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PySAGES: flexible, advanced sampling methods accelerated
with GPUs
Pablo F. Zubieta Rico 1, Ludwig Schneider 1, Gustavo R. Pérez-Lemus 1, Riccardo Alessandri 1, Siva Dasetty 1,
Trung D. Nguyen 2, Cintia A. Menéndez 1, Yiheng Wu 1, Yezhi Jin1, Yinan Xu 1, Samuel Varner 1,3, John A. Parker 2,
Andrew L. Ferguson 1, Jonathan K. Whitmer 4 and Juan J. de Pablo 1✉

Molecular simulations are an important tool for research in physics, chemistry, and biology. The capabilities of simulations can be
greatly expanded by providing access to advanced sampling methods and techniques that permit calculation of the relevant
underlying free energy landscapes. In this sense, software that can be seamlessly adapted to a broad range of complex systems is
essential. Building on past efforts to provide open-source community-supported software for advanced sampling, we introduce
PySAGES, a Python implementation of the Software Suite for Advanced General Ensemble Simulations (SSAGES) that provides full
GPU support for massively parallel applications of enhanced sampling methods such as adaptive biasing forces, harmonic bias, or
forward flux sampling in the context of molecular dynamics simulations. By providing an intuitive interface that facilitates the
management of a system’s configuration, the inclusion of new collective variables, and the implementation of sophisticated free
energy-based sampling methods, the PySAGES library serves as a general platform for the development and implementation of
emerging simulation techniques. The capabilities, core features, and computational performance of this tool are demonstrated with
clear and concise examples pertaining to different classes of molecular systems. We anticipate that PySAGES will provide the
scientific community with a robust and easily accessible platform to accelerate simulations, improve sampling, and enable facile
estimation of free energies for a wide range of materials and processes.
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INTRODUCTION
Molecular simulations are extensively used in a wide range of
science and engineering disciplines. As their use has grown for the
discovery of new phenomena and the interpretation of sophisti-
cated experimental measurements, so has the complexity of the
systems that are considered. Classical atomistic molecular
dynamics (MD) simulations are generally limited to microsecond
time scales and length scales of tens of nanometers. For systems
that are characterized by rugged free energy landscapes, such
time scales can be inadequate to ensure sufficient sampling of the
relevant phase space, and advanced methods must therefore be
adopted to overcome free energy barriers. In that regard, it is
useful and increasingly common to identify properly chosen
collective variables (CVs), which are generally differentiable
functions of the atomic coordinates of the system; then, biases
can be applied to explore the space defined by such CVs, thereby
overcoming barriers and enhancing sampling of the thermally
accessible phase space.
The rapid growth of hardware accelerators such as GPUs or

TPUs, or specialized hardware designed for fast MD computa-
tions1, has provided researchers with increased opportunities to
perform longer simulations of larger systems. GPUs, in particular,
provide a widely accessible option for fast simulations, and several
software packages, such as HOOMD-blue2, OpenMM3, JAX MD4,
LAMMPS5, and Gromacs6, are now available for MD simulations on
such devices.
As mentioned above, enhanced sampling methods seek to

surmount the high energy barriers that separate multiple
metastable states in a system, while facilitating the calculation

of relevant thermodynamic quantities as functions of different CVs
such as free-energy surfaces (FES). Several libraries, such as
PLUMED7, Colvars8, and our own SSAGES package9, provide out-
of-the-box solutions for performing enhanced sampling MD
simulations.
Among the various enhanced sampling methods available in

the literature, some of the most recently devised schemes rely on
machine learning (ML) strategies to approximate free energy
surfaces and their gradients (generalized forces)10–13. Similarly,
algorithms for identifying meaningful CVs that correlate with high
variance or slow degrees of freedom are based on deep neural
networks14–19. These advances serve to highlight the need for
seamless integration of ML frameworks with existing MD software
libraries.
To date, there are no solutions that combine enhanced

sampling techniques, hardware acceleration, and ML frameworks
to facilitate enhanced-sampling MD simulations on GPUs. While
some MD libraries that support GPUs provide access to a limited
set of enhanced sampling methods3,6,20–22, there are currently no
packages that enable users to take advantage of all of these
features within the same platform and in the same backend-
agnostic fashion that tools such as PLUMED and SSAGES have
provided for CPU-based MD simulations.
Here we present PySAGES, a Python Suite for Advanced General

Ensemble Simulations. It is a free, open-source software package
written in Python and based on JAX that follows the design ideas
of SSAGES and enables users to easily perform enhanced-
sampling MD simulations on CPUs, GPUs, and TPUs. PySAGES
can currently be coupled with HOOMD-blue, LAMMPS, OpenMM,
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JAX MD, and ASE – and by extension from the latter to CP2K,
Quantum ESPRESSO, VASP and Gaussian, among others. At this
time, PySAGES offers the following enhanced sampling methods:
Umbrella Sampling, Metadynamics, Well-tempered Metadynamics,
Forward Flux Sampling, String Method, Adaptive Biasing Force,
Artificial neural network sampling, Adaptive Biasing Force using
neural networks, Combined Force Frequency, and Spectral
Adaptive Biasing Force. PySAGES also includes some of the most
commonly used CVs and, importantly, defining new ones is
relatively simple, as long as they can be expressed in terms of the
NumPy interface provided by JAX. All CVs can be automatically
differentiated through JAX functional transforms. PySAGES is
highly modular, thereby allowing for the easy implementation of
new methods as they emerge, even as part of a user-facing script.
In the following sections, we provide a general overview of the

design and implementation of PySAGES, and present a series of
examples to showcase its flexibility for addressing research
problems in different application areas. We also discuss its
performance in GPUs and present a few perspectives on how to
grow and improve the package to cover more research use cases
through future development, as well as community involvement
and contributions.

