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Abstract

Reliable scenarios are needed to obtain a high-quality solution to a stochastic program.
Considering sets of scenarios and corresponding observed values of the uncertain parameters over
a collection of historical instances, reliability is defined loosely as goodness of the scenarios’ fit
to the observations. For two-stage, risk-neutral models, a statistical tool was developed previously
to assess the reliability of any given scenario generation method. This tool can diagnose over- or
under-dispersion and/or bias in the scenario sets. For risk-averse decision makers who aim to
minimize conditional value-at-risk (CVaR), only the scenarios that define the upper tail of the
optimal cost distribution at the optimal solution are important. We develop a tool to assess the
reliability of these so-called effective scenarios for CVaR minimization. Simulation studies of a
financial investment problem demonstrate the ability of the tool to detect mismatches in mean,
variance, or kurtosis between scenarios and the corresponding observations.

Keywords Risk-averse stochastic programming, scenario reliability assessment, Conditional-
Value-at-Risk (CVaR), goodness of fit

1. Introduction

Stochastic programming is used to optimize a problem of decision making under uncertainty by
modeling uncertain parameters in a mathematical program as random variables. In two-stage
stochastic programs, decisions are divided into two sets. The first-stage decisions must be made
before the realizations of the random variables are known, while second-stage decisions can
provide recourse to the realizations observed. Approximating the underlying probability
distribution of uncertainty by generating probabilistic scenarios for the uncertain parameter values
has long presented a challenge in modeling stochastic optimization problems (Rahimian et al.,
2018). If the generated set of scenarios well represents the joint distribution of the uncertain
parameters, then a good solution for the stochastic program is obtained. In situations where
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instances of the same problem are solved continually, it may be possible to re-enact the process of
generating scenarios and solving the resulting optimization problem. Then the optimal objective
values can be compared with the cost of implementing the solutions under the corresponding
observations of the uncertain parameters. This procedure is very time consuming (Sari Ay &
Ryan, 2019). To avoid it, Sari et al. (2016) developed a statistical tool to assess scenario reliability
directly. For daily power generation scheduling instances, Sari and Ryan (2018) demonstrated
that reliable scenarios, as identified by this tool, produce high quality solutions, as measured by
the average cost of their implementation.

Scenario reduction methods have been studied intensively for identifying a moderate-sized subset
of scenarios to approximate the joint distribution of the random variables. Although most of them
were developed for classical risk-neutral stochastic optimization problems, they could also be
applied to models that incorporate risk-aversion; specifically, when minimizing Conditional Value
at Risk (CVaR), since this risk measure can be expressed as an expectation. Recently, however, a
more efficient scenario reduction technique was developed for CVaR minimization problems by
taking the definition of effective scenarios into account (Arpdn et al., 2018). If the optimal
objective value of a problem changes by removing a scenario, that would be an effective scenario;
otherwise, it is considered as ineffective (Rahimian et al., 2018).

If historical observations of the random variables are available, the reliability of a scenario
generation and/or reduction method can be assessed. In ensemble forecasting, if the forecasts and
observations are consistent statistically, they are interchangeable, and the forecasts can be
considered as reliable (Gneiting & Raftery, 2007). Pinson and Girard (2012) studied reliability
assessment of probabilistic scenarios. They considered equally likely wind power scenarios and
developed some statistical metrics to assess them without taking account what effect those
scenarios have on the stochastic programming problems. The reliability of equally likely scenarios
(Pinson & Girard, 2012) can be checked by a minimum spanning tree (MST) rank histogram
studied by Wilks (2004). The minimum spanning tree lengths are used as a pre-ranking function
in this method. For considering unequally likely wind power scenarios for use in stochastic unit
commitment, Sari et al. (2016) modified some of the statistical metrics used by Pinson and Girard
(2012). In particular, motivated by the use of the mass transportation distance (MTD), also known
as Weierstrass distance, they developed the MTD rank histogram, in which the MST length was
replaced by the MTD as a pre-ranking function.

