gp)llwylipg-

Proof. Denote by ¢, = w, — E,w,,, integrating by parts, we have

/ Vv, 1 Ve,dx
TeT),

= /Av,Z @pdx + /(VvhnT) @pds
TeT), TeT),

/Avh~(phdx+ D / Vo in, - [@,1ds
TET,

e€éy

/[Vvh]" {@,}ds

eeé"
/Avh~(phdx+ z /{Vv,,}n [(pths
TeT, e€éy
+ 2 /[Vvh]n {@n)d (25)
eeé"

and noting that ¢, € H(div; £2) implies

b(@p, qp) =— /V Ppgpds
TeT,

/th~(phds— z / qn(@y - nyp)ds
TET), or

TET,

= Z /TVlIh‘(PhdS-

/ lgp1]1n, - {@,}d (26)

TeT, eegl

Recalling the definition of a,(-,-) in (8), and utilizing (25) and (26), we then obtain
f.@n) —ap,p, @) — @y, qp)

/(f+Avh Vap) - @pdx — Z/[Vvh qplln, - {@,}ds

TeT), eeé"
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+ ) /{Vq)h}ne~[v:f]ds— Y ah;! /[v;f]-[(p;f]ds

e€éy e€y
= A+ Ay + Az + Ay (27)
Applying the Cauchy-Schwarz inequality, we infer for the first term A, that

1/2 _ 1/2
A< (X B3IS + a0, = Vol ) (D A lwn = Eywnly)
TeT, TeT,

For the term A,, it follows from the Cauchy-Schwarz inequality and the inverse inequality (18) that

1/2 1/2
|4,] < <2 IV, —qhunellg,) <Z h I {wy, —Ehwh}||3,6>

eeé‘,{ eEé”:
1/2 1/2
< c( Z h,|l[Vvy, — th]neHg’e) < Z h 2wy, - Ehwh||§,T> .
ZEE'{ TeTy,

Similarly, the term A; can be bounded as follows:

1/2 1/2
|4;] < (2 h;ln[viﬂng,e) <Z R ll{V(w, —Ehwmnenae)

e€s) e€sy
, 1/2 1/2
< c( > h;ln[v,:mae) < > Ivaw, —Ehwh>||§,T> :
ec&y, TET,

The term A, can be estimated by

1/2 1/2
|44l < <2 h;lll[vﬁlelﬁ,3> (Z A Iy, - Ehwh)’e]l|ée> .

e€Ey e€E)y

Plugging the above four estimates into (27), using the approximation property in (19) and the Cauchy-Schwarz inequality, we obtain
the desired result. []

Now, we are in a position to prove the main result of this section.

Theorem 4.6. Let (u, p) and (uy, p;,) be the solutions of (4)—(5) and (9)-(10), respectively. Then it holds that

lu —upllpg + 112 = pallo

<cf,inf lu=pyllog + inf llp=ayllo + o5, . 28)
Furthermore, if (u, p) € H**'(2) x H5(2) with s > 0, we have

lu = wyllng + 1o = pallo < C(H™0 (lull g + lpl,) + 056, )- (29)
Proof. Let (v,,q,) € V), X P, be arbitrary. By the stability estimate (14), there exits (w,,, s,) € V;, x P, with

llwyllpg + llskllo =1, (30)

and

[ley, = vpllng + lpn — anllo < CAL(uy — vy Py — aps W, $p)-
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Noting that a(u, E,w),) + b(E,w,,, p) = (f, E,w,,), by adding and subtracting terms in the above inequality, we can further obtain
that

C™ (llwy, — vplipg + lpn — dnllo) < Ay, — vy, b — aps W )
= Ay, pps Wy, sp) — Ay (U, s Wy, sp)
= a,(uy, wy) + b(wy, p,) + b(uy, s;,) — a, Wy, wy)

=b(wy,, q,) — b(vy, sp)
= (f.wy) — a,(v,, wy) — bwy, q,) + b(uy, s,) — by, s,)

= [(f.wy, — Eywy) — ay,(vy,, wy, — Epwy,) — bwy, — Eywy,, qp)]