METHODS
We begin by briefly outlining the core components of PySAGES,
how they interact, and how communication with each backend
allows PySAGES to bias a simulation during runtime. A summary of
the execution workflow of PySAGES along with a mapping of the
user interface with the main stages of the simulation and the
interaction with the backends, is illustrated in Fig. 1.
To provide a uniform user interface while minimizing disruption

to preexisting workflows, PySAGES only requires the user to wrap
their traditional backend scripting code into simulation generator
functions. This approach accommodates the heterogeneity of
Python interfaces across the different simulation backends
supported by PySAGES. An example of a simulation generator
function and how a traditional OpenMM script can be modified to
perform an enhanced-sampling MD simulation is depicted in
Fig. 2.
At the start of a simulation, the simulation generator function is

called to instantiate as many replicas of the simulation as needed.
Then, for each replica, PySAGES queries the particle information
and the device that the backend will be using. In addition, during
this initial stage, PySAGES also performs automatic differentiation
of the collective variables via JAX’s grad transform – required to
estimate the biasing forces, and generates specialized initialization
and updating routines for the user-declared sampling method.
Like SSAGES, PySAGES wraps the simulation information into an

object called a Snapshot. This object exposes the most
important simulation information, such as particle positions,
velocities, and forces in a backend- and device-agnostic format.
To achieve this, PySAGES uses DLPack – for C++ based MD
libraries – to directly access the contents of the backend-allocated
buffers for the different particle properties without creating data
copies whenever possible.
Once the setup of both the simulation and sampling method is

completed, PySAGES hands control back to the backend, which
will run for a given number of time steps or until some other
stopping criteria is reached. In order to exchange information back
and forth, PySAGES adds a force-like object or function to the
backend which gets called as part of the time integration routine.
Here, the sampling method state gets updated and the computed
biasing forces are added to the backend net forces.
Finally, the information collected during an enhanced simula-

tion is returned and can be used for calculation of the free energy
as a function of the selected CVs. Any particular simulation that
requires a longer convergence time can be stopped and then

restarted by saving the state of the sampling method and the last
snapshot of a simulation. Unlike SSAGES, PySAGES offers a user-
friendly analyze interface that simplifies the process of
performing post-simulation analysis, including the automatic
calculation of free energies based on the chosen sampling
method. This feature can greatly reduce the time and effort
required to gain valuable insights from simulations.
PySAGES offers an easy way to leverage different parallelism

frameworks including MPI with the same uniform fronted
available to run enhanced sampling simulations. This is achieved
via Python’s concurrent.futures interface. In particular, for
MPI parallelism, the user only needs to pass an additional
MPIPoolExecutor (from mpi4py) to PySAGES’ run method.
If the user selects a method such as UmbrellaSampling, the
workload for each image will be distributed across available MPI
nodes. On the other hand, for most of the sampling methods, the
parallelization interface allows the user to run multiple replicas of
the same system to enable, for instance, analysis of the
uncertainties associated to computing the free energy of a given
system.
To ensure the reproducibility and correctness of our imple-

mentation and to follow software engineering best practices, we
have implemented a comprehensive unit tests suite, and leverage
GitHub’s continuous integration services. In addition, we use
trunk.io to adhere to quality standards as well as to ease the
collaboration of developers.

Fig. 1 The PySAGES simulation flowchart. For a simulation, a user
sets up a script that declares the CV and sampling methods to be
used. PySAGES initializes the biasing computation and launches the
simulation in the backend. At each time step, PySAGES wraps the
particle data, computes a biasing force, if required, and modifies the
backend information accordingly.
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Enhanced Sampling Methods
While we assume the reader has some basic understanding of
enhanced sampling methods, here we provide an overview of
these techniques. We direct readers interested in learning more
about the fundamentals of enhanced sampling to a number of
excellent recent review articles23–31. In addition, we discuss the
general structure of how enhanced sampling methods are
implemented within PySAGES, and also present a summary of
the various methods already available in the library.
Enhanced sampling methods are a class of simulation

techniques that manipulate regular MD simulations in order to
more effectively sample the configuration space. In MD a
collective variable, ξ, is typically a function of the positions of all
particles, ξ̂ðfrigÞ.
For a given statistical ensemble (such as the canonical, NVT), the

corresponding free energy can be written as A ¼ �kBT lnðZÞ,
where A is the Helmholtz free energy and Z is the canonical
partition function. To make explicit the dependency of the free
energy on ξ, let us write down the partition function:

ZðξÞ /
Z

dNri δðξ̂ðfrigÞ � ξÞ e�UðfrigÞ=kBT (1)

Normalizing this partition function gives us the probability of
occurrence, p(ξ)= Z(ξ)/(∫dξZ(ξ)), for configurations in the CV
subspace. Substituting this probability into the expression for
the free energy, we get:

