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Abstract
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1 Introduction

As a kind of classical nonlinear problem, variational inequalities (VIs) play an important role
in mechanics, physics, engineering and management sciences. Their applications include
contact between deformable bodies, the simulation of rolling wheels, elasticity membrane
theory, antiplane frictional contact phenomenon, option pricing in financial mathematics.
It is well know that elliptic VIs have two types. The first kind of VIs is featured by some
closed convex set, while the second one is due to the presence of non-differentiable terms.
Due to their variational properties, finite element methods (FEMs) are the mostly common
used numerical schemes to approximate VIs. In this direction, we refer the reader to [9,
10, 14, 31, 32, 37, 42, 44, 59] for conforming FEMs, and to [24, 40, 43, 48, 49, 60] for
nonconforming FEMs. However, the classical FEMs work only on simplicial meshes (see
e.g., [12]). How to construct Galerkin scheme suitable for polygonal/polyhedra meshes is
a hot topic in recent years. Among the attempts in this direction, virtual element method
(VEM) is a successful paradigm, its main idea is to approximate partial differential equations
by the usual polynomials plus some nonpolynomial functions. The objective of this work is
to design and analysis conforming and nonconforming virtual element methods (VEMs) for
the Signorini problem. For simplicity, we are concerned with the following scalar Signorini
model:

−�u = f in �,

u = 0 on �D,

∂nu = 0 on �N ,

u ≥ 0, ∂nu ≥ 0, u∂nu = 0 on �C ,

(1)

where � ⊂ R
2 is a bounded polygonal domain with Lipschitz � that consists of three open

disjoint parts, i.e., � = �D ∪ �N ∪ �C and f ∈ L2(�). Here and in the following, we use
the symbol ∂nu = ∇u · n, with n being the outward unit normal vector.

History, VEM can be regarded as variational formulation of the mimetic finite difference
(MFD). Its original principles and error analysis techniques can be traced back to [6], therein a
conforming VEM is proposed for approximating the classical second order elliptic equation.
The nonconforming version is developed in [4]. Later on, VEMs have been further extend
to linear elasticity [8], Stokes equations [19, 26, 57, 61, 66], fourth order elliptic problems
[2, 15, 64, 65], Darcy-Brinkman problems [20], Cahn-Hilliard equation [1], Biot’s equations
[17, 50], eigenvalue problems [35, 36], Laplace-Beltrami equation [34], fracture networks
problems [11], interface problems [23]. The interesting works that deal with faces with arbi-
trarily small measure can be found in [7, 13, 16, 21, 22]. In the context of the approximation
of VEM for VIs, there have existed some works on obstacle problems [54], simplified fric-
tion problem [33], Kirchhoff plate contact problem [56], Hemivariational inequality [55]. To
the best of our knowledge, except for the work [53] wherein the linear conforming VEM is
analyzed for contact problem on non-matching meshes, there exists no other work on VEMs
for numerical approximation of Signorini problem. In the present work, we will make an
further effort in this direction.

As mentioned above, designing Galerkin methods that allow for polygonal/polyhedra
has received much attention in the last four decades. In the standard FEM framework, one
can resorts to rational basics to construct polygonal/polyhedra discrete schemes. However,
in this case, the construction of shape functions is highly challenging. On the other hand,
alternative choices are interior penalty discontinuous Galerkin (IPDG) methods, which use
totally discontinuous functions of piecewise polynomials on partition elements and rely on
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some interior penalty techniques, and thus they have flexibility in handling of complicated
geometries [3, 18]. For these reasons, IPDG method is also an effective numerical scheme
for solving VIs (see e.g., [5, 16, 30, 39, 51, 52, 62] and the references therein). However,
IPDG methods have more degrees of freedoms than classical FEMs on standard meshes.
More recently, weak Galerkin (WG) method [38, 58] and hybrid high order (HHO) method
[25, 27, 29], which featuring the discrete unknowns on mesh elements and faces, are also
developed. In this work, wewill focus onVEMs. In the space of VEMs, they choose functions
as the solutions of some boundary value problem (which consist of the usual polynomials and
additional nonpolynomial functions). Moreover, they take appropriate projections on the the
polynomial subspace that are computable in terms of degrees of freedom. Therefore, we can
implement VEM by using only necessary degrees of freedom. We also refer the interested
reader to [46] for an unify study on VEM and HHO method. The objective of this paper is
to design VEMs for the Signorini problem and provide a detailed convergence analysis. We
will show that the numerical schemes have optimal convergence order in the energy norm
assuming some regularity results. It is worth mention that, the main difficulties come from
the inherent nonlinearity of VI and the complexity of bilinear of VEMs. Additionally, both
conforming and nonconforming VEMs are addressed. Comparing with conforming case, the
nonconforming one is more difficult in numerical analysis. The main reason behind this is
that, in nonconforming case, the discrete convex set Knc

h (see (47) below) is not a subspace
of the continuous one (see (2) below), thus we need some more intricate techniques to obtain
the corresponding error estimates.

The rest of our paper is organized as follows. In Sect. 2, we introduce some preliminary
results and variational formulation of the Signorini problem. Next, in Sects. 3 and 4, the
conforming and nonconforming VEMs are investigated for solving Signorini problem, and
the detailed error estimates also accomplished. Some numerical results that show the optimal
order error bound are presented in Sect. 5. Finally, in the last section, some conclusions are
made.

2 Model Problem and Some Notation

Wefirst introduce somenotation.Given aboundeddomainD ⊂ R
2,weuseWm,p(D)(m ≥ 0)

to denote the standard Sobolev spaces, which consists of functions with derivatives of global
order up tom in L p(D). and whose associated norm and seminorm are denoted by ‖ · ‖m,p,D
and |·|m,p,D , respectively. When p = 2, we use the notation Hm(�) = Wm,2(�), in this
case, we simply write its norm and seminorm as ‖ · ‖m,D and |·|m,D . We also define the inner
product in L2(D) by (w, v)D = ∫

D wvdx . In particular, D = �, we omit the index �.
Now, we introduce the space

V = {
v ∈ H1(�) : v = 0 on �D},

and the closed convex set

K = {
v ∈ V : v ≥ 0 on �C }. (2)

It is well known that the variational formulation of the Signorini problem (1) reads: Find
u ∈ K such that (see [44])

a(u, v − u) ≥ ( f , v − u) ∀v ∈ K ,

where a(u, v) = ∫
�

∇u ·∇vdx . In light of Stampacchia’s theorem, this problem has a unique
solution [45].
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3 The Conforming Virtual Element Method for Signorini Problem

3.1 The ConformingVirtual Element Method

Let Th be a family of meshes which decompose � into polygonal elements {T }. Set hT =
diam(T ) and h = max