To assess the reliability of scenarios for CVaR minimization, we develop a method to evaluate the
cost of the observation with respect to the cost distribution near optimality of the scenarios
generated for that instance. To focus on effective scenarios, we adapt the scenario reduction
approach of (Arpon et al., 2018) for risk-averse problems formulated as:



min CVaRq[G(x, )], (1)

where x is the set of (first-stage) decisions and ¢ is the random vector. This method considers
only those scenarios that define the upper tail of G(x,.), which compose the subset of scenarios
that is important for our problem.

This work is applicable to problems where similar instances are solved repeatedly, and we have
observational data for a collection of past instances. A statistical tool based on the probability of
the observation objective values, evaluated according to the cumulative distribution functions of
the corresponding scenario costs, is developed to assess the reliability of a scenario generation
process for a two-stage, risk-neutral stochastic program. Similar to the MTD or MST rank
histograms, this tool can diagnose bias or a dispersion mismatch in the scenario sets. If the risk-
averse objective is instead to minimize conditional value-at-risk (CVaR) of cost, we should
consider only the scenarios that produce cost in the upper tail of the distribution at the optimal
solution. We perform simulation studies to test the effectiveness of the proposed reliability
assessment method over a set of randomly generated instances. We apply our method to a financial
investment problem for a tradeoff between risk and return (Guo & Ryan, 2021a). To test our
method, we generate a set of random scenarios for each of a set of synthetic instances. We can find
the optimal solution and objective function of the investment problem considering the generated
scenarios set for each instance. Then, we keep those scenarios whose cost falls in the upper tail of
the cost distribution and modify their probabilities to form an empirical cumulative distribution
function (cdf). The value of this function, evaluated at the observation, is a quantitative measure
of the observation’s location within the cost distribution. A histogram of these values provides a
visual assessment of scenario reliability, or its lack. Similar to the MTD rank histogram, an upward
slope from left to right can be seen in the histograms when the ensemble of scenarios is under-
dispersed. On the contrary, an over-dispersed ensemble of scenarios results in a downward sloping
histogram. Reliable scenario sets produce flat histograms. Because heavy-tailed distributions for
investment returns are observed frequently, we also test the ability of our tool to detect kurtosis
mismatches.

The paper that motivates this work (Arpon et al., 2018) falls in a stream of progress on scenario
reduction for two-stage stochastic programming. In the classical, distribution-oriented approach,
the goal is to approximate the “true” distribution of the random vector, ¢, as closely as possible.
Recently, Kaut (2021) studied methods to approximate a set of historical data for ¢ with subsets
selected in various ways, while Rujeerapaiboon et al. (2022) expanded the set of candidate
scenarios beyond the atoms of the true distribution. Increasingly, attention has turned to proble-
oriented scenario reduction methods, in which the optimization context is considered. (Fairbrother
et al., 2022) developed an approach based on sampling from risk regions, whereas Arpon et al.
(2018) based their method on probability metrics. In a parallel effort, Henrion and Roémisch (2022)



approximated the recourse function by formulating a semi-infinite program. Prochazka and
Wallace (2020) discussed a conceptual approach to constructing a scenario tree that minimizes the
discrepancy between in-sample and out-of-sample performance. Bertsimas and Mundru (2022)
minimized a problem-dependent divergence, defined as the loss in decision quality when a reduced
set of scenarios is used to optimize. Most recently, Zhang et al. (2023) selected a subset of
scenarios from among a large finite set to minimize the error in approximating the recourse
function.

