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ABSTRACT: Spectral fingerprinting has emerged as a powerful GT-SWCNTs
tool that is adept at identifying chemical compounds and
deciphering complex interactions within cells and engineered
nanomaterials. Using near-infrared (NIR) fluorescence spectral
fingerprinting coupled with machine learning techniques, we
uncover complex interactions between DNA-functionalized single- Wavelength (nm)
walled carbon nanotubes (DNA-SWCNTs) and live macrophage - i ‘

cells, enabling in situ phenotype discrimination. Utilizing Raman M2

microscopy, we showcase statistically higher DNA-SWCNT uptake Learning
and a significantly lower defect ratio in M1 macrophages

compared to M2 and naive phenotypes. NIR fluorescence data %%

also indicate that distinctive intraendosomal environments of

these cell types give rise to significant differences in many optical features, such as emission peak intensities, center
wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage
phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and
M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes,
influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping
intraendosomal microenvironments using Al techniques. Our findings suggest that shorter DNA-sequences like GT give rise
to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the
endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for
cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.
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Biosensing is a rapidly emerging sector of the biomedical "7 Moreover, the

engineering field, specifically in human healthcare due to the

intrinsic fluorescence and photostability.
fluorescence of SWCNTSs resides within the near-infrared

noninvasive nature and tunable specificity of recent sensors.
Typical examples of biosensors, include immunosensors,'
DNA biosensors,” enzyme-based biosensors,” thermal and
piezoelectric biosensors,* and optical biosensors,” which utilize
affinity toward antigens, chemical interactions, thermal
fluctuations, affinity interactions, and fluorescence, respec-
tively, to pinpoint the presence or concentration change of a
specific biological marker.”” Certain optical biosensors are of
particular interest as they implement a light source to probe
changes within cellular environments that can cause shifts in
fluorescence wavelength, intensity, and/or spectral bandwidth,
which can be attributed to distinct cellular microenviron-
ments.* "

Single-walled carbon nanotubes (SWCNTs) have been
successfully utilized as in vitro optical biosensors due to their
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(NIR) spectrum, a region which proves useful in biological
imaging applications due to limited tissue absorbance,
scattering, and autofluorescence.'*™'® SWCNTs can be
noncovalently functionalized with biocompatible polymers
and biomolecules to increase environmental biocompatibil-
ity."” Specifically, there has been success with different types of
amphiphilic functionalization, such as single-stranded DNA
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Figure 1. Cell Characterization. (a) Transmitted light images of M1, M2, and naive macrophages, with scale bar of 50 ym. (b) Bar graph for
average cell area, bars represent the average, and whiskers represent mean + s.d. for each condition (n > 500 cells per condition). Two-
sample ¢t test hypothesis testing analysis was performed between different samples (***p < 0.001). Fluorescent surface marker dependent
flow cytometry density plot for (c) M1 type macrophages and (d) M2 type macrophages, for each condition n > 5 X 10° cells mL™".

(ssDNA) and polyethylene glycol (PEG)-lipid conjugate
wrappings.'®~>° Through appropriate biocompatible function-
alization, SWCNTs can be effectively internalized into
mammalian cells via energy dependent endocytosis and
phagocytosis, where they then enter the endosomal pathway
and eventually localize within the lysosomes.””** The
amphiphilic wrappings of SWCNTSs prove to be biocompatible
as various studies have shown endocytosis and endosomal
escape from different cell lines with negligible introduced
toxicities.””** We have previously shown that DNA sequence
length plays a significant role in determining endocytosis and
retention durations of DNA-functionalized single-walled
carbon nanotubes (SWCNTs) within mammalian cells.'”
Macrophages are immune cells of high interest in the field of
biomedicine due to their implication in immune responses,
inflammation regulation, and tissue repair. Macrophages play a
crucial role in various biomedical contexts, such as host
defense against pathogens, clearance of cellular debris,
modulation of immune response, and wound healing.”> Their
versatility makes them a key player in understanding and
addressing diseases including infections, autoimmune disor-
ders, and cancer. Macrophages are capable of polarizing and
differentiating from monocytes and a naive state into, broadly
characterizing, either pro-inflammatory M1 phenotypes or pro-
healing M2 phenotypes.”*>” These phenotypical changes are
induced by signaling molecules and cytokines in the local
cellular microenvironment.”**” The inflammatory responses
performed by M1 macrophages are dominated by toll-like
receptor (TLR) and interferon signaling and can be polarized
in vitro with interferon gamma (IFN-y), tumor necrosis factor
alpha (TNF-a), and lipopolysaccharide (LPS).>”*" In contrast,
M2 macrophages are found in the proliferation and remodeling
phases of wound healing, secreting cytokines to actively

promote repair and recruit various cell types to clear cellular
debris.*>** Typical cytokines implicated in the differentiation
of M2 macrophages are interleukin-4 (IL-4) and interleukin-10
(IL-10).%**

The shift from inflammation to proliferation represents a
pivotal stage in the wound healing process. An imbalance in
the macrophage phenotype environment and the inability to
transition between M1 and M2 states can lead to ulcers and
chronic wounds.*”*® The wound healing process is similar to
the human body’s reaction to diseases, such as cancers. In
certain cancers, such as colorectal cancer, tumor cells will
utilize macrophage anti-inflammatory characteristics to pro-
mote tumor growth, thus progressing the spread of cancer.’’
Due to the vast differences between macrophage polarization
states, there must be tight control of differentiation to avoid
prolonged periods of inflammation. However, in the presence
of chronic inflammation, imbalances of M1 and M2
phenotypes are observed and ultimately trigger changes in
macrophage behavior.”® By quantifying and preventing changes
in macrophage polarization states, there is potential for a
decrease in disease progression.”