AðξÞ ¼ �kBT lnðpðξÞÞ þ C (2)

where C is a constant.
If we take the derivative of the free energy with respect to ξ we

get

dAðξÞ
dξ

¼
R
dNri dU

dξ δðξ̂ðfrigÞ � ξÞ e�UðfrigÞ=kBTR
dNri δðξ̂ðfrigÞ � ξÞ e�UðfrigÞ=kBT

¼ dU
dξ

� �
ξ

; (3)

where 〈…〉ξ denotes the conditional average.
The goal of CV-based enhanced sampling methods is to

accurately determine either p(ξ) or dA(ξ)/dξ – from which A(ξ)
can be recovered – in a computationally tractable manner.
In PySAGES, the implementation of sampling methods follows

the JAX functional style programming model. New methods are
implemented as subclasses of the SamplingMethod class, and
are required to define a build method. This method returns two
methods, initialize and update, used as part of the process
of biasing the simulation. For readers familiar with JAX MD, these

could be thought of as analogues to the higher-level functions
returned by JAX MD’s simulate integration methods. The
initialize method allocates all the necessary helper objects
and stores them in a State data structure, while the update
method uses the information from the simulation at any given
time to update the State.
While PySAGES allows new methods to be written seamlessly as

part of Python scripts used to set up molecular dynamics
simulations, it also provides out-of-the-box implementations of
several of the most important known sampling methods. We list
and briefly detail them next.

Harmonic biasing. One simple way to sample a specific region of
the phase space is to bias the simulation around a point ξ0 with
harmonic bias. This adds a quadratic potential energy term to the
Hamiltonian that increases the potential energy as a system
moves away from the target point: Hb ¼ Hþ k=2 ðξ � ξ0Þ2,
where k > 0 is the spring constant. The unbiased probability
distribution p(ξ) can be recovered by dividing the biased
distribution by the known weight of the bias
pðξÞ ¼ pbðξÞ = e�k=2ðξ�ξ0Þ2=kBT .
The disadvantage of this approach is that it can only be used to

explore the free energy landscape near a well-know point in phase
space. This may not be sufficient for many systems, where the free
energy landscape is complex.

Umbrella sampling. This is a technique that traditionally builds on
harmonic biasing by combining multiple harmonically-biased
simulations. It is a well-known method for exploring a known
path in phase space to obtain a free energy profile along that
path32. Typically, a path between to point of interest is described
by N points in phase space, ξi. At each of these points, a
harmonically biased simulation is performed, and the resulting
occurrence histograms are combined to obtain a single free
energy profile.
In PySAGES, we implement umbrella integration for multi-

dimensional CVs. This method approximates the forces acting on
the biasing points and integrates these forces to find the free
energy profile A(ξ), and allows to explore complex high-
dimensional free energy landscapes.

Improved string method. When only the endpoints are known,
but not the path itself, the improved (spline-based) string method
can be used to find the mean free energy pathway (MFEP)
between these two endpoints33. The spline-based string method

Fig. 2 Example of how to use the Python interface for PySAGES. It is easy to extend existing MD scripts with PySAGES to perform enhanced-
sampling MD, with minimal changes to the code. In general, the only requirement is for the user to wrap the code that defines the simulation
system into a simulation generator function.
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improves upon the original string method by interpolating the
MFEP using cubic-splines. In this method, the intermediate points
of the path are moved according to the recorded mean forces
acting on them, but only in the direction perpendicular to the
contour of the path. This ensures that distances between the
points along the path remain constant.
This method has been widely used and has been shown to be

an effective way to find the MFEP between two points in the
phase space33.

Adaptive Biasing Force Sampling. The adaptive biasing force (ABF)
sampling method is a technique used to map complex free-
energy landscapes. It can be applied without prior knowledge of
the potential energy of the system, as it generates on-the-fly
estimates of the derivative of the free energy at each point along
the integration pathway. ABF works by introducing an additional
force to the system that biases the motion of the atoms, with the
strength and direction of the bias continuously updated during
the simulation. In the long-time limit, this yields a Hamiltonian
with no average force acting along the transition coordinate of
interest, resulting in a flat free-energy surface and allowing the
system to display accelerated dynamics, thus providing reliable
free-energy estimates34,35. Similarly to SSAGES, PySAGES imple-
mentation of ABF is based on the algorithm described in35.

Metadynamics. This is another popular approach for enhancing
the sampling of complex systems. In metadynamics36, a bias
potential is applied along one or more CVs in the form of Gaussian
functions. The height and width (σ) of these Gaussians are
controlled by the user. The Gaussian bias potentials are
cumulatively deposited at user-defined intervals during the
simulation. In standard metadynamics, the height of the Gaussian
bias potentials is fixed.
In contrast, for well-tempered metadynamics (WTMD)37 simula-

tions, the height of the Gaussian bias potentials is adjusted at each
timestep using a preset temperature based bias factor. This scaling
of Gaussian heights in WTMD leads to faster convergence
compared to standard metadynamics, as it restricts the range of
free energy explored to a range defined by the bias factor.
In PySAGES, we have implemented both standard metady-

namics and WTMD. The well-tempered variant is activated when a
user sets a value for the bias factor. To improve the computational
performance, we have added optional support for storing the bias
potentials in both on a pre-defined grid. This allows users to trade-
off accuracy for faster simulations, depending on their needs.

Forward flux sampling. Forward flux sampling (FFS) belongs to a
different family of enhanced sampling methods than the ones
described above. In the previously described methods, the free
energy change from a region in the phase space (A) to the region
of interest (B) is calculated by applying a bias to the system. In FFS
no bias is added and instead an efficient selection of trajectories
that crosses the phase space from A to B is performed. Since no
bias is used, the intrinsic dynamics of the system is conserved and
therefore kinetic and microscopic information of the transition
path can be studied38. In PySAGES we have implemented the
direct version of FFS39,40.