T∈Th
hT . The set of interior edges is denote by E I

h . Similarly, the set of

edges on �D , �N and �C are denoted by ED
h , EN

h , and EC
h , respectively. Therefore, the set of

all edges Eh = E I
h ∪ ED

h ∪ EN
h ∪ EC

h . Additionally, we define E
T
h = {e ∈ Eh |e ∈ ∂T } as the

collection of edges lying on the boundary of T . The length of each edge e ∈ Eh is denoted
by he. Also, let Vh denotes the collection of vertices ν of the mesh Th . For any element T ,
we set VT

h = {ν ∈ Vh : ν ∈ ∂T }. The position of any vertex ν is denoted aν . Furthermore,
we assume that �D , �N and �C are aligned with the triangulations Th , i.e., the end points of
�D and �C coincide with the vertices of some elements. In addition, we introduce Pk(D) to
denote the space of polynomials of degree at most k on D. Inspired by [6], we also assume
that the mesh Th satisfies some regularity conditions, that is, there exits a constant γ > 0,
such that

A1 : Every element T of Th is star-shaped with regard to a ball of radius of γ hT ;
A2 : For every edge e of T , it satisfies he ≥ γ hT .

Following [6], we first introduce local Pk (k ≥ 1) conforming VEM space as

V c
h (T ) = {v ∈ H1(T ) : �v ∈ Pk−2(T ), v|∂T∈ Bk(∂T )} (3)

with boundary space Bk(∂T ) defining by

Bk(∂T ) = {v ∈ C0(∂T ) : v|e∈ Pk(e), ∀e ∈ ET
h }. (4)

The associated degrees of freedom are

χi (vh) = vh(ai ) ∀ai ∈ VT
h ,

χ j (vh) =
∫

e
vh pk−1ds ∀pk−2 ∈ Pk−1(e), e ∈ ET

h ,

χl(vh) =
∫

T
vh pk−2dx ∀pk−2 ∈ Pk−2(T ), T ∈ Th .

(5)

By the standard theory of VEM, we can prove that the above local space is unisolvent (see
[6]). Also, using this local space, we take the global H1 conforming VE space for problem
(1) in the form

V c
h = {

v ∈ H1
�D

(�) : v|T ∈ V c
h (T ), ∀T ∈ Th

}
. (6)

Usually, there exit singularities for the Signorini problem, one tends to use the lowest
order P1 VEM. Thus, for simple notations, we present the rest analysis only for k = 1 in (3).
But the numerical computations are done for all k = 1 to 5.

We now recall the construction of bilinear forms of the conforming VEM. We begin by
defining the projection operator 	c

T : V c
h (T ) → P1(T ) as

aT (	c
T v, q) = aT (v, q) ∀q ∈ P1(T ),

	c
T v = v, (7)
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with

ψ = 1

|VT
h |

|VT
h |∑

i=1

χi (ψ) = 1

|VT
h |

|VT
h |∑

i=1

ψ(ai ), ai = vertices of T . (8)

Additionally, we choose the stabilized term as

ScT (u − 	c
T u, v − 	c

T v) =
|VT

h |∑

i=1

χi (u − 	c
T u)χi (v − 	c

T v),

and define the bilinear form for each element T ,

ach,T (u, v) := aT (	c
T u,	c

T v) + ScT (u − 	c
T u, v − 	c

T v).

Summing over all elements implies that

ach(u, v) =
∑

T∈Th

ach,T (u, v). (9)

It is not difficult to check that the bilinear form satisfies the following consistency and
stability properties.

B1 Polynomial consistency: Given vh ∈ V c
h (T ), it holds that

ach,T (vh, q) = aT (vh, q) ∀q ∈ P1(T ). (10)

B2 Stabli t y: There exists two constants Cl and Cu , independent of h, such that

ClaT (vh, vh) ≤ ach,T (vh, vh) ≤ CuaT (vh, vh) ∀vh ∈ V c
h (T ). (11)

We now give an approximation for the convex set K :

Kc
h = {vh ∈ V c

h : χi (vh) = vh(ai ) ≥ 0, i = 1, ..., |V�C |}, (12)

where |V�C | denotes the total number of degrees of freedom on �C . Also, the corresponding
right-hand term are approximated by

( f ch , vh) =
∑

T∈Th

∫

T
(QT

0 f )vhdx, (13)

where QT
0 is the standard L2 projection onto P0(T ), and vh can be understood from (8).

The conforming VEM for (1) reads: Find uch ∈ Kc
h such that

ach(u
c
h, vh − uch) ≥ ( f ch , vh − uch) ∀vh ∈ Kc

h . (14)

3.2 Error Estimates

This subsection aims at establishing a detailed a priori error estimate for the numerical scheme
(14). To this end, we first recall the following trace inequality (see e.g., [28, 47])

h−1
e ‖w‖20,e ≤ C

(
h−2
T ‖w‖20,T + ‖∇w‖20,T

) ∀w ∈ H1(T ), (15)

with e ∈ ET
h . Here and throughout the paper, we utilizeC to denote a positive generic constant

that is independent of h, but may take different values at different occurrences.

123



   18 Page 6 of 25 Journal of Scientific Computing           (2024) 100:18 

In addition, for v ∈ H1(T )∩C0(T ), we introduce the canonical interpolation vI ∈ V c
h (T ),

vI (ai ) = v(ai ) ∀ai ∈ VT
h . (16)

According to the assumptions A1 and A2, we have the following approximation results [6].

Lemma 3.1 It holds that

‖v − vI ‖0,T + hT |v − vI |1,T ≤ Ch2T |v|2,T , (17)

inf
q∈�h

|u − q|1,h ≤ Ch|u|2, (18)

where |w|1,h =
( ∑

T∈Th

|w|21,T
)1/2

and �h = {v ∈ L2(�) : v|T ∈ P1(T )}.

Moreover, we establish an useful preliminary result, that is a key step to derive our final
error bound.

Theorem 3.2 Let u and uch denote the solutions of (1) and (14), respectively. Then, it holds
that

|u − uch |21 ≤ Ca

{
|u − uI |21 + inf

q∈�h
|u − q|21,h + �2

c + Rc

}
, (19)

where Rc = a(u, uI − uch) − ( f , uI − uch), and

�c = sup
vch∈V c

h
vch �=0

|( f , vch) − ( f ch , vch)|
|vch |1

.

