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1. Introduction

Let 2 ¢ R? (d = 2,3) be a bounded polyhedral domain with boundary 9. Given f € L*(), we consider the following Stokes
model problem:

VAU +Vp=f inQ (1.1)
V-u=0 in Q, (1.2)
u=0 onogR, 1.3)

where v > 0 is the viscosity parameter, u is the velocity field, p is the pressure, and f stands for a body force.

An essential aspect of finite element methods (FEMs) applied to the Stokes equations is the verification of the inf-sup
condition [1,2]. In the last few decades, various inf-sup stable FEMs have been designed and analyzed, for example, MINI
element [3], Crouzeix-Raviart (CR) element [4], Bernardi-Raugel element [5]. However, these conventional FEM schemes only
provide a priori error estimates that rely on the pressure variable, that is (see [6]),

&
u—u <C, inf |ju—-v,||+—= inf - .
e =yl < Cy inf eyl + =2 inf o= allo
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This inequality implies that the velocity error may become large when either the viscosity v is small or the pressure error is large.

The question of how to develop a pressure-robust scheme that eliminates the dependence on pressure has garnered significant
attention in recent decades. One approach to achieve pressure-robustness is to employ divergence-free mixed elements [7-11],
although this often requires additional degrees of freedom or imposes restrictions on mesh partitions. Another method is to utilize
grad-div stabilization [12,13], which mitigates the lack of pressure robustness but does not completely eliminate it. Recently, a
popular approach for designing a pressure-robust scheme involves the use of a velocity reconstruction operator [14]. Specifically,
this technique modifies the right-hand side by introducing a H(div) conforming operator that establishes L?-orthogonality between
the mapped test velocities and the gradient fields. This approach has been successfully applied to various numerical methods [6,15-
31]. We also refer the interested reader to [32], wherein a curl-curl weak formulation for velocities is proposed to achieve
pressure-robustness.

In addition to classical finite element methods (FEMs), discontinuous Galerkin methods (DG) [33] have proven to be effective
in simulating Stokes flow [34]. DG methods allow for the use of piecewise polynomial functions that are totally discontinuous
across the triangulation, providing flexibility in handling highly nonuniform and unstructured meshes. They are also well-suited
for dealing with inhomogeneous boundary conditions and hp-adaptive computation. However, standard DG methods [34] do not
possess pressure-robustness. One remedy for this limitation is to employ H(div) conforming elements with penalization in DG
discretization [35,36]. Another approach, developed in recent work, extends the velocity reconstruction techniques in [14] to interior
penalty DG (IPDG) and conforming DG methods [26]. And recently, it was also extended to enriched Galerkin methods [37]. In this
work, we further explore this issue within the context of weakly over-penalized symmetric interior penalty (WOPSIP) DG methods.
The WOPSIP method was initially proposed and analyzed in [38] for solving second-order elliptic equations. Its main idea involves
utilizing a piecewise constant L’-projection on mesh boundaries for weak penalization. Compared to standard IPDG methods,
WOPSIP DG methods offer the advantages of having a simple bilinear form and being suitable for parallel computation [39].
Additionally, in WOPSIP DG schemes, there is no need to select an excessively large interior penalty parameter to achieve favorable
properties. Due to these advantages, WOPSIP DG approaches have been explored for solving the biharmonic equation [40], Stokes
equations [41], Reissner-Mindlin plate problem [42], and variational inequalities [43]. Moreover, the higher order version of
WOPSIP DG method for second order elliptic equations was addressed in [44]. However, the original WOPSIP method for the Stokes
equation, as explored in [41], is not pressure-robust. In this work, our objective is to extend this approach to achieve pressure-
robustness. To accomplish this goal, we introduce a H(div) conforming operator to modify the right-hand side. Furthermore, we
observe that the divergence operator in the pressure-velocity coupling term c,(-,-) (see (2.7) below) needs to be replaced with a
weak divergence operator to attain pressure-robustness (see Remark 4.7 below). We also establish pressure-robust error estimates.
It is worth mentioning that WOPSIP method is a non-consistent method since it remove some terms inherited from standard IPDG
scheme. This means that the corresponding convergence analysis is more involved than that for standard IPDG method, since the
consistent error is also needed to be estimated. In fact, WOPSIP method has some interesting connections with CR FEM (see [45]),
thus its error estimate can be resorted by some techniques related to CR FE function space.