Artificial neural networks sampling. Artificial neural networks
sampling (ANN)10 employs regularized neural networks to directly
approximate the free energy from the histogram of visits to each
region of the CV space, and generates a biasing force that avoids
ringing and boundary artifacts10, which are commonly observed in
methods such as metadynamics or basis functions sampling41.
This approach is effective at quickly adapting to diverse free
energy landscapes by interpolating undersampled regions and
extrapolating bias into new, unexplored areas.
The implementation on PySAGES offers more flexible

approaches to network regularization than SSAGES, which uses
Bayesian regularization.

Force-biasing using neural networks. Force-biasing using neural
networks (FUNN)11 is based upon the same idea as ANN, that is,
relying on artificial neural networks to provide continuous
functions to bias a simulation. As opposed to ANN, which uses a
histogram of visits to CV space, FUNN updates its network
parameters by training on the ABF estimates for the mean forces
as the simulation advances. This method shares all of the features
of ABF, but the smooth approximation of the generalized mean
force it produces enables much faster convergence to the free
energy of a system compared to ABF.

Combined force frequency sampling. The combined force fre-
quency sampling (CFF) method12 combines the speed of
generalized-force based techniques such as ABF or FUNN with
the advantages of frequency-based methods like metadynamics
or ANN. Notable improvements over earlier force-based methods
include eliminating the need for hyperparameters to dampen
early-time estimates, automating the integration of forces to
generate the free energy, and providing an explicit expression for
the free energy at all times, enabling the use of replica exchange
or reweighing.
In principle, by using sparse storage of histograms, it should be

possible to scale the method to higher dimensions without
encountering memory limitations, such optimization is however
not yet implemented in PySAGES.

Spectral adaptive biasing force. Spectral ABF42 is a method that
follows the same principle as neural-network-based sampling
methods, in that it builds a continuous approximation to the free
energy. However, in contrast to methods like FUNN it does so by
fitting exponentially convergent basis functions expansions, and
could be thought as a generalization of the Basis Functions
Sampling Method. In contrast to the latter, and similar to CFF, it
allows for the recovery of an explicit expression for the free energy
of a system. It is an extremely fast method in terms of both
runtime and convergence.

Collective variables
As previously mentioned, enhanced sampling calculations com-
monly involve the selection of a CV. An appropriate CV for a given
system could simply be the distance between the centers of mass
of two groups of atoms, but could be a complex specialized
quantity.
Below, we list a set of CVs predefined in PySAGES, sorted by the

number of groups of atom coordinates necessary for their use:

1. TwoPointCV. This subclass is for CVs that need two groups
for their definition. This includes Distance and Dis-
placement (vector).

2. ThreePointCV. Subclass of CVs with three groups of
atoms, such as Angle.

3. FourPointCV. Subclass of CVs with four groups of atoms,
such as DihedralAngle.

4. AxisCV. Subclass of CVs that are projected on a
determinate axis. This includes Component and Princi-
palMoment.

5. CollectiveVariable General base class for all CVs. In
PySAGES, CVs that directly derive from this class, and do not
belong to the previous groups, include: RingPhaseAngle,
RingAmplitude, RadiusofGyration, Asphericity,
Acylindricity, ShapeAnisotropy, RingPucker-
ingCoordinates43 (vector).

In PySAGES we provide users with a simple framework for
defining CVs, which are automatically differentiated with JAX. To
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illustrate this, we compare how to write the calculation of a CV
that measures the projection of the vector between two groups of
atoms over the axis that passes by other two groups, in both
SSAGES and PySAGES (see Fig. 3). In PySAGES the gradient
calculation is done automatically whereas in SSAGES it has to be
coded explicitly.
Data-driven and differentiable CVs discovered using artificial

neural networks (e.g. autoencoders)15,18,24,44,45 with arbitrary
featurizations of atoms can in principle be implemented in
PySAGES based on the above general abstract classes of CVs.

RESULTS AND DISCUSSION
To evaluate a software package like PySAGES, we must consider at
least two factors: physical correctness and computational
performance.
First, to assess the correctness of the enhanced sampling

methods implemented in PySAGES, we present in Supplementary
Discussion 1 the free-energy landscape for the dihedral angles ϕ
and ψ of alanine dipeptide (ADP). This example is commonly used
to benchmark new enhanced sampling algorithms. Similarly, we
also show in Supplementary Discussion 1 the free-energy as a
function of the dihedral angle of butane. Our results show that
PySAGES reproduces the expected free-energy landscapes using
different methods and backends. In Section “Example applications

of enhanced sampling with PySAGES,” we further investigate the
applicability and correctness of PySAGES beyond these simple
model systems.
In addition, we showcase how extensible PySAGES is by

discussing how to implement a complex collective variable to
model the interface between two materials. This example also
shows the power of differential programming for CV declaration in
PySAGES.
Finally, we demonstrate the performance of PySAGES on GPUs

with two different backends in the Section “Performance.” In
particular, we compare the performance of enhanced sampling
simulations to the performance of pure MD simulations, as well as
other enhanced sampling implementations.

Example applications of enhanced sampling with PySAGES
To demonstrate the versatility and effectiveness of PySAGES in
different contexts, we present several examples of how enhanced
sampling methods can be used to gain valuable insights in various
fields including biology, drug design, materials engineering,
polymer physics, and ab-initio simulations. These examples
showcase how PySAGES can be used in diverse research areas
and the utility of different enhanced sampling methods and
backends.

Fig. 3 Example of how to write a CV in PySAGES. On the left is the same CVs written in SSAGES and on the right the PySAGES version. In
general, the only requirement is for the user to write the CV as a differentiable function in JAX.
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Overall, these examples confirm that the enhanced sampling
methods implemented in PySAGES work as intended and provide
results consistent with existing literature.