Proof Applying the triangle inequality yields

|u − uch |21 ≤(|u − uI |1 + |uI − uch |1
)2

≤2|u − uI |21 + 2|uI − uch |21. (20)

Writing zh = uI − uch , we conclude from (11) and (14) that

Cl |zh |21,h ≤ ach(zh, zh) = ach(uI , zh) − ach(u
c
h, zh) ≤ ach(uI , zh) − ( f ch , zh)

= [
ach(uI , zh) − a(u, zh)

] + [
a(u, zh) − ( f , zh)

] + [
( f , zh) − ( f ch , zh)

]

�R1 + Rc + R2, (21)

for any q ∈ �h .
By adding and subtracting terms, we reformulate R1 as

R1 = ach(uI , zh) − a(u, zh)

=
∑

T∈Th

[
ach,T (uI , zh) − aT (u, zh)

]

=
∑

T∈Th

[
ach,T (uI − q, zh)

] + [
ach,T (q, zh) − aT (q, zh)

] + [
aT (q − u, zh)

]

�R11 + R12 + R13. (22)
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We combine (11) with Young’s inequality to bound R11 by

R11 =
∑

T∈Th

[
ach,T (uI − q, zh)

]

≤
∑

T∈Th

Cu |uI − q|1,T |zh |1,T

≤ Cu |uI − q|1,h |zh |1
≤ Cu(|u − uI |1 + |u − q|1,h)|zh |1
≤ C2

u

4ε1

(
|u − uI |1 + |u − q|1,h

)2 + ε1|zh |21

≤ C2
u

2ε1

(
|u − uI |21 + |u − q|21,h

)
+ ε1|zh |21. (23)

Due to the property of polynomial consistency stated in (10), the term R12 satisfies

R12 =
∑

T∈Th

[
ach,T (q, zh) − aT (q, zh)

] = 0. (24)

The continuity of each aT (·, ·) implies that

R13 =
∑

T∈Th

[
aT (q − u, zh)

]

≤
∑

T∈Th

|u − q|1,T |zh |1,T

≤ |u − q|1,h |zh |1
≤ 1

4ε2
|u − q|21,h + ε2|zh |21. (25)

An immediate consequence of the definition of �c shows that

R2 = [
( f , zh) − ( f ch , zh)

]

≤ �c|zh |1
≤ 1

4ε3
�2

c + ε3|zh |21. (26)

Plugging the estimates (22)–(26) into (21), we claim that
(
Cl − ε1 − ε2 − ε3

)
|zh |21

≤ Cu

2ε1
|u − uI |21 +

( C2
u

2ε1
+ 1

4ε2

)
|u − q|21,h + 1

4ε3
�2

c + Rc. (27)

Choose appropriate parameters εi (i = 1, 2, 3) to satisfy Cl − ε1 − ε2 − ε3 > 0, this together
with (20) yields the desired assertion. 
�

Employing the above result, and adopting some techniques developed in [14], we can
derive optimal order a priori error estimate in the energy norm.

Theorem 3.3 Let u and uch be the solutions of (1) and (14), respectively. Assume that u ∈
H2(�) and ∂nu|�C

∈ L∞(�C ), and the number of transition points from u = 0 and u > 0
on �C is finite. Then we have

|u − uch |1 ≤ Ch. (28)
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Proof Our starting point is the estimate (19), we shall establish the contained terms step by
step. From (17) and (18) we obtain

|u − uI |1 ≤Ch|u|2, (29)

inf
q∈�h

|u − q|1,h ≤ Ch|u|2. (30)

Also, the approximation term satisfies (see [6])

|( f , vch) − ( f ch , vch)| ≤ Ch| f |1,h |vch |1,
which leads to

�c = sup
vch∈V c

h
vch �=0

|( f , vch) − ( f ch , vch)|
|vch |1

≤ Ch| f |1,h . (31)

Thus, it remains to estimate Rc = a(u, uI − uch) − ( f , uI − uch). Noting that uI − uch = 0
on �D and ∂nu = 0 on �N , we apply integration by parts to obtain

Rc = a(u, uI − uch) − ( f , uI − uch)

=
∑

e∈EC
h

∫

e
(∂nu)(uI − uch)ds. (32)

By setting �0
C = {x ∈ �C : u(x) = 0} and �+

C = {x ∈ �C : u(x) > 0}, we split the set of
edges on EC

h into three disjoint subsets:

�0
h = {e ∈ EC

h : e ∈ �0
C },

�+
h = {e ∈ EC

h : e ∈ �+
C },

�∗
h = {e ∈ EC

h : e ∩ �0
C �= ∅, e ∩ �+

C �= ∅}.
Consequently,

Rc =
∑

e∈EC
h

∫

e
(∂nu)(uI − uch)ds

=
∑

e∈�0
h

∫

e
(∂nu)(uI − uch)ds +

∑

e∈�+
h

∫

e
(∂nu)(uI − uch)ds

+
∑

e∈�∗
h

∫

e
(∂nu)(uI − uch)ds

≤
∑

e∈�0
h

∫

e
(∂nu)(uI )ds +

∑

e∈�+
h

∫

e
(∂nu)(uI )ds

+
∑

e∈�∗
h

∫

e
(∂nu)(uI − u)ds. (33)

In the last step we have used the fact that ∂nu ≥ 0, uch ≥ 0 and (∂nu)u = 0 on �C . We
also emphasize that the edge e is understood as a closed set here and in the following, the
reason behind is that the value of u at the end points that belong two adjacent edges need
be treated carefully. For example, let e1 and e2 be two adjacent edges, suppose u = 0 on e1
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(i.e., e1 ∈ �0
h), if u > 0 on e2 \ (e1 ∩ e2), then e2 ∈∈ �∗

h . We now deal with the above three
terms in Rc. If e ∈ �0

h , since u = 0, this implies uI = 0, thus we have

∑

e∈�0
h

∫

e
(∂nu)(uI )ds = 0. (34)

If e ∈ �+
h , since u > 0, this in conjunction with (∂nu)u = 0 leads to (∂nu) = 0, we infer

that ∑

e∈�+
h

∫

e
(∂nu)(uI )ds = 0. (35)

If e ∈ �∗
h , in light of (17) and the Cauchy-Schwarz inequality, we deduce that

∫

e
(∂nu)(uI − u)ds ≤ ‖∂nu‖0,∞,e

∫

e
|uI − u|ds

≤ Ch1/2e ‖∂nu‖0,∞,e‖u − uI ‖0,e
≤ Ch2‖∂nu‖0,∞,e|u|2,T , (36)

with e ∈ ET
h . Hence, summing over all edges e ∈ �∗

h implies

∑

e∈�∗
h

∫

e
(∂nu)(uI − u)ds ≤ Ch2‖∂nu‖0,∞,e

∑

e∈�∗
h

|u|2,T

≤ Ch2‖∂nu‖0,∞,�C |u|2. (37)

In the last step, we have used the assumption that the number of transition points from
u = 0 and u > 0 on �C is finite.