The rest of our paper is organized as follows. In the next section, we present the pressure-robust scheme, which involves modifying
the right-hand term and replacing the divergence operator in ¢,(-,-) with a weak divergence. In Section 3, we establish the well-
posedness of the numerical schemes, while Section 4 focuses on proving the pressure-robustness of error estimates. To support the
theoretical analysis, we provide several numerical tests in Section 5. Finally, in Section 6, we draw conclusions based on our findings.

2. The pressure-robust WOPSIP method

Throughout the paper, we adopt certain standard notation. For a bounded domain D c R¢, (d = 2,3), we denote H*(D)(s > 0) by
the standard Sobolev space with its norm || - ||, and seminorm | - | ,. When s =0, H (D) is the Lebesgue space L?*(D). In addition,
for functions w, v € L*(D) we denote the inner product by (w, v)p, = /, »wudx and (w, v),p = [, wods. We shall drop the subscript D
when D = Q. Additionally, H,(£2) is the subspace of H'(£2) that has vanishing trace on 0%, i.e., Hj(2) = {v € H'(Q) : v]yo = 0}. By
convention, for the vector-valued analogs, we shall use boldface type: H"(D) = [H"(D)]¢. We also use the same symbol for the inner
product in L*(D) and LX(D) = [L*(D)]**?. More precisely, w.v), = Y| w;.v))p forw, v e LA(D)and (. mp = T T, &1y
for ¢, n € LZ(D). Moreover, we introduce the Hilbert space H(div;Q) = {v € L*(2) : V-v € L%(Q)} that is endowed with
graph norm |[v|g, = (||v||g + ||V - v||g)l/2. H (div; ) is the subspace of H(div; ) with vanishing normal trace on <2, that is,
Hy(div; 2) = {v e H(div; Q) : v-n|;o =0}.

LetV=H (1)(.(2) and Q = Lg(.Q), the weak formulation of the Stokes problem (1.1)—(1.3) is to find (u, p) € V x Q such that

va(u,v) + b(v,p) =(f,v) YveV, 2.1)
b(u, q) =0 Vg €0, (2.2)
where
a(u,v) = (Vu, Vo),
b(u,q) = —(q, V-u),

and

LYQ)={qe LXQ): /qux=0}.
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It is well know that the spaces V and Q satisfy the inf-sup condition (see [1])

b(v,
sup 22D 5 5 liglly Va € 0. @2.3)
veV |V||

which means that the problem (2.1)-(2.2) has a unique solution. After introducing the divergence free function space X = {v €
V : Vv =0}, the velocity u in (2.1)-(2.2) has an equivalent formulation: Find u € X such that

va(u,v) = (f,v) Vv e X. 2.4)

For simplicity, we only consider the model problem (1.1)-(1.3) in two dimensions. The extension to three dimensions can be
done with straightforward modifications.

Consider a family of conforming shape-regular meshes 7, that partition the domain £ into triangle elements {7}. Denote by
hy = diam(T") and h = maxycy, hy. We use ny to denote the outward unit normal vector of each element 7. Additionally, let 8}{ be
the set of interior edges of 7, and 82 be the set of boundary edges on 0. Thus, the set of all edges &, = 8’{ U SZ. For each edge
e € &, its length is denoted by &,. In particular, the set of edges of an element T is stated as 8,?, that is, ‘ShT ={e€ &, 1 eCaT}.
For e € &,, we define 7, = {T € 7, : e C 0T }. We use P,(D) to denote the space of polynomials of degree at most k on D, similarly,
P, (D) denotes the vector-valued case. Furthermore, for s > 1, we define the broken Sobolev space

HY Ty = {ve LX) : vly € H'(T), VT €T,}.

Throughout the paper, all generic constants (with or without subscripts) are independent of 4 and the parameter v, but may depend
on the shape regularity of 7, and the polynomial degree k.

Letee EhI be an interior edge, which is shared by two adjacent elements T+ and T~. For convenience, the global index of T™ is
assumed to be smaller than that of 7~. For a piecewise smooth scalar, vector or tensor function v with v* = v|;+, we define their
averages and jumps by

{v} = %(f +0), [ul=ot -

When restricted to a boundary edge e € SZ N aT*, we set {v} = v* and [v] = v*. Moreover, we associate each e € 5h’ with the unit
normal vector as n, = ny+|, = —np-|,. Similarly, for e € 8}‘3, its outward unit normal vector n, is defined along 9£2 restricted to e.