To identify M1 and M2 macrophage phenotypes and
quantify any potential imbalance, in both wound healing and
other affected disease, flow cytometry,” surface marker
analysis,"" and visual morphological confirmation via optical
microscopy are frequently employed.*”** Flow cytometry
serves as a method that can rapidly differentiate different
cells in a sample with high-throughput analysis. However, this
method is not well adapted to identify different subsets of
macrophage phenotypes as it requires a diverse array of surface
markers and dyes, which become prohibitively expensive.**
Moreover, issues in data collection can arise when samples
have been exposed to fibrosis or other pathological changes,
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which is common in wound sites.”> Other limitations of flow
cytometry, include breakdown of antibody tandem dyes, which
effects variability in emission spectra, and thus, reliability as
well as other analytical and interpretation pitfalls.*® High
equipment purchasing and maintenance costs are also a
disadvantage when it comes to flow cytometry. The visual
analysis of macrophage phenotypes via optical microscopy and
immunofluorescence imaging can be useful in identifying M1
and M2 macrophages but becomes less reliable when
comparting naive macrophages to M2 due to their similar
morphologies.47 Consequently, immunofluorescence micros-
copy has its own limitations like nonspecific binding.**
Another limitation is the photobleaching of fluorochromes
and fluorescent dyes being used.”” Furthermore, the technique
can be used only with fixed cells.

Morphological identification of samples through machine
learning on cell shape and size, has been proven to predict M1
or M2 macrophages with an accuracy of 90%," however, the
identification of specific subtypes of cells within a diseased and
heterogeneous sampling would be better served by a more
robust method for classification as this method uses
fluorescence dyes, which have their own limitations as
discussed above.""” Other label-free strategies of phenotype
classification using autofluorescence and machine learning have
also been employed, but they have only been able to achieve an
accuracy of 75.8%,” as opposed to our robust method that can
easily give an accuracy of 95% and can also easily be translated
to a quick assay based detection method. In a previous study,
we have shown that DNA-SWCNTs can be used to map
intracellular processes based on modulations in their Raman
spectra.”’ These differences induced throughout a single cell
could be attributed to changes in the local environment of the
SWCNTs, such as pH, salt concentration, or protein
interactions. Here, utilizing NIR fluorescence data of SWCNT's
within macrophages of varying phenotypes coupled with
machine learning, we show that a similar spectral fingerprinting
method can be developed to accurately identify live M1, M2,
and naive macrophages. We find that DNA-SWCNTs are
rapidly internalized into all macrophage phenotypes with M1
demonstrating the highest rate of uptake. Once inside, we
observe interesting trends in the Raman spectra of the
SWCNTs as well as a DNA-sequence specific modulation in
NIR fluorescence. We uncover that SWCNTs dispersed with a
short DNA sequence (i.e,, GT;-SWCNTs) are able to undergo
the largest degree of SWCNT chirality-dependent modulations
in NIR fluorescence, enabling the highest accuracy of in vitro
discrimination between macrophage phenotypes. The pre-
sented SWCNT spectral fingerprinting coupled with machine
learning method is versatile and can be applied to other live-
cell discrimination analyses.

RESULTS AND DISCUSSION

A model mammalian macrophage cell line (RAW 264.7 murine
macrophages) was employed to investigate characteristic
differences between naive (nonpolarized, “NM”), M1, and
M2 macrophage phenotypes. Cell-type specific cytokines were
added to NM cells to artificially stimulate them into
differentially activated phenotypes M1 and M2. Figure la
represents transmitted light images of each macrophage
phenotype captured by bright field microscopy. Upon closer
examination, noticeable differences in size (Figure S1) and
morphology are evident (Figure S2). M2 displays a nearly
round and circular morphology, like that of naive macrophages,

whereas M1 is larger in size, as well as lacking a well-defined
shape. These distinct features offer visual confirmation that we
have different species of macrophages. Figure 1b shows a
statistical bar graph highlighting the significant difference in
cell area and size between the three cell species; this area and
sizes were determined using image analysis as detailed in
Figure S3. Where M1 exhibits the largest average cell area
measuring approximately 520 ym? M2 and NM are observed
to be considerably smaller in size with an average area of 200
um?* (61% smaller) for M2 and 240 um?* (56% smaller) for
naive macrophages.

Following a 24-hour cytokine dose, fluorescence-activated
cell sorting flow cytometry (FACS) was conducted to further
validate the macrophage phenotypes. In Figure 1c,d,
fluorescent marker-specific cell density plots are presented,
specifically gated to illustrate the population of M1 and M2 in
the sample. Analysis of both scatter plots reveals that after the
24-hour cytokine dose, 95.6% of the cells in the sample exhibit
M1 phenotype, while 97.3% display M2 macrophage
phenotype. Figures S4 and S5 show how cell populations
were first identified using forward and side scatter, followed by
doublet cell exclusion using forward scatter height and area.
Naive macrophages were used as a control in flow experiments
as an initial reference to establish gating strategies.

It is imperative to recognize and address the inherent error
in the data moving forward. This margin of error stems from
challenges in achieving 100% polarization of cells, which is
confirmed by our FACS results. This acknowledgment
underscores the importance of exercising caution and precision
in the interpretation of the results. It highlights the necessity
for a thorough understanding of the limitations inherent in the
current methodology employed in this study and the advantage
of using a machine learning model to accurately predict
phenotypes.

After confirming the degree of macrophage polarization, we
next investigated the uptake of DNA-SWCNTs into the cells
via confocal Raman microscopy. Macrophage cells that had
been prepolarized for 24 h were treated with 1 mg L™ of GT-
SWCNTs for 30 min, followed by a thorough washing with 1X
phosphate-buffered saline (PBS), and subsequent incubation in
fresh media for an additional 30 min. After this incubation
period, the cells were fixed and immersed in PBS for confocal
Raman microscopy. Transmitted light and confocal Raman
images were captured from individual cells at a magnification
of 100X, aiming to analyze characteristic SWCNT Raman
features, such as the G-band (Figure 2a). The G-band,
measured at 1585 cm™,'? °* exhibits a linear correlation with
SWCNT concentration (Figure S6a), while the D-band
(Figure S6b) (1350 em™!)** to G-band ratio is indicative of
the number of defects present on the SWCNT structure.”*
Figure 2b represents the average integrated intensity of the G-
band per region of interest (ROI). Here, an ROI defines a
particular cell containing SWCNTs. The average integrated G-
band intensity per ROI was found to be highest for M1 (42
counts), followed by M2 (23 counts), and then NM (13
counts). Figure S7 shows the full graphical representation of
these cells.

