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Abstract 
Reliable scenarios are needed to obtain a high-quality solution to a stochastic program. 
Considering sets of scenarios and corresponding observed values of the uncertain parameters over 
a collection of historical instances, reliability is defined loosely as goodness of the scenarios’ fit 
to the observations. For two-stage, risk-neutral models, a statistical tool was developed previously 
to assess the reliability of any given scenario generation method. This tool can diagnose over- or 
under-dispersion and/or bias in the scenario sets. For risk-averse decision makers who aim to 
minimize conditional value-at-risk (CVaR), only the scenarios that define the upper tail of the 
optimal cost distribution at the optimal solution are important. We develop a tool to assess the 
reliability of these so-called effective scenarios for CVaR minimization. Simulation studies of a 
financial investment problem demonstrate the ability of the tool to detect mismatches in mean, 
variance, or kurtosis between scenarios and the corresponding observations. 
 
Keywords Risk-averse stochastic programming, scenario reliability assessment, Conditional-
Value-at-Risk (CVaR), goodness of fit 
 
1. Introduction 
Stochastic programming is used to optimize a problem of decision making under uncertainty by 
modeling uncertain parameters in a mathematical program as random variables. In two-stage 
stochastic programs, decisions are divided into two sets. The first-stage decisions must be made 
before the realizations of the random variables are known, while second-stage decisions can 
provide recourse to the realizations observed. Approximating the underlying probability 
distribution of uncertainty by generating probabilistic scenarios for the uncertain parameter values 
has long presented a challenge in modeling stochastic optimization problems (Rahimian et al., 
2018). If the generated set of scenarios well represents the joint distribution of the uncertain 
parameters, then a good solution for the stochastic program is obtained. In situations where 
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instances of the same problem are solved continually, it may be possible to re-enact the process of 
generating scenarios and solving the resulting optimization problem.  Then the optimal objective 
values can be compared with the cost of implementing the solutions under the corresponding 
observations of the uncertain parameters.   This procedure is very time consuming (Sari Ay & 
Ryan, 2019). To avoid it, Sari et al. (2016) developed a statistical tool to assess scenario reliability 
directly.  For daily power generation scheduling instances, Sari and Ryan (2018) demonstrated 
that reliable scenarios, as identified by this tool, produce high quality solutions, as measured by 
the average cost of their implementation. 

Scenario reduction methods have been studied intensively for identifying a moderate-sized subset 
of scenarios to approximate the joint distribution of the random variables. Although most of them 
were developed for classical risk-neutral stochastic optimization problems, they could also be 
applied to models that incorporate risk-aversion; specifically, when minimizing Conditional Value 
at Risk (CVaR), since this risk measure can be expressed as an expectation. Recently, however, a 
more efficient scenario reduction technique was developed for CVaR minimization problems by 
taking the definition of effective scenarios into account (Arpón et al., 2018). If the optimal 
objective value of a problem changes by removing a scenario, that would be an effective scenario; 
otherwise, it is considered as ineffective (Rahimian et al., 2018).    

If historical observations of the random variables are available, the reliability of a scenario 
generation and/or reduction method can be assessed. In ensemble forecasting, if the forecasts and 
observations are consistent statistically, they are interchangeable, and the forecasts can be 
considered as reliable (Gneiting & Raftery, 2007). Pinson and Girard (2012) studied reliability 
assessment of probabilistic scenarios. They considered equally likely wind power scenarios and 
developed some statistical metrics to assess them without taking account what effect those 
scenarios have on the stochastic programming problems. The reliability of equally likely scenarios 
(Pinson & Girard, 2012) can be checked by a minimum spanning tree (MST) rank histogram 
studied by Wilks (2004). The minimum spanning tree lengths are used as a pre-ranking function 
in this method. For considering unequally likely wind power scenarios for use in stochastic unit 
commitment, Sari et al. (2016) modified some of the statistical metrics used by Pinson and Girard 
(2012). In particular, motivated by the use of the mass transportation distance (MTD), also known 
as Weierstrass distance, they developed the MTD rank histogram, in which the MST length was 
replaced by the MTD as a pre-ranking function. 

To assess the reliability of scenarios for CVaR minimization, we develop a method to evaluate the 
cost of the observation with respect to the cost distribution near optimality of the scenarios 
generated for that instance. To focus on effective scenarios, we adapt the scenario reduction 
approach of (Arpón et al., 2018) for risk-averse problems formulated as: 
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min
𝑥𝑥∈𝑋𝑋

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝐺𝐺(𝑥𝑥, 𝜉𝜉)], (1) 

where x is the set of (first-stage) decisions and  𝜉𝜉 is the random vector.  This method considers 
only those scenarios that define the upper tail of 𝐺𝐺(𝑥𝑥, . ), which compose the subset of scenarios 
that is important for our problem.  

