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A B S T R A C T

In this paper, we propose and analyze a new weakly over-penalized symmetric interior penalty
(WOPSIP) discontinuous Galerkin (DG) scheme for the Stokes equations. The primary approach
involves modifying the right-hand term and replacing the pressure–velocity coupling term 𝑐ℎ(⋅, ⋅)
by incorporating a weak divergence instead of the divergence operator. These modifications
allow for pressure-robustness in the scheme. We establish optimal order error estimates for the
velocity 𝒖ℎ in discrete energy norm and 𝑳2 norm, as well as for the pressure 𝑝ℎ in 𝐿2 norm.
We also provide numerical results to validate the effectiveness of the proposed scheme.

1. Introduction

Let 𝛺 ⊂ R𝑑 (𝑑 = 2, 3) be a bounded polyhedral domain with boundary 𝜕𝛺. Given 𝒇 ∈ 𝑳2(𝛺), we consider the following Stokes
odel problem:

−𝜈𝛥𝒖 + ∇𝑝 = 𝒇 in 𝛺, (1.1)

∇ ⋅ 𝒖 = 0 in 𝛺, (1.2)

𝒖 = 0 on 𝜕𝛺, (1.3)

here 𝜈 > 0 is the viscosity parameter, 𝒖 is the velocity field, 𝑝 is the pressure, and 𝒇 stands for a body force.
An essential aspect of finite element methods (FEMs) applied to the Stokes equations is the verification of the inf-sup

ondition [1,2]. In the last few decades, various inf-sup stable FEMs have been designed and analyzed, for example, MINI
lement [3], Crouzeix–Raviart (CR) element [4], Bernardi–Raugel element [5]. However, these conventional FEM schemes only
rovide a priori error estimates that rely on the pressure variable, that is (see [6]),

‖𝒖 − 𝒖ℎ‖1,ℎ ≤ 𝐶1 inf
𝒗∈𝑽 ℎ

‖𝒖 − 𝒗ℎ‖ +
𝐶2
𝜈

inf
𝑞ℎ∈𝑃ℎ

‖𝑝 − 𝑞ℎ‖0.
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This inequality implies that the velocity error may become large when either the viscosity 𝜈 is small or the pressure error is large.
The question of how to develop a pressure-robust scheme that eliminates the dependence on pressure has garnered significant

ttention in recent decades. One approach to achieve pressure-robustness is to employ divergence-free mixed elements [7–11],
lthough this often requires additional degrees of freedom or imposes restrictions on mesh partitions. Another method is to utilize
rad-div stabilization [12,13], which mitigates the lack of pressure robustness but does not completely eliminate it. Recently, a
opular approach for designing a pressure-robust scheme involves the use of a velocity reconstruction operator [14]. Specifically,
his technique modifies the right-hand side by introducing a 𝑯(div) conforming operator that establishes 𝐿2-orthogonality between
he mapped test velocities and the gradient fields. This approach has been successfully applied to various numerical methods [6,15–
1]. We also refer the interested reader to [32], wherein a 𝒄𝒖𝒓𝒍-𝒄𝒖𝒓𝒍 weak formulation for velocities is proposed to achieve
ressure-robustness.
In addition to classical finite element methods (FEMs), discontinuous Galerkin methods (DG) [33] have proven to be effective

n simulating Stokes flow [34]. DG methods allow for the use of piecewise polynomial functions that are totally discontinuous
cross the triangulation, providing flexibility in handling highly nonuniform and unstructured meshes. They are also well-suited
or dealing with inhomogeneous boundary conditions and ℎ𝑝-adaptive computation. However, standard DG methods [34] do not
ossess pressure-robustness. One remedy for this limitation is to employ 𝑯(div) conforming elements with penalization in DG
iscretization [35,36]. Another approach, developed in recent work, extends the velocity reconstruction techniques in [14] to interior
enalty DG (IPDG) and conforming DG methods [26]. And recently, it was also extended to enriched Galerkin methods [37]. In this
ork, we further explore this issue within the context of weakly over-penalized symmetric interior penalty (WOPSIP) DG methods.
he WOPSIP method was initially proposed and analyzed in [38] for solving second-order elliptic equations. Its main idea involves
tilizing a piecewise constant 𝑳2-projection on mesh boundaries for weak penalization. Compared to standard IPDG methods,
OPSIP DG methods offer the advantages of having a simple bilinear form and being suitable for parallel computation [39].
dditionally, in WOPSIP DG schemes, there is no need to select an excessively large interior penalty parameter to achieve favorable
roperties. Due to these advantages, WOPSIP DG approaches have been explored for solving the biharmonic equation [40], Stokes
quations [41], Reissner–Mindlin plate problem [42], and variational inequalities [43]. Moreover, the higher order version of
OPSIP DG method for second order elliptic equations was addressed in [44]. However, the original WOPSIP method for the Stokes
quation, as explored in [41], is not pressure-robust. In this work, our objective is to extend this approach to achieve pressure-
obustness. To accomplish this goal, we introduce a 𝑯(div) conforming operator to modify the right-hand side. Furthermore, we
bserve that the divergence operator in the pressure–velocity coupling term 𝑐ℎ(⋅, ⋅) (see (2.7) below) needs to be replaced with a
eak divergence operator to attain pressure-robustness (see Remark 4.7 below). We also establish pressure-robust error estimates.
t is worth mentioning that WOPSIP method is a non-consistent method since it remove some terms inherited from standard IPDG
cheme. This means that the corresponding convergence analysis is more involved than that for standard IPDG method, since the
onsistent error is also needed to be estimated. In fact, WOPSIP method has some interesting connections with CR FEM (see [45]),
hus its error estimate can be resorted by some techniques related to CR FE function space.
The rest of our paper is organized as follows. In the next section, we present the pressure-robust scheme, which involves modifying

he right-hand term and replacing the divergence operator in 𝑐ℎ(⋅, ⋅) with a weak divergence. In Section 3, we establish the well-
osedness of the numerical schemes, while Section 4 focuses on proving the pressure-robustness of error estimates. To support the
heoretical analysis, we provide several numerical tests in Section 5. Finally, in Section 6, we draw conclusions based on our findings.

. The pressure-robust WOPSIP method

Throughout the paper, we adopt certain standard notation. For a bounded domain  ⊂ R𝑑 , (𝑑 = 2, 3), we denote 𝐻𝑠()(𝑠 ≥ 0) by
he standard Sobolev space with its norm ‖ ⋅‖𝑠, and seminorm | ⋅ |𝑠,. When 𝑠 = 0, 𝐻0() is the Lebesgue space 𝐿2(). In addition,
or functions 𝑤, 𝑣 ∈ 𝐿2() we denote the inner product by (𝑤, 𝑣) = ∫𝐷 𝑤𝑣𝑑𝑥 and ⟨𝑤, 𝑣⟩𝜕 = ∫𝜕 𝑤𝑣𝑑𝑠. We shall drop the subscript 
hen  = 𝛺. Additionally, 𝐻1

0 (𝛺) is the subspace of 𝐻1(𝛺) that has vanishing trace on 𝜕𝛺, i.e., 𝐻1
0 (𝛺) = {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣|𝜕𝛺 = 0}. By

onvention, for the vector-valued analogs, we shall use boldface type: 𝑯𝑚() = [𝐻𝑚()]𝑑 . We also use the same symbol for the inner
roduct in 𝑳2() and 𝑳2() = [𝐿2(𝐷)]𝑑×𝑑 . More precisely, (𝒘, 𝒗) =