Substituting (34), (35) and (37) into (33) yields

Rc =
∑

e∈EC
h

∫

e
(∂nu)(uI − uch)ds

≤ Ch2‖∂nu‖0,∞,�C |u|2. (38)

Finally, collecting the results (29)–(31) and (38), and inserting them into (19), we obtain the
desired conclusion (28). 
�
Remark 1 We stress that the estimate (19) in Theorem 3.2 can also be derived from Theorem
3.5 in [55] or the work [53]. In particular, a more general case that contains non-differential
term has also been tackled in [55] and [53]. For completeness of the paper, we restate and
prove (19) in detailed here, which is also useful to establish a similar bound for NVEM in
the next section (see Theorem 4.2 below).

4 The Nonconforming Virtual Element Method for Signoroni Problem

4.1 The NonconformingVirtual Element Method

In this section, we shall further explore the nonconforming VEM for the model problem (1).
We first mention that, the mesh decomposition is analogous to the previous conforming case.
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We then define the local Pk (k ≥ 1) nonconforming VEM space as

V nc
h (T ) = {v ∈ H1(T ) : �v ∈ Pk−2(T ), ∂nv|e ∈ Pk−1(e), e ∈ ET

h }. (39)

The associated degrees of freedom are

χ j (vh) =
∫

e
vh pk−1ds ∀pk−1 ∈ Pk−1(e), e ∈ ET

h , (40)

χl(vh) =
∫

T
vh pk−2dx ∀pk−2 ∈ Pk−2(T ), T ∈ Th . (41)

The unisolvence of this local space has been shown in [4]. And the corresponding global
nonconforming VEM space V nc

h for problem (1) take the form

V nc
h =

{
v ∈ L2(�) : v|T ∈ V nc

h (T ),

∫

e
[v]e pk−1ds = 0, ∀e ∈ E I

h ∪ ED
h

}
, (42)

where [v]e denotes the usual jump of v across the edge e, in particular, when e ∈ ED
h ,

[v]e = v.
Again, as for the conforming elements, for simple notations, we provide the analysis for

P1 nonconforming VEM only, that is, k = 1 in (39). But the numerical computations are
done for many high-order Pk nonconforming VEMs.

To state the bilinear form for the nonconforming VEM, we first introduce the projection
operator 	nc

T : V nc
h (T ) → P1(T ) as the solution of

aT (	nc
T v, q) = aT (v, q) ∀q ∈ P1(T ),

∫

∂T
	nc

T vds =
∫

∂T
vds.

By taking the choice

SncT (u − 	nc
T u, v − 	nc

T v) =
∑

e∈ET
h

χe(u − 	nc
T u)χe(v − 	nc

T v),

we define

anch,T (u, v) = aT (	nc
T u,	nc

T v) + SncT (u − 	nc
T u, v − 	nc

T v).

Summing over all T ∈ Th yields

anch (u, v) =
∑

T∈Th

anch,T (u, v). (43)

Moreover, they satisfy the following polynomial consistency and stability properties [4].

C1 Polynomial consistency: Given vh ∈ V nc
h (T ), it satisfies

anch,T (vh, q) = aT (vh, q) ∀q ∈ P1(T ). (44)

C2 Stabli t y: It holds that

CαaT (vh, vh) ≤ anch,T (vh, vh) ≤ CβaT (vh, vh) ∀vh ∈ V nc
h (T ). (45)

The discrete approximation Knc
h is formulated by

Knc
h = {vh ∈ V nc

h : χe(vh) ≥ 0, ∀e ∈ EC
h }. (46)
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In this case, the right-hand approximation term is more involved than the conforming one.
Inspired by [4], for each T ∈ Th , we first define

ṽh = 1

3

∑

e∈ET
h

∫

e
vhds,

and then set the approximation term as

( f nch , vh) =
∑

T∈Th

∫

T
(Q0 f )ṽhdx . (47)

The nonconforming VEM for (1) reads: Find unch ∈ Knc
h satisfying

anch (unch , vh − unch ) ≥ ( f nch , vh − unch ) ∀vh ∈ Knc
h . (48)

4.2 Error Estimates

To proceed, for v ∈ H1(T ), we first define canonical interpolation 	hv ∈ V nc
h (T ) that

satisfies

χe(	hv) = χe(v) ∀e ∈ ET
h . (49)

Under the assumptions A1 and A2, we have the following approximate properties [4].

Lemma 4.1 It holds that

‖v − 	hv‖0,T + hT |v − 	hv|1,T ≤Ch2T |v|2,T , (50)

inf
q∈�h

|u − q|1,h ≤Ch|u|2. (51)

For nonconforming VEM, applying analogous techniques as in the conforming case in
Theorem 3.3, we can obtain the following assertion.

Theorem 4.2 Let u and unch denote the solutions of (1) and (48), respectively. Then, it holds
that

|u − unch |21,h ≤ Cb

{
|u − 	hu|21,h + inf

q∈�h
|u − q|21,h + �2

nc + Rnc

}
, (52)

where Rnc = anch (u,	hu − unch ) − ( f ,	hu − unch ), and

�nc = sup
vnch ∈V nc

h
vnch �=0

|( f , vnch ) − ( f nch , vnch )|
|vnch |1,h

. (53)

Proof As in (19) for the conforming case above, a similar formula holds for NVEM. More
precisely, denote znch = 	hu − unch , applying (45) and (48) to infer that

Cα|znch |21,h ≤ anch (znch , znch ) = anch (	hu, znch ) − anch (unch , znch )

≤ anch (	hu, znch ) − ( f nch , znch )

= [
anch (	hu, znch ) − anch (u, znch )

] + [
anch (u, znch ) − ( f , znch )

]

+ [
( f , znch ) − ( f nch , znch )

]
� R

nc
1 + Rnc + R

nc
2 .

(54)

The assertion (53) follows by direct imitation of the proofs addressed in Theorem 3.3. 
�
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Next, to accomplish the final error estimate, we require the following preliminary result.

Lemma 4.3 Let u and unch be the solutions of (1) and (48), respectively. Assume that u ∈
H2(�), u|�C

∈ W 1,∞(�C ), and the number of transition points from u = 0 and u > 0 on
�C is finite, we have

−
∑

e∈�∗
h

∫

e
(∂nu)(unch )ds ≤ Ch|u|2|u − unch |1,h + Ch2|u|2|u|1,∞,�C

. (55)

Proof Provide e ∈ �∗
h , we claim that ∂nu ≥ 0 andPe

0(u
nc
h ) = h−1

e

∫
e u

nc
h ds ≥ 0, these facts

implies

−
∫

e
(∂nu)(unch )ds

≤ −
∫

e
(∂nu)(unch − Pe

0(u
nc
h ))ds

= −
∫

e

(
∂nu − Pe

0(∂nu)
)(

unch − Pe
0(u

nc
h )

)
ds

= −
∫

e

(
∂nu − Pe

0(∂nu)
)(

unch − Pe
0(u

nc
h ) − u + Pe

0(u)
)
ds

−
∫

e

(
∂nu − Pe

0(∂nu)
)(

u
)
ds

� S1 + S2. (56)

Recall the standard estimate

‖v − Pe
0(v)‖0,e ≤ Ch1/2T |v|1,T , (57)

and simply write Re
0(v) = v − Pe

0(v), thus,

S1 = −
∫

e

(
Re

0(∂nu)
)(

Re
0(u

nc
h − u)

)
ds

≤ ‖Re
0(∂nu)‖0,e‖Re

0(u − unch )‖0,e
≤ Ch1/2T |u|2,T h1/2T |u − unch |1,T
= ChT |u|2,T |u − unch |1,T .