This work is applicable to problems where similar instances are solved repeatedly, and we have 
observational data for a collection of past instances. A statistical tool based on the probability of 
the observation objective values, evaluated according to the cumulative distribution functions of 
the corresponding scenario costs, is developed to assess the reliability of a scenario generation 
process for a two-stage, risk-neutral stochastic program. Similar to the MTD or MST rank 
histograms, this tool can diagnose bias or a dispersion mismatch in the scenario sets. If the risk-
averse objective is instead to minimize conditional value-at-risk (CVaR) of cost, we should 
consider only the scenarios that produce cost in the upper tail of the distribution at the optimal 
solution. We perform simulation studies to test the effectiveness of the proposed reliability 
assessment method over a set of randomly generated instances. We apply our method to a financial 
investment problem for a tradeoff between risk and return (Guo & Ryan, 2021a). To test our 
method, we generate a set of random scenarios for each of a set of synthetic instances. We can find 
the optimal solution and objective function of the investment problem considering the generated 
scenarios set for each instance. Then, we keep those scenarios whose cost falls in the upper tail of 
the cost distribution and modify their probabilities to form an empirical cumulative distribution 
function (cdf). The value of this function, evaluated at the observation, is a quantitative measure 
of the observation’s location within the cost distribution. A histogram of these values provides a 
visual assessment of scenario reliability, or its lack. Similar to the MTD rank histogram, an upward 
slope from left to right can be seen in the histograms when the ensemble of scenarios is under-
dispersed. On the contrary, an over-dispersed ensemble of scenarios results in a downward sloping 
histogram. Reliable scenario sets produce flat histograms. Because heavy-tailed distributions for 
investment returns are observed frequently, we also test the ability of our tool to detect kurtosis 
mismatches.    

The paper that motivates this work (Arpón et al., 2018) falls in a stream of progress on scenario 
reduction for two-stage stochastic programming.  In the classical, distribution-oriented approach, 
the goal is to approximate the “true” distribution of the random vector, 𝜉𝜉, as closely as possible.  
Recently, Kaut (2021) studied methods to approximate a set of historical data for 𝜉𝜉  with subsets 
selected in various ways, while Rujeerapaiboon et al. (2022) expanded the set of candidate 
scenarios beyond the atoms of the true distribution. Increasingly, attention has turned to proble-
oriented scenario reduction methods, in which the optimization context is considered.  (Fairbrother 
et al., 2022) developed an approach based on sampling from risk regions, whereas Arpón et al. 
(2018) based their method on probability metrics. In a parallel effort, Henrion and Römisch (2022) 
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approximated the recourse function by formulating a semi-infinite program. Prochazka and 
Wallace (2020) discussed a conceptual approach to constructing a scenario tree that minimizes the 
discrepancy between in-sample and out-of-sample performance.  Bertsimas and Mundru (2022) 
minimized a problem-dependent divergence, defined as the loss in decision quality when a reduced 
set of scenarios is used to optimize. Most recently, Zhang et al. (2023) selected a subset of 
scenarios from among a large finite set to minimize the error in approximating the recourse 
function.  
 
Our work is more closely related to the evaluation of methods that have been developed to generate 
scenarios that accurately represent the stochastic processes. Defining the cost of the stochastic 
programming problem considering the scenarios produced by a scenario generation method is a 
way to evaluate the considered method (Wang et al., 2011). However, this approach is 
computationally very demanding. Kaut and Wallace (2007) defined in-sample and out-of-sample 
stability as two measures of the quality of scenarios. If the expected costs of solutions produced 
by different scenarios sets are similar, then in-sample stability exists. Out-of-sample stability 
occurs when alternative scenario sets produce solutions with similar true expected cost. Simulation 
studies, similar to those in this paper, were performed by Sari et al. (2016) to demonstrate that the 
MTD rank histogram has similar diagnostic abilities as the MST rank histogram.  A new version 
of the mass transportation distance (MTD) rank histogram was used by Sari Ay and Ryan (2019) 
to assess the reliability of the unequally likely scenarios used for unit commitment and server 
location problems. They used past instances to assess the reliability of scenarios to avoid solving 
stochastic programming instances. They consider the impact that each scenario has on the problem. 
Using MTD rank histograms to assess the reliability of scenarios guided the selection of 
hyperparameters used to estimate parameters of the distribution of stock index or momentum 
portfolio returns (Guo & Ryan, 2021b, 2023). Emirhüseyinoğlu et al. (2023) used them to validate 
machine learning-generated scenarios for crop yield. (Ryan & Shah Abadi, 2022) adapted the 
MTD rank histogram to assess the reliability of scenarios with respect to the upper tail of the cost 
distribution. Over- or under-dispersion and/or bias in the scenario sets can be diagnosed with this 
graphical tool. For a risk-averse newsvendor model, they verified that non-flat shapes of the rank 
histogram are the result of the mismatch between scenarios and observations. 
 