Now we introduce the two finite element spaces V', and P,. More precisely, the fluid velocity is approximated by discontinuous
P, finite element spaces. While the pressure is discretized by piecewise constant finite element space P,, that is,

V,={veL*Q) :vly € P(I), VT €T,}.
P, ={qe LX) : qly € P(T), VT € T,}.
The bilinear form of the weakly over-penalized symmetric interior penalty method is defined by (see Ref. [38])

aw,v)= Y (Vw,Vo)r + . h3 (10w, 1)), Vw,veV,,

TET, €€y

where 110 is the L? projection from L?(e) onto Py(e), that is,

e = / vds. @2.5)
The standard WOPSIP method for Stokes Egs. (1.1)-(1.3) is to find that (u, p,) € V', X P, satisfying (see [41])

vay(uy,vy) + c,(wy, pp) = (f,vp) Yo, €V, (2.6)

cp(uy,q,) =0 Vg, € Py, 2.7)

with ¢, (v, 1) = = Trer, @V - Up)r-

The above method is not pressure-robust, for a remedy, motivated by [26], we modified the right-hand term by introducing a
H (div) conforming interpolation z,. Additionally, we have replaced the divergence operator in the pressure-velocity coupling term
¢, (-, -) with a weak divergence. Consequently, the modified WOPSIP method for solving problem (1.1)-(1.3) can be stated as follows:
Find (u,,, p,) € V, X P, such that

vay(u,, vy) + by (v, pp) = (f.mpvy) VYo, €V, (2.8)
by qy) =0 Vg, € P,. 2.9)
Here, b,(vy. q;) = — ZTerh (gp> Vi - vp)r, the term V- uy, is inspired by weak Galerkin method [46], further information regarding

this can be found in Definition 2.1 provided below. In the above, z;, can take the form of 78T or zBPM, and additional details can
be found in Definitions 2.2 and 2.3 respectively.

Definition 2.1. For a piecewise smooth vector function v on 7;, its weak divergence V , - v|; € Py(T) is defined by

Vi 0.9 ==, Vo) +{{v} - nr.q)ar Vg € By(T). (2.10)
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Definition 2.2. For any v € V +V,, 28w € H(div; 2) N RT, is defined as: for each e € a7, it satisfies
(#8Tv-nr,q). = ({v) -nr.q9), Va € Pye), (2.11)

where RT, = {v, € H(div; Q) : vyly € RTy(T), YT € T}, with RTy(T) = Py(T) + xPy(T) (see [47]).

Definition 2.3. For any v € V +V,, zBPMv € H(div; @) n BDM, is defined as: for each e € 9T, it satisfies
(#BMy . np, q), = ({v} - ngp,q), Vg € P(e), (2.12)
where BDM, = {v,, € H(div: Q) : v,|; € BDM,(T), VT € 7} (see [48]), with BDM,(T) = P,(T).
Using (2.10) and integration by parts, we have

by, gp) =~ 2 (@, V- vp)r + 2 ({an) oy - el (2.13)

TET, e€s)

The following approximation properties are well known (see [1])
lo - z%Tvlly < Chllvll,, Yo EV + V), (2.14)

lo - z5PMo|l, < Chllvll,, YW EV + V. (2.15)

Here, ||Av||%‘h = Zrerh ||V.v||aT. _ _
By introducing the discretely divergence-free function space

X, ={v, €V, : bywp.q) =0 Vg, € P}, (2.16)
we then show that u, in (2.8)-(2.9) satisfies u;, € X, and
vay,(uy,vy) = (f, myvy,) Yo, € X, (2.17)
Remark 2.4 (Comparison with CR FEM). When we restrict discrete velocity on Crouzeix-Raviart FEM space, that is, choosing
ViR={v,eV,: /[vh]ds =0Ve €&},
e

the numerical method (2.8)—(2.9) is reduced to the modified CR — P, FEM scheme (see [20,23]): Find (uy,, p;,) € VfR X P, such that

v Y (Vu Vo) = Y (Vv p) = (fmpvy) Yo, €V, (2.18)
TeT), TeT),
- YV uyq)=0 Vg, € P,. (2.19)
TET,

3. Well-posedness

We first define two norms || - |lwp and || - [[pg on H'(7},):

1/2
lellwe = (nvuih + ) h;3||ng’[v1||§,e> . (3.1)
e€Ey
1/2
lvllpg = (uvnih + ) h;lu[v]ng,e) : (3.2)
eeEy

Then, using the Cauchy-Schwarz inequality, we can obtain the following lemma.