Structural stability of protein-ligand complexes for drug discovery.
High-throughput docking techniques are a widely-used computa-
tional technique in drug lead discovery. However, these techniques
are limited by the lack of information about protein conformations
and the stability of ligands in the docked region46. To address this
issue, the Dynamical Undocking (DuCK) method was developed to
evaluate the structural stability of the ligand binding by calculating
the work required to break the most important native contact
(hydrogen bond interactions) in the protein-ligand complex47. It is
important to highlight several key aspects regarding this technique:
in DuCK, the quantity of interest is the work necessary to depart
from the ideal hydrogen bond configuration and reach the quasi-
bound state (defined in practice as the point along the simulation
where the work profile exhibits the highest value). Therefore, we
only consider the response of the ligand-protein complex to a small
perturbation with respect to the ideal binding configuration. More
importantly, as the unbound state is not considered and never
reached, this quantity cannot provide information about the binding
free energy. Instead, the main objective here is to simply indicate if
the hydrogen bond under investigation gives rise to a (local)
minimum in the free-energy landscape and to estimate the depth of
that minimum. Thus, DuCK is complementary and orthogonal to
classical docking, making both techniques useful for drug discovery.
We note here that DuCK can be slow to converge when combined
with traditional enhanced sampling techniques47, making it
unsuitable for high-throughput drug discovery protocols.
Here, we demonstrate how PySAGES with OpenMM can be used

efficiently in drug discovery applications, where the user-friendly
interface, native parallel capabilities, and enhanced sampling
methods with fast convergence are synergistically combined to
accelerate the virtual screening of ligand databases. In this example,
we study the main protease (Mpro) of SARS-CoV-2 virus (PDB:
7JU748), where the ligands were removed and the monomer A was
selected as the docking receptor. A ligand with SMILES string
CCCCOCC(=O)c1ccc(C)cc1N[C@H]1N[C@@H](c2cccnc2)
CS1 was docked using rDock49. The best scoring pose was used to
initialize the system, which was simulated using the ff14SB50, TIP3P51,
and GAFF52 force fields. A 10 ns equilibration procedure was carried
out to find the most stable hydrogen bond between the ligand and
the protein. The last frame of this equilibration was then used to
initialize the enhanced sampling calculations in PySAGES with ABF,

metadynamics, FUNN, ANN, and Spectral ABF. These methods were
compared against the same system simulated using Amber2053 with
Steered Molecular Dynamics (see Fig. 4c). Our results suggest that we
can reduce the simulation time by an order of magnitude using
recently developed enhanced sampling methods like Spectral ABF or
FUNN. This can greatly accelerate the drug discovery process and
help identify potential drug leads more quickly.

Fission of a diblock copolymer spherical domain. We now
investigate the fission of a single spherical domain of a diblock
copolymer using a coarse-grained model. We use a soft, coarse-
grained dissipative particle dynamics (DPD) model published in
previous studies54,55. The model consists of n= 200 chains with
N= 256 beads each, representing a liquid polymer melt. The first
NA= 16 beads in each chain are type A, while the remaining
NB= 240 are type B.
A standard DPD potential is used to enforce incompressibility

with a repulsion parameter of Aii= 5 kBT/σ2. However, a higher
interaction of AAB= Aii+ ΔA kBT/σ2, with ΔA∈ [0.1, 0.4] is applied
between unlike particles to create a repulsion that leads to a
microphase separation. A Flory-Huggins parameter ΔA∝ χN > 0
can characterize this phase separation. The interaction range of
this non-bonded potential is 1σ, as well as the range of the DPD
thermostat that keeps the temperature at T= 1 kBT= 1 ϵ.
In addition, a harmonic spring force with zero resting length is

used to connect the beads to polymer chains with a spring constant
of k= 16/3 kBT/σ2, resulting in an average bond length of b0= 0.75 σ.
The equilibrium phase for this polymer melt is a BCC phase of
spherical A droplets inside a B melt56. However, we confine the
polymer to a tight cubic simulation box of length L0= 10 σ, which
results in a single A spherical domain in the B matrix. We integrate
the simulation with a time step of Δt= 10−3 τ and each simulation is
equilibrated for t= 1000 τ, followed by a production run of t= 1000 τ
as well. A discussion of the GPU performance of this system with and
without PySAGES can be found in the Section “Performance.”
After defining the diblock copolymer system, the next step is to

define a CV within the system. In this case, we are interested in
the fission of the single spherical A domain into two equally sized
smaller A domains. To achieve this, we divide the polymer chains
into two groups: the first n= 100 chains are going to form the first
small domain (blue in Fig. 5) and the second n= 100 chains form
the second spherical domain (red in Fig. 5). To define and enforce
the separation of the two groups, we define our CV as the
distance, R, between the center of mass of the blue A-tails and the
center of mass of the red A-tails. Initially, without biasing, the two