(58)

Since e ∈ �∗
h , there exits some Qe satisfying u(Qe) = 0, thus from 1D Poincaré’s inequality

(see e.g., [43]) we have ‖u‖0,e ≤ Che
∥
∥
∥ ∂u

∂s

∥
∥
∥
0,e

, this together (57) implies that

S2 = −
∫

e

(
Re

0(∂nu)
)(

u
)
ds

≤ ‖Re
0(∂nu)‖0,e‖u‖0,e

≤ Ch1/2T |u|2,T ‖u‖0,e
≤ Ch1/2T he|u|2,T

∥
∥
∥
∂u

∂s

∥
∥
∥
0,e

.

(59)

Moreover, we have
∥
∥
∥
∂u

∂s

∥
∥
∥
2

0,e
≤Che

∥
∥
∥
∂u

∂s

∥
∥
∥
2

0,∞,e
≤Che|u|21,∞,�C

. (60)
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Inserting (60) into (59), we arrive at

S2≤Ch1/2T h3/2e |u|2,T u|1,∞,�C
≤Ch2|u|2,T |u|1,∞,�C

. (61)

Collecting the estimates (58) and (61), summing over all e ∈ �∗
h , and utilizing the assumption

that the number of transition points is finite, we infer that

−
∑

e∈�∗
h

∫

e
(∂nu)(unch )ds

≤ C
∑

e∈�∗
h

(
hT |u|2,T |u − unch |1,T + h2|u|2,T |u|1,∞,�C

)

≤ Ch|u|2|u − unch |1,h + h2|u|2|u|1,∞,�C
, (62)

which is the assertion (55) as required. 
�
We are now in a position to state the error analysis for the NVEM (48).

Theorem 4.4 Under the same assumptions in Lemma 4.3, there holds that

|u − unch |1,h ≤ Ch. (63)

Proof It is enough to give estimates for all terms appear in (52). From (50) and (51), the first
two terms satisfy

|u − 	hu|1,h ≤ Ch|u|2, (64)

inf
q∈�h

|u − q|1,h ≤ Ch|u|2. (65)

Additionally, it can be proved that the approximation term satisfies (see [4])

|( f , vnch ) − ( f nch , vnch )| ≤ ch‖ f ‖0|vnch |1,h,
this yields

�nc = sup
vch∈V nc

h
vnch �=0

|( f , vnch ) − ( f nch , vnch )|
|vnch |1,h

≤ ch‖ f ‖0. (66)

Thus, it leaves us to estimate Rnc = a(u,	hu − unch ) − ( f ,	hu − unch ). By setting wh =
	hu − unch and integrating by parts, we obtain

Rnc = a(u, wh) − ( f , wh)

=
∑

T∈Th

∑

e∈∂T

∫

e
(∂nu)(wh)ds

=
∑

T∈Th

∑

e∈∂T \(EN
h ∪EC

h )

∫

e
(∂nu)(wh)ds +

∑

e∈EN
h

∫

e
(∂nu)(wh)ds

+
∑

e∈EC
h

∫

e
(∂nu)(wh)ds

=
∑

T∈Th

∑

e∈∂T \(EN
h ∪EC

h )

∫

e
(∂nu)(wh)ds +

∑

e∈EC
h

∫

e
(∂nu)(wh)ds

� A1 + A2.

(67)
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The consistency error term A1 can be estimated by applying standard techniques for the
NVEM and (57):

A1 =
∑

T∈Th

∑

e∈∂T \(EN
h ∪EC

h )

∫

e
(∂nu)(wh)ds

=
∑

T∈Th

∑

e∈∂T \(EN
h ∪EC

h )

∫

e

(
∂nu − Pe

0(∂nu)
)

·
(
wh − Pe

0wh

)
ds

≤
∑

T∈Th

∑

e∈∂T \(EN
h ∪EC

h )

‖∂nu − Pe
0(∂nu)‖0,e‖wh − Pe

0wh‖0,e

≤
∑

T∈Th

Ch1/2T |u|2,T h1/2T |wh |1,T

≤Ch
( ∑

T∈Th

|u|22,T
∑

T∈Th

|wh |21,T
)1/2

≤Ch|u|2|	hu − unch |1,h . (68)

For A2, we split it as

A2 =
∑

e∈EC
h

∫

e
(∂nu)(	hu − unch )ds

=
∑

e∈�0
h

∫

e
(∂nu)(	hu − unch )ds +

∑

e∈�∗
h

∫

e
(∂nu)(	hu − unch )ds

=
∑

e∈�0
h

∫

e
(∂nu)(	hu − unch )ds +

∑

e∈�∗
h

∫

e
(∂nu)(	hu − u)ds

−
∑

e∈�∗
h

∫

e
(∂nu)(unch )ds

�A21 + A22 + A23. (69)

If e ∈ �0
h , noting that u = 0 implies 	hu = 0,

∫
e(u

nc
h )(Pe

0(∂nu))ds ≥ 0 (since unch ∈ Knc
h )

yields
∫
e(u

nc
h )(∂nu)ds ≥ ∫

e(u
nc
h )(Re

0(∂nu))ds, these facts together with (57) yield
∫

e
(∂nu)(	hu − unch )ds ≤

∫

e
Re

0(∂nu)(	hu − unch )ds

=
∫

e
Re

0(∂nu)(	hu − u)ds +
∫

e
Re

0(∂nu)Re
0(u − unch )ds

≤ ‖Re
0(∂nu)‖0,e

(
‖	hu − u‖0,e + ‖Re

0(u − unch )‖0,e
)

≤ Ch1/2T |u|2,T
(
h3/2T |u|2,T + h1/2T |u − unch |1,T

)

≤ Ch2T |u|22,T + ChT |u|2,T |u − unch |1,T . (70)

Summing over all e ∈ �0
h , we obtain

A21 ≤ Ch2|u|22 + Ch|u|2|u − unch |1,h . (71)
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In view of (50) and the Cauchy-Schwarz inequality, we claim that, for any e ∈ �∗
h ,

∫

e
(∂nu)(	hu − u)ds ≤ ‖∂nu‖0,∞,e

∫

e
|	hu − u|ds

≤ Ch1/2e ‖∂nu‖0,∞,e‖u − 	hu‖0,e
≤ Ch2‖∂nu‖0,∞,e|u|2,T ,

with e ∈ ET
h . Summing over all edges e ∈ �∗

h yields

A22 =
∑

e∈�∗
h

∫

e
(∂nu)(	hu − u)ds

≤ Ch2‖∂nu‖0,∞,�C

∑

e∈�∗
h

|u|2,T

≤ Ch2‖∂nu‖0,∞,�C |u|2.