A statistical representation of the defect ratio (Ip/I;) for
DNA-SWCNTs within all the macrophage phenotypes is
presented in Figure 2c. The data reveal that the defect ratio in
M1 macrophages is significantly lower compared to the M2
and NM cells, and that there is no statistically significant
difference between M2 and NM. A closer look at these
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Figure 2. Raman microscopy characterization of cells containing
DNA-SWCNTs. (a) Transmitted light images and magnified
Raman G-band images separated by cell phenotype. The scale
bar on images is 5 gm. (b) Average integrated G-band intensity per
ROL (c) D-band to G-band ratio showing clear differences in all
cell phenotypes. Bars represent the average and whiskers represent
mean =+ s.d. for each condition (n > 4 cells per condition). A two-
sample t test hypothesis testing analysis was performed between
different samples and between different time points. (**¥p <
0.001, **p < 0.01, and *p < 0.05).

observations suggests some selectivity in defective SWCNT
uptake in the M2 and NM cells. Our previous studies have
shown that macrophages can induce defects and selectively
internalize defective SWCNTs. This supports our hypothesis
that M2 and NM cells selectively internalize SWCNTs with
more defects, thus having a higher defect ratio.”® These results
underline the intricate relationship between nanotube
interaction and the internal cellular makeup, providing valuable
insights into the nanomaterial cell dynamics.

Near-infrared hyperspectral fluorescence microscopy'® was
performed on macrophage cells with internalized DNA-
SWCNTs. All the data was acquired as a function of DNA
length. Three oligonucleotide sequences (GT4 GTj5, and
GT,,) were employed in this study. DNA sequences composed
of guanine—thymine (GT) repeat units were chosen for their
widespread and comprehensive study in literature.'” Detailed
Analysis of GT4, GT,5, and GT3,-SWCNTSs can be found in
Figure S8—14.

Each cell type (M1, M2, or NM) was incubated with 1 mg
L' of GT¢-SWCNTs for 30 min, followed by a wash with
PBS, and subsequent incubation in fresh media for 30 min, 6 h,
or 24 h before hyperspectral imaging. Throughout this period,
changes in peak intensity and center wavelength were observed
for four distinct emission bands in the NIR spectrum for each
macrophage phenotype. A two-dimensional excitation/emis-
sion photoluminescence plot in Figure S15 shows all of the
chiralities present in our DNA-SWCNT sample. From shortest
to longest wavelength, we used the four strongest emission
bands, which are dominated by the (10,2), (9,4), (8,6), and
(8,7)-SWCNT chiralities.”" Figure 3a shows the transmitted

light and NIR images for all three macrophage phenotypes,
M1, M2, and NM 6 h post DNA-SWCNT dose. Visual
differences in intensity can easily be observed, with M1 being
brighter than M2 and NM. Figure 3b shows the average
broadband intensity for each cell type normalized by their
respective areas. In principle, the NIR broadband intensity of
M1 macrophages should ideally be significantly higher than
that of M2 and naive macrophages due to higher uptake in M1,
as indicated by a higher G-band. However, it is important to
note that the average cell size of M1 macrophages, as discussed
earlier in Figure 1b, is significantly larger in comparison to that
of M2 and NM cells. When divided by the projected cell area
in two-dimensions, this normalized broadband intensity turns
out to be the smallest. The average area-normalized broadband
intensity for M1 cells was observed to be a striking 72% less
than M2. Furthermore, the average intensity for NM cells was
observed to be approximately 45% less than that of M2 type
macrophages. Nevertheless, it is crucial to emphasize that,
whether normalized by cell area or not, the broadband
intensity differs significantly across all cell phenotypes. This
distinction suggests that the broadband intensity can serve as
an identifiable feature for distinguishing cell phenotypes.
Figure 3¢ shows averaged spectral data at the 6 h time point,
which reveals distinct differences and variations in normalized
intensities and peak center wavelengths among M1, M2, and
NM cells. Similar apparent trends and modulation in the
center wavelengths and peak intensities can be observed
between these cell phenotypes throughout all time points
(Figure S16—20). To study identifiable spectral differences
between M1, M2, and NM cells, we probed various NIR
fluorescence parameters in more detail. Figure 3d is a statistical
comparison of the peak intensity ratios for bands 1 and 2.
Statistically significant differences between all cell phenotypes
is observed.

We next fitted the average NIR spectra to Gaussian curves to
extract peak intensity and center-wavelength information for
each of the identified SWCNT bands (Figure S21). The
center-wavelength information is shown for the 6 h time point
in Figure 3e, where it is apparent that both M1 and M2 type
macrophages exhibit center wavelength modulations when
compared to NM. M1 macrophages exhibited a 4 nm red-shift
in band 1 center wavelength when compared to NM cells,
whereas M2 macrophages exhibited a 3 nm red-shift. It is
important to note that although the wavelength difference
between M1 and M2 cells is just 1 nm, it is still statistically
significant and thus can be used as one of the identifiable
features in NIR macrophage phenotyping. Figure S22 shows a
list of different NIR features that were evaluated and used in
machine learning,

We speculate that the observed changes in intensity and
center wavelength over 24 h, as well as the differences in peak
intensities and center wavelengths of different chiral species,
are likely attributed to variations in the lysosomal environment
of these three distinct cell phenotypes.