∑𝑑
𝑖=1 (𝒘𝑖, 𝒗𝑖) for 𝒘, 𝒗 ∈ 𝑳2() and (𝜻 , 𝜼) =

∑𝑑
𝑖=1

∑𝑑
𝑖=1 (𝜻 𝑖𝑗 , 𝜼𝑖𝑗 )

for 𝜻 , 𝜼 ∈ 𝑳2(). Moreover, we introduce the Hilbert space 𝑯(div;𝛺) = {𝒗 ∈ 𝑳2(𝛺) ∶ ∇ ⋅ 𝒗 ∈ 𝐿2(𝛺)} that is endowed with
graph norm ‖𝒗‖div =

(

‖𝒗‖20 + ‖∇ ⋅ 𝒗‖20
)1∕2. 𝑯0(div;𝛺) is the subspace of 𝑯(div;𝛺) with vanishing normal trace on 𝜕𝛺, that is,

𝑯0(div;𝛺) = {𝒗 ∈ 𝑯(div;𝛺) ∶ 𝒗 ⋅ 𝒏|𝜕𝛺 = 0}.
Let 𝑽 = 𝑯1

0(𝛺) and 𝑄 = 𝐿2
0(𝛺), the weak formulation of the Stokes problem (1.1)–(1.3) is to find (𝒖, 𝑝) ∈ 𝑽 ×𝑄 such that

𝜈𝑎(𝒖, 𝒗) + 𝑏(𝒗, 𝑝) =(𝒇 , 𝒗) ∀𝒗 ∈ 𝑽 , (2.1)

𝑏(𝒖, 𝑞) =0 ∀𝑞 ∈ 𝑄, (2.2)

where

𝑎(𝒖, 𝒗) = (∇𝒖,∇𝒗),

𝑏(𝒖, 𝑞) = −(𝑞,∇⋅𝒖),

and

𝐿2(𝛺) = {𝑞 ∈ 𝐿2(𝛺) ∶ 𝑞𝑑𝑥 = 0}.
2

0 ∫𝛺
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It is well know that the spaces 𝑽 and 𝑄 satisfy the inf-sup condition (see [1])

sup
𝒗∈𝑽

𝑏(𝒗, 𝑞)
|𝒗|1

≥ 𝛽𝑐‖𝑞‖0 ∀𝑞 ∈ 𝑄, (2.3)

which means that the problem (2.1)–(2.2) has a unique solution. After introducing the divergence free function space 𝑿 = {𝒗 ∈
𝑽 ∶ ∇⋅𝒗 = 0}, the velocity 𝒖 in (2.1)–(2.2) has an equivalent formulation: Find 𝒖 ∈ 𝑿 such that

𝜈𝑎(𝒖, 𝒗) = (𝒇 , 𝒗) ∀𝒗 ∈ 𝑿. (2.4)

For simplicity, we only consider the model problem (1.1)–(1.3) in two dimensions. The extension to three dimensions can be
done with straightforward modifications.

Consider a family of conforming shape-regular meshes ℎ that partition the domain 𝛺 into triangle elements {𝑇 }. Denote by
ℎ𝑇 = diam(𝑇 ) and ℎ = max𝑇∈ℎ ℎ𝑇 . We use 𝒏𝑇 to denote the outward unit normal vector of each element 𝑇 . Additionally, let 𝐼

ℎ be
the set of interior edges of ℎ, and 𝜕

ℎ be the set of boundary edges on 𝜕𝛺. Thus, the set of all edges ℎ = 𝐼
ℎ ∪ 𝜕

ℎ . For each edge
𝑒 ∈ ℎ, its length is denoted by ℎ𝑒. In particular, the set of edges of an element 𝑇 is stated as 𝑇

ℎ , that is, 
𝑇
ℎ = {𝑒 ∈ ℎ ∶ 𝑒 ⊂ 𝜕𝑇 }.

For 𝑒 ∈ ℎ, we define 𝑒 = {𝑇 ∈ ℎ ∶ 𝑒 ⊂ 𝜕𝑇 }. We use 𝑃𝑘() to denote the space of polynomials of degree at most 𝑘 on , similarly,
𝑷 𝑘() denotes the vector-valued case. Furthermore, for 𝑠 ≥ 1, we define the broken Sobolev space

𝐻𝑠(ℎ) =
{

𝑣 ∈ 𝐿2(𝛺) ∶ 𝑣|𝑇 ∈ 𝐻𝑠(𝑇 ), ∀𝑇 ∈ ℎ
}

.

Throughout the paper, all generic constants (with or without subscripts) are independent of ℎ and the parameter 𝜈, but may depend
on the shape regularity of ℎ and the polynomial degree 𝑘.

Let 𝑒 ∈ 𝐼
ℎ be an interior edge, which is shared by two adjacent elements 𝑇

+ and 𝑇 −. For convenience, the global index of 𝑇 + is
assumed to be smaller than that of 𝑇 −. For a piecewise smooth scalar, vector or tensor function 𝑣 with 𝑣± = 𝑣|𝑇± , we define their
averages and jumps by

{𝑣} = 1
2
(𝑣+ + 𝑣−), [𝑣] = 𝑣+ − 𝑣−.

When restricted to a boundary edge 𝑒 ∈ 𝜕
ℎ ∩ 𝜕𝑇 ±, we set {𝑣} = 𝑣± and [𝑣] = 𝑣±. Moreover, we associate each 𝑒 ∈ 𝐼

ℎ with the unit
normal vector as 𝒏𝑒 = 𝒏𝑇+ |𝑒 = −𝒏𝑇− |𝑒. Similarly, for 𝑒 ∈ 𝜕

ℎ , its outward unit normal vector 𝒏𝑒 is defined along 𝜕𝛺 restricted to 𝑒.
Now we introduce the two finite element spaces 𝑽 ℎ and 𝑃ℎ. More precisely, the fluid velocity is approximated by discontinuous

1 finite element spaces. While the pressure is discretized by piecewise constant finite element space 𝑃ℎ, that is,

𝑽 ℎ =
{

𝒗 ∈ 𝑳2(𝛺) ∶ 𝒗|𝑇 ∈ 𝑷 1(𝑇 ), ∀𝑇 ∈ ℎ
}

,

𝑃ℎ =
{

𝑞 ∈ 𝐿2
0(𝛺) ∶ 𝑞|𝑇 ∈ 𝑃0(𝑇 ), ∀𝑇 ∈ ℎ

}

.

The bilinear form of the weakly over-penalized symmetric interior penalty method is defined by (see Ref. [38])

𝑎ℎ(𝒘, 𝒗) =
∑

𝑇∈ℎ

(∇𝒘,∇𝒗)𝑇 +
∑

𝑒∈ℎ

ℎ−3𝑒 ⟨𝛱0
𝑒 [𝒘],𝛱0

𝑒 [𝒗]⟩𝑒 ∀𝒘, 𝒗 ∈ 𝑽 ℎ,

where 𝛱0
𝑒 is the 𝑳2 projection from 𝑳2(𝑒) onto 𝑷 0(𝑒), that is,

𝛱0
𝑒 𝒗 = 1

ℎ𝑒 ∫𝑒
𝒗𝑑𝑠. (2.5)

The standard WOPSIP method for Stokes Eqs. (1.1)–(1.3) is to find that (𝒖ℎ, 𝑝ℎ) ∈ 𝑽 ℎ × 𝑃ℎ satisfying (see [41])

𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ) + 𝑐ℎ(𝒗ℎ, 𝑝ℎ) = (𝒇 , 𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (2.6)

𝑐ℎ(𝒖ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃ℎ, (2.7)

ith 𝑐ℎ(𝒗ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ (𝑞ℎ,∇ ⋅ 𝒗ℎ)𝑇 .
The above method is not pressure-robust, for a remedy, motivated by [26], we modified the right-hand term by introducing a
(div) conforming interpolation 𝜋ℎ. Additionally, we have replaced the divergence operator in the pressure–velocity coupling term

ℎ(⋅, ⋅) with a weak divergence. Consequently, the modified WOPSIP method for solving problem (1.1)–(1.3) can be stated as follows:
ind (𝒖ℎ, 𝑝ℎ) ∈ 𝑽 ℎ × 𝑃ℎ such that

𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ) + 𝑏ℎ(𝒗ℎ, 𝑝ℎ) = (𝒇 , 𝜋ℎ𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (2.8)

𝑏ℎ(𝒖ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃ℎ. (2.9)

ere, 𝑏ℎ(𝒗ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ (𝑞ℎ,∇𝑤 ⋅ 𝒗ℎ)𝑇 , the term ∇𝑤 ⋅ 𝒖ℎ is inspired by weak Galerkin method [46], further information regarding
his can be found in Definition 2.1 provided below. In the above, 𝜋ℎ can take the form of 𝜋RT or 𝜋BDM, and additional details can
e found in Definitions 2.2 and 2.3 respectively.

efinition 2.1. For a piecewise smooth vector function 𝒗 on ℎ, its weak divergence ∇𝑤 ⋅ 𝒗|𝑇 ∈ 𝑃0(𝑇 ) is defined by
3

(∇𝑤 ⋅ 𝒗, 𝑞)𝑇 = −(𝒗,∇𝑞)𝑇 + ⟨{𝒗} ⋅ 𝒏𝑇 , 𝑞⟩𝜕𝑇 ∀𝑞 ∈ 𝑃0(𝑇 ). (2.10)
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Definition 2.2. For any 𝒗 ∈ 𝑽 + 𝑽 ℎ, 𝜋RT𝒗 ∈ 𝑯0(div;𝛺) ∩ RT0 is defined as: for each 𝑒 ∈ 𝜕𝑇 , it satisfies

⟨𝜋RT𝒗 ⋅ 𝒏𝑇 , 𝑞⟩𝑒 = ⟨{𝒗} ⋅ 𝒏𝑇 , 𝑞⟩𝑒 ∀𝑞 ∈ 𝑃0(𝑒), (2.11)

here RT0 = {𝒗ℎ ∈ 𝑯(div;𝛺) ∶ 𝒗ℎ|𝑇 ∈ RT0(𝑇 ), ∀𝑇 ∈ ℎ}, with RT0(𝑇 ) = 𝑷 0(𝑇 ) + 𝒙𝑃0(𝑇 ) (see [47]).

efinition 2.3. For any 𝒗 ∈ 𝑽 + 𝑽 ℎ, 𝜋BDM𝒗 ∈ 𝑯0(div;𝛺) ∩ BDM1 is defined as: for each 𝑒 ∈ 𝜕𝑇 , it satisfies

⟨𝜋BDM𝒗 ⋅ 𝒏𝑇 , 𝑞⟩𝑒 = ⟨{𝒗} ⋅ 𝒏𝑇 , 𝑞⟩𝑒 ∀𝑞 ∈ 𝑃1(𝑒), (2.12)

here BDM1 = {𝒗ℎ ∈ 𝑯(div;𝛺) ∶ 𝒗ℎ|𝑇 ∈ BDM1(𝑇 ), ∀𝑇 ∈ ℎ} (see [48]), with BDM1(𝑇 ) = 𝑷 1(𝑇 ).

Using (2.10) and integration by parts, we have

𝑏ℎ(𝒗ℎ, 𝑞ℎ) = −
∑

𝑇∈ℎ

(𝑞ℎ,∇ ⋅ 𝒗ℎ)𝑇 +
∑

𝑒∈ℎ

⟨{𝑞ℎ}, [𝒗ℎ ⋅ 𝒏𝑒]⟩𝑒. (2.13)

he following approximation properties are well known (see [1])

‖𝒗 − 𝜋RT𝒗‖0 ≤ 𝐶ℎ‖𝒗‖1,ℎ ∀𝒗 ∈ 𝑽 + 𝑽 ℎ, (2.14)

‖𝒗 − 𝜋BDM𝒗‖0 ≤ 𝐶ℎ‖𝒗‖1,ℎ ∀𝒗 ∈ 𝑽 + 𝑽 ℎ. (2.15)

ere, ‖𝒗‖21,ℎ =
∑

𝑇∈ℎ ‖∇𝒗‖
2
0,𝑇 .

By introducing the discretely divergence-free function space

𝑿ℎ = {𝒗ℎ ∈ 𝑽 ℎ ∶ 𝑏ℎ(𝒗ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃ℎ}, (2.16)

e then show that 𝒖ℎ in (2.8)–(2.9) satisfies 𝒖ℎ ∈ 𝑿ℎ and

𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ) = (𝒇 , 𝜋ℎ𝒗ℎ) ∀𝒗ℎ ∈ 𝑿ℎ. (2.17)

Remark 2.4 (Comparison with CR FEM). When we restrict discrete velocity on Crouzeix–Raviart FEM space, that is, choosing

𝑽 CR
ℎ = {𝒗ℎ ∈ 𝑽 ℎ ∶ ∫𝑒

[𝒗ℎ]𝑑𝑠 = 0 ∀𝑒 ∈ ℎ},

the numerical method (2.8)–(2.9) is reduced to the modified 𝐶𝑅−𝑃0 FEM scheme (see [20,23]): Find (𝒖ℎ, 𝑝ℎ) ∈ 𝑽 CR
ℎ ×𝑃ℎ such that

𝜈
∑

𝑇∈ℎ

(∇𝒖ℎ,∇𝒗ℎ) −
∑

𝑇∈ℎ

(∇ ⋅ 𝒗ℎ, 𝑝ℎ) = (𝒇 , 𝜋ℎ𝒗ℎ) ∀𝒗ℎ ∈ 𝑽 ℎ, (2.18)

−
∑

𝑇∈ℎ

(∇ ⋅ 𝒖ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃ℎ. (2.19)

3. Well-posedness

We first define two norms ‖ ⋅ ‖WP and ‖ ⋅ ‖DG on 𝑯1(ℎ):

‖𝒗‖WP =
(

‖𝒗‖21,ℎ +
∑

𝑒∈ℎ

ℎ−3𝑒 ‖𝛱0
𝑒 [𝒗]‖

2
0,𝑒

)1∕2
, (3.1)

‖𝒗‖DG =
(

‖𝒗‖21,ℎ +
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗]‖20,𝑒

)1∕2
. (3.2)

Then, using the Cauchy–Schwarz inequality, we can obtain the following lemma.

Lemma 3.1. It holds that

|𝑎ℎ(𝒘, 𝒗)| ≤ ‖𝒘‖WP‖𝒗‖WP ∀𝒘, 𝒗 ∈ 𝑯1(ℎ). (3.3)

Moreover, it follows from the definition of ‖ ⋅ ‖WP that

𝑎ℎ(𝒗, 𝒗) = ‖𝒗‖2WP ∀𝒗 ∈ 𝑯1(ℎ). (3.4)

Then, we define the Crouzeix–Raviart interpolation operator 𝛱CR
𝑇 ∶ 𝑯1(𝑇 ) → 𝑷 1(𝑇 ) by (see [4])

∫𝑒
𝛱CR

𝑇 𝒗𝑑𝑠 = ∫𝑒
𝒗𝑑𝑠 ∀𝑒 ∈ 𝑇

ℎ . (3.5)

Standard error estimate implies that (see [4])
−1 CR CR 𝑚
4

ℎ𝑇 ‖𝒗 −𝛱𝑇 𝒗‖0,𝑇 + |𝒗 −𝛱𝑇 𝒗|1,𝑇 ≤ 𝐶ℎ𝑇 |𝒗|𝑚+1,𝑇 , 𝑚 = 0, 1. (3.6)
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Then, the global Crouzeix–Raviart interpolation operator 𝛱CR
ℎ ∶ 𝑯1(𝛺) → 𝑽 ℎ can be constructed by

(𝛱CR
ℎ 𝒗)|𝑇 = 𝛱CR

𝑇 (𝒗|𝑇 ) ∀𝑇 ∈ ℎ.