Our work is more closely related to the evaluation of methods that have been developed to generate
scenarios that accurately represent the stochastic processes. Defining the cost of the stochastic
programming problem considering the scenarios produced by a scenario generation method is a
way to evaluate the considered method (Wang et al., 2011). However, this approach is
computationally very demanding. Kaut and Wallace (2007) defined in-sample and out-of-sample
stability as two measures of the quality of scenarios. If the expected costs of solutions produced
by different scenarios sets are similar, then in-sample stability exists. Out-of-sample stability
occurs when alternative scenario sets produce solutions with similar true expected cost. Simulation
studies, similar to those in this paper, were performed by Sari et al. (2016) to demonstrate that the
MTD rank histogram has similar diagnostic abilities as the MST rank histogram. A new version
of the mass transportation distance (MTD) rank histogram was used by Sari Ay and Ryan (2019)
to assess the reliability of the unequally likely scenarios used for unit commitment and server
location problems. They used past instances to assess the reliability of scenarios to avoid solving
stochastic programming instances. They consider the impact that each scenario has on the problem.
Using MTD rank histograms to assess the reliability of scenarios guided the selection of
hyperparameters used to estimate parameters of the distribution of stock index or momentum
portfolio returns (Guo & Ryan, 2021b, 2023). Emirhiiseyinoglu et al. (2023) used them to validate
machine learning-generated scenarios for crop yield. (Ryan & Shah Abadi, 2022) adapted the
MTD rank histogram to assess the reliability of scenarios with respect to the upper tail of the cost
distribution. Over- or under-dispersion and/or bias in the scenario sets can be diagnosed with this
graphical tool. For a risk-averse newsvendor model, they verified that non-flat shapes of the rank
histogram are the result of the mismatch between scenarios and observations.

The multi-dimensional character of ensemble weather forecasts motivated the use of the MST
length as a pre-rank function. The MTD played a similar role for multi-dimensional scenarios
needed in many applications of stochastic programming. In this paper, we aim to assess the
reliability of scenarios whose costs fall in the upper tail of the cost distribution. Because cost has
a single dimension, we modify the pre-rank function to more simply evaluate the cost of the
observation with respect to the cost distribution generated by scenarios. For the special case of
CVaR that equals expectation, we compare the results of our new rank histogram with those of the
MTDRh applied to the costs of scenarios and observations and also to the scenarios and
observations directly.



This rest of the paper is organized as follows. The research problem is described in Section 2. In
Section 3, the proposed reliability assessment method is described. An investment problem is
introduced in Section 4. Section 5 describes of the simulation studies performed for two
distributions of rate of return, including the normal distribution and a heavy tailed distribution.
Finally, conclusions are summarized in Section 6.

2. Problem Description

The inherent uncertainty in many real systems motivates the use of stochastic programming for
decision making. For computational tractability, a discrete set of probabilistic scenarios is
generated to approximate the joint probability distribution of the uncertain parameters of the
optimization problem. The question that arises after generating scenarios is how well they match
the true distribution of the observed data. However, the objective function represents the decision-
maker’s aim. When decision-maker’s risk-aversion can be expressed as in (1), the reliability of
those scenarios whose costs define the upper (1 — a)-probability tail of the cost distribution is
important, and we can ignore the other scenarios. Obviously, assessing all scenarios is a time-
consuming process. The goal of scenario reliability assessment considering risk-aversion is to help
decision-makers efficiently find out how well the interesting part of the cost distribution is
approximated.

The verification rank histogram is a tool to assess how the scenario sets generated for past instances
compare with the corresponding observations. The mass transportation distance (MTD) rank
histogram is an example of the verification rank histograms using MTD as a pre-ranking function
used for assessing the reliability of unequally likely scenarios. If the resulting rank histograms are
flat, we can conclude that the generated scenario sets, and their corresponding observations are
drawn from the same distribution. MTD rank histograms can be applied to scenarios directly. To
access the reliability of those scenarios whose cost falls in the tail, we develop a simpler histogram
that works in the single dimension of the cost of scenarios.