The multi-dimensional character of ensemble weather forecasts motivated the use of the MST 
length as a pre-rank function. The MTD played a similar role for multi-dimensional scenarios 
needed in many applications of stochastic programming. In this paper, we aim to assess the 
reliability of scenarios whose costs fall in the upper tail of the cost distribution. Because cost has 
a single dimension, we modify the pre-rank function to more simply evaluate the cost of the 
observation with respect to the cost distribution generated by scenarios.  For the special case of 
CVaR that equals expectation, we compare the results of our new rank histogram with those of the 
MTDRh applied to the costs of scenarios and observations and also to the scenarios and 
observations directly.  
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This rest of the paper is organized as follows. The research problem is described in Section 2. In 
Section 3, the proposed reliability assessment method is described. An investment problem is 
introduced in Section 4. Section 5 describes of the simulation studies performed for two 
distributions of rate of return, including the normal distribution and a heavy tailed distribution. 
Finally, conclusions are summarized in Section 6. 
 
2.  Problem Description 
The inherent uncertainty in many real systems motivates the use of stochastic programming for 
decision making. For computational tractability, a discrete set of probabilistic scenarios is 
generated to approximate the joint probability distribution of the uncertain parameters of the 
optimization problem. The question that arises after generating scenarios is how well they match 
the true distribution of the observed data. However, the objective function represents the decision-
maker’s aim. When decision-maker’s risk-aversion can be expressed as in (1), the reliability of 
those scenarios whose costs define the upper (1 − 𝛼𝛼)-probability tail of the cost distribution is 
important, and we can ignore the other scenarios. Obviously, assessing all scenarios is a time-
consuming process. The goal of scenario reliability assessment considering risk-aversion is to help 
decision-makers efficiently find out how well the interesting part of the cost distribution is 
approximated.  

The verification rank histogram is a tool to assess how the scenario sets generated for past instances 
compare with the corresponding observations. The mass transportation distance (MTD) rank 
histogram is an example of the verification rank histograms using MTD as a pre-ranking function 
used for assessing the reliability of unequally likely scenarios. If the resulting rank histograms are 
flat, we can conclude that the generated scenario sets, and their corresponding observations are 
drawn from the same distribution. MTD rank histograms can be applied to scenarios directly. To 
access the reliability of those scenarios whose cost falls in the tail, we develop a simpler histogram 
that works in the single dimension of the cost of scenarios.  

Most of the scenario reduction methods are designed for the following form of optimization 
problem: 

min
𝑥𝑥∈𝑋𝑋

𝐸𝐸[𝐺𝐺(𝑥𝑥, 𝜉𝜉)], (2) 

where 𝜉𝜉 is an uncertain random vector, 𝑥𝑥 is a vector of decision variables, 𝐺𝐺(∙) is an objective 
function that depends on 𝜉𝜉 and 𝑥𝑥, and X is a convex closed set. Decision-making considering such 
a formulation is risk-neutral. However, decision-makers are sometimes risk-averse, which 
motivates the need to optimize a risk metric instead of expectation. Some risk measures can be 
expressed as expectations. One of those risk measures is Conditional-Value-at-Risk (CVaR), 
which is a coherent (i.e., translation-invariant, positively homogeneous, and convex) risk metric.  
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To define the CVaR, we should first review the Value at Risk (VaR).The Value at Risk (VaR) and 
the Conditional-Value-at-Risk (CVaR) of a random variable Y are defined as follows (Rockafellar 
& Uryasev, 2000). 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝑌𝑌] ≔ min
 

{𝑡𝑡|𝐹𝐹(𝑡𝑡) ≥ 𝛼𝛼} = min
 

{𝑡𝑡|𝑃𝑃(𝑌𝑌 ≤ 𝑡𝑡) ≥ 𝛼𝛼} (3) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑌𝑌] ≔ 1
1−𝛼𝛼 ∫ 𝑉𝑉𝑉𝑉𝑉𝑉𝛾𝛾[𝑌𝑌]1

𝛼𝛼 𝑑𝑑𝑑𝑑, (4) 

where 𝐹𝐹(. ) is the cdf of random variable Y, and 𝛼𝛼 ∈ [0,1] represents the risk preference. 
 
Based on (Rockafellar & Uryasev, 2000), for the following minimization problem, one optimal 
solution and the optimal value are 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝑌𝑌] and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑌𝑌], respectively.  

min
𝜂𝜂∈𝑅𝑅

�𝜂𝜂 +
1

1 − 𝛼𝛼
𝐸𝐸[(𝑌𝑌 − 𝜂𝜂)+]� (5) 

where (𝑌𝑌 − 𝜂𝜂)+ is max
 
�(𝑌𝑌 − 𝜂𝜂), 0�. 