Using (3.5) and integration by parts, for 𝒗 ∈ 𝑯1(𝑇 ) we have

(∇ ⋅ (𝛱CR
𝑇 𝒗), 𝑞ℎ)𝑇 = (∇ ⋅ 𝒗, 𝑞ℎ)𝑇 ∀𝑞ℎ ∈ 𝑃0(𝑇 ). (3.7)

oreover, it follows from (3.5) that

𝛱0
𝑒 [𝛱

CR
ℎ 𝒗] = 1

ℎ𝑒 ∫𝑒
[𝛱CR

ℎ 𝒗]𝑑𝑠 = 0 ∀𝒗 ∈ 𝑽 = 𝑯1
0(𝛺), (3.8)

hich along with (3.6) yields

‖𝛱CR
ℎ 𝒗‖WP =

(

∑

𝑇∈ℎ

|𝛱CR
ℎ 𝒗|21,𝑇

)1∕2
≤𝐶𝛼|𝒗|1 ∀𝒗 ∈ 𝑽 = 𝑯1

0(𝛺). (3.9)

e also need the following trace inequality (see [33])

‖𝒘‖

2
0,𝑒 ≤ 𝐶

(

ℎ−1𝑒 ‖𝒘‖

2
0,𝑇 + ℎ𝑒‖∇𝒘‖

2
0,𝑇

)

∀𝒘 ∈ 𝑯1(𝑇 ), (3.10)

nd the inverse inequality (see [49,50])

‖𝒗‖0,𝑒 ≤ 𝐶ℎ−1∕2𝑇 ‖𝒗‖0,𝑇 ∀𝒗 ∈ 𝑷 1(𝑇 ), ∀𝑒 ∈ 𝑇
ℎ . (3.11)

To proceed, we recall the following useful result that shows the relation between the jumps across edges and the norm ‖ ⋅ ‖WP
see Lemma 3.1 in [38]).

emma 3.2. For all 𝒗 ∈ 𝑯1(ℎ), it holds that
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒗]‖20,𝑒 ≤ 𝐶1‖𝒗‖2WP. (3.12)

his along with (3.1) and (3.2) yields

‖𝒗‖DG ≤ 𝐶∗‖𝒗‖WP ∀𝒗 ∈ 𝑯1(ℎ).

Next, we shall establish the following discrete inf-sup condition.

heorem 3.3. It holds that

sup
𝒗ℎ∈𝑽 ℎ

𝑏ℎ(𝒗ℎ, 𝑞ℎ)
‖𝒗ℎ‖WP

≥ 𝛽1‖𝑞ℎ‖0 (3.13)

or any 𝑞ℎ ∈ 𝑃ℎ.

roof. For 𝒗 ∈ 𝑽 = 𝑯1
0(𝛺), in light of (2.13), (3.7) and (3.8), we arrive at

𝑏ℎ(𝛱CR
ℎ 𝒗, 𝑞ℎ) = −

∑

𝑇∈ℎ

(𝑞ℎ,∇ ⋅𝛱CR
ℎ 𝒗)𝑇 +

∑

𝑒∈ℎ

⟨{𝑞ℎ}, [𝛱CR
ℎ 𝒗 ⋅ 𝒏𝑒]⟩𝑒

= −
∑

𝑇∈ℎ

(𝑞ℎ,∇ ⋅𝛱CR
ℎ 𝒗)𝑇 = −

∑

𝑇∈ℎ

(𝑞ℎ,∇ ⋅ 𝒗)𝑇 = 𝑏ℎ(𝒗, 𝑞ℎ) ∀𝑞ℎ ∈ 𝑃ℎ.

This together with (2.3) and (3.9) implies that

𝛽𝑐‖𝑞ℎ‖0 ≤ sup
𝒗∈𝑽

𝑏ℎ(𝒗, 𝑞ℎ)
|𝒗|1

= sup
𝒗∈𝑽

𝑏ℎ(𝛱CR
ℎ 𝒗, 𝑞ℎ)
|𝒗|1

≤𝐶𝛼 sup
𝛱CR

ℎ 𝒗∈𝑽 ℎ

𝑏ℎ(𝛱CR
ℎ 𝒗, 𝑞ℎ)

‖𝛱CR
ℎ 𝒗‖WP

≤𝐶𝛼 sup
𝒘ℎ∈𝑽 ℎ

𝑏ℎ(𝒘ℎ, 𝑞ℎ)
‖𝒘ℎ‖WP

.

Then, the desired assertion (3.13) is satisfied by taking 𝛽1 = 𝛽𝑐𝐶−1
𝛼 . □

Theorem 3.4. The modified WOPSIP method (2.8)–(2.9) has a unique solution.
5
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Proof. It is enough to show that 𝒇 = 𝟎 implies that 𝒖ℎ = 𝟎 and 𝑝ℎ = 0. In this case, taking 𝒗ℎ = 𝒖ℎ in (2.8) and 𝑞ℎ = 𝑝ℎ in (2.9),
and then subtracting (2.9) from (2.8) yields

𝜈‖𝒖ℎ‖2WP = 𝜈𝑎ℎ(𝒖ℎ, 𝒖ℎ) = 0.

It follows that 𝒖ℎ = 𝟎. This together (2.8) yields 𝑏ℎ(𝒗ℎ, 𝑝ℎ) = 0 for any 𝒗ℎ ∈ 𝑽 ℎ. It follows from the discrete inf-sup condition (3.13)
that 𝑝ℎ = 0. The proof is completed. □

4. Error estimates

This section is devoted to deriving optimal order error estimates for the velocity 𝒖ℎ in ‖ ⋅ ‖WP norm, and for the pressure 𝑝ℎ in
𝐿2 norm. The main results are stated in Theorem 4.4. To obtain the desired estimates, we need Lemmas 4.1–4.3.

Lemma 4.1. For any 𝝋 ∈ 𝑽 + 𝑽 ℎ, on 𝑇 ∈ ℎ, it holds that

∇ ⋅ 𝜋ℎ𝝋 = ∇𝑤 ⋅ 𝝋. (4.1)

Proof. For any 𝑞 ∈ 𝑃0(𝑇 ), noting that ∇𝑞|𝑇 = 𝟎, it then follows from (2.10)–(2.12) that

(∇ ⋅ 𝜋ℎ𝝋, 𝑞)𝑇 = − (𝜋ℎ𝝋,∇𝑞)𝑇 + ⟨𝜋ℎ𝝋 ⋅ 𝒏𝑇 , 𝑞⟩𝜕𝑇
= − (𝝋,∇𝑞)𝑇 + ⟨{𝝋} ⋅ 𝒏𝑇 , 𝑞⟩𝜕𝑇
=(∇𝑤 ⋅ 𝝋, 𝑞)𝑇 ,

which proves the desired result (4.1). □

Lemma 4.2. For any 𝜙 ∈ 𝐻1(𝛺), 𝒗ℎ ∈ 𝑽 ℎ, there holds
∑

𝑇∈ℎ

(∇𝜙, 𝜋ℎ𝒗ℎ)𝑇 = −
∑

𝑇∈ℎ

(𝜋0𝜙,∇𝑤 ⋅ 𝒗ℎ)𝑇 , (4.2)

here 𝜋0 is the 𝐿2 projection from 𝑄 onto 𝑃ℎ.