(72)

In the last line, we have used the assumption that the number of transition points is finite.
For the term A23, it follows from Lemma 4.3 that

A23 ≤ Ch|u|2|u − unch |1,h + Ch2|u|2|u|1,∞,�C
. (73)

Substituting (68), (71)–(73) into (67), and applying the triangle and Young’s inequalities
yields

Rnc ≤C1h|u|2|	hu − unch |1,h + C2h|u|2|u − unch |1,h + C3h
2|u|22

+ C4h
2|u|2|u|1,∞,�C

≤ C2
1

4ε4
h2|u|22 + ε4|	hu − unch |21,h + ε5|u − unch |21,h + C2

2

4ε5
h2|u|22

+ C3h
2|u|22 + C4h

2|u|2|u|1,∞,�C

≤ C2
1

4ε4
h2|u|22 + 2ε4|u − unch |21,h + 2ε4|u − 	hu|21,h

+ ε5|u − unch |21,h + C2
2

4ε5
h2|u|22 + C3h

2|u|22 + C4h
2|u|2|u|1,∞,�C

. (74)

We combine (52) with (74) to infer that
(
1 − 2Cbε4 − Cbε5

)
|u − unch |21,h

≤ (Cb + 2ε4)|u − 	hu|21,h + Cb inf
q∈�h

|u − q|21,h + Cb�
2
nc

+
( C2

1

4ε4
h2 + C2

2

4ε5
h2 + C3h

2
)
|u|22 + C4h

2|u|2|u|1,∞,�C
. (75)

By choosing that 1 − 2Cbε4 − Cbε5 > 0, and collecting results in (64)–(66) implies the
desired estimate (63). 
�
Remark 2 Comparing with the conforming VEM, to obtain optimal order error estimates,
more stringent regularity assumptions on the exact solution are required in the analysis of
nonconforming case. More precisely, for conforming VEM, it is assumed that u ∈ H2(�)

and ∂nu|�C∈ L∞(�C ), while for nonconforming VEM, the assumption is that u ∈ H2(�)

and u|�C∈ W 1,∞(�C ).
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Fig. 1 The computed P4 VEM
solution on Grid 3 of Fig. 2 for
problem (76) with an exact
solution (77)

5 Numerical Experiments

In this section, we provide some numerical results to validate the effectiveness of the VEMs.
We solve the following Signorini problem:

−�u = f in �,

u = 0 on �D,

u∂nu = 0, u ≥ 0, ∂nu ≥ 0, on �C ,

(76)

where � = (0, 1) × (0, 1), �C = [0, 1] × {1}, �D = ∂� \ �C .
When we choose the right-hand side function in (76) as

f = 1 − 2x

4
(4x4 + 40x2y2 − 8x3 − 40xy2 + 5x2 + 7y2 − x + f1),

where f1 =
{

−40x2y + 40xy − 7y, if x ≤ 1/2,

−80x2y + 80xy − 14y, if x > 1/2,

we would get the exact solution u of (76) as

u = x(1 − x)

(

x − 1

2

)3

yu1,

where u1 =
{
1 − y, if x ≤ 1/2,

2 − y, if x > 1/2.
(77)

To view the solution, in Fig. 1, we plot the P4 conforming VEM solution (k = 4 in (3))
on hexagonal Grid 3 (shown in Fig. 2). On the front left boundary, u = 0 and ∂nu > 0. On
the front right boundary, u > 0 and ∂nu = 0.

To solve each nonlinear VEM equation, we apply the monotonic iteration method as
follows (see [41]). Initially, we let

�
(0)
C,D = ∅ and �

(0)
C,N = �C \ �

(0)
C,D .

This way, in the m step, we separate the boundary condition u∂nu = 0 on �C into two
boundary conditions,

u|
�

(m)
C,D

= 0 and ∂nu|
�

(m)
C,N

= 0. (78)

With the linear boundary conditions (78), we have a unique VEM solution u(m)
h for the

resulting discrete linear system of equation. To do next iteration, we update the boundary
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Fig. 2 The first two levels of hexagonal grids for the computation in Tables 1–8

Table 1 The error profile for (77)
on meshes shown in Fig. 2, by the
P1 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇(u − uh)‖0 O(hr ) #Iter

1 0.5241E-02 0.00 0.2209E-01 0.00 1

2 0.1371E-02 1.93 0.7076E-02 1.64 1

3 0.3120E-03 2.14 0.2938E-02 1.27 1

4 0.1117E-03 1.48 0.1671E-02 0.81 1

5 0.2075E-04 2.43 0.7746E-03 1.11 2

6 0.5006E-05 2.05 0.3869E-03 1.00 2

7 0.1117E-05 2.16 0.1966E-03 0.98 5

8 0.2674E-06 2.06 0.9916E-04 0.99 6

conditions first by letting

�
(m+1)
C,D =

(
�

(m)
C,D \ {e ∈ �

(m)
C,D : u(e1) < 0& u(e2) < 0}

)

⋃ (
�

(m)
C,N \ {e ∈ �

(m)
C,N : ∂nu(e1) < 0& ∂nu(e2) < 0}

)
,

�
(m+1)
C,N = �C \ �

(m+1)
C,D ,

where e1 and e2 are the two end points of an edge e on the boundary �C . The iteration is
stopped when

�
(m+1)
C,D = �

(m)
C,D = �

(m−1)
C,D . (79)

There is no other choice because when the iteration reaches the status (79), the solution
u(m+1)
h = u(m)

h and remains the same for ever.
In Table 1, the results for the P1 conforming VEM approximating solution (77) are listed,

where#Iter is the number ofmonotonic iterations (78)–(79) performed. The P1 conforming
VEM converges at the optimal order in both norms.

In Table 2, we compute the P2 conforming VEM solutions for (77) on the hexagonal
meshes shown in Fig. 2. The P2 conforming VEM converges at the optimal order in both
norms.