Lemma 3.1. It holds that

lapw,v)| < llwllwpllvllwe Yw, ve H(T)). (3.3)
Moreover, it follows from the definition of || - |lwp that

a,,v) = v}, YveH'T). (3.4

Then, we define the Crouzeix-Raviart interpolation operator H?R cHY(T) - P,(T) by (see [4])

/ nfRvds = / vds Vee £} (3.5)
e e

Standard error estimate implies that (see [4])

h'llo = TRl + 1o = IERvl, o < CRY Wy, m=0,1. (3.6)
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Then, the global Crouzeix-Raviart interpolation operator H,?R : H'(2) - V, can be constructed by
UMl = IR wly) VT €T,
Using (3.5) and integration by parts, for v € H'(T) we have
(V- UIRv), a7 = (V- v.ap)r Vay € Py(T). (3.7)

Moreover, it follows from (3.5) that

1
mrRv) = s /e[HhCRv]ds =0 VveV =H)Q). (3.8)
which along with (3.6) yields
2 \1/2
TRyl = ( 3 |HhCRv|LT> <C,lvl, VeV =H\Q. (3.9)
TeT,

We also need the following trace inequality (see [33])

lwlig, < C(h Nwlig . + hAVWlls ) Vw e HY(T), (3.10)
and the inverse inequality (see [49,50])

Ivllo, < ChyPlvllyy Vo€ Py(T), Yee €l (3.11)

To proceed, we recall the following useful result that shows the relation between the jumps across edges and the norm || - |lyp
(see Lemma 3.1 in [38]).

Lemma 3.2. For all v € H'(7}), it holds that

> AR, < Gl (3.12)

e€Ey

This along with (3.1) and (3.2) yields
Iwllpg < Cllvllwe Yo € H'(T)).

Next, we shall establish the following discrete inf-sup condition.

Theorem 3.3. It holds that
bWy, qp)
S8 30) 5 gyl (3.13)
veevy, opllwe
for any q;, € P,

Proof. ForveV = H(l)(.Q), in light of (2.13), (3.7) and (3.8), we arrive at
bp(TgRv,q) = = Y (a4, V- HER0)p + Y (g, ), LTS D - m, 1),
TET), e€&y

== Y @V IR0 ==Y (@4, V-V =byv.q;) Vg, € P
TeT, TeT,

This together with (2.3) and (3.9) implies that

by(v,qp)
vl
bh(H,?Rv,qh)

B llgnlly < sup
veV

= sup
veV Ivll

b (TR, g;)

<C S 7

St SU CR
Hvath ”Hh vllwp

<c, sup 2nn)
T M wev, lwyllwe

Then, the desired assertion (3.13) is satisfied by taking g, = f. C;l. O

Theorem 3.4. The modified WOPSIP method (2.8)-(2.9) has a unique solution.
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Proof. It is enough to show that f = 0 implies that u, = 0 and p, = 0. In this case, taking v, = u,, in (2.8) and g, = p, in (2.9),
and then subtracting (2.9) from (2.8) yields

viluyll3p = van . up) = 0.
It follows that u;, = 0. This together (2.8) yields b,(v;. p,) = 0 for any v, € V. It follows from the discrete inf-sup condition (3.13)
that p, = 0. The proof is completed. []

4. Error estimates

This section is devoted to deriving optimal order error estimates for the velocity u,, in || - ||wp norm, and for the pressure p, in
L? norm. The main results are stated in Theorem 4.4. To obtain the desired estimates, we need Lemmas 4.1-4.3.
Lemma 4.1. Forany ¢ € V+V,, onT € T, it holds that

& e = Vw Q. 4.1)

Proof. For any g € Py(T), noting that Vg| = 0, it then follows from (2.10)—(2.12) that

(V- 7,90, 91 == (7,0, V@) + (7@ - Ny, @Y1
=—(p,Vor + {@} - np.q)or
=(Vy - @.9r,

which proves the desired result (4.1). [J

Lemma 4.2. For any ¢ € H' (), v, € V,,, there holds

Y (Vo mpwr == Y (15, V0 U 4.2)

TEeTy, TeT),

where x,, is the L? projection from Q onto P,.