Considering CVaR instead of expectation in equation (2), we obtain equation (1). 
 
If we substitute 𝐺𝐺(𝑥𝑥, 𝜉𝜉) for Y, the following optimization problem is obtained: 

min
𝑥𝑥∈𝑋𝑋,   𝜂𝜂∈𝑅𝑅

�𝜂𝜂 +
1

1 − 𝛼𝛼
𝐸𝐸[(𝐺𝐺(𝑥𝑥, 𝜉𝜉) − 𝜂𝜂)+]� (6) 

The quantity  (𝐺𝐺(𝑥𝑥, 𝜉𝜉) − 𝜂𝜂)+ is zero for any fixed x and scenario ξ such that 𝐺𝐺(𝑥𝑥, 𝜉𝜉) ≤ 𝜂𝜂. So, if 
𝐺𝐺(𝑥𝑥, 𝜉𝜉) is a cost function, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝐺𝐺(𝑥𝑥, 𝜉𝜉)] is the expected cost of scenarios whose costs fall in the 
upper (1 − 𝛼𝛼)-probability tail of the cost distribution. As a result, the scenarios ξ for which 𝐺𝐺(𝑥𝑥, 𝜉𝜉) 
does not fall in the tail d0 not contribute to the optimal solution.  

In this paper, we present a method to assess scenario reliability with respect to the upper (1 − 𝛼𝛼)-
probability tail of the cost distribution. The procedure to test our method is to simulate a set of 
synthetic instances and a set of scenarios for each instance. By systematically varying the extent 
to which the distribution of scenarios matches that of the synthetic observations, we can test the 
ability of our tool to recognize when observations are indistinguishable from scenarios or diagnose 
the type and extent of mismatch between them.  

3.   Methodology 
We develop a method to assess the reliability of scenarios based on the cumulative distribution 
function of their costs. To achieve this goal, we need a way to represent that the cost of scenarios 
and observations are interchangeable. We do this by constructing the empirical cdf of scenario 
costs and evaluate the observation cost under it. This value represents the probability that the 
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scenario costs do not exceed the cost of the observation. The histogram of those probabilities over 
all instances provides a visual depiction of scenarios’ reliability or unreliability. 

Suppose that we have n instances, for each of which we have m scenarios. Let Ξ𝑖𝑖 =
{𝜉𝜉𝑖𝑖1, 𝜉𝜉𝑖𝑖2, … , 𝜉𝜉𝑖𝑖𝑖𝑖} be a set of scenarios for instance i,  𝑖𝑖 = 1, … ,𝑚𝑚, where 𝜉𝜉𝑖𝑖𝑖𝑖 has probability 𝑃𝑃𝑖𝑖𝑖𝑖 and 
∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1 = 1, and let 𝜉𝜉𝑖𝑖𝑖𝑖 be the observed value of 𝜉𝜉 in instance i. For each instance, i, we use Ξ𝑖𝑖 

and its distribution 𝑃𝑃𝑖𝑖 to solve the problem and obtain an optimal solution, 𝑥𝑥𝑖𝑖∗. If 𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 ) <
𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝐺𝐺(𝑥𝑥𝑖𝑖∗, . )] then discard instance i. Otherwise, identify the corresponding set of effective 
scenarios: 

𝐷𝐷�𝑖𝑖∗ = {𝜉𝜉 ∈ Ξ𝑖𝑖:𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉) ≥ 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝐺𝐺(𝑥𝑥𝑖𝑖∗, . )]} (7) 

The effective scenarios are the subset that determine the CVaR at optimality. Also define the 
partition of scenarios: 

𝐷𝐷𝑖𝑖∗ = {𝜉𝜉 ∈ Ξ𝑖𝑖:𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉) < 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝐺𝐺(𝑥𝑥𝑖𝑖∗, . )]}
𝐸𝐸𝑖𝑖∗ = {𝜉𝜉 ∈ Ξ𝑖𝑖:𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉) = 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝐺𝐺(𝑥𝑥𝑖𝑖∗, . )]}
𝐹𝐹𝑖𝑖∗ = {𝜉𝜉 ∈ Ξ𝑖𝑖:𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉) > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼[𝐺𝐺(𝑥𝑥𝑖𝑖∗, . )]}

 (8) 

Motivated by (Arpón et al., 2018), we revise the scenario probabilities to: 

𝑃𝑃�𝑖𝑖𝑖𝑖 = 0,                                                                    𝑗𝑗 ∈ 𝐷𝐷𝑖𝑖∗