In Table 3, we compute the P3 conforming VEM solutions for (77) on the hexagonal
meshes shown in Fig. 2. The P3 conformingVEMconverges at the optimal order in H1-norm.
But it seems we have an half order sub-optimal convergence in L2-norm. Since the exact
solution (77) is in H3.5−ε(�), this would explain somewhat the sub-optimal convergence. See
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Table 2 The error profile for (77)
on meshes shown in Fig. 2, by the
P2 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇(u − uh)‖0 O(hr ) # Iter

1 0.1475E-02 0.00 0.1770E-01 0.00 1

2 0.2260E-03 2.71 0.5150E-02 1.78 1

3 0.2727E-04 3.05 0.1270E-02 2.02 3

4 0.2865E-05 3.25 0.3056E-03 2.05 3

5 0.4365E-06 2.71 0.7546E-04 2.02 6

6 0.4878E-07 3.16 0.1867E-04 2.01 10

7 0.5687E-08 3.10 0.4649E-05 2.01 12

Table 3 The error profile for (77)
on meshes shown in Fig. 2, by the
P3 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇(u − uh)‖0 O(hr ) # Iter

1 0.3198E-02 0.00 0.2711E-01 0.00 1

2 0.1669E-03 4.26 0.3291E-02 3.04 1

3 0.6540E-05 4.67 0.3719E-03 3.15 3

4 0.2740E-05 1.26 0.6631E-04 2.49 4

5 0.2488E-06 3.46 0.8240E-05 3.01 7

6 0.2223E-07 3.48 0.1025E-05 3.01 10

Table 4 The error profile for (77)
on meshes shown in Fig. 2, by the
P4 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇(u − uh)‖0 O(hr ) # Iter

1 0.7697E-02 0.00 0.4663E-01 0.00 1

2 0.2718E-04 8.15 0.7935E-03 5.88 3

3 0.4273E-05 2.67 0.8688E-04 3.19 3

4 0.2621E-05 0.71 0.4745E-04 0.87 4

5 0.2389E-06 3.46 0.5948E-05 3.00 6

6 0.2138E-07 3.48 0.7429E-06 3.00 9

Table 5 The error profile for (77)
on meshes shown in Fig. 2, by the
P5 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇(u − uh)‖0 O(hr ) # Iter

1 0.5289E-01 0.00 0.2597E+00 0.00 1

2 0.1252E-03 8.72 0.8973E-03 8.18 1

3 0.2007E-05 5.96 0.3729E-04 4.59 3

4 0.1574E-05 0.35 0.3024E-04 0.30 5

5 0.1426E-06 3.46 0.3788E-05 3.00 7

6 0.1273E-07 3.49 0.4731E-06 3.00 10

the comments on the P4 and P5 conforming VEM below, and the comments for computing
the second example.

In Tables 4 and 5, we compute the P4 and P5 conforming VEM solutions, respectively,
for (77) on the hexagonal meshes shown in Fig. 2. It is surprising and understandable that
their convergence orders are exactly same as those of the P3 conforming VEM in Table 3.
There is no need to increase the order of VEM if the exact solution is not that smooth. We
can see below in the second example that the convergence order of P4 and P5 can be higher.
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Table 6 The error profile for (77)
on meshes shown in Fig. 2, by the
P1 nonconforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.2362E-02 0.00 0.1337E-01 0.00 1

2 0.4874E-03 2.28 0.4826E-02 1.47 1

3 0.1416E-03 1.78 0.2326E-02 1.05 1

4 0.1144E-03 0.31 0.1391E-02 0.74 1

5 0.1515E-04 2.92 0.5689E-03 1.29 2

6 0.2004E-05 2.92 0.2754E-03 1.05 2

7 0.4279E-06 2.23 0.1384E-03 0.99 3

8 0.1015E-06 2.08 0.6920E-04 1.00 8

Table 7 The error profile for (77)
on meshes shown in Fig. 2, by the
P2 nonconforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.1475E-02 0.00 0.1770E-01 0.00 2

2 0.2260E-03 2.71 0.5150E-02 1.78 2

3 0.2727E-04 3.05 0.1270E-02 2.02 3

4 0.2865E-05 3.25 0.3056E-03 2.05 3

5 0.3461E-06 3.05 0.7517E-04 2.02 8

6 0.4878E-07 2.83 0.1867E-04 2.01 10

7 0.5687E-08 3.10 0.4649E-05 2.01 12

In Table 6, we report the results of computing solution (77) by P1 nonconforming VEM
on meshes shown in Fig. 2. Comparing to Table 1, the P1 nonconforming VEM converges at
the same order as the P1 conforming VEM but with smaller errors as we have more degrees
of freedom in the nonconforming VEM.

In Table 7, we compute the P2 nonconforming VEM solutions for (77) on the hexagonal
meshes shown in Fig. 2. The P2 nonconforming VEM converges at the optimal order in both
norms. However, comparing to Table 2, it seems that the extra five degrees of freedom on
each hexagon do not provide any additional approximation, as the two methods produce
almost identical results.

In Table 8, we compute the P3 nonconforming VEM solutions for (77) on the hexagonal
meshes shown in Fig. 2. The P3 nonconforming VEM converges at the optimal order in both
norms. It is quite surprising recalling that the P3 conforming VEM converges half an order
sub-optimal in L2-norm. We think, the designed discontinuous VEM P3 solutions can stop
the L2-error pollution near the jump point of the free boundary condition. For example, it
is proved in [63] that the nonconforming element solution converges independently of the
coefficient jump in solving an interface problem while the continuous finite element has an
error bound of amax/amin times that of error bound of the nonconforming element, where
amax and amin are the maximum and the minimum of the diffusion coefficient of a 2nd order
elliptic equation, respectively.

Next we test the VEM on pentagonal meshes shown in Fig. 3.
In Table 9, we compute the P1 conforming VEM solutions for (77) on the pentagonal

meshes shown in Fig. 3. The P1 conforming VEM converges at the optimal order in both
norms. Comparing to Table 1, we have less degrees of freedom in the pentagonal VEM than
that of the hexagonal VEM. But the pentagonal meshes are more regular. It turns out the two
methods are almost same in solving the Signorini problems.
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Table 8 The error profile for (77)
on meshes shown in Fig. 2, by the
P3 nonconforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.3226E-02 0.00 0.2734E-01 0.00 1

2 0.1673E-03 4.27 0.3320E-02 3.04 1

3 0.6429E-05 4.70 0.3757E-03 3.14 2

4 0.3854E-06 4.06 0.4539E-04 3.05 4

5 0.2356E-07 4.03 0.5571E-05 3.03 7

6 0.1455E-08 4.02 0.6898E-06 3.01 10

Fig. 3 The first two levels of pentagonal grids for the computation in Tables 9–14

Table 9 The error profile for (77)
on meshes shown in Fig. 3, by the
P1 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.4850E-02 0.00 0.1978E-01 0.00 1

2 0.1815E-02 1.42 0.8994E-02 1.14 1

3 0.4452E-03 2.03 0.3475E-02 1.37 1

4 0.1245E-03 1.84 0.1685E-02 1.04 1

5 0.2547E-04 2.29 0.7306E-03 1.21 2

6 0.7081E-05 1.85 0.3546E-03 1.04 2

7 0.1577E-05 2.17 0.1783E-03 0.99 5

8 0.3816E-06 2.05 0.8951E-04 0.99 8

In Table 10, we compute the P2 conforming VEM solutions for (77) on the pentagonal
meshes shown in Fig. 3. As on hexagonal meshes, the P2 conforming VEM here converges
at the optimal order in both norms. Comparing to Table 2, the pentagonal P2 conforming
VEM is much worse. But it has 1/3 less local degrees of freedom than that of P2 hexagonal
VEM.