Proof. Since ¢ € H!(Q), then [¢] =0 on any e € 8}{. Observed that 7,v, € H(div; Q) implies [z,v,, - n,] =0 on any e € &,. These
facts together with (4.1) imply that

Z Vo, myvp)r

TET,
=- Z (@, V- mpvp)r + z (&, w0y -y )or
TeT, TEeTy,
== X @&V mrr+ Y ([l (mw, - m,}),
= ece]
+ 2 <{¢},[75th '"e]>e
e€Ey
== z (@, V- mpop)r
TEeT,
=- Z (g, V - mpvp)r
TeT,
=- 2 (b, Vo - Up)r
TET,

which is the desired assertion (4.2). []

Lemma 4.3. Let (u, p) be the solutions of (2.1)~(2.2), assume that p € H'(£), there holds

1 sup lvah(u’wh)_(f’”hwh)l5Ch||u||2. (4.3)

V w,ex llwpllwp
h h

Proof. For any w), € X, using (4.2) to obtain

D (Vpmgwy)y == Y (1op. Vo Wiy = bywy, mop). (4.4)
TeT, TeT,

It then follows from (2.16) that b,(w),, 7yp) = 0. This together with the Stokes Eq. (1.1) implies that

%|vah(u, wy) = (f, mpwp)|
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:H Z (vVu,Vwy)r — Z (fv”hwh)T‘

TET, TETy,
=1( > vV, Vw,)r + Y, (vau - Vp, frhwh)T‘
\%
TeT, TeT,

=%‘ Y VuVwr + Y, (vu maw,)y |

TET, TET),
= Y (VuVwyr + Y dumwy)y |
TEeT, TeT,
=[( X Vuvwr+ Y @uwyr)+ Y Bumaw, - wy)r
TEeT, TET, TeT,
2[A; +4y|- (4.5)

For the term A,, integrating by parts leads to

A= Z (Vu,Vwy)r + z (Au, wp)r

TEeT, TeT,
= Z <(V“)"vah>ar
TET,
= Y ([(Vwn,1. (wy}), + Y ({(Vun, ). [w,]),
eeé‘é ee&)y
=Y ({(Vun,},[w,]),
e€sy
= > (Vu—1Run,. (wy]), + Y (VI Fwn,.[w,]),
=N eEEy
2A1 +Ap. (4.6)

Combining the approximation property in (3.6), the trace inequality (3.10), (3.12) and the Cauchy-Schwarz inequality, we can
estimate A, by

[Aq] :| 3 (Vu- Bwn,, [w,1),

e€Ey
1/2 1/2
<( Y nelva-mRaig,) (X a2,
e€eEy ¢ e€Ey
<Chlulyllwyllwp- 4.7)

Using (2.5), (3.9), (3.11) and the Cauchy-Schwarz inequality, we bound A,, by

A :| > ((VISRwn,, [wy)),

ee&y
=| Z <(VH$Ru)nE,H£[wh]>e

e€éy ¢

1/2 1/2

<( X mivarwi,) (Y a2 iw,g, )

e€&y ¢ e€&y

1/2 1/2
<c( X r2 X varni, ) (X al itz )
ety TeT, eEEy
CR 2 172 -3 0 2 172
<ch( ¥ IvarRwiR ) (Y i, iz, )
TeTy, e€éy

<Chlulllw|lwp- (4.8

Applying the approximation property in (2.14) and (2.15), we bound A, by

Agl =| 3 (du, mpwy, —w)q |

TET,
1/2 1/2
(X 1ul, ) (X Ny - waly)
TET, TETy,
<Chlulyllwpll; 4
<Chlul,llwlwp- (4.9)

Plugging (4.6)-(4.9) into (4.5) gives the desired estimate (4.3). []



Y. Zeng et al. Journal of Computational and Applied Mathematics 445 (2024) 115819
We are now in a position to prove the error estimate for the numerical scheme (2.8)-(2.9).