31
+[a(u, E,wy) —a,(vy, Ehwh)] + [b(EhwhaP) - b(E w), ‘Ih)] (31)
+[buy, 55) = bWy, 55)]
= [(f.w, - Eywy) — ay(vy, wy, — Eywy) — bwy, — Eqwy,, q;)]
+[a(u, Eywy) — ap(vy, Ehwh)] + [b(Epwy, p) — B(E,wy,. q)]
+[b(u, 5;) = b(vy. 5,)]
:Bl +Bz+B3+B4a
where in the last second line we have used the fact that b(u,, s;,) = b(u, s,) = 0.
By combining Lemmas 4.5 and 4.1, we bound B, as
B, =(f.w, — Eywy) — ay(vy, wy, — Eywy) — bw), — Epwy, qp)
< Cnp, gpllwylipg
< c{llu=vyllog + lIp = aally + 05¢4(£) } 1wyl 32)
From Lemma 4.2, we have
B, = a(u, Eywy) — ap(vy, Epywy,) < Cllu — vylIpg llwylIpg- (33)
Additionally, it follows from Lemma 4.4 that
B; = b(E w),, p) — b(Eywy, q;) < Cllp = qpllpllwyllpg- 34
Moreover, from Lemma 4.3, we find that
By = b 51) — by, 1) < Cllu = vyl sy lo- (35)

Then, submitting (32)-(35) into (31) and using (30), we arrive at (28).
At last, combining (28) together with the standard finite element approximation estimates, yields (29). The proof is
completed. []

5. Extension to the standard IPDG method

In this section, we shall utilize the approach used in the above section to establish the medius error estimate for the standard
symmetric IPDG method. We first introduce the discrete space for velocities and pressure:
Vi ={veL*Q) : vy € P (I, VT €T},
P,={q€ L3(Q) : qly € P_(T), VT €T,}.
As in (11), to carry out the error analysis, we define the following DG norm on v € V*(h) =V + H, (1)({2)
lollg = e}, + D A7t .
e€E)y

Note that here use the symbol || - ||pg, which is different from the one || - ||pg stated in (11).
Recall that the bilinear form of IPDG method, which is used to discretize the diffusion term, is defined as

awv) =Y /TVw :Vedx— Y [{Vwin, - [vlds

TETy, ec&p v €
- Y [{Voln, - [wlds+ ), ah;! /[w] [vlds, Yw,veVS, (36)
ee&, /e eeé) e
and the discretization of pressure-velocity coupling is defined by

IACEESDY /qV~vdx+ Y [l n.q)ds.
T

TET, eegy 7
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Thus the standard IPDG approximation for Stokes equations (1)-(3) is to find (ujl, p;l) S le X P, such that
”2(“2’ v,) + ch(vh,p;") =(f,vy) Vv, € Vil, (37)
cp(uy,q,) =0 Vg, € Py. (38)
Analogous to (13), for any u;,v, € V; and pj.q, € P,, we define the following bilinear form induced by (37)~(38).
By, (uy,, pys Uy 4p) = @, (W, v) + ¢ (U, py) + (3, ) (39)

We then have the stability result similar to Theorem 3.3.

Theorem 5.1. Let (u5.p}) € V', X Py, be the solution of (37)-(38), there holds

By, (uy,. pyi vy an)

n¥p h>Yn .

sup ——————— > B (|lu}llpg + I} llo)-
W an)EV X Py lwpllpg + l14xllo

Proof. For simplicity, we only sketch the proof. We first have (see [39])
a,(w,v) < Cyllwlpglivlipg Yw,veV;,
cp, @) < Cyllvlipgliglly v eV;, g€ LA(Q)/R.
Additionally, when the penalty parameter «, is sufficiently large, there holds (see [39])
@y, vy) 2 C,llvll3, Yo, € V5.
Also, we have the following inf-sup condition (see [39])

cn(Ups qp)

- 29%llanllo Vg, € P

vyevs alipg

Using the above results, similar arguments as in Theorem 3.3 give the desired estimate. []
The error indicator used for (37)-(38) is stated as

@)= Y hlf + v, = Valld .+ Y kg,
TEeT, e€éy

+ D RV, + g Tn, I3 .
EES}{

for v}, q;) € V', X Py. It satisfies the following lower bound (see [33]).