Fig. 4 Dynamical Undocking (DuCK) method in detail. For a proposed binding mode obtained from classical docking, a short run using MD
simulations is carried out and the most stable receptor-ligand native contact is selected from that run. a Protein-ligand complex. b Close-up to
the binding pocket, the collective variable is the distance between the atoms marked as spheres. c Comparison between different methods in
PySAGES for DuCK calculations averaged over 5 different replicas for each method (shaded regions represent the standard deviation). The
reference, Steered MD simulations were run for 2 ns. In comparison, different methods in PySAGES are used considering simulation period 10
times shorter: only ANN10 provides inferior performance against the reference; Spectral ABF42 or FUNN11 give the best performance, being
able to converge faster to the reference free energy with one order of magnitude simulation time reduction.
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groups form a single spherical domain and blue and red polymer
tails are well mixed, as shown at small R < 1σ in Fig. 5.
To study the separation of the spherical domain, we use

harmonic biasing (see Section “Enhanced Sampling Methods”) to
enforce a separation distance R0 between the two groups. The
high density in the system,

ffiffiffiffiffi
N

p
¼ ρ0 R

3
0 =N � 344, leads to low

fluctuations and suppression of unfavorable conformations.
Therefore, we use a high spring force constant of kCV= 1500 ϵ/
σ2 to facilitate the separation.
We investigate a separation of R ∈ [0, 6] σ with 14 replicas and

use umbrella integration (see Section “Enhanced Sampling
Methods”) to determine the free energy profile, as shown in Fig.
5. As we increase the external separation distance R0, we observe
how the single domain splits into two. At a low separation
distance R < 2 σ, the single domain is mostly undeformed, but the
two groups separate inside the single spherical domain. Increas-
ing the separation distance further goes beyond the dimensions
of the spherical domain, leading to the deformation of the
domain into an elongated rod-like shape. The two groups still
maintain a connection to minimize the AB interface.
At a separation between 4 σ and 5 σ the deformation becomes

so strong, that the penalty of forming two separate A and B
spherical domains is lower than the entropic penalty of keeping a
single domain elongated with the AB interface joining both
subdomains of the droplet. After the separation, the free energy
landscape remains indifferent to the separation, since there is no
longer interaction between the two domains.
The free energy profile of separation is controlled by the

repulsion of unlike types χN∝ ΔA. The stronger the repulsion, the
more energy is necessary to enlarge the AB surface area for the
fission. For the strongest interaction ΔA= 0.4 ϵ, the total free
energy barrier reaches about 800 ϵ, while for the lowest ΔA= 0.1 ϵ
it remains below 400 ϵ. Both barriers are orders of magnitude
larger than thermal fluctuations 1 kBT= 1 ϵ, so a spontaneous
separation is not expected and the fission can only be studied via
enhanced sampling.
It is interesting to note that at the lowest separation distance

(R0= 0) it is not the lowest free energy state. Enforcing perfect
mixing is not favorable, as the two groups naturally want to
separate slightly optimizing the entropy of the chain end-tails.

Liquid crystal anchoring in aqueous interfaces. Liquid crystals
(LCs), materials that flow like liquids but have anisotropic
properties as crystals, have been used lately as prototypes for
molecular sensors at interfaces given the high sensitivity in their
anchoring behavior relative to small concentration of molecules at
aqueous interfaces. The presence of molecules at the interface
changes drastically the free energy surface of LC molecules
relative to their orientation and distance to such interface. In this
example, we consider the LC 4-cyano-4’-pentylbiphenyl (5CB) at
the interface of pure water and sodium lauryl sulfate (SDS). For
5CB and water, previous work has focused on obtaining the free
energy surface of a 5CB at the water interface57. In our case, hybrid
anchoring conditions have been imposed on a 16 nm slab of 1000
5CB molecules in the nematic phase (300 K) interacting with a 3
nm slab of water with 62 molecules of (SDS) at one of the
interfaces. The force fields used are: the united atom model for
5CB developed by Tiberio et al.58, TIP3P51 for water, GAFF52 and
Lipid 17 for SDS. The CVs chosen to study this system are the
distance of the center of mass of one molecule of 5CB at each one
of the interfaces (see Supplementary Discussion 2), and the tilt
orientation of the same molecule with respect to the z axis of the
box. For the enhanced sampling method, we choose FUNN (see
Section “Enhanced Sampling Methods”). The free energy surfaces
for the pure water and with SDS at the interface are both
displayed in Fig. 6. We can observe that the free energy surface of
pure water shows a minimum corresponding to a parallel
orientation to the surface with a similar shape that one calculated
in57. On the contrary, the presence of SDS transforms the
minimum to a maximum in the same relative position and
orientation to the interface (Fig. 6a), moving now the minima to a
perpendicular orientation of 5CB to the interface, in agreement to
the experimental observation of change from planar to home-
otropic anchoring in the presence of SDS in water.

Ab initio enhanced sampling simulations. In the domain of ab
initio simulations, particularly when applied to heterogeneous
catalysis and electrochemistry, accounting accurately for the
dynamic and entropic contributions to the free energy is crucial
for a precise characterization of the observed phenomena23. The
inherent limitations of classical force fields preclude the accurate
simulation of essential bond-breaking processes, which are central
to catalysis. This necessitates the implementation of MD simula-
tions based on first-principles calculations.
In scenarios where reactive events are hindered by high free

energy barriers, the incorporation of enhanced sampling techni-
ques into a simulation becomes an essential component of such
calculations. By integrating PySAGES with ASE59, we offer access to
a broad spectrum of first-principles calculators. To illustrate this,
we have used CP2K60 as a simulator to model the dissociation of
NaCl in water, a representative reaction that requires enhanced
sampling61,62. In this example, the CV is defined as the separation
distance between a sodium and a chlorine atom. The NVT ab initio
molecular dynamics simulation presented here was executed
using a double-ζ basis set63 with an energy cutoff of 400 Ry, in
conjunction with GTH pseudopotentials64. The PBE functional was
used with Grimme D3 vdW correction65,66. The simulation
involved a cubic box of edge length 15 Å containing 113 water
molecules, one sodium, and one chlorine atom, corresponding to
a density of 1000 kg m−3. Once the system was equilibrated under
300 K for a total of 150 ps, we implemented Spectral ABF as our
enhanced sampling method of choice (refer to Section “Enhanced
Sampling Methods”).
After a total of 150 ps of sampling, the results of enhanced

sampling, displayed in Fig. 7, reveal two free energy minima along
the CV axis. The first minimum (CV = 2.8 Å) represents the
undissolved NaCl molecule (contact-ion pair), while the second
(CV = 4.75 Å) corresponds to the solvated Na+ and Cl− ions
(solvent-separated-ion pair). This free energy profile aligns well