Theorem 4.4. Let (u, p) and (uy, p;,) be the solutions of (2.1)—(2.2) and (2.8)—(2.9), respectively. Assume that (u, p) € H*(Q)x H(Q),
then it holds that

llu = uyllwe < Chllull, (4.10)
lzop = ppllo < Chvlully, (4.11)
lp = pallo < Ch(vIlully + Iply). (4.12)

Proof. For any v, € X, denote by w), = u;, — v, it follows from (2.17) that

vilwgllye =vay, ;. wy)
=vay,(u, — vy, wy)
=va,(u — vy, wy) +va,(u,, wy) —va,(u,wy)
=va,(u— vy, wy) + (f, mwy,) — va,u,w;,)
<vilu = vpllwpllwyllwe + Iva,w, wy) = (f, mpwp)|. (4.13)
On the other hand, the triangle inequality implies that
llu = upllwp < llu—vyllwp + lwp, llwe- (4.14)

Combining the above two formulations in (4.13) and (4.14) to arrive at

u—u <2 inf |lu-v,
= wpllwe <2 int 1= vyllwe

! |vay(u,wy) = (f, mywy)| (4.15)
V weX, [l llwp
Taking v, = HERuh, it follows from (3.6) and (3.8) that
inf lu - vyllwp < llu— TRullyp = llu— T5Rull; , < Chllull,. (4.16)
vEX)
Substituting (4.16), (4.3) into (4.15) gives the desired assertion (4.10).
Next, we shall prove the pressure estimates (4.11) and (4.12). First, we use the Pythagoras theorem to obtain
lp = pullg = llp = moplI§ + llmop = pyll5- (4.17)
Standard error estimates leads to (see [49,50])
[lp = 7opllo < Chlply, (4.18)
it leaves us to estimate ||zyp — p,|lo- In view of the discrete inf-sup condition (3.13), we have
1 b, (vy, mop — pp)
Ilmop = pyll < o sup == (4.19)
B vyev, lop llwe

For any v, € V, it follows from (1.1), (4.2), and integration by parts that

by vy, mop — pp)
=b,(vy, myp) — by, ppy)
== Z (P, Vi " Up)r — Z (fs mpvp)y + vay(uy, vy)

TET, TET,
== Y (mp Vv + Y, (vAu=Vp, vy + vay @y, vy)
TeT, TeT,
== Z (7P, Vo - U7 + Z (P, Voo - Uy
TET, TET,
+ Z vAu, vy + va,(uy,, vy)
TeT),
= ) (vAu, mwy)p + vay(uy, vy)
TET,
= Z VAu, rpvp)r + vay(u,vy) + va,(uy, — u,vy)
TeT),
=( 3 vV Vo )r+ Y (v, n,,u,,)T) +vay, (uy, — u,vy)
TEeT, TET,
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Ap,+ A, (4.20)
Similar to A, the term A; can be bounded by

Ay= Y WuVu,)p+ Y (vAu, my)y
TeT, TeT,

<Chvllullzllvyllwe- (4.21)
On the other hand, we have
Ay =va,(uy, —u,vy)
Svllu = upllwellvgllwe- (4.22)
Combining (4.19)—(4.22) implies that
llzop = ppllo < viiu —uyllwp + Chvllull,. (4.23)
This along with (4.10) yields to
[lzop = ppllg < Chvlull,, (4.24)
which is the desired estimate (4.11). Substituting (4.24) and (4.18) into (4.17) leads to the desired conclusion (4.12). []

Next, we shall establish the optimal L? error estimate for the discrete velocity u;,. The main techniques are followed by [21,51],
therein they address the modified CR FEMs. We first recall the following result which is based on the duality argument (see Lemma
4.1 in [51D).

Lemma 4.5. Let u and uy, be the solutions of (2.1)-(2.2) and (2.8)—(2.9), respectively. Given s € L), let u, € X satisfies

va(ug,v) =(s,v) YwveX (4.25)
and let ug ;, € X, denote the solution of

va,(Usp,v) = (s, mpv) Vv € X, (4.26)
Then, it holds that

lu—uplly < sup  {vllu—wllypllay — g llwe
seL2(Q),|Isllp=1

+ )vah(u—uh,us)—(s,ﬂh(u—uh))|
+ |vantu,ug = uy ) = (. 7ty = ug )|
+ )(s,(u—uh)—zrh(u—uh)))

}. (4.27)

+ )(f’ us — ﬂhus)

Based on the above lemma, we now can prove the corresponding L? error estimate.