Previous work in the literature has demonstrated that DNA-
SWCNTs undergo internalization into cells through energy
dependent endosomal uptake and endolysosomal processing.'”
“? Tt is also a known fact that the endosomal environment for
different cell phenotypes, such as M1 and M2 macrophages,
can significantly differ.”® For instance, M1 macrophages exhibit
upregulation of NOX2, iNOS, SYNCRIP, TRAF6, AP-1, and
certain cathepsin species, while M2 macrophages show
downregulation of NOX2, iNOS, SYNCRIP, and upregulation
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Figure 3. NIR fluorescence hyperspectral microscopy and identification of spectral features for GTs-SWCNTs in various macrophage
phenotypes 6 h after internalization. (a) Transmitted light and NIR fluorescence images (900—1600 nm) for all cell types M1, M2, and NM.
(b) Bar graph showing average broadband intensity per cell area for all cell phenotypes. Bars represent the average and whiskers represent
the mean + s.d. for each condition (n > 300 cells per condition). A two-sample ¢ test hypothesis testing analysis was performed between
different samples and between different time points (***p < 0.001, and *p < 0.05). (c) Average NIR spectrum for GT,-SWCNTs within each
cell phenotype. (d) Bar graph showing a comparison of band peak intensity ratios for all phenotypes. Bars represent the average and
whiskers represent mean + s.d. for each condition (n > 300 cells per condition). A two-sample ¢ test hypothesis testing analysis was
performed between different samples and between different time points (*p < 0.05). (e) Box and whisker diagram for band 1 center
wavelength. Minimum of n > 300 cells per condition were used. Boxes represent 25—75% of the data, horizontal lines represent medians,
and whiskers represent mean + s.d. A two-sample t test hypothesis testing analysis was performed (***p < 0.001).

of arginase, EGR2, SOD 1, and superoxide dismutase.>” ™%’
The significant differences in the intra-endosomal environment
of these cells contribute to a complicated interplay between
SWCNTs and cellular biomolecules. This interplay leads to
preferential binding of specific analytes to different SWCNT
chiral species, thus influencing the SWCNT spectrum.

To confirm this hypothesis, we performed solution phase
experiments to recapitulate the intracellular environments.
Figure 4a shows the response of GT4-SWCNTSs to
physiologically relevant concentrations of 10 ng mL™!
deoxyribonuclease II (DNase II), activating protein-1 (AP-
1), and a mixture of both. DNase-II and AP-1 were selected as
model biomolecules from the lysosomal environment of
various macrophages due to their pH dependence and
phenotype-specific up or down regulation.”® Similar to the
differential phenotypic response as shown in Figure 3, all the
biomolecules exhibit slight changes in peak intensity and band
specific center wavelength, which significantly differ from the
GT4SWCNT control sample. Notably, the individual
biomolecule responses also significantly differ from the
combined biomolecule response when carefully examining all
NIR spectra. It is also important to note that like intracellular
NIR features in Figure 3 similar observations in center
wavelength red-shifting and intensity changes are observed for
the SWCNT bands between control, DNase-II, and AP-1
samples. Interestingly, the protein-induced spectral modula-

tions are time-dependent (Figure 4c). Major shifts in SWCNT
center wavelengths and peak intensities were observed for AP-
1 solutions at time points of 1 or 6 h after mixing. Similar time-
dependent spectral modulations were observed for DNase-II
and the biomolecule mixture, as shown in Figure S23. These
differences in SWCNT sensor response over time, specifically
peak shifting and broadening, can also be attributed to protein-
induced aggregation within the samples.” The differential
response of the DNA-SWNCTSs under varying pH conditions
is shown in Figure 4b. Finally, Figure 4d illustrates the
variations in the peak intensity ratio between bands 1 and 2
across all model biomolecules, as depicted by the bar graph.

These solution phase experiments provide supporting
evidence for the hypothesis that differences in the NIR
spectrum of DNA-SWCNTs can indeed be caused by changes
in the varying endolysosomal environment within distinct
macrophage phenotypes.

The array of changes observed in the DNA-SWCNT spectra
across different cell phenotypes and over time reflects the
complex and dynamic nature of nanomaterial—cell interactions
within distinct endolysosomal environments. This insight into
the intricate molecular interactions can be used as an effective
tool to differentiate between cell phenotypes. Utilizing all the
NIR fluorescence features that exhibited significant differences
between M1, M2, and NM cells, a machine learning (ML)
model was developed for the identification and quantification
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of unknown macrophage samples into either the M1, M2, or
NM cell category. We selected the support vector machine
(SVM) as the ML model for this purpose. SVM is a supervised
learning algorithm designed for solving complex classification,
regression, and outlier detection problems.®’ It achieves this by
performing optimal data transformations that delineate
boundaries between data points based on predefined class
labels or outputs. SVM modeling has proven effective in
various applications and has recently gained momentum within
healthcare and medicine.”>"®* This method has previously
been employed for the detection of various diseases such as
diabetes,®> Alzheimer’s,*®°’ psoriasis,68 hepatitis,69 and
more.”””!