roof. Since 𝜙 ∈ 𝐻1(𝛺), then [𝜙] = 0 on any 𝑒 ∈ 𝐼
ℎ . Observed that 𝜋ℎ𝒗ℎ ∈ 𝑯0(div;𝛺) implies [𝜋ℎ𝒗ℎ ⋅ 𝒏𝑒] = 0 on any 𝑒 ∈ ℎ. These

acts together with (4.1) imply that
∑

𝑇∈ℎ

(∇𝜙, 𝜋ℎ𝒗ℎ)𝑇

= −
∑

𝑇∈ℎ

(𝜙,∇ ⋅ 𝜋ℎ𝒗ℎ)𝑇 +
∑

𝑇∈ℎ

⟨𝜙, 𝜋ℎ𝒗ℎ ⋅ 𝒏𝑇 ⟩𝜕𝑇

= −
∑

𝑇∈ℎ

(𝜙,∇ ⋅ 𝜋ℎ𝒗ℎ)𝑇 +
∑

𝑒∈𝐼ℎ

⟨

[𝜙], {𝜋ℎ𝒗ℎ ⋅ 𝒏𝑒}
⟩

𝑒

+
∑

𝑒∈ℎ

⟨

{𝜙}, [𝜋ℎ𝒗ℎ ⋅ 𝒏𝑒]
⟩

𝑒

= −
∑

𝑇∈ℎ

(𝜙,∇ ⋅ 𝜋ℎ𝒗ℎ)𝑇

= −
∑

𝑇∈ℎ

(𝜋0𝜙,∇ ⋅ 𝜋ℎ𝒗ℎ)𝑇

= −
∑

𝑇∈ℎ

(𝜋0𝜙,∇𝑤 ⋅ 𝒗ℎ)𝑇 ,

which is the desired assertion (4.2). □

Lemma 4.3. Let (𝒖, 𝑝) be the solutions of (2.1)–(2.2), assume that 𝑝 ∈ 𝐻1(𝛺), there holds

1
𝜈

sup
𝒘ℎ∈𝑿ℎ

|𝜈𝑎ℎ(𝒖,𝒘ℎ) − (𝒇 , 𝜋ℎ𝒘ℎ)|
‖𝒘ℎ‖WP

≤ 𝐶ℎ‖𝒖‖2. (4.3)

Proof. For any 𝒘ℎ ∈ 𝑿ℎ, using (4.2) to obtain
∑

𝑇∈ℎ

(∇𝑝, 𝜋ℎ𝒘ℎ)𝑇 = −
∑

𝑇∈ℎ

(𝜋0𝑝,∇𝑤 ⋅𝒘ℎ)𝑇 = 𝑏ℎ(𝒘ℎ, 𝜋0𝑝). (4.4)

t then follows from (2.16) that 𝑏ℎ(𝒘ℎ, 𝜋0𝑝) = 0. This together with the Stokes Eq. (1.1) implies that
1
|𝜈𝑎 (𝒖,𝒘 ) − (𝒇 , 𝜋 𝒘 )|
6

𝜈 ℎ ℎ ℎ ℎ



Journal of Computational and Applied Mathematics 445 (2024) 115819Y. Zeng et al.

P

=1
𝜈
|

|

|

∑

𝑇∈ℎ

(𝜈∇𝒖,∇𝒘ℎ)𝑇 −
∑

𝑇∈ℎ

(𝒇 , 𝜋ℎ𝒘ℎ)𝑇
|

|

|

=1
𝜈
|

|

|

∑

𝑇∈ℎ

(𝜈∇𝒖,∇𝒘ℎ)𝑇 +
∑

𝑇∈ℎ

(𝜈𝛥𝒖 − ∇𝑝, 𝜋ℎ𝒘ℎ)𝑇
|

|

|

=1
𝜈
|

|

|

∑

𝑇∈ℎ

(𝜈∇𝒖,∇𝒘ℎ)𝑇 +
∑

𝑇∈ℎ

(𝜈𝛥𝒖, 𝜋ℎ𝒘ℎ)𝑇
|

|

|

=||
|

∑

𝑇∈ℎ

(∇𝒖,∇𝒘ℎ)𝑇 +
∑

𝑇∈ℎ

(𝛥𝒖, 𝜋ℎ𝒘ℎ)𝑇
|

|

|

=||
|

(

∑

𝑇∈ℎ

(∇𝒖,∇𝒘ℎ)𝑇 +
∑

𝑇∈ℎ

(𝛥𝒖,𝒘ℎ)𝑇
)

+
∑

𝑇∈ℎ

(𝛥𝒖, 𝜋ℎ𝒘ℎ −𝒘ℎ)𝑇
|

|

|

≜||
|

A1 + A2
|

|

|

. (4.5)

For the term A1, integrating by parts leads to

A1 =
∑

𝑇∈ℎ

(∇𝒖,∇𝒘ℎ)𝑇 +
∑

𝑇∈ℎ

(𝛥𝒖,𝒘ℎ)𝑇

=
∑

𝑇∈ℎ

⟨

(∇𝒖)𝒏𝑇 ,𝒘ℎ
⟩

𝜕𝑇

=
∑

𝑒∈𝐼ℎ

⟨

[(∇𝒖)𝒏𝑒], {𝒘ℎ}
⟩

𝑒 +
∑

𝑒∈ℎ

⟨

{(∇𝒖)𝒏𝑒}, [𝒘ℎ]
⟩

𝑒

=
∑

𝑒∈ℎ

⟨

{(∇𝒖)𝒏𝑒}, [𝒘ℎ]
⟩

𝑒

=
∑

𝑒∈ℎ

⟨

(∇𝒖 −𝛱CR
𝑒

𝒖)𝒏𝑒, [𝒘ℎ]
⟩

𝑒 +
∑

𝑒∈ℎ

⟨

(∇𝛱CR
𝑒

𝒖)𝒏𝑒, [𝒘ℎ]
⟩

𝑒

≜A11 + A12. (4.6)

Combining the approximation property in (3.6), the trace inequality (3.10), (3.12) and the Cauchy–Schwarz inequality, we can
estimate A11 by

|A11| =
|

|

|

∑

𝑒∈ℎ

⟨

(∇𝒖 −𝛱CR
𝑒

𝒖)𝒏𝑒, [𝒘ℎ]
⟩

𝑒
|

|

|

≤
(

∑

𝑒∈ℎ

ℎ𝑒‖∇(𝒖 −𝛱CR
𝑒

𝒖)‖20,𝑒
)1∕2(∑

𝑒∈ℎ

ℎ−1𝑒 ‖[𝒘ℎ]‖20,𝑒
)1∕2

≤𝐶ℎ|𝒖|2‖𝒘ℎ‖WP. (4.7)

Using (2.5), (3.9), (3.11) and the Cauchy–Schwarz inequality, we bound A12 by

|A12| =
|

|

|

∑

𝑒∈ℎ

⟨

(∇𝛱CR
𝑒

𝒖)𝒏𝑒, [𝒘ℎ]
⟩

𝑒
|

|

|

=||
|

∑

𝑒∈ℎ

⟨

(∇𝛱CR
𝑒

𝒖)𝒏𝑒,𝛱0
𝑒 [𝒘ℎ]

⟩

𝑒
|

|

|

≤
(

∑

𝑒∈ℎ

ℎ3𝑒‖∇(𝛱
CR
𝑒

𝒖)‖20,𝑒
)1∕2(∑

𝑒∈ℎ

ℎ−3𝑒 ‖𝛱0
𝑒 [𝒘ℎ]‖20,𝑒

)1∕2

≤𝐶
(

∑

𝑒∈ℎ

ℎ2𝑒
∑

𝑇∈𝑒

‖∇(𝛱CR
𝑇 𝒖)‖20,𝑇

)1∕2(∑

𝑒∈ℎ

ℎ−3𝑒 ‖𝛱0
𝑒 [𝒘ℎ]‖20,𝑒

)1∕2

≤𝐶ℎ
(

∑

𝑇∈ℎ

‖∇(𝛱CR
ℎ 𝒖)‖20,𝑇

)1∕2(∑

𝑒∈ℎ

ℎ−3𝑒 ‖𝛱0
𝑒 [𝒘ℎ]‖20,𝑒

)1∕2

≤𝐶ℎ|𝒖|1‖𝒘ℎ‖WP. (4.8)