Most of the scenario reduction methods are designed for the following form of optimization
problem:

min £[G (x, )1, @

where ¢ is an uncertain random vector, x is a vector of decision variables, G(-) is an objective
function that depends on & and x, and X is a convex closed set. Decision-making considering such
a formulation is risk-neutral. However, decision-makers are sometimes risk-averse, which
motivates the need to optimize a risk metric instead of expectation. Some risk measures can be
expressed as expectations. One of those risk measures is Conditional-Value-at-Risk (CVaR),
which is a coherent (i.e., translation-invariant, positively homogeneous, and convex) risk metric.



To define the CVaR, we should first review the Value at Risk (VaR).The Value at Risk (VaR) and
the Conditional-Value-at-Risk (CVaR) of a random variable Y are defined as follows (Rockafellar
& Uryasev, 2000).

VaR,[Y] = min{t|F(t) = a} =min{t|P(Y < t) = a} )
CVaR,[Y] == ﬁ [, VaR,[Y]dy, @

where F(.) is the cdf of random variable Y, and a € [0,1] represents the risk preference.

Based on (Rockafellar & Uryasev, 2000), for the following minimization problem, one optimal
solution and the optimal value are VaR,[Y] and CVaR,[Y], respectively.

1
min fi + T——E[(V = .1} )

where (Y — 1), is max((Y —-n), 0).

Considering CVaR instead of expectation in equation (2), we obtain equation (1).

If we substitute G (x, &) for Y, the following optimization problem is obtained:

1
min__ {1+ 7= F1GCo§) —m.] ©

x€X, NER l1—«a

The quantity (G(x, &) —n), is zero for any fixed x and scenario & such that G(x, &) < n. So, if
G(x, &) is a cost function, CVaR,[G (x, §)] is the expected cost of scenarios whose costs fall in the
upper (1 — a)-probability tail of the cost distribution. As a result, the scenarios & for which G (x, &)
does not fall in the tail dO not contribute to the optimal solution.

In this paper, we present a method to assess scenario reliability with respect to the upper (1 — a)-
probability tail of the cost distribution. The procedure to test our method is to simulate a set of
synthetic instances and a set of scenarios for each instance. By systematically varying the extent
to which the distribution of scenarios matches that of the synthetic observations, we can test the
ability of our tool to recognize when observations are indistinguishable from scenarios or diagnose
the type and extent of mismatch between them.

3. Methodology

We develop a method to assess the reliability of scenarios based on the cumulative distribution
function of their costs. To achieve this goal, we need a way to represent that the cost of scenarios
and observations are interchangeable. We do this by constructing the empirical cdf of scenario
costs and evaluate the observation cost under it. This value represents the probability that the



scenario costs do not exceed the cost of the observation. The histogram of those probabilities over
all instances provides a visual depiction of scenarios’ reliability or unreliability.

Suppose that we have n instances, for each of which we have m scenarios. Let Z; =
{&i1, &izs - » €in ) be a set of scenarios for instance 7, i = 1, ..., m, where §;; has probability P;; and
2j=1Pij = 1, and let §;, be the observed value of § in instance i. For each instance, i, we use &;
and its distribution P; to solve the problem and obtain an optimal solution, x;. If G(x],&;, ) <
VaR,[G(x{,.)] then discard instance i. Otherwise, identify the corresponding set of effective
scenarios:

Di = {§ € Ei:G(x{,§) = VaR,[G(x, )]} (7

The effective scenarios are the subset that determine the CVaR at optimality. Also define the
partition of scenarios:

Di ={§ € E;:G(x;,§) <VaRg[G(x;,.)]}
Ei* = {f € E‘i: G(x;'ki f) = VaRa[G(x;J-)]} (8)
Fi ={§ €Ei:G(x;,$) > VaRa[G(x;, )]}

Motivated by (Arpon et al., 2018), we revise the scenario probabilities to:

P; =0, j €D}
Pj=rP;/(1-a), jEF ©)
Bj= (1 —a-— z *Pij>/(|E;‘|(1 —a)),j € E;

The scenario set for instance i is replaced by the corresponding set of values of G(x;-k ,$ij ), j=