Utilizing this SVM ML model, we examined the ability of
DNA-SWCNTs to identify differing cell phenotypes as a
function of DNA length. In Figure Sa, one identifiable feature,
i.e,, band 1 center wavelength, is shown as a function of DNA
length and macrophage phenotype. Upon statistical analysis,
DNA-SWCNTs composed of the shortest DNA sequence, i.e.,
the GTy, exhibited the largest statistically significant modu-
lations. We speculate that this is due to the relative instability
and mobility of shorter DNA strands on the SWCNT
surface.'” Similarly, GTs-SWCNTs can achieve higher
chirality-dependent fluorescence modulation due to the
increased degree of ease for the removal of DNA from the
nanotube surface through adsorption of other amphiphilic
molecules.”” Another credible explanation can also be the
increased interaction between the phosphate backbone of
DNA and charged species in the surroundings that can easily
induce confirmational changes, thus achieving a greater degree
of modulation.”” Additional comparisons are found in Figures
S24 and S25. With this DNA length-dependence in mind, we

trained individual SVM models based on NIR fluorescence
spectra of DNA-SWCNTs within macrophages of known
phenotype. For GT4-SWCNTSs, although 101 predictors were
input into the model, a principal component analysis and
feature importance score sorting using an ANOVA analysis
were performed (Figure $S26) and only 42 significant
predictors explaining at least a 95% variance were selected.
Figure 5b shows a bar graph demonstrating that for both
validation and test data; GTs-SWCNTSs achieved the highest
accuracy at about 87%. GT s exhibited moderate accuracy,
reaching approximately 59%, while GT;, significantly under-
performed with an accuracy of only 19%. The SVM ML
accuracies were also determined as a function of time point
(Figure Sc). All models trained with GTg data consistently
achieved accuracies greater than 87%. Notably, three of the
GT4 models surpassed 90% accuracy, and the model trained
with data from the 6 h time point exhibited the highest
accuracy at approximately 95%. When delineated by cell
phenotype, the model demonstrates the highest accuracy for
predicting M1 and M2 macrophages, with 98% and 96%
accuracies, respectively, as shown in Figure 5d. The accuracy
for NM cells was comparatively lower at roughly 78%. The
lower accuracy of NM cells is attributed to a significant overlap
of principal component analysis features between M2 and
naive macrophages, as depicted in Figure 4e. Figure 4f shows a
receiver operating curve (ROC), further affirming the high
predictive power of the model. The ROC curve is a valuable
tool for assessing the trade-off between sensitivity and
specificity in classification models. A classification error plot
shown in Figure S27 was made to check the model for errors,
discrepancies, and optimize hyperparameters for accuracy.
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The higher predictive accuracy, especially for M1 and M2
macrophages, and the corresponding ROC curve, contribute to
the overall confidence in the robustness and reliability of the
GTs SVM model for identifying and distinguishing between
different macrophage phenotypes. Furthermore, these results
also underline the consistency of the GTs-SWCNT model
across various time points with particularly high accuracy rates
observed. The superior performance of the model trained with
data from the 6-hour time point suggests that this specific time
point provides highly discriminatory features for accurately
identifying cell phenotypes. It is imperative to note that
number of data points to train data were kept constant to avoid
any issues arising from over- or under-fitting of data. It is also
important to note that previous studies have shown this 6-hour
time scale is very significant for intracellular studies. Machine
learning data for other time points can be found in Figures S28
and S29. Overall, the findings emphasize the potential of GT,-
SWCNT data in developing accurate and reliable machine
learning models for cell phenotype identification.

For future in vivo applications of the spectral fingerprinting
approach, we demonstrate feasibility with the use of a custom-
built NIR probe spectrophotometer.”> A schematic of the
probe spectrophotometer is shown in Figure 6a. The setup
incorporates a 730 nm laser passing through a two-way fiber
optic cable and illuminating a Petri dish of M1, M2, or NM
cells containing DNA-SWCNTs. The fluorescence emission is
directed back into the fiber optic probe, which routes it into a
spectrometer connected to a 1D InGaAs detector, providing an
output in the form of an NIR spectrum. Figure 6b,c represent

the normalized output from the probe spectrophotometer at
0.5 and 2 h after a 30 min incubation with § mg L™ GTg-
SWCNTs. Evident intensity changes between the two band
species can be observed. Figure 6d shows the differential peak
intensity ratio comparisons for all phenotypes at 0.5 h post
SWCNT dose. Significant differences in intensity ratios
observed are features that can easily enable the identification
of macrophage phenotypes with considerable accuracy. This
approach holds promise for application in vivo wound models,
such as live mice, enabling real-time monitoring of macrophage
subtype population. Moreover, in the future, it can also serve as
a valuable tool in medical research for tracking stem cell
differentiation in vivo. Further advancements and research may
also position it as a diagnostic assay for early cancer detection.

To evaluate the use of DNA-SWCNT-based cell phenotyp-
ing in a more clinically relevant application, i.e., in primary
cells, the same type of NIR spectral analysis was performed
with bone marrow-derived macrophages (BMDMs) isolated
using bone marrow from femoral and tibial bones of eight- to
ten-week-old mice. Figures 7a and S30 visual representations
of all the cell phenotypes and clearly show the apparent
differences in NIR brightness among all three cell types.
Interestingly, like previous figures, significant band center
wavelength and intensity modulations are observed among M1,
M2, and naive BMDM samples through time, as shown by
Figure 7b,c. Similarly, a closer look at these features indicates
statistically significant differences in the band peak intensity
ratios when comparing all three cell phenotypes, as shown in
Figure 7d. More distinguishable NIR features as well as the
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Figure 6. Measurements for future in vivo applicability of the
spectral fingerprinting approach. (a) A schematic diagram showing
the fiber optic NIR probe spectrometer setup for sample data
collection. (b) GT-SWCNT sensor probe response at 0.5 h. (c)
GT4-SWCNT sensor probe response at 2 h. (d) Bar graph showing
the comparison of band peak intensity ratios for all phenotypes.
Bars represent the average and whiskers represent mean =+ s.d. for
each condition (n > 5 X 10° cell per mL per Petri dish). A two-
sample t test hypothesis testing analysis was performed between
different samples and between different time points (*p < 0.05).

SVM confusion matrix for primary macrophages can be found
in Figures S31 and S32. Together, these distinct differences
demonstrate the applicability of our sensor platform toward in
vivo applications, offering the potential for real-time monitor-
ing and analysis of cellular responses and comparison of
different cell phenotypes present within living organisms.