Lemma 5.2. Let (u, p) and be the solution of (4)—(5). For any (”Z’qi,) S le X P, it holds that

s S s 112 s2 2 1/2
n@ha) < C{lu=vy3e + 1l - g3l +osci (N},
where Osci(f) =Yrer, h%||f - fhll(z)_r, with f), being the L? projection of f onto Vi

Next, in order to establish the medius error analysis, we shall prove some results that are parallel to Lemmas 4.2-4.5. One main
difference between (9)—(10) and (37)-(38) is that the pressure-velocity coupling term is not the same. This makes Lemma 5.4 is
more involved than that in Lemma 4.3.

Lemma 5.3. For any u € H(l)(.Q) and vy, wy, € V', it holds that

a(u, Eywy,) — a; vy, Eqwy) < Cllu — vy llpg llwy llpe-
Proof. Since E,w);, € H}(£2), we then have

a(u, Eywy) — vy, Eywy) = Y | V(u—wvy) : V(Eyw,)dx
Ter, /T

- Y [ {VEwIn, - [ -v,)lds.

ee&y /¢

Noting that (19) and (20) also hold for v, € V', similar arguments as in Lemma 4.2 yields the assertion. []

Lemma 5.4. For any u € Hé(Q), v, €V3, s, € Py, we have

cp(u, sp) = cp(vy, sp) < Cllu—vyllpgli{s, Hlo-
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Proof. Combining the definition of ¢,(-, ), the Cauchy-Schwarz inequality and the inverse inequality (18), we have
cp(u,sp) —cp(vy, sp)

/V~(u—vh)shdx+ > /[u—vh] n,{s,}ds

TeT), ee&)y

< V- @-vpllorlsallor + X, bzl = vyllgeh s, o
TEeT, e€Ey

172 172
(X ve@-vpR) (X salldy)
TeT, TeT,
172 172
(X A= 3,) (Y relltsall3, )
e€Ey e€Ey

< Cllu—vplipgl{saHlo-
The proof is completed. []
Lemma 5.5. For any p € L*(Q), w;, €V, q; € P,, it is true that

cp(Eqwy, p) — cp(Epwy, q,) < Cllp = qullollwplipg-
Proof. Since E,w;, € H(I)(Q), we thus have

cp(Epwp, p) = cp(Epwy, ) = = Z / V- (Epwy)(p — qp)dx.
TeTy,

Similar arguments as in Lemma 4.4 conclude the proof. []

Lemma 5.6. Let f € L%(Q2). For any w),,v), € V3, an € Py, there have

(f,wy, — Eqwy) — a; (v, wy, — Eqwy) — c,(w), — Eywy, )

<Cny@p, g)llwpling-

Proof. Denote by ¢, = w, — E,w,,, integrating by parts, we have

/Vvh Veudx = - /Av,, @pdx
TETy, TET),

(40)
/VV,, Agplds + Y /[Vv,,]n {pn)d
“Gsh eeé’
and
cn(@p-qn) = - Z /V~rphqhd3+ Z /[(ph] n,{qp}ds
TeTy, T e€éy

/th~(phds— D / an(@p - nyp)ds

TEeT), TeT), or 1)

/[@h] n{q,}ds
eeé’h

/th @pds —
TeTh

Recalling the definition of a2(~, -) in (37), and utilizing (40) and (41), we then obtain

/ g In, - (@) )ds.

eeé”

(fs@n) — @,y @4) — cp(@p, )
/ (f +4vy, = Vay) - @pdx = ) /[Vvh apIln, - (@, }ds

= I

/{V(ph}n [vylds— Y ah /vh] [@plds

e€&)y

TeT),

eeé’h
=Dy + D, + D3+ Dy.