1,...,n, and the observation for instance i is replaced by G(x,&;, ). In each non-discarded
instance, i, we use the revised probabilities to construct the cumulative distribution function of

G(xf,fij ),] = 1, e, N

To construct the histogram of the probabilities of the objective function of the observations,
suppose that k; is the number of scenarios of instance i whose revised probabilities are greater than
zero, and they are sorted in order of increasing cost. The observation probability is computed as:

(0 G(xi, &0 ) < G(xf,&1)
qi:i:u C:"(x;’fu)SG(x;’fio)<G(x;:fiz) (10)
P+ P+ + Py, =1 G(x}, &, ) <G(x[,&5)



Thus, if we have n, non-discarded instances, we will have n, probabilities, {Isl- ili€e{l,..,n}j €

{1, ..., ki}}, and we can construct their histogram to depict their pattern.

4. Investment Problem

To set the optimal value of allocation of wealth to risk-free and risky assets which not only can
maximize the expected excess return but also minimize the investment risk, we can use the mean-
risk stochastic optimization model that allows short-selling of the risky asset. Suppose f; is the
return of a risk-free asset; R; is the uncertain return of a risky asset; w; is the weight assigned to
the risky asset; and 1 — w; as the weight assigned to the risk-free asset. A generic mean-risk
optimization model using p as a risk measure and A € [0, 1] as a risk-aversion parameter at time ¢
can be formulated as:

nvlvitn(l — DE[—(R;: — fowe] + Ap[— (R — fwe] (11a)

-1<w, <1 (11b)

(Guo & Ryan, 2021a) showed that for a coherent risk measure, like CVaR,, and according to
equations (5) and (6), the risk-averse formulation is:

1
min (1 - DE[-(R; — f)we] + A{nt+1 + ——E[(—=(R; — f)w, — 77t+1)+]} (12a)

Wi, N+ l-a
where 14,1 1s the a-quantile of the negative excess return distribution at time ¢ + 1.
They also proved that the optimal solution for the above problem is as follows:
-1 if E[R] — fr < —Adg:
wi =<0 if —Ady,<E[R]—f <Ady, (13)
1 if Adg: < E[R¢] - f;

where d ; = CVaRy[R,] — E[R;] = 0 and d, = CVaR,[—R.] + E[R.] = 0.

We consider a special case of this problem for our numerical experiments in which we set the risk
aversion parameter, A, to one. Then the optimal solution has the following form:

-1 if f, > CVaR,[R,]
wi=4 0 if —CVaRy[—R:] < f; < CVaR,[R,] (14)
1 if fi < —CVaR,[-R,]
As aresult, the optimal value of the objective function is:
Re — ft if fe > CVaRy[R;]
OB* = 0 if —CVaRy[—R.] < f; < CVaR,[R;] (15)
—Re+ fi if ft < —CVaRy[—R:]



5. Numerical Results

In this study, the monthly rate of return of the risk-free investment is considered to be f; = 0.0005,
selected based on returns of the US Treasury bill (T-bill) according to the CRSP database
(www.crsp.com) between January 1, 2001, and December 31, 2019. We consider two probability
models for the risky rate of return.