𝑃𝑃�𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖 (1 − 𝛼𝛼)⁄ ,                                                𝑗𝑗 ∈ 𝐹𝐹𝑖𝑖∗

𝑃𝑃�𝑖𝑖𝑖𝑖 = �1 − 𝛼𝛼 −� 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐹𝐹𝑖𝑖

∗
� �|𝐸𝐸𝑖𝑖∗|(1 − 𝛼𝛼)�, 𝑗𝑗 ∈ 𝐸𝐸𝑖𝑖∗ �

 (9) 

The scenario set for instance i is replaced by the corresponding set of values of 𝐺𝐺�𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 �, 𝑗𝑗 =
1, … , 𝑛𝑛, and the observation for instance i is replaced by 𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 ). In each non-discarded 
instance, i, we use the revised probabilities to construct the cumulative distribution function of 
𝐺𝐺�𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 �, 𝑗𝑗 = 1, … , 𝑛𝑛.  

To construct the histogram of the probabilities of the objective function of the observations, 
suppose that 𝑘𝑘𝑖𝑖 is the number of scenarios of instance i whose revised probabilities are greater than 
zero, and they are sorted in order of increasing cost. The observation probability is computed as: 

𝑞𝑞𝑖𝑖 =

⎩
⎨

⎧
0                                           𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 ) < 𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖1 )                         
𝑃𝑃�𝑖𝑖1                   
⋮                      

                     𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖1 ) ≤ 𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 ) < 𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖2 )
⋮                                                                  

𝑃𝑃�𝑖𝑖1 + 𝑃𝑃�𝑖𝑖2 + ⋯+ 𝑃𝑃�𝑖𝑖𝑘𝑘𝑖𝑖 = 1 𝐺𝐺�𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑘𝑘𝑖𝑖  � < 𝐺𝐺(𝑥𝑥𝑖𝑖∗, 𝜉𝜉𝑖𝑖𝑖𝑖 )                      

 (10) 
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Thus, if we have 𝑛𝑛1 non-discarded instances, we will have 𝑛𝑛1 probabilities, �𝑃𝑃�𝑖𝑖𝑖𝑖|𝑖𝑖 ∈ {1, … ,𝑛𝑛1}, 𝑗𝑗 ∈

{1, … ,𝑘𝑘𝑖𝑖}�, and we can construct their histogram to depict their pattern. 

4.   Investment Problem 
To set the optimal value of allocation of wealth to risk-free and risky assets which not only can 
maximize the expected excess return but also minimize the investment risk, we can use the mean-
risk stochastic optimization model that allows short-selling of the risky asset. Suppose 𝑓𝑓𝑡𝑡 is the 
return of a risk-free asset; 𝑅𝑅𝑡𝑡 is the uncertain return of a risky asset; 𝑤𝑤𝑡𝑡 is the weight assigned to 
the risky asset; and 1 − 𝑤𝑤𝑡𝑡 as the weight assigned to the risk-free asset. A generic mean-risk 
optimization model using 𝜌𝜌 as a risk measure and 𝜆𝜆 ∈ [0, 1] as a risk-aversion parameter at time t 
can be formulated as: 

min
𝑤𝑤𝑡𝑡

(1 − 𝜆𝜆)𝐸𝐸[−(𝑅𝑅𝑡𝑡 − 𝑓𝑓𝑡𝑡)𝑤𝑤𝑡𝑡] + 𝜆𝜆𝜆𝜆[−(𝑅𝑅𝑡𝑡 − 𝑓𝑓𝑡𝑡)𝑤𝑤𝑡𝑡] (11a) 
−1 ≤ 𝑤𝑤𝑡𝑡 ≤ 1 (11b) 

(Guo & Ryan, 2021a) showed that for a coherent risk measure, like 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼, and according to 
equations (5) and (6), the risk-averse formulation is: 

min
𝑤𝑤𝑡𝑡,   𝜂𝜂𝑡𝑡+1

(1 − 𝜆𝜆)𝐸𝐸[−(𝑅𝑅𝑡𝑡 − 𝑓𝑓𝑡𝑡)𝑤𝑤𝑡𝑡] + 𝜆𝜆 �𝜂𝜂𝑡𝑡+1 +
1

1 − 𝛼𝛼
𝐸𝐸[(−(𝑅𝑅𝑡𝑡 − 𝑓𝑓𝑡𝑡)𝑤𝑤𝑡𝑡 − 𝜂𝜂𝑡𝑡+1)+]� (12a) 

−1 ≤ 𝑤𝑤𝑡𝑡 ≤ 1 (12b) 

where 𝜂𝜂𝑡𝑡+1 is the 𝛼𝛼-quantile of the negative excess return distribution at time t + 1. 
 