In Table 11, we compute the P3 conforming VEM solutions for (77) on the pentagonal
meshes shown in Fig. 3. As on hexagonal meshes, the P3 conforming VEM here converges
at the optimal order only in H1 norm. It converges half an order sub-optimal in L2 norm.
As pointed out earlier, it is likely due to the singularity that the exact solution (77) is only in
H3.5−ε(�). The same orders of convergencewill happen to the P4 and P5 VEM, as it happens
to the hexagonal P4 and P5 VEM, in Tables 4 and 5. We would not repeat this computation.
Instead, we will compute a smoother exact solution in Tables 12, 13 and 14.
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Table 10 The error profile for
(77) on meshes shown in Fig. 3,
by the P2 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.8099E-02 0.00 0.5384E-01 0.00 1

2 0.7178E-03 3.50 0.1179E-01 2.19 1

3 0.8386E-04 3.10 0.2772E-02 2.09 2

4 0.9633E-05 3.12 0.6658E-03 2.06 2

5 0.1218E-05 2.98 0.1647E-03 2.02 5

6 0.1475E-06 3.05 0.4100E-04 2.01 7

7 0.1855E-07 2.99 0.1024E-04 2.00 9

Table 11 The error profile for
(77) on meshes shown in Fig. 3,
by the P3 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.6932E-02 0.00 0.5593E-01 0.00 1

2 0.4317E-03 4.01 0.6980E-02 3.00 1

3 0.2365E-04 4.19 0.8067E-03 3.11 2

4 0.2867E-05 3.04 0.1104E-03 2.87 3

5 0.2521E-06 3.51 0.1374E-04 3.01 6

6 0.2231E-07 3.50 0.1715E-05 3.00 9

7 0.1980E-08 3.49 0.2143E-06 3.00 12

To get a smoother solution, we choose the right-hand side function in (76) as

f = (1 − 2x)3

16
(4x4 + 84x2y2 − 8x3 − 84xy2 + 5x2 + 11y2 − x + f1),

where f1 =
{

−84x2y + 84xy − 11y, if x ≤ 1/2,

−168x2y + 168xy − 22y, if x > 1/2,

we would get the exact solution u of (76) as

u = x(1 − x)

(

x − 1

2

)5

yu1,

where u1 =
{
1 − y, if x ≤ 1/2,

2 − y, if x > 1/2.
(80)

The solution is in H5.5−ε(�).
In Table 12, we compute the P3 conforming VEM solutions again on the pentagonal

meshes shown in Fig. 3, but for approximating a smoother exact solution (80). This time, the
P3 pentagonal conforming VEM converges at the optimal order in both H1 norm and L2

norm. This example shows that the finite element solution can converge at very high order as
long as the exact solution is sufficiently smooth. But in theory, the L2 order of convergence
is limited to one and a half as the solution of the dual problem is limited to H3/2(�).

In Table 13, we compute the P4 conforming VEM solutions on the pentagonal meshes
shown in Fig. 3, when approximating the smoother exact solution (80). The P4 pentagonal
conforming VEM converges at the optimal order in both H1 norm and L2 norm. Here the
L2 order of convergence looks like an half order super-convergence. But it was caused by
fixed meshes and jumping of discrete boundary conditions on mesh points. The low-order
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Table 12 The error profile for
(80) on meshes shown in Fig. 3,
by the P3 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.8712E-02 0.00 0.5175E-01 0.00 1

2 0.4041E-03 4.43 0.5095E-02 3.34 1

3 0.2430E-04 4.06 0.5899E-03 3.11 1

4 0.1273E-05 4.25 0.6752E-04 3.13 2

5 0.7213E-07 4.14 0.8249E-05 3.03 7

6 0.4539E-08 3.99 0.1023E-05 3.01 12

7 0.2830E-09 4.00 0.1276E-06 3.00 14

Table 13 The error profile for
(80) on meshes shown in Fig. 3,
by the P4 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.6080E-02 0.00 0.3742E-01 0.00 1

2 0.1240E-03 5.62 0.2278E-02 4.04 1

3 0.3345E-05 5.21 0.1319E-03 4.11 2

4 0.9866E-07 5.08 0.7886E-05 4.06 4

5 0.1880E-07 2.39 0.6123E-06 3.69 6

6 0.4370E-09 5.43 0.3247E-07 4.24 11

7 0.1001E-10 5.45 0.1926E-08 4.08 15

Table 14 The error profile for
(80) on meshes shown in Fig. 3,
by the P5 conforming VEM

Grid ‖u − uh‖0 O(hr ) ‖∇h(u − uh)‖0 O(hr ) # Iter

1 0.2550E-02 0.00 0.1755E-01 0.00 1

2 0.2992E-04 6.41 0.5914E-03 4.89 1

3 0.4385E-06 6.09 0.1772E-04 5.06 2

4 0.9907E-08 5.47 0.5676E-06 4.96 6

5 0.2043E-09 5.60 0.1766E-07 5.01 11

6 0.4365E-11 5.55 0.5512E-09 5.00 15

approximation on Grid 5, in Table 13, raises the convergence orders at next two levels. In
general, the L2 order of convergence is 5.

In Table 14, finally we compute the P5 conforming VEM solutions on the pentagonal
meshes shown in Fig. 3, when approximating the smoother exact solution (80). The P5 pen-
tagonal conforming VEM converges at the optimal order in H1 norm only, and at half an
order sub-optimal in L2 norm. The situation appears several times before. Here the exact
solution is in H5.5(�) which explains the 5.5 L2 order of convergence.

6 Conclusions

We have proposed and analyzed conforming and nonconforming VEMs for the Signorini
problems. Detailed a priori error estimates for lowest order schemes k = 1 have been estab-
lished. Extending the analysis to higher schemes k > 1 and developing the corresponding
posteriori indicators are challenging topics, that shall be carefully addressed in future work.
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