5.1. Normally Distributed Rate of Return

In first experiment, all scenarios and observations are generated from Normal distributions. We
simulated m = 5000 instances, with n = 5000 scenarios randomly generated for each. For the risky
asset, we randomly sampled 5000 rates of return from N(u = 0.005, ¢ = 0.033) for the
simulated observations. For scenarios, we systematically varied the parameters of the simulated
scenario distribution with the 18 combinations of u € A = {—0.01,0.005,0.04} and 0 € B =
{0.002,0.003,0.01,0.033,0.05,0.06}. For each value of a € {0,0.5,0.75,0.9}, Figures 1-3
show the related panels of the histograms. The rows represent the three mean values of the scenario
distributions, which also quantify their bias, and the columns correspond to the various values of
the scenario standard deviation. In each figure, the panel with bars shaded white shows results for
when the scenario distribution matches that of the observations.
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Figure 1: g-histogram of normal distribution simulation experiment for 0=0.5. Rows are labeled with u, and columns
are labeled with o.
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The results for different values of a € {0.5,0.75,0.9} show that when the standard deviation of
scenarios is smaller than that of observations; i.e., 02.,/02% < 1, the resulting histograms tend
to have increasing trends. In other words, most of the observation cost probabilities are near one
since the cost of an observation that falls in the upper tail exceeds the costs of the scenarios. On
the contrary, bigger standard deviations for scenarios compared to observations, 62, /0%, > 1,
yield decreasing trends in the resulting histograms. In these cases, the costs of observations in the
retained instances tend to be smaller than the scenario costs in the upper tail. When both scenarios
and observations are generated from the same distributions, the histogram has no increasing or
decreasing trend. When 2., = 64, and Uscen < Uops, the trend is increasing since most
observation fall in the more extreme upper tail of the cost distribution. On the other hand, when
02en = 04 and Useen > Uops, the trend is decreasing because those observations that fall in the
upper tail are not as extreme. These patterns are more regular for smaller values of a because a
larger number of instances is retained for inclusion in the histograms.

5.2. Heavy-Tailed Rate of Return Distribution

For second experiment, we consider a modified version of the heavy-tailed distribution introduced
by (Lim et al., 2011), which is a mixture of a normal distribution and a negative exponential tail.
Let I(€) and 1(0.5) be Bernoulli random variables with respective parameters € and 0.5, W be
normally distributed with parameters u and g, and Y be an exponential random variable with rate
parameter A = 1/0.

Assume all of these random variables are mutually independent, and define:
X=-1E)W+I1UO5)Y +p—0)+(1-1005)(-Y +u+0)] (18)

Then E[X] = u, Var[X] = o2, and the skewness equals zero. The kurtosis depends on € and o, as
illustrated empirically in Figure 4, which shows histograms of samples of size 10,000 for various
combinations of these parameters. As for the normal distribution, we simulated m = 5000 instances,
with n = 5000 scenarios randomly generated for each. The mean of normal distribution is set to
0.005. If we consider three different values for o € {0.033, 0.05, 0.07}, the corresponding
negative exponential distribution parameter values would be A € {1/0.033, 1/0.05, 1/0.07}.
The Bernoulli distribution parameter is selected from € € {0.05, 0.3, 0.5, 0.7, 0.95}. Figure 4
shows how when A increases for a fixed value of €, the kurtosis is not affected much. On the other
hand, when A is fixed, the kurtosis increases with € since the distribution of X is dominated by the
combination of the exponential distributions.
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Figure 4: The effect of Bernoulli and negative exponential parameters on the shape of heavy-tail distribution.

If we plot the g-histograms for this distribution considering 4 = 0.005, and 18 combinations of A
and €, Figures 5-7 will be obtained. The observations are generated using 1 = 1/0.033 and € =
0.05.
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Figure 5: g-histograms of heavy-tailed distribution simulation experiment for a=0.5. Rows are labeled with 1, and
columns are labeled with €.
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Figure 6: g-histograms of heavy-tailed distribution simulation experiment for a=0.75. Rows are labeled with 1, and
columns are labeled with e.
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Figure 7: g-histograms of heavy-tailed distribution simulation experiment for a=0.9. Rows are labeled with 1, and
columns are labeled with ¢.

As can be understood from Figures 5-7, decreasing values of A (i.e., increasing variance) direct
the observation probabilities to smaller values when € is fixed. On the other hand, as the values of
€ approach 1, downward-sloping histograms are replaced by hill-shaped ones. Unlike in the first
experiment, these patterns are more evident for larger values of a that represent a higher level of
risk aversion.