Applying the approximation property in (2.14) and (2.15), we bound A2 by

|A2| =
|

|

|

∑

𝑇∈ℎ

(𝛥𝒖, 𝜋ℎ𝒘ℎ −𝒘ℎ)𝑇
|

|

|

≤
(

∑

𝑇∈ℎ

‖𝛥𝒖‖20,𝑇
)1∕2( ∑

𝑇∈ℎ

‖𝜋ℎ𝒘ℎ −𝒘ℎ‖
2
0,𝑇

)1∕2

≤𝐶ℎ|𝒖|2‖𝒘ℎ‖1,ℎ

≤𝐶ℎ|𝒖|2‖𝒘ℎ‖WP. (4.9)
7

lugging (4.6)–(4.9) into (4.5) gives the desired estimate (4.3). □
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We are now in a position to prove the error estimate for the numerical scheme (2.8)–(2.9).

heorem 4.4. Let (𝒖, 𝑝) and (𝒖ℎ, 𝑝ℎ) be the solutions of (2.1)–(2.2) and (2.8)–(2.9), respectively. Assume that (𝒖, 𝑝) ∈ 𝑯2(𝛺) ×𝐻1(𝛺),
hen it holds that

‖𝒖 − 𝒖ℎ‖WP ≤ 𝐶ℎ‖𝒖‖2, (4.10)

‖𝜋0𝑝 − 𝑝ℎ‖0 ≤ 𝐶ℎ𝜈‖𝒖‖2, (4.11)

‖𝑝 − 𝑝ℎ‖0 ≤ 𝐶ℎ(𝜈‖𝒖‖2 + |𝑝|1). (4.12)

roof. For any 𝒗ℎ ∈ 𝑿ℎ, denote by 𝒘ℎ = 𝒖ℎ − 𝒗ℎ, it follows from (2.17) that

𝜈‖𝒘ℎ‖
2
WP =𝜈𝑎ℎ(𝒘ℎ,𝒘ℎ)

=𝜈𝑎ℎ(𝒖ℎ − 𝒗ℎ,𝒘ℎ)

=𝜈𝑎ℎ(𝒖 − 𝒗ℎ,𝒘ℎ) + 𝜈𝑎ℎ(𝒖ℎ,𝒘ℎ) − 𝜈𝑎ℎ(𝒖,𝒘ℎ)

=𝜈𝑎ℎ(𝒖 − 𝒗ℎ,𝒘ℎ) + (𝒇 , 𝜋ℎ𝒘ℎ) − 𝜈𝑎ℎ(𝒖,𝒘ℎ)

≤𝜈‖𝒖 − 𝒗ℎ‖WP‖𝒘ℎ‖WP + |𝜈𝑎ℎ(𝒖,𝒘ℎ) − (𝒇 , 𝜋ℎ𝒘ℎ)|. (4.13)

On the other hand, the triangle inequality implies that

‖𝒖 − 𝒖ℎ‖WP ≤ ‖𝒖 − 𝒗ℎ‖WP + ‖𝒘ℎ‖WP. (4.14)

Combining the above two formulations in (4.13) and (4.14) to arrive at

‖𝒖 − 𝒖ℎ‖WP ≤ 2 inf
𝒗ℎ∈𝑿ℎ

‖𝒖 − 𝒗ℎ‖WP

+ 1
𝜈

sup
𝒘ℎ∈𝑿ℎ

|𝜈𝑎ℎ(𝒖,𝒘ℎ) − (𝒇 , 𝜋ℎ𝒘ℎ)|
‖𝒘ℎ‖WP

.
(4.15)

Taking 𝒗ℎ = 𝛱CR
ℎ 𝒖ℎ, it follows from (3.6) and (3.8) that

inf
𝒗ℎ∈𝑿ℎ

‖𝒖 − 𝒗ℎ‖WP ≤ ‖𝒖 −𝛱CR
ℎ 𝒖‖WP = ‖𝒖 −𝛱CR

ℎ 𝒖‖1,ℎ ≤ 𝐶ℎ‖𝒖‖2. (4.16)

ubstituting (4.16), (4.3) into (4.15) gives the desired assertion (4.10).
Next, we shall prove the pressure estimates (4.11) and (4.12). First, we use the Pythagoras theorem to obtain

‖𝑝 − 𝑝ℎ‖
2
0 = ‖𝑝 − 𝜋0𝑝‖

2
0 + ‖𝜋0𝑝 − 𝑝ℎ‖

2
0. (4.17)

Standard error estimates leads to (see [49,50])

‖𝑝 − 𝜋0𝑝‖0 ≤ 𝐶ℎ|𝑝|1, (4.18)

it leaves us to estimate ‖𝜋0𝑝 − 𝑝ℎ‖0. In view of the discrete inf-sup condition (3.13), we have

‖𝜋0𝑝 − 𝑝ℎ‖0 ≤
1
𝛽1

sup
𝒗ℎ∈𝑽 ℎ

𝑏ℎ(𝒗ℎ, 𝜋0𝑝 − 𝑝ℎ)
‖𝒗ℎ‖WP

. (4.19)

or any 𝒗ℎ ∈ 𝑽 ℎ, it follows from (1.1), (4.2), and integration by parts that

𝑏ℎ(𝒗ℎ, 𝜋0𝑝 − 𝑝ℎ)

=𝑏ℎ(𝒗ℎ, 𝜋0𝑝) − 𝑏ℎ(𝒗ℎ, 𝑝ℎ)

= −
∑

𝑇∈ℎ

(𝜋0𝑝,∇𝑤 ⋅ 𝒗ℎ)𝑇 −
∑

𝑇∈ℎ

(𝒇 , 𝜋ℎ𝒗ℎ)𝑇 + 𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ)

= −
∑

𝑇∈ℎ

(𝜋0𝑝,∇𝑤 ⋅ 𝒗ℎ)𝑇 +
∑

𝑇∈ℎ

(𝜈𝛥𝒖 − ∇𝑝, 𝜋ℎ𝒗ℎ)𝑇 + 𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ)

= −
∑

𝑇∈ℎ

(𝜋0𝑝,∇𝑤 ⋅ 𝒗ℎ)𝑇 +
∑

𝑇∈ℎ

(𝜋0𝑝,∇𝑤 ⋅ 𝒗ℎ)𝑇

+
∑

𝑇∈ℎ

(𝜈𝛥𝒖, 𝜋ℎ𝒗ℎ)𝑇 + 𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ)

=
∑

𝑇∈ℎ

(𝜈𝛥𝒖, 𝜋ℎ𝒗ℎ)𝑇 + 𝜈𝑎ℎ(𝒖ℎ, 𝒗ℎ)

=
∑

𝑇∈ℎ

(𝜈𝛥𝒖, 𝜋ℎ𝒗ℎ)𝑇 + 𝜈𝑎ℎ(𝒖, 𝒗ℎ) + 𝜈𝑎ℎ(𝒖ℎ − 𝒖, 𝒗ℎ)

=
(

∑

(𝜈∇𝒖,∇𝒗ℎ)𝑇 +
∑

(𝜈𝛥𝒖, 𝜋ℎ𝒗ℎ)𝑇
)

+ 𝜈𝑎ℎ(𝒖ℎ − 𝒖, 𝒗ℎ)
8
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T

w

u
(

W

≜A3 + A4. (4.20)

Similar to A1, the term A3 can be bounded by

A3 =
∑

𝑇∈ℎ

(𝜈∇𝒖,∇𝒗ℎ)𝑇 +
∑

𝑇∈ℎ

(𝜈𝛥𝒖, 𝜋ℎ𝒗ℎ)𝑇

≤𝐶ℎ𝜈‖𝒖‖2‖𝒗ℎ‖WP. (4.21)

On the other hand, we have

A4 =𝜈𝑎ℎ(𝒖ℎ − 𝒖, 𝒗ℎ)

≤𝜈‖𝒖 − 𝒖ℎ‖WP‖𝒗ℎ‖WP. (4.22)

Combining (4.19)–(4.22) implies that

‖𝜋0𝑝 − 𝑝ℎ‖0 ≤ 𝜈‖𝒖 − 𝒖ℎ‖WP + 𝐶ℎ𝜈‖𝒖‖2. (4.23)

his along with (4.10) yields to

‖𝜋0𝑝 − 𝑝ℎ‖0 ≤ 𝐶ℎ𝜈‖𝒖‖2, (4.24)

hich is the desired estimate (4.11). Substituting (4.24) and (4.18) into (4.17) leads to the desired conclusion (4.12). □

Next, we shall establish the optimal 𝑳2 error estimate for the discrete velocity 𝒖ℎ. The main techniques are followed by [21,51],
therein they address the modified CR FEMs. We first recall the following result which is based on the duality argument (see Lemma
4.1 in [51]).