Theorem 4.6. Let (u, p) and (u,, p,) be the solutions of (2.1)-(2.2) and (2.8)—(2.9), respectively.
(D If m, = 2R in (2.8), then it holds
llu = uylly < CA*(llull, + 1| Aull,). (4.28)
(D If n;, = zBPM in (2.8), then it holds
llu —uplly < CH?|lully- (4.29)
Proof. We only give the proof for (4.28), which is mainly based on [21]. The corresponding estimate (4.29) can be addressed by

using similar techniques [51]. Under the condition that Q is convex, the standard regularity results for Stokes equations imply that
(see [52])

vilugll, < Cllsllo- (4.30)

We then estimate five different terms in (4.27) to obtain the desired assertion (4.28).
It follows from (4.10) and (4.30) that

Vilu—upllwellug — ugpllwe < v(Chllull)(Chlluglly)

< CR|lulllIsllo- (4.31)
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Using similar arguments as for (4.5), and applying (4.10) and (4.30), we obtain
vay( — up,ug) = (s, 75" (= uy))| < Chvllugllllu —uyllwp
< Chvllugllx(Chllully)
< CRPlullyIsllo- (4.32)
Analogously, we also have
vay(u,ug —ug ) — (f, 7 (ug —ug )| < Chvllullyllug — ug p,llwe

< Chvllully(Chlluglly)

< Ch*|lull,|Isllo. (4.33)
Combining (2.14) and (4.10) yields
)(s, (u—uy)— 78 (u - u,,))‘
<Chllu = uyllwpllslly < CR*|lullylIsllo- (4.34)
Since (Vp,u, — 7RTu,) = 0, we arrive at
’(f, ug — ﬂRTus)
=)V(Au, ug — erTus)
<Iv(Au — MyAu, ug — 7%%u)| + |[v(ITyAu, ug — 75%uy)|, (4.35)

where 11 is the L? projection into piecewise constants. Using the standard approximation error estimates for I, and (2.14) to find
that

[v(Au — MoAu,ug — 78Tuy)|
<CVR? ||V (dw)llylluglly < CR* [V (AwllglIsllo- (4.36)
Using similar techniques developed as those in Theorem 3.11 in [21], we have
vy Au,ug — 28Tuy)| < CR?|| Aull,|lsllo- (4.37)
Substituting (4.31)-(4.37) into (4.27) gives the desired estimate (4.28). []

Remark 4.7. The key step in designing the pressure-robust scheme (2.8)-(2.9) is to modify the right-hand by (f, z,,v;), and replace
the term ZTETh (V-vy, q,) with ZTGTh(vw - vy, q,)- In this case, the result (4.2) in Lemma 4.2 holds true. Thus, we have (4.4), which
means that the error estimate for ||u — u,||wp is pressure-robust (see lines 3—4 in (4.5)). In addition, it follows from (4.2) that
Zrerh(Vp, TRURT — ZTeTh (mops Vy - vp)7 = 0, which means ||zyp — pyll, is pressure-robust (see lines 5-6 in (4.20)).

Remark 4.8. In this work, we only consider the lowest order WOPSIP method. The extension to second order and odd higher order
schemes in 2D on triangular meshes is straightforward, since the inf-sup condition (3.13) holds for the corresponding PEL—PS“
mixed finite element. For the even-order (k > 2) extension in 2D, we have minor restrictions on the triangular mesh as the inf-sup
condition holds for k > 4 Scott-Vogelius element [53]. In 3D, the method can be extended only to the second order scheme since
the PZ“C—PIdis mixed finite element is stable [54]. But for k > 2, neither the P;C—Pfi_sl element nor the P;f'Pfisl element is stable on
tetrahedral meshes [55]. We may think of not using these two types of inf-sup stability. But the over-penalty in WOPSIP prevents us
from using the inf-sup stability of BDM elements, unlike the other DG methods. Some concluding remarks on higher order WOPSIP

schemes for the Stokes equations can be found in Section 6 in [41].
5. Numerical experiments

In this section, we present numerical results to validate our theoretical analysis. We solve the Stokes problem (1.1)-(1.3) on the
domain Q2 = (0, 1) x (0, 1) using two different values of viscosity, namely v = 1 and v = 107°. The source term f is selected in such a
way that the exact solution remains the same for both values of v:

_(=28@2x - 6x2 +4x3)y2 (1 - y)?
T\ 2B8Qy-6 +4yx2(1-x7 )’
p=2802x — 6x% +4x3)(2y — 6y + 4.

(5.1)

The first three levels of mesh grids are displayed in Fig. 1. The higher-level grids are obtained by nested refinement.