Fig. 5 Free energy landscape of the fission of a spherical diblock-
copolymer domain. The chain ends forming the spherical domain
are split into two groups (blue) and (red), the other chain ends not
visible for clarity except for a single chain (grey). Initially, a single
spherical domain is formed, but as we constraint the center of mass
between the blue and red groups further, the domain first elongates
and then separates completely. During this separation, the free
energy continuously increases and the increase is steeper for high
repulsion between unlike type ΔA. As soon as the domain is
separated, the free energy plateaus.
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with previously reported values61,62, further affirming the accuracy
and reliability of the combination of PySAGES and ASE.
Furthermore, the Spectral ABF method offered a marked

increase in efficiency when applied to this problem. A previous
study, employing a constrained-MD method61, required a total of
126 ps of simulation time for a limited sampling with 21 windows.
By contrast, the current calculation accelerated the process,
requiring a total sampling time of 150 ps for 140 bins. The
efficiency of the Spectral ABF method is further illustrated by
comparison to another study62 that applied ABF, where the total
sampling time of 3.0 ps per sampling bin is decreased to 1.1 ps per
sampling bin in the present example.

Enhanced sampling with machine learned force fields. Deep neural
networks (NN) force fields can retain the accuracy of ab initio MD
while allowing for computational costs similar to those of classical
MD. Through ASE it is possible to access NN potentials such as
DeepMD67, and the Gaussian Approximation Potential (GAP)68.
Additionally, JAX MD allows to leverage more general NN
potentials that can be used in enhanced sampling calculations.
Coupling of PySAGES with ASE or JAX MD can be used in active
learning of NN force fields by efficiently sampling rare events using
any of the enhanced sampling methods provided by PySAGES. For
example, it could allow to implement the strategy described in
Ref. 69 where parallel tempering metadynamics was used to

generate accurate NN force field in urea decomposition in water.
To test the capabilities of PySAGES to handle different NN force

fields, we have selected three different systems trained with the
methods mentioned above. First, we studied a graph neural network
(GNN) model of a Si crystal70 with PySAGES and JAX MD. In this case, a
crystalline Si system of 64 atoms was used, and the CV was the Si–Si
distance for the the crystal. The results of Fig. 8a show that for this
model, the minimum in the free energy corresponds almost exactly to
the experimental value for the Si–Si nearest distance of 2.35 Å.
Next, in Fig. 8b, a GAP potential was used for Si–H amorphous

mixtures71. In this case, a system of 244 atoms was used, and the
collective variable is the bond angle between a triad of Si–Si–H atoms
in the mixture. The global minimum in free energy agrees with the
histogram taken from unbiased simulations reported in71.
Lastly, for DeepMD, we use a pre-trained model for water, where

the enhanced sampling system is one single water molecule in
vacuum, the collective variable is the internal angle of the molecule
and the sampling method is ABF (see Section “Enhanced Sampling
Methods”). The results in Fig. 8c show that the minimum for this free
energy profile is around 105 degrees, which is within the range of the
experimental value.

Case study: A collective variable for interfaces. When two
immiscible liquids are in contact with each other, the density of
one liquid experiences a gradual change in the vicinity of the
interface with the other. This transition region is the liquid-liquid
interface and its position has high importance in many studies (as
in our LCs example above). However, defining the location of such
an interface is not a trivial task since it generally fluctuates as the
simulation progresses. As a representative CV for the interface, we
can utilize the position of the point where the gradient of the
density is maximized. More formally, let ρ(x) denote the density of
a liquid of interest at a coordinate x on the perpendicular axis. We
would like to find the location of the interface:

I ¼ argmax
x

jρ0ðxÞj (4)

However, the density function ρ(x) is not directly measurable in
a molecular simulation, as the coordinates of atoms are discrete.
To obtain an approximation of ρ(x), we divide the coordinates into
multiple bins, each with a width of δ, and create a histogram p(x)
that records the number of atoms falling into the bin around
position x. In other words,

pðxÞ ¼
X

i¼1¼ n

jxi � xj<δ=2½ � (5)

in which xi denotes the coordinate of atom i. As written above, p(x)
is non-differentiable. Therefore, as in other works72, we utilize the

Fig. 6 Free energy surface (FES) of 5CB in a hybrid anchoring slab with SDS and water. Center: Snapshot of the system a FES of 5CB
molecule near the water--SDS interface. b FES of 5CB near a pure water interface. Both FES were obtained with PySAGES and OpenMM using
the FUNN method.