Lemma 4.5. Let 𝒖 and 𝒖ℎ be the solutions of (2.1)–(2.2) and (2.8)–(2.9), respectively. Given 𝒔 ∈ 𝑳2(𝛺), let 𝒖𝒔 ∈ 𝑿 satisfies

𝜈𝑎(𝒖𝒔, 𝒗) = (𝒔,𝒗) ∀𝒗 ∈ 𝑿 (4.25)

and let 𝒖𝒔,ℎ ∈ 𝑿ℎ denote the solution of

𝜈𝑎ℎ(𝒖𝒔,ℎ, 𝒗) = (𝒔, 𝜋ℎ𝒗) ∀𝒗 ∈ 𝑿ℎ. (4.26)

Then, it holds that

‖𝒖 − 𝒖ℎ‖0 ≤ sup
𝒔∈𝑳2(𝛺),‖𝒔‖0=1

{

𝜈‖𝒖 − 𝒖ℎ‖WP‖𝒖𝒔 − 𝒖𝒔,ℎ‖WP

+ |

|

|

𝜈𝑎ℎ(𝒖 − 𝒖ℎ, 𝒖𝒔) − (𝒔, 𝜋ℎ(𝒖 − 𝒖ℎ))
|

|

|

+ |

|

|

𝜈𝑎ℎ(𝒖, 𝒖𝒔 − 𝒖𝒔,ℎ) − (𝒇 , 𝜋ℎ(𝒖𝒔 − 𝒖𝒔,ℎ))
|

|

|

+ |

|

|

(𝒔, (𝒖 − 𝒖ℎ) − 𝜋ℎ(𝒖 − 𝒖ℎ))
|

|

|

+ |

|

|

(𝒇 , 𝒖𝒔 − 𝜋ℎ𝒖𝒔)
|

|

|

}

. (4.27)

Based on the above lemma, we now can prove the corresponding 𝑳2 error estimate.

Theorem 4.6. Let (𝒖, 𝑝) and (𝒖ℎ, 𝑝ℎ) be the solutions of (2.1)–(2.2) and (2.8)–(2.9), respectively.

(I) If 𝜋ℎ = 𝜋RT in (2.8), then it holds

‖𝒖 − 𝒖ℎ‖0 ≤ 𝐶ℎ2(‖𝒖‖2 + ‖𝛥𝒖‖2). (4.28)

(II) If 𝜋ℎ = 𝜋BDM in (2.8), then it holds

‖𝒖 − 𝒖ℎ‖0 ≤ 𝐶ℎ2‖𝒖‖2. (4.29)

Proof. We only give the proof for (4.28), which is mainly based on [21]. The corresponding estimate (4.29) can be addressed by
sing similar techniques [51]. Under the condition that 𝛺 is convex, the standard regularity results for Stokes equations imply that
see [52])

𝜈‖𝒖𝒔‖2 ≤ 𝐶‖𝒔‖0. (4.30)

e then estimate five different terms in (4.27) to obtain the desired assertion (4.28).
It follows from (4.10) and (4.30) that

𝜈‖𝒖 − 𝒖ℎ‖WP‖𝒖𝒔 − 𝒖𝒔,ℎ‖WP ≤ 𝜈(𝐶ℎ‖𝒖‖2)(𝐶ℎ‖𝒖𝒔‖2)

≤ 𝐶ℎ2‖𝒖‖2‖𝒔‖0. (4.31)
9
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w

Using similar arguments as for (4.5), and applying (4.10) and (4.30), we obtain
|

|

|

𝜈𝑎ℎ(𝒖 − 𝒖ℎ, 𝒖𝒔) − (𝒔, 𝜋RT(𝒖 − 𝒖ℎ))
|

|

|

≤ 𝐶ℎ𝜈‖𝒖𝒔‖2‖𝒖 − 𝒖ℎ‖WP

≤ 𝐶ℎ𝜈‖𝒖𝒔‖2(𝐶ℎ‖𝒖‖2)

≤ 𝐶ℎ2‖𝒖‖2‖𝒔‖0. (4.32)

Analogously, we also have
|

|

|

𝜈𝑎ℎ(𝒖, 𝒖𝒔 − 𝒖𝒔,ℎ) − (𝒇 , 𝜋ℎ(𝒖𝒔 − 𝒖𝒔,ℎ))
|

|

|

≤ 𝐶ℎ𝜈‖𝒖‖2‖𝒖𝒔 − 𝒖𝒔,ℎ‖WP

≤ 𝐶ℎ𝜈‖𝒖‖2(𝐶ℎ‖𝒖𝒔‖2)

≤ 𝐶ℎ2‖𝒖‖2‖𝒔‖0. (4.33)

Combining (2.14) and (4.10) yields
|

|

|

(𝒔, (𝒖 − 𝒖ℎ) − 𝜋RT(𝒖 − 𝒖ℎ))
|

|

|

≤𝐶ℎ‖𝒖 − 𝒖ℎ‖WP‖𝒔‖0 ≤ 𝐶ℎ2‖𝒖‖2‖𝒔‖0. (4.34)

Since (∇𝑝, 𝒖𝒔 − 𝜋RT𝒖𝒔) = 0, we arrive at
|

|

|

(𝒇 , 𝒖𝒔 − 𝜋RT𝒖𝒔)
|

|

|

=||
|

𝜈(𝜟𝒖, 𝒖𝒔 − 𝜋RT𝒖𝒔)
|

|

|

≤|𝜈(𝜟𝒖 −𝛱0𝜟𝒖, 𝒖𝒔 − 𝜋RT𝒖𝒔)
|

|

|

+ |𝜈(𝛱0𝜟𝒖, 𝒖𝒔 − 𝜋RT𝒖𝒔)
|

|

|

, (4.35)

here 𝛱0 is the 𝑳2 projection into piecewise constants. Using the standard approximation error estimates for 𝛱0 and (2.14) to find
that

|𝜈(𝜟𝒖 −𝛱0𝜟𝒖, 𝒖𝒔 − 𝜋RT𝒖𝒔)|

≤𝐶𝜈ℎ2‖∇(𝛥𝒖)‖0‖𝒖𝒔‖1 ≤ 𝐶ℎ2‖∇(𝛥𝒖)‖0‖𝒔‖0. (4.36)

Using similar techniques developed as those in Theorem 3.11 in [21], we have

|𝜈(𝛱0𝜟𝒖, 𝒖𝒔 − 𝜋RT𝒖𝒔)| ≤ 𝐶ℎ2‖𝛥𝒖‖2‖𝒔‖0. (4.37)

Substituting (4.31)–(4.37) into (4.27) gives the desired estimate (4.28). □

Remark 4.7. The key step in designing the pressure-robust scheme (2.8)–(2.9) is to modify the right-hand by (𝒇 , 𝜋ℎ𝒗ℎ), and replace
the term ∑

𝑇∈ℎ (∇ ⋅𝒗ℎ, 𝑞ℎ) with
∑

𝑇∈ℎ (∇𝑤 ⋅𝒗ℎ, 𝑞ℎ). In this case, the result (4.2) in Lemma 4.2 holds true. Thus, we have (4.4), which
means that the error estimate for ‖𝒖 − 𝒖ℎ‖WP is pressure-robust (see lines 3–4 in (4.5)). In addition, it follows from (4.2) that
∑

𝑇∈ℎ (∇𝑝, 𝜋ℎ𝒗ℎ)𝑇 −
∑

𝑇∈ℎ (𝜋0𝑝,∇𝑤 ⋅ 𝒗ℎ)𝑇 = 0, which means ‖𝜋0𝑝 − 𝑝ℎ‖0 is pressure-robust (see lines 5–6 in (4.20)).