In Table 1, we present the computational results for both methods when v = 1. Here and in the following table, IT, denotes the
L? projection into the piecewise linear polynomial space. For the pressure approximation, we employ the reduced integration (2.8)
with 7z, = RTj,. It can be observed that optimal order convergence is achieved in all cases. Consequently, for v = 1, both methods

10



Y. Zeng et al. Journal of Computational and Applied Mathematics 445 (2024) 115819

Fig. 1. The first three levels of uniform grids for computing (5.1) in Tables 1-2.

Table 1
Error profiles for solution (5.1), when v = 1.
n/\V2 1T u — Il Rate V(T = uy)ll, Rate llzop = pallo Rate
By the standard WOPSIP method (2.6)—(2.7)
1/4 0.6802E+00 0.6689E+01 0.2374E+01
1/8 0.1842E+00 1.88 0.3729E+01 0.84 0.1259E+01 0.91
1/16 0.4819E-01 1.93 0.1940E+01 0.94 0.5877E+00 1.10
1/32 0.1223E-01 1.98 0.9816E+00 0.98 0.2731E+00 1.11
1/64 0.3065E-02 2.00 0.4924E+00 1.00 0.1320E+00 1.05
By the pressure-robust WOPSIP method (2.8)-(2.9) with #;, = RT|,
1/4 0.1215E+01 0.1302E+02 0.2913E+01
1/8 0.3450E+00 1.82 0.7212E+01 0.85 0.1428E+01 1.03
1/16 0.9040E-01 1.93 0.3720E+01 0.96 0.6064E+00 1.24
1/32 0.2289E-01 1.98 0.1876E+01 0.99 0.2735E+00 1.15
1/64 0.5734E-02 2.00 0.9401E+00 1.00 0.1319E+00 1.05
Table 2
Error profiles for solution (5.1), when v = 10°.
n/\V2 [ITX e — |l Rate VAT u = wy)lly Rate llzop = Ppllo Rate
By the standard WOPSIP method (2.6)-(2.7)
1/4 0.1861E+06 0.2099E+07 0.6326E+00
1/8 0.6962E+05 1.42 0.1409E+07 0.58 0.5031E+00 0.33
1/16 0.2099E+05 1.73 0.7736E+06 0.86 0.2230E+00 1.17
1/32 0.5638E+04 1.90 0.3986E+06 0.96 0.7124E-01 1.65
1/64 0.1440E+04 1.97 0.2010E+06 0.99 0.1967E-01 1.86
By the pressure-robust WOPSIP method (2.8)-(2.9) with z, = RT,
1/4 0.1215E+01 0.1302E+02 0.2911E-05
1/8 0.3450E+00 1.82 0.7212E+01 0.85 0.1430E-05 1.02
1/16 0.9040E-01 1.93 0.3720E+01 0.96 0.6079E-06 1.23
1/32 0.2289E-01 1.98 0.1876E+01 0.99 0.2779E-06 1.13
1/64 0.5735E-02 2.00 0.9401E+00 1.00 0.1395E-06 0.99

yield comparable performance. However, in terms of velocity approximation, the velocity errors of pressure-robust WOPSIP method
are approximately twice as large as that of standard WOPSIP method. Nevertheless, as we will demonstrate later, the pressure-robust
WOPSIP method exhibits significant advantages when dealing with small values of v.

In Table 2, we present the computational results for both methods when v = 10~°. Optimal order convergence is observed in
all cases. However, the velocity errors of the standard WOPSIP method are approximately about 10°/5 times larger than those of
the pressure-robust WOPSIP method. Also, for the pressure-robust WOPSIP method, the velocity errors are almost the same for
both v =1 and v = 107°. These observations align with the theoretical proof that the velocity approximation in the pressure-robust
WOPSIP method is independent of v. Additionally, the pressure approximation in the pressure-robust WOPSIP method performs even
better, exhibiting an improvement of approximately 10~ compared to the standard WOPSIP method in terms of L? approximation.
This matches well with the theoretical analysis shown in (4.11).

11
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6. Conclusions

In this study, we propose a pressure-robust weakly over-penalized symmetric interior penalty (WOPSIP) discontinuous Galerkin
(DG) method for solving the Stokes equations. We assume that the exact solutions possess sufficient smoothness in order to derive
an error estimate. However, it is also an intriguing area of research to extend the error analysis to scenarios with minimal regularity
assumptions [56]. We plan to thoroughly investigate this topic in future work.

Data availability
Data will be made available on request.
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