They also proved that the optimal solution for the above problem is as follows: 

𝑤𝑤𝑡𝑡
∗ = �

−1 𝑖𝑖𝑖𝑖                     𝐸𝐸[𝑅𝑅𝑡𝑡] − 𝑓𝑓𝑡𝑡 < −𝜆𝜆𝑑𝑑𝛼𝛼,𝑡𝑡
+

0 𝑖𝑖𝑖𝑖   − 𝜆𝜆𝑑𝑑𝛼𝛼,𝑡𝑡
+ ≤ 𝐸𝐸[𝑅𝑅𝑡𝑡] − 𝑓𝑓𝑡𝑡 ≤ 𝜆𝜆𝑑𝑑𝛼𝛼,𝑡𝑡

−

1 𝑖𝑖𝑖𝑖                       𝜆𝜆𝑑𝑑𝛼𝛼,𝑡𝑡
− < 𝐸𝐸[𝑅𝑅𝑡𝑡] − 𝑓𝑓𝑡𝑡

 (13) 

where 𝑑𝑑𝛼𝛼,𝑡𝑡
+ ≡ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑅𝑅𝑡𝑡] −  𝐸𝐸[𝑅𝑅𝑡𝑡] ≥ 0 and 𝑑𝑑𝛼𝛼,𝑡𝑡

− ≡ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[−𝑅𝑅𝑡𝑡] +  𝐸𝐸[𝑅𝑅𝑡𝑡] ≥ 0. 
 
We consider a special case of this problem for our numerical experiments in which we set the risk 
aversion parameter, 𝜆𝜆, to one. Then the optimal solution has the following form: 

𝑤𝑤𝑡𝑡
∗ = �

−1      𝑖𝑖𝑖𝑖                                     𝑓𝑓𝑡𝑡 > 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑅𝑅𝑡𝑡]
   0      𝑖𝑖𝑖𝑖  − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[−𝑅𝑅𝑡𝑡] ≤ 𝑓𝑓𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑅𝑅𝑡𝑡]
   1      𝑖𝑖𝑖𝑖                               𝑓𝑓𝑡𝑡 < −𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[−𝑅𝑅𝑡𝑡]

 (14) 

As a result, the optimal value of the objective function is: 

𝑂𝑂𝑂𝑂∗ = �
𝑅𝑅𝑡𝑡 − 𝑓𝑓𝑡𝑡      𝑖𝑖𝑖𝑖                                     𝑓𝑓𝑡𝑡 > 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑅𝑅𝑡𝑡]

   0                  𝑖𝑖𝑖𝑖  − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[−𝑅𝑅𝑡𝑡] ≤ 𝑓𝑓𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[𝑅𝑅𝑡𝑡]
  −𝑅𝑅𝑡𝑡 + 𝑓𝑓𝑡𝑡         𝑖𝑖𝑖𝑖                               𝑓𝑓𝑡𝑡 < −𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼[−𝑅𝑅𝑡𝑡]

 (15) 
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5.   Numerical Results 
In this study, the monthly rate of return of the risk-free investment is considered to be  𝑓𝑓𝑡𝑡 = 0.0005, 
selected based on returns of the US Treasury bill (T-bill) according to the CRSP database 
(www.crsp.com) between January 1, 2001, and December 31, 2019. We consider two probability 
models for the risky rate of return.  

5.1.  Normally Distributed Rate of Return  
In first experiment, all scenarios and observations are generated from Normal distributions. We 
simulated m = 5000 instances, with n = 5000 scenarios randomly generated for each. For the risky 
asset, we randomly sampled 5000 rates of return from 𝑁𝑁(𝜇𝜇 = 0.005, 𝜎𝜎 = 0.033) for the 
simulated observations. For scenarios, we systematically varied the parameters of the simulated 
scenario distribution with the 18 combinations of 𝜇𝜇 ∈ A = {−0.01, 0.005, 0.04} and 𝜎𝜎 ∈ B =
{0.002, 0.003, 0.01, 0.033, 0.05, 0.06}. For each value of  𝛼𝛼 ∈ {0, 0.5, 0.75, 0.9}, Figures 1-3 
show the related panels of the histograms. The rows represent the three mean values of the scenario 
distributions, which also quantify their bias, and the columns correspond to the various values of 
the scenario standard deviation. In each figure, the panel with bars shaded white shows results for 
when the scenario distribution matches that of the observations. 
 

 

Figure 1: q-histogram of normal distribution simulation experiment for α=0.5. Rows are labeled with μ, and columns 
are labeled with σ. 

http://www.crsp.com/
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Figure 2: q-histogram of normal distribution simulation experiment for α=0.75. Rows are labeled with μ, and columns 
are labeled with σ. 