5.3. Comparison between the results of q-histogram and MTD rank histogram

In this section, we compare the resulting histograms obtained by our tool for the cost of scenarios
and observations and MTDRh package (Sari & Ryan, 2016) for the costs of scenarios and
observations considering @ = 0 and also for the scenarios and observations directly. All parameter
values are as described in section 5.2. and 5.3. We simulated m = 1000 instances, with » = 1000
scenarios randomly generated for each instance. Comparing Figure 8 with Figures 9 and 10, and
Figure 11 with Figures 12 and 13, we conclude that g-histograms are better able to diagnose
unreliability with respect to heavy tails. In MTDRhs implemented for the cost of scenarios and
observations as well as for the scenarios and observations directly under the normal distribution,
when the mean and standard deviation of scenario and observations are similar, the resulting
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histograms are flat. However, there are other histograms which are also flat, which could cause
false confidence in unreliable scenario sets. In MTDRh for the cost of heavy-tailed distribution,
the results are more confusing compared to the normal distribution. In Figure 12, most histograms
appear flat, and it is very difficult to distinguish reliable scenario sets. However, when we consider
heavy-tailed distribution, the MTDRh implemented for the scenarios and observations directly can
diagnose the reliable scenario set. Also, the trends for 62, /0%, < 1and 62, /0%, > 1are very
different between the MTDRhs and g-histograms. Considering data generated from a normal
distribution, for @ = 0 (where CVaR represents ordinary expectation) when 62, /02,s < 1, the
g-histograms are U-shaped. On the other hand, when 2., /02, > 1, the resulting g-histograms
are hill-shaped. Still, we observe an almost uniform g-histogram when the scenario distribution
matches that of the observations. As can be understood from Figures 9 and 10, MTDRh trends for
the cost of scenarios and observations, and those for the scenarios and observations directly, are
very similar to each other, and different from the trends of the g-histogram. An increasing trend
for 62..,,/0%,s < 1 and a decreasing trend for 62..,/0%,s > 1 is understandable. In heavy-tailed
distribution, the trends in all panels of histograms are different while for all of them the reliable
scenarios are flat. Overall, it appears that the MTDRh is not able to diagnose unreliability with
respect to the heaviness of tails, but the new g-histogram works well for this purpose.
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Figure 11: g-histograms of heavy-tailed distribution simulation experiment for a=0. Rows are labeled with 1, and
columns are labeled with €.
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Figure 12: MTDRh of cost of heavy-tailed distribution simulation experiment for a=0. Rows are labeled with 1, and
columns are labeled with €.
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Figure 13: MTDRh of heavy-tailed distribution simulation experiment for a=0. Rows are labeled with A, and columns
are labeled with e.

6. Conclusion

Assessing the reliability of scenario sets generated by alternative scenario generation methods
without solving full-scale stochastic problems is important for finding high-quality scenarios in a
reasonable amount of time. To assess the reliability of scenarios considering conditional value-at-
risk (CVaR) of cost, we developed a visual tool based on a comparison between the costs of
observations and scenarios in the upper tail. This tool can be used to diagnose bias or a mismatch
in either dispersion or kurtosis in the scenario sets. We test our tool by applying it to synthetic
instances of an investment problem considering two distributions of the risky rate of return. Our
numerical example led us to conclude that our proposed tool can diagnose under- and over-
dispersion as well as unreliability in terms of fatter tails. For the purpose of our simulation
experiments, we used the optimal decision found with the whole set of scenarios to generate the
empirical distribution in the tail and evaluate the cost of the observation.

The dependence of this method on the optimal solution approximated according to an arbitrary
sample of scenarios is a limitation. In addition, a more precise definition of reliability, in the vein
of approximation error or problem-dependent divergence, could help establish the theoretical
performance of a reliability assessment method in general. In future work, one goal is to use a
moderate-sized subset of scenarios to more efficiently approximate the optimal solution. Further
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testing is needed in other applications, with multi-dimensional scenarios and scenario generation
methods other than sampling.
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