Direct imitations of the proofs in Lemma 4.5, we can give bounds for D,-D, and then obtain the result asserted. []

Based on Theorem 5.1 and Lemmas 5.2-5.6, using the techniques as in Theorem 4.6, we have the following medius error analysis.

10
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Grid 1: Grid 2:

Fig. 1. The first two levels of triangular grids for Tables 1 and 2.

(-1.0,-1.0, 0.1E+0

y= 10
1.0, 1.0,-0.2E+01)

V= 1.0
1.0, 1.0,-0.5E-01)
x=_1

( 1.0, 1.0,-0.3E+02)

Fig. 2. The PZZ-PIdis finite element solutions u, , (top left), u,, (top right) and p, (bottom) for singular problem (43) on Grid 5, shown in Fig. 1.

Theorem 5.7. Let (u, p) and (uj, ) be the solutions of (4)—(5) and (37)-(38), respectively. Then it holds that

lu —uplipg + 1lp = Py llo

< c{ inf flu—wvyllpg + inf [lp—apllo+ osc,,(f)}.
vheVil qnEP,
Furthermore, if (u, p) € H™'(2) x H™(R) with m > 0, we have

e =}l + 11p = Pyllo < C (™ (lully + lpll,) + 05045 ).
6. Numerical experiments

In this section, we report some numerical experiments, in which the exact solutions are smooth, or have some corner singularities,
to validate our theoretical results. More precisely, we solve first the problem (1)-(3) in the L-shape domain 2 = (-1,1)>\ [0,1) X
(—1,0], where the exact solution is chosen a smooth one as (similar to the examples in [32,40])

u=(—2r*cos462r*sin49), p=rcosf+rsind, (42)

where r = y/x2 + )2 and tan® = y/x. In this case, the solution is smooth and we should obtain optimal orders of convergence for
the finite element solutions.

In Table 1, we list the computational results for the smooth solution (42) on uniform triangular meshes shown in Fig. 1. As
predicted by the standard theory, all finite element solutions converge at the optimal orders in all norms.

Next we solve the Stokes problem (1)-(3) in the L-shape domain Q = (—1,1)>\ [0, 1) x (—1,0] again, but with a singular solution

"y <—2r'/9 cos(8/9)

2r1/9sin(9/9) >, p=rcosf+rsiné. 43)

In Table 2, the errors of the two finite element solutions are listed, when solving (43) on the uniform grids shown in Fig. 1.
Since u € H'*'/%, the proved order of convergence in H' norm is 0.11, which is verified by Table 2. Here the solution regularity

is of H'*1/ and the domain regularity is of H'*2/3, Thus the order of L?-convergence should be 1/9 +2/3 = 0.778. The numerical