 

Figure 3: q-histogram of normal distribution simulation experiment for α=0.9. Rows are labeled with μ, and columns 
are labeled with σ. 
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The results for different values of 𝛼𝛼 ∈ {0.5,0.75,0.9} show that when the standard deviation of 
scenarios is smaller than that of observations; i.e.,  𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ < 1, the resulting histograms tend 
to have increasing trends. In other words, most of the observation cost probabilities are near one 
since the cost of an observation that falls in the upper tail exceeds the costs of the scenarios. On 
the contrary, bigger standard deviations for scenarios compared to observations, 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ > 1, 
yield decreasing trends in the resulting histograms. In these cases, the costs of observations in the 
retained instances tend to be smaller than the scenario costs in the upper tail. When both scenarios 
and observations are generated from the same distributions, the histogram has no increasing or 
decreasing trend. When 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2  and 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜, the trend is increasing since most 
observation fall in the more extreme upper tail of the cost distribution. On the other hand, when 
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2  and 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜, the trend is decreasing because those observations that fall in the 
upper tail are not as extreme. These patterns are more regular for smaller values of 𝛼𝛼 because a 
larger number of instances is retained for inclusion in the histograms. 

5.2.  Heavy-Tailed Rate of Return Distribution 
For second experiment, we consider a modified version of the heavy-tailed distribution introduced 
by (Lim et al., 2011), which is a mixture of a normal distribution and a negative exponential tail. 
Let 𝐼𝐼(𝜖𝜖) and 𝐼𝐼(0.5) be Bernoulli random variables with respective parameters 𝜖𝜖 and 0.5, W be 
normally distributed with parameters 𝜇𝜇 and 𝜎𝜎, and Y be an exponential random variable with rate 
parameter 𝜆𝜆 = 1 𝜎𝜎⁄ .  
 
Assume all of these random variables are mutually independent, and define: 

𝑋𝑋 = �1 − 𝐼𝐼(𝜖𝜖)�𝑊𝑊 + 𝐼𝐼(𝜖𝜖)[𝐼𝐼(0.5)(𝑌𝑌 + 𝜇𝜇 − 𝜎𝜎) + �1 − 𝐼𝐼(0.5)�(−𝑌𝑌 + 𝜇𝜇 + 𝜎𝜎)] (18) 
 
Then 𝐸𝐸[𝑋𝑋] = 𝜇𝜇, 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋] = 𝜎𝜎2, and the skewness equals zero. The kurtosis depends on 𝜖𝜖 and 𝜎𝜎, as 
illustrated empirically in Figure 4, which shows histograms of samples of size 10,000 for various 
combinations of these parameters. As for the normal distribution, we simulated m = 5000 instances, 
with n = 5000 scenarios randomly generated for each. The mean of normal distribution is set to 
0.005. If we consider three different values for 𝜎𝜎 ∈ {0.033, 0.05, 0.07}, the corresponding 
negative exponential distribution parameter values would be  𝜆𝜆 ∈ {1 0.033⁄ , 1 0.05⁄ ,  1 0.07⁄ }. 
The Bernoulli distribution parameter is selected from 𝜖𝜖 ∈ {0.05, 0.3, 0.5, 0.7, 0.95}. Figure 4 
shows how when 𝜆𝜆 increases for a fixed value of 𝜖𝜖, the kurtosis is not affected much. On the other 
hand, when 𝜆𝜆 is fixed, the kurtosis increases with 𝜖𝜖 since the distribution of 𝑋𝑋 is dominated by the 
combination of the exponential distributions. 
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Figure 4: The effect of Bernoulli and negative exponential parameters on the shape of heavy-tail distribution. 

If we plot the q-histograms for this distribution considering 𝜇𝜇 = 0.005, and 18 combinations of 𝜆𝜆 
and 𝜖𝜖, Figures 5-7 will be obtained. The observations are generated using  𝜆𝜆 = 1 0.033⁄  and  𝜖𝜖 =
0.05. 
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Figure 5: q-histograms of heavy-tailed distribution simulation experiment for α=0.5. Rows are labeled with λ, and 
columns are labeled with ϵ.  
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Figure 6: q-histograms of heavy-tailed distribution simulation experiment for α=0.75. Rows are labeled with λ, and 
columns are labeled with ϵ. 

 

Figure 7: q-histograms of heavy-tailed distribution simulation experiment for α=0.9. Rows are labeled with λ, and 
columns are labeled with ϵ. 

 
As can be understood from Figures 5-7, decreasing values of  𝜆𝜆  (i.e., increasing variance) direct 
the observation probabilities to smaller values when 𝜖𝜖 is fixed. On the other hand, as the values of 
𝜖𝜖 approach 1, downward-sloping histograms are replaced by hill-shaped ones. Unlike in the first 
experiment, these patterns are more evident for larger values of 𝛼𝛼 that represent a higher level of 
risk aversion.  
 