To quantify potential deleterious effects on cell health as a
function of polarization state and DNA-SWCNT concen-
tration, two distinct methods, xCELLigence and annexin V/PI
assays, were employed to assess the response of each cell
phenotype. The first method involved real-time monitoring of
cell proliferation using an xCELLigence Real-Time Cell
Analysis system. This system measures electrical impedance
across integrated microelectrodes embedded in the bottom of
specialized 16-well tissue culture E-plates. The impedance
measurement is represented as a cell index value, which can be
directly correlated to various cellular characteristics, including
cell growth, viability, adhesion, activity, and morphology.74
Figure 8a illustrates the normalized cell index of RAW 264.7
NM cells dosed with 0.1, 1, or 10 mg L' GT;-SWCNTs. The
data reveal that the highest cell proliferation occurred at a
DNA-SWCNT dose of 1 mg L™, while a dose of 10 mg L™*
considerably decreased the cell viability. Interestingly, higher
DNA-SWCNT concentrations resulted in greater rates of cell
proliferation, activity, and viability of M1 macrophages, with 10
mg L' showing the highest response (Figure 8b). The
response of M2 macrophages mirrors that of NM cells with
maximum growth and proliferation observed at a dose of 1 mg
L™ and a minimum growth rate observed at 10 mg L (Figure
8¢c).
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Figure 8. Real-time cell proliferation and cytotoxicity of RAW 264.7 macrophages exposed to DNA-SWCNTs. Cell proliferation curves for
(a) naive macrophages, (b) M1 macrophages, and (c) M2 macrophages over a continuous period of 3 days. Cell index normalized to the no-
SWCNT control cell index for (d) naive macrophages, (e) M1 macrophages, and (f) M2 macrophages as a relative measure of cell activity.

By normalizing the cell index of each macrophage phenotype
to the cell index of its respective control, a measure for relative
cellular activity over time was determined (Figure 8d—f). Both
M2 and NM cells exhibit an identical response with their
activity lower than that of their respective controls. Upon
closer examination of M1 macrophages, it is observed that all
M1 macrophages dosed with DNA-SWCNT outperformed the
control in terms of cellular activity, with the highest nanotube
dose demonstrating the highest activity. The enhanced activity
of M1 macrophages is attributed to their higher uptake of
DNA-SWCNTs. We speculate, due to their pro-inflammatory
nature, M1 macrophages tend to proliferate more when
internalizing more DNA-SWCNTs. This observation suggests
that the presence of a higher concentration of SWCNTs may
stimulate the activity and growth of M1 macrophages,
providing valuable insights into the complex interplay between
nanomaterials and immune cell responses.

A second method for monitoring cell health was an
apoptosis-necrosis assay, performed to investigate the effects
of DNA-SWCNT concentration on different macrophage
phenotypes, as shown in Figure S33. Results did not show
any major cell necrosis in any samples except M1 cells. This
was attributed to scraping the M1 cells from the Petri dish
surface, which has been discussed in Figure S33.

CONCLUSION

Figure 9 represents a simplified schematic for the process used
to identify macrophage phenotypes using single-walled carbon
nanotube near-infrared spectral fingerprinting. In conclusion,
this comprehensive study employs a multifaceted approach to
unravel the intricate interactions between distinct macrophage
phenotypes and DNA-SWCNTs. A crucial finding highlights

the paramount importance of selecting an appropriate DNA
sequence length for accurate cell phenotype identification
based on NIR fluorescence data, with an emphasis on efficacy
of shorter sequences. Moreover, the study affirms the potency
of SWCNT-based spectral fingerprinting, particularly when
coupled with machine learning, as an invaluable tool for
precisely categorizing cellular states based on complex spectral
data. This innovative approach holds great promise in
advancing our understanding of dynamic cellular processes,
disease states, disease progression, and response to stimuli in
vivo. The platform’s sensitivity to minute changes in the NIR
spectrum positions it as a valuable tool for researchers and
clinicians. It facilitates the real-time monitoring of cellular
behavior within living systems, offering insights that extend to
both fundamental research and clinical applications. The
implications of this research provide a significant contribution
for future developments in nanotechnology and biomedicine,
bridging the gap between spectral analysis and cellular
dynamics for enhanced diagnostic and therapeutic interven-
tions.

METHODS AND MATERIALS

DNA-SWCNT Sample Preparation. To create mono-
dispersed ssDNA-wrapped SWCNTs (ssDNA-SWCNTs), 1
mg of as-synthesized SWCNT powder was added to 2 mg of
(GT),, oligonucleotide (Integrated DNA Technologies) and 1
mL of 0.1 M NaCl (Sigma-Aldrich). Each sample was
ultrasonicated using a 1/8” tapered microtip for 30 min at
40% amplitude in an ice bath (Sonics Vibracell VCX-130;
Sonics and Materials). The resulting suspensions were
ultracentrifuged (Beckman Optima MAX-XP) for 30 min at
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Figure 9. Conclusion schematic. A simplified schematic for the
accurate identification of immune cell phenotypes using a support
vector machine learning model.

250,000 g and 4 °C, and the top ~80% of the supernatant was
collected.

Near-Infrared Fluorescence Microscopy. A hyperspectral
NIR fluorescence microscope, similar to a previously detailed
system,”” was used to obtain all hyperspectral fluorescence
data. A 660 nm excitation laser source was reflected onto the
sample stage of an Olympus IX-73 inverted microscope
equipped with a LCPlan N, 20X/0.45 IR objective by
Olympus, U.S.A. The resulting fluorescence emission was
passed through a volume Bragg grating and collected with a 2D
InGaAs array detector by Photon Etc., (Montreal, Canada) to
generate spectral image stacks. Live cell samples were mounted
on a stage top incubator by Okolab, to maintain 37 °C and 5%
CO, cell culture conditions throughout the imaging procedure.
All hyperspectral cubes, fluorescence images, and transmitted
light images were background corrected and processed in
MATLAB.