11
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Table 1
Computed errors for (42) on uniform meshes shown in Fig. 1.
Grid [lu = uyll, OR") V@ —uplly O llp = pally OCh")
By the BDM P2-P%* finite element.
4 0.4792E-01 1.84 0.1381E+01 1.28 0.5224E+01 1.26
5 0.1285E-01 1.90 0.5325E+00 1.38 0.2414E+01 1.11
6 0.3344E-02 1.94 0.1975E+00 1.43 0.1177E+01 1.04
By the BDM P2-Pd finite element.
3 0.5836E-02 2.96 0.2696E+00 1.85 0.3837E+00 2.14
4 0.7401E-03 2.98 0.7093E-01 1.93 0.9239E-01 2.05
5 0.9355E-04 2.98 0.1819E-01 1.96 0.2271E-01 2.02
Table 2
Computed errors for (43) on uniform meshes shown in Fig. 1.
Grid [l = uylly OCR") IV(u—uplly Oh") Ilp = pally OCh")
By the BDM P2-PJ finite element.
4 0.6606E—-01 0.68 0.1517E+01 0.10 0.1271E+01 0.33
5 0.3931E-01 0.75 0.1400E+01 0.12 0.1097E+01 0.21
6 0.2299E-01 0.77 0.1287E+01 0.12 0.9767E+00 0.17
By the BDM P?-P{s finite element.
3 0.2989E-01 0.82 0.1109E+01 0.12 0.7899E+00 0.20
4 0.1679E-01 0.83 0.1017E+01 0.12 0.7061E+00 0.16
5 0.9498E-02 0.82 0.9312E+00 0.13 0.6385E+00 0.15
Table 3
Computed errors for (42) on irregular meshes shown in Fig. 3.
Grid [l = uylly OCR") V@ —uplly O™ llp = pally OCh")
By the BDM P2-P%* finite element.
4 0.1955E-01 2.06 0.2277E+01 1.09 0.1590E+01 0.91
5 0.4811E-02 2.02 0.1098E+01 1.05 0.8227E+00 0.95
6 0.1196E-02 2.01 0.5388E+00 1.03 0.4189E+00 0.97
By the BDM P2-Pd finite element.
3 0.2473E-01 2.98 0.1496E+01 1.95 0.7366E+00 2.16
4 0.3107E-02 2.99 0.3802E+00 1.98 0.1720E+00 2.10
5 0.3895E-03 3.00 0.9579E-01 1.99 0.4146E-01 2.05
Table 4
Computed errors for (43) on irregular meshes shown in Fig. 3.
Grid llu—ully OCR") IV(u—uplly O") llp = pall OCA")
By the BDM P2-P{ finite element.
4 0.7066E—-01 0.77 0.3414E+01 0.12 0.1972E+01 0.19
5 0.3976E-01 0.83 0.3135E+01 0.12 0.1780E+01 0.15
6 0.2206E-01 0.85 0.2873E+01 0.13 0.1621E+01 0.14
By the BDM P?-Pd finite element.
3 0.2283E+00 1.00 0.1037E+02 0.12 0.6581E+01 0.18
4 0.1117E+00 1.03 0.9494E+01 0.13 0.5967E+01 0.14
5 0.5514E-01 1.02 0.8679E+01 0.13 0.5441E+01 0.13

results for the P, BDM match this order well in Table 2. The numerical order of L2-convergence for the P, BDM is slightly higher.
To view roughly the error in L®-norm, we plot the P22—P1dis finite element solution on Grid 5 in Fig. 2.

We recompute above two problems on slightly irregular meshes, shown as in Fig. 3. For the smooth solution problem (42), the
error and the order of convergence are listed in Table 3. We can see that the optimal order of convergence is achieved for both finite
elements. Comparing the results with that from the computation on the uniform triangular meshes, the method is less accurate on
the irregular meshes.

In Table 4, we list the results for the two finite elements for solving singular solution (43) on irregular meshes shown in Fig. 3.
We expected the finite element solution behaves better this case as there are two more mesh lines at the singular points, comparing
to the uniform triangulations shown in Fig. 1. It is surprising that the order of L?-convergence on irregular meshes is even higher
than that on the regular meshes. We get about orders 0.85 and 1.02 for the P, and P, solutions, respectively, while the theoretic
order is 1/9+2/3 = 0.778. We may guess that the extra mesh line at the re-entrant corner, cf. Fig. 3, can improve the L>-convergence.
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Grid 1: Grid 2:

Fig. 3. The first two levels of triangular grids for Tables 3 and 4.

(-1.0,-1.0, -0.259273231

(1.0,1.0, -2.070614100) (1.0, 1.0, -0.089113049)
(-1.0,-1.0, 20.173530579

x= 1.0 (1.0, 1.0, -96.081428528)

Fig. 4. The PZZ—PIdis finite element solutions u, ,, u,, and p, for the singular problem (43) on Grid 5 shown in Fig. 3.

Finally, in Fig. 4 we plot the PZZ-PIdiS finite element solution for the singular solution (43). Comparing to the solution in Fig. 2,
the error near the singularity populates to a larger region and the error oscillates more.

7. Conclusions

We have established an improved a priori error estimate for an H(div)-conforming IPDG method of Stokes equations. More
precisely, we proved this numerical scheme is quasi-optimal up to higher-order data oscillations. How to extend this approach to
a more complicated Darcy-Stokes singular perturbation problem [26] is an interesting topic, that will be carefully investigated in
future work.
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