5.3. Comparison between the results of q-histogram and MTD rank histogram 
In this section, we compare the resulting histograms obtained by our tool for the cost of scenarios 
and observations and MTDRh package (Sari & Ryan, 2016) for the costs of scenarios and 
observations considering 𝛼𝛼 = 0 and also for the scenarios and observations directly. All parameter 
values are as described in section 5.2. and 5.3. We simulated m = 1000 instances, with n = 1000 
scenarios randomly generated for each instance. Comparing Figure 8 with Figures 9 and 10, and 
Figure 11 with Figures 12 and 13, we conclude that q-histograms are better able to diagnose 
unreliability with respect to heavy tails. In MTDRhs implemented for the cost of scenarios and 
observations as well as for the scenarios and observations directly under the normal distribution, 
when the mean and standard deviation of scenario and observations are similar, the resulting 
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histograms are flat. However, there are other histograms which are also flat, which could cause 
false confidence in unreliable scenario sets. In MTDRh for the cost of heavy-tailed distribution, 
the results are more confusing compared to the normal distribution. In Figure 12, most histograms 
appear flat, and it is very difficult to distinguish reliable scenario sets. However, when we consider 
heavy-tailed distribution, the MTDRh implemented for the scenarios and observations directly can 
diagnose the reliable scenario set. Also, the trends for 𝜎𝜎𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ < 1 and 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ > 1 are very 
different between the MTDRhs and q-histograms. Considering data generated from a normal 
distribution, for 𝛼𝛼 = 0 (where CVaR represents ordinary expectation) when 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ < 1, the 
q-histograms are U-shaped. On the other hand, when 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ > 1, the resulting q-histograms 
are hill-shaped. Still, we observe an almost uniform q-histogram when the scenario distribution 
matches that of the observations. As can be understood from Figures 9 and 10, MTDRh trends for 
the cost of scenarios and observations, and those for the scenarios and observations directly, are 
very similar to each other, and different from the trends of the q-histogram. An increasing trend 
for 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ < 1 and a decreasing trend for 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2⁄ > 1 is understandable. In heavy-tailed 
distribution, the trends in all panels of histograms are different while for all of them the reliable 
scenarios are flat. Overall, it appears that the MTDRh is not able to diagnose unreliability with 
respect to the heaviness of tails, but the new q-histogram works well for this purpose. 
 

 

Figure 8: q-histograms of normal distribution simulation experiment for α=0. Rows are labeled with λ, and   columns 
are labeled with ϵ. 
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Figure 9: MTDRh of cost of normal distribution simulation experiment for α=0. Rows are labeled with λ, and columns 
are labeled with ϵ. 

 
 

Figure 10: MTDRh of normal distribution simulation experiment for α=0. Rows are labeled with λ, and columns are 
labeled with ϵ. 
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Figure 11: q-histograms of heavy-tailed distribution simulation experiment for α=0. Rows are labeled with λ, and 
columns are labeled with ϵ. 

 

Figure 12: MTDRh of cost of heavy-tailed distribution simulation experiment for α=0. Rows are labeled with λ, and 
columns are labeled with ϵ. 
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Figure 13: MTDRh of heavy-tailed distribution simulation experiment for α=0. Rows are labeled with λ, and columns 
are labeled with ϵ. 

 
6. Conclusion 
Assessing the reliability of scenario sets generated by alternative scenario generation methods 
without solving full-scale stochastic problems is important for finding high-quality scenarios in a 
reasonable amount of time. To assess the reliability of scenarios considering conditional value-at-
risk (CVaR) of cost, we developed a visual tool based on a comparison between the costs of 
observations and scenarios in the upper tail. This tool can be used to diagnose bias or a mismatch 
in either dispersion or kurtosis in the scenario sets. We test our tool by applying it to synthetic 
instances of an investment problem considering two distributions of the risky rate of return. Our 
numerical example led us to conclude that our proposed tool can diagnose under- and over-
dispersion as well as unreliability in terms of fatter tails.  For the purpose of our simulation 
experiments, we used the optimal decision found with the whole set of scenarios to generate the 
empirical distribution in the tail and evaluate the cost of the observation.   
 
The dependence of this method on the optimal solution approximated according to an arbitrary 
sample of scenarios is a limitation.  In addition, a more precise definition of reliability, in the vein 
of approximation error or problem-dependent divergence, could help establish the theoretical 
performance of a reliability assessment method in general.  In future work, one goal is to use a 
moderate-sized subset of scenarios to more efficiently approximate the optimal solution.  Further 
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testing is needed in other applications, with multi-dimensional scenarios and scenario generation 
methods other than sampling. 
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