Confocal Raman Microscopy. All Raman data was
acquired using an inverted WiTec Alpha300R confocal
Raman microscope (WiTec, Germany) equipped with a
Zeiss Epiplan-NEOFLUAR 100X/1.3 Qil Pol, oil immersion,
objective, a 785 nm laser (20 mW output measured at the
sample), and a UHTS 300 spectrograph (300 lines/mm
grating) coupled with an Andor DR32400 CCD detector
(—61C, 1650 pixels X 200 pixels). Singular cell areas were
scanned, and spectra were obtained in 1 X 1 um intervals using

a 0.2s integration time per spectrum to construct hyperspectral
images of individual cells. Background subtraction and cosmic
ray removal were performed using a polynomial function in
WiTec Project 5.2 software. Hyperspectral data was extracted
and processed using custom codes written with MATLAB for
integrated G-band, D-band, and Ip/I; values.

Cell Culture. RAW 264.7 TIB-71 cell line from ATCC
(Manassas, VA, USA) was cultured under standard incubation
conditions at 37 °C and 5% CO2. “D-10” cell culture media
containing sterile filtered high-glucose DMEM with 10% heat
inactivated FBS, 2.5% HEPES, 1% L-glutamine, 1% penicillin/
streptomycin, and 0.2% amphotericin B (all from Gibco) was
used for cell culture. 0.5 ng mL™" of cytokines and signaling
molecules were added to media during each experiment to
avoid cells losing their polarization states.

Sample Preparation for Optical Microscopy. For all
20X in vitro NIR fluorescence imaging experiments the cells
were plated, in triplicate, at an initial concentration 5.26 X 10*
cells/cm® on 35 mm glass-bottom microwell dishes (MatTek)
and allowed to culture overnight. To dose the cells with
nanotube samples, the culture media was removed and
replaced with 1 mg L™' of either purified-SWCNTs or
unpurified-SWCNTs diluted in D10 cell culture media and
incubated for 30 min to allow cell internalization. The
SWCNT-containing media was then removed, the cells were
washed twice with sterile PBS (Gibco) followed by the
addition of fresh media. All time points were defined with
respect to this step. For the 100X confocal Raman microscopy
experiments, the same cell plating and SWCNT dosing
procedures were followed as highlighted previously; however,
the cells were fixed with paraformaldehyde (Electron
Microscopy Sciences). Cell fixation was performed with 4%
PFA in PBS for 15 min, after which the cells were rinsed three
times and covered with PBS to retain an aqueous environment
during imaging.

Cell Viability Assay. RAW 264.7 macrophage cells were
plated on 35 mm glass-bottom microwell dishes (MatTek) and
allowed to culture overnight (with cytokine dosed media) at an
initial seeding density of 5.26 X 10* cells per cm® The
following day, the medium was replaced with 1 mg L™!
SWCNTs diluted in the medium and incubated for an
additional 24 h. After 24 h, the cells were collected from the
dishes and stained with annexin V and propidium iodide
(Dead Cell Apoptosis Kit V13242, Invitrogen) following the
manufacturer’s protocol. Fluorescence images of the stained
cells were acquired by using a Cellometer Vision CBA image
cytometer (Nexcelom Bioscience), and images were analyzed
by using Image] and custom MATLAB codes, which
background subtracted and integrated fluorescence from
whole fields of cells. For each cell condition, a control dish
was plated without SWCNT addition to create the gates on the
annexin V and propidium iodide axes of the histograms.

Bone Marrow Cell Isolation. To generate BMDMs, the
femoral and tibial bones of 8—10-week-old mice were flushed
with RPMI media (Thermo Fisher) and the bone marrow
suspension was passed through a 70 pum cell strainer. Bone
marrow cells were cultured in T75 nontissue-culture flasks with
10 mL of RPMI medium (Thermo Fisher) supplemented with
10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 25
mM HEPES, and 20% 1929 conditioned medium and kept in a
humidified incubator at 37 °C with 5% CO,. An additional 5
mL of media was added to plates on day 3 of differentiation.
After 7—10 days of differentiation, the loosely adherent cells
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were harvested by gentle washing with 2 mM EDTA (Thermo
Fisher) in PBS (Thermo Fisher), cells were seeded in 12-well
plates at a density of 3 X 10° per mL, were pooled and used as
the starting source of cells for most experiments. BMDMs were
seeded overnight in 12-well plates (2.5 X 10° per well; 1 mL
culture medium before infection).

Macrophage Differentiation. To induce differentiation
of macrophages into M1 and M2 phenotypes, a combination of
signaling molecules were added. M1 were obtained by
exposing the cells to a dose containing 0.5 ng mL™' of
lipopolysaccharide (LPS) and interferon-gamma (IFN-y). LPS,
derived from the outer membrane of Gram-negative bacteria,
and IFN-y, a pro-inflammatory cytokine, collectively drive cell
polarization toward the M1 phenotype. Conversely, to obtain
M2, a separate set of signaling molecules were used. A dose of
0.5 ng mL™" of interleukin-4 (IL-4) and interleukin-10 (IL-10)
were introduced simultaneously. IL-4 and IL-10 cytokines are
both associated with anti-inflammatory responses, which
contribute equally to the polarization of macrophages toward
the M2 phenotype. Cells were incubated with the cytokine
mixtures overnight, for 24 h, to achieve maximum cell
polarization and were later evaluated for characteristic
differences among each cell phenotype, before proceeding
with any experimentation.

Real-Time Near-Infrared Fluorescence Spectroscopy.
Petri dishes were seeded with cells to achieve a density of 5 X
10° cells. Consequently, cells were dosed with respective
cytokines to polarize them into M1 and M2 macrophages.
After 24 h, S mg L™ of GT4-SWCNTs were added to cells, and
after the 30 min incubation period, cells were washed with 1X
PBS and replenished with fresh media. NIR fluorescence
spectra were acquired from each sample at 0.5 and 2 h.
Individual NIR fluorescence spectra from cell samples were
obtained using a custom-built preclinical fiber optics probe
spectroscopy system described in previous studies. A custom
MATLAB code was used to perform background subtraction
and post analysis on acquired fluorescence data.