Remark 4.8. In this work, we only consider the lowest order WOPSIP method. The extension to second order and odd higher order
schemes in 2D on triangular meshes is straightforward, since the inf-sup condition (3.13) holds for the corresponding 𝑃 nc

𝑘+1-𝑃
dis
𝑘

mixed finite element. For the even-order (𝑘 > 2) extension in 2D, we have minor restrictions on the triangular mesh as the inf-sup
condition holds for 𝑘 ≥ 4 Scott-Vogelius element [53]. In 3D, the method can be extended only to the second order scheme since
the 𝑃 nc

2 -𝑃
dis
1 mixed finite element is stable [54]. But for 𝑘 > 2, neither the 𝑃 nc

𝑘 -𝑃
dis
𝑘−1 element nor the 𝑃 c

𝑘 -𝑃
dis
𝑘−1 element is stable on

tetrahedral meshes [55]. We may think of not using these two types of inf-sup stability. But the over-penalty in WOPSIP prevents us
from using the inf-sup stability of BDM elements, unlike the other DG methods. Some concluding remarks on higher order WOPSIP
schemes for the Stokes equations can be found in Section 6 in [41].

5. Numerical experiments

In this section, we present numerical results to validate our theoretical analysis. We solve the Stokes problem (1.1)–(1.3) on the
domain 𝛺 = (0, 1) × (0, 1) using two different values of viscosity, namely 𝜈 = 1 and 𝜈 = 10−6. The source term 𝒇 is selected in such a
way that the exact solution remains the same for both values of 𝜈:

𝒖 =
(

−28(2𝑥 − 6𝑥2 + 4𝑥3)𝑦2(1 − 𝑦)2

28(2𝑦 − 6𝑦2 + 4𝑦3)𝑥2(1 − 𝑥)2

)

,

𝑝 = 28(2𝑥 − 6𝑥2 + 4𝑥3)(2𝑦 − 6𝑦2 + 4𝑦3).
(5.1)

The first three levels of mesh grids are displayed in Fig. 1. The higher-level grids are obtained by nested refinement.
In Table 1, we present the computational results for both methods when 𝜈 = 1. Here and in the following table, 𝛱1 denotes the

𝑳𝟐 projection into the piecewise linear polynomial space. For the pressure approximation, we employ the reduced integration (2.8)
with 𝜋 = 𝑅𝑇 . It can be observed that optimal order convergence is achieved in all cases. Consequently, for 𝜈 = 1, both methods
10
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Fig. 1. The first three levels of uniform grids for computing (5.1) in Tables 1–2.

Table 1
Error profiles for solution (5.1), when 𝜈 = 1.

ℎ∕
√

2 ‖Π1𝒖 − 𝒖ℎ‖0 Rate ‖∇(Π1𝒖 − 𝒖ℎ)‖0 Rate ‖𝜋0𝑝 − 𝑝ℎ‖0 Rate

By the standard WOPSIP method (2.6)–(2.7)

1∕4 0.6802E+00 0.6689E+01 0.2374E+01

1∕8 0.1842E+00 1.88 0.3729E+01 0.84 0.1259E+01 0.91

1∕16 0.4819E−01 1.93 0.1940E+01 0.94 0.5877E+00 1.10

1∕32 0.1223E−01 1.98 0.9816E+00 0.98 0.2731E+00 1.11

1∕64 0.3065E−02 2.00 0.4924E+00 1.00 0.1320E+00 1.05

By the pressure-robust WOPSIP method (2.8)–(2.9) with 𝜋ℎ = 𝑅𝑇 0

1∕4 0.1215E+01 0.1302E+02 0.2913E+01

1∕8 0.3450E+00 1.82 0.7212E+01 0.85 0.1428E+01 1.03

1∕16 0.9040E−01 1.93 0.3720E+01 0.96 0.6064E+00 1.24

1∕32 0.2289E−01 1.98 0.1876E+01 0.99 0.2735E+00 1.15

1∕64 0.5734E−02 2.00 0.9401E+00 1.00 0.1319E+00 1.05

Table 2
Error profiles for solution (5.1), when 𝜈 = 10−6.

ℎ∕
√

2 ‖Π1𝒖 − 𝒖ℎ‖0 Rate ‖∇(Π1𝒖 − 𝒖ℎ)‖0 Rate ‖𝜋0𝑝 − 𝑝ℎ‖0 Rate

By the standard WOPSIP method (2.6)–(2.7)

1∕4 0.1861E+06 0.2099E+07 0.6326E+00

1∕8 0.6962E+05 1.42 0.1409E+07 0.58 0.5031E+00 0.33

1∕16 0.2099E+05 1.73 0.7736E+06 0.86 0.2230E+00 1.17

1∕32 0.5638E+04 1.90 0.3986E+06 0.96 0.7124E−01 1.65

1∕64 0.1440E+04 1.97 0.2010E+06 0.99 0.1967E−01 1.86

By the pressure-robust WOPSIP method (2.8)–(2.9) with 𝜋ℎ = 𝑅𝑇0
1∕4 0.1215E+01 0.1302E+02 0.2911E−05

1∕8 0.3450E+00 1.82 0.7212E+01 0.85 0.1430E−05 1.02

1∕16 0.9040E−01 1.93 0.3720E+01 0.96 0.6079E−06 1.23

1∕32 0.2289E−01 1.98 0.1876E+01 0.99 0.2779E−06 1.13

1∕64 0.5735E−02 2.00 0.9401E+00 1.00 0.1395E−06 0.99

yield comparable performance. However, in terms of velocity approximation, the velocity errors of pressure-robust WOPSIP method
are approximately twice as large as that of standard WOPSIP method. Nevertheless, as we will demonstrate later, the pressure-robust
WOPSIP method exhibits significant advantages when dealing with small values of 𝜈.

In Table 2, we present the computational results for both methods when 𝜈 = 10−6. Optimal order convergence is observed in
all cases. However, the velocity errors of the standard WOPSIP method are approximately about 106∕5 times larger than those of
the pressure-robust WOPSIP method. Also, for the pressure-robust WOPSIP method, the velocity errors are almost the same for
both 𝜈 = 1 and 𝜈 = 10−6. These observations align with the theoretical proof that the velocity approximation in the pressure-robust
WOPSIP method is independent of 𝜈. Additionally, the pressure approximation in the pressure-robust WOPSIP method performs even
better, exhibiting an improvement of approximately 10−6 compared to the standard WOPSIP method in terms of 𝐿2 approximation.
This matches well with the theoretical analysis shown in (4.11).
11
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6. Conclusions

In this study, we propose a pressure-robust weakly over-penalized symmetric interior penalty (WOPSIP) discontinuous Galerkin
DG) method for solving the Stokes equations. We assume that the exact solutions possess sufficient smoothness in order to derive
n error estimate. However, it is also an intriguing area of research to extend the error analysis to scenarios with minimal regularity
ssumptions [56]. We plan to thoroughly investigate this topic in future work.
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