Near-Infrared Fluorescence Spectroscopy for Lyso-
somal Solution Experiments. 10 ng mL™" of deoxyribonu-
clease II (DNase II), activating protein-1 (AP-1), and a
mixture of both DNase-II and AP-1 was used as model
biomolecules for lysosomal environments. Solutions of AP-1
and DNase-II were made in high purity Milli-Q water (at 37
°C) and incubated with 0.1 mg/L of SWCNTs. The mixture
was vortexed and placed in the incubator at 37 °C for 15 min,
and 160 uL of each mixture was added to a 96 well-plate for
imaging.

Macrophage Identification. To discern M1 macrophage
characteristics, APC antimouse CD11c and FITC antimouse
CD38 antibodies (BioLegend) were utilized. These antibodies
were specifically employed for the precise detection of M1
macrophage markers, including CD38 and CDl1lc. These
selected markers play a pivotal role in identifying distinctive
characteristics associated with M1 macrophages using flow
cytometry. Subsequently, M2 macrophages were also identi-
fied. In this regard, M2-specific markers, CD206 and CD163,
were targeted for detection using PE/Dazzle 594 antimouse
CD 206 (MMR) and APC antimouse CD163 antibodies
(BioLegend). An Anti-CD16/CD32 Fc receptor blocking
antibody was used to eliminate nonspecific receptor binding.
This meticulous approach allowed for the comprehensive
identification of M1 and M2 macrophage phenotypes post
cytokine addition.

FACS Flow Cytometry. Cells were detached using TrypLE
from Petri dishes and resuspended in cell staining buffer (PBS
+0.5—1% BSA) at a density of S X 10° cells per mL. Staining
was done at 4 °C. 100 uL of cells were added to centrifuge
tubes followed by 100 uL of Fc blocking antibody (1:50 ratio
in buffer). The cells were incubated for 20 min followed by
centrifugation at 1500 rpm for 5 min at 4 °C. Supernatant was
discarded, and the cells were further incubated for 30 min with
marker specific antibodies (0.1 ug mL ~') in 100 uL of buffer
in the dark. The cells were then washed by centrifuging at 1500
rpm for 5 min. Washing was repeated 3 times to remove any
unbound markers. The cells were then resuspended in 200 L
of FACS buffer for flow cytometry.

FACS Flow Cytometry Analysis. A BD FACSVerse Cell
Analyzer was used to perform flow cytometry experiments.
QA/QC was performed on the equipment before cell analysis
to optimize detector voltage settings. BD FACSuite version
1.0.6 was used for data analysis and cell gating. Three different
gating strategies were employed during the data analysis. Naive
macrophages were used as a control to determine the gating
quadrants. Forward and side scatter density plots were used to
determine cell populations in the sample in the first pass. This
was followed by forward height and scatter plots for doublet
cell exclusion to avoid any false positive. Two parameter
density plots were also used to confirm cell phenotypes
depending on multiple fluorescent markers.

Label-Free Cell Proliferation and Adherence Mon-
itoring. Adherence and proliferation were measured with an
xCELLigence real-time cell analysis instrument from Agilent.
For baseline impedance measurements of the wells, 140 uL of
cell media was added to each of the 16 wells in the E-plate. 50
uL of cells diluted in media was added to each well to reach a
final concentration of 2 X 10° cells per well. The cells were
allowed to adhere to the plates for 30 min in a cell culture
hood to allow for an evenly distributed initial seeding of cells
over the electrodes. After 30 min, the E-plates were placed into
the xCELLigence system and data acquisition occurred every
1S min. Plates were incubated for 24 h. Subsequently,
respective cytokines were added, and the cells were incubated
for an additional 24 h to polarize macrophages into M1 or M2
phenotypes. The cells were then dosed with three different
concentrations of GT-SWCNTs: 0.1, 1, and 10 mg L™} in
separate wells.

Data Collection for Machine Learning. Near-infrared
spectral data from 950 to 1350 nm was used to train the
machine learning model. For each cell type and time point,
both technical and biological replicates were acquired to
confirm the reproducibility and repeatability of experiments.
Each cell type had an estimated 50,500 data points per time
point. Training data set for one time point was an estimated
1.5 million data points. Total training data set size for all time
points was an estimated 6 million. A data point is termed the
101 recorded features in the near-infrared spectrum per cell.

Data Processing for Machine Learning. The Image]
software was used to identify and mask single living cells as
regions of interest using the ROI manager. The near-infrared
spectral data coupled with ROI data from Image] was fed into
a custom-made MATLAB graphical user interface (GUI) to
segment data based on single cells analysis. The resulting data
files were preprocessed and formatted using another custom-
made MATLAB GUI to rearrange data for the MATLAB
Classification Learner.
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Machine Learning Optimization. The MATLAB classi-
fication learner from the machine learning and deep learning
toolbox was used to train a support vector machine on the
segmented data based on single cell analysis. 101 predictors
were initially used for data prediction. 75% of the data was
used for model training. Validation of the training data set was
performed using MATLAB in-built hold-out validation method
at a percentage of 25%. A completely separate set of test data
was used to evaluate model performance after tuning,
optimizing, and training the model to avoid problems with
overfitting.

Statistical Analysis. OriginPro 2022b was used to perform
all the statistical analyses. All data either met assumptions of
statistical tests performed (i.e., equal variances, normality, etc.)
or were transformed to meet assumptions before any statistical
analysis was caried out. Statistical significance was analyzed
using a two-sample t test or one way ANOVA where
appropriate. Testing of multiple hypotheses was accounted
for by performing one-way ANOVA with Tukey’s posthoc test.
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