Fig. 7 Free energy (T = 300 K) of the Na–Cl distance when in
solution. Calculations where performed with ASE + CP2K using
Spectral ABF in PySAGES.
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kernel density trick with a Gaussian kernel to modify p(x). The
modified ~pðxÞ, is defined as:

~pðxÞ ¼
X

i¼1¼ n

exp �ðxi � xÞ2
2σ2

 !
(6)

in which σ is a hyperparameter that decides the width of the
Gaussian kernel. Then, the gradient of the density can be
approximated as:

~p0ðxÞ ¼ ~pðx þ δ=2Þ � ~pðx � δ=2Þ
δ

(7)

and we calculate the location of the interface as
I ¼ argmaxx j~p0ðxÞj. The argmax operator is also non-
differentiable. As a result, we replace it with a softmax function
that transforms the raw input into a probability. Denote them bins
as j= 1,…,m, and finally we calculate the location of the interface
as:

I ¼
P

jxj exp j~p0ðxjÞjP
j exp j~p0ðxjÞj

(8)

As demonstrated in the code snippet for this CV, provided in
Supplementary Discussion 2, PySAGES allows for the concise and
straightforward implementation of complex CVs such as this one.

Performance
Our analysis revealed that PySAGES is at least ~14–15 times faster
than SSAGES on an Nvidia V100 GPU machine. To obtain this
estimate, we ran enhanced sampling using umbrella sampling
along the center of mass distance between two spherical polymer
domains to measure the free energy landscape of the fission of a
spherical diblock-copolymer blend (Fig. 5) described in Section
“Example applications of enhanced sampling with PySAGES.” For
support and compatibility across libraries and MD engine versions,
we estimated the performance with SSAGES v0.9.2-alpha and
PySAGES v0.3.0 using HOOMD-blue v2.6.0 and HOOMD-blue
v2.9.7, respectively.
We highlight that the performance of PySAGES, particularly in

terms of scaling with the number of GPUs, is primarily a reflection
of the simulation backend’s performance. As a result, our
subsequent analysis concentrates on the relationship between
PySAGES and the backend and the impact this interaction has on
performance. For a comprehensive performance evaluation of the
individual backends, we refer readers to the specific literature
associated with each, such as that provided for HOOMD-blue.

GPU utilization analysis. PySAGES is designed to execute every
compute-intensive step of a simulation on the GPU and have zero

copy instruction between GPU device and host CPU memory for
its explicit backends for HOOMD-blue2 and OpenMM3, while still
providing Python code for the user through JAX73. In this section,
we investigate the calculation efficiency of PySAGES by examining
two example systems, one for each backend.
For HOOMD-blue, we consider a system of highly coarse-

grained DPD diblock-copolymers as discussed in Section “Example
applications of enhanced sampling with PySAGES.” The simulation
box contains a total of nN= 51 200 particles at a density of
ρ= 51.2/σ3, which we use for benchmarking purposes with an
Nvidia V100 GPU hosted on an Intel Xeon Gold 6248R CPU @
3.00GHz. Running only with HOOMD-blue v2.9.7 we achieve an
average time steps per second (TPS) of 754, which is the expected
high performance of HOOMD-blue on GPUs.
Figure 9a shows a detailed profiled timeline during the

execution of a single time step. During 1.8 ms, HOOMD-blue
spends the most computational effort on the calculation of
pairwise DPD forces. It can be noted that HOOMD-blue is designed
to have almost no idle time of the GPU during a time step. As soon
as PySAGES is added we observe that an additional computation
takes part to calculate the CV and add the forces to every particle.
This causes a small period of idle of the GPU, since the execution
also requires action of the Python runtime interface with JAX. In
the future, we plan to launch the calculation of CV asynchronously
with the regular force calculation, which would hide this small
CPU-intensive GPU idle time. However, we measure that the total
delay due to the extra computation is only about 247 μs only. We
regard this to be an acceptable overhead given PySAGES
advantages such as user-friendly definition of CVs.
In order to connect multiple points in CV space we can use

enhanced sampling methods such as umbrella sampling or the
improved string method (see Section “Enhanced Sampling
Methods”) to calculate the MFEP. Common for these advanced
sampling methods is that multiple replicas of the system are
simulated. With PySAGES we easily parallelize their execution
using the Python module mpi4py and its MPIPoolExecutor.
This enables us to execute replicas of the simulations on multiple
GPUs even as they span different host machines. In our example,
we used 14 replicas for umbrella integration with 7 Nvidia V100
GPUs. The use of a single V100 GPU to execute the simulations
with 5 ⋅ 105 time steps for all replicas takes 2 hours and 59 minutes.
Ideal scaling with 7 GPUs would reduce the time to solution to
about 26 minutes. With our MPI-parallel implementation, we
achieve a time-to-solution of 28 minutes. Synchronization over-
head and nonparallel aspects like final analysis sum up to
2 minutes or about 9% overhead. This multi-GPU implementation
via MPI enables automatically efficient enhanced sampling in
high-performance computing (HPC) environments. We emphasize
that this multi-GPU parallelism exists in conjunction with the

Fig. 8 Free energy calculation for different systems modeled with machine-learned force fields. a Si--Si distance of a GNN model with JAX
MD. b Si--Si--H angle of GAP model with ASE. c Water internal angle from a DeepMD model with ASE.
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parallelism provided by the simulation backend. Furthermore, this
level of parallelism can only be effectively utilized in sampling
methods that depend on multiple samples.
For enhanced sampling methods that are designed for single

replica simulations, we offer an implementation that allows
multiple replicas to run in parallel, known as embarrassingly
parallel computing. In this situation, the build-in analysis averages
the results from multiple replicas and estimates uncertainties.
In the previous section, we have demonstrated the fast GPU

interoperability between PySAGES and HOOMD-blue via JAX.
However, the concept of PySAGES is to develop enhanced sampling
methods independently of the simulation backend, so here we
demonstrate that similar performance can be achieved with
OpenMM. Since OpenMM focuses on all-atom simulations, we
simulate an all-atom model of a polymer with the BigSMILES74

notation {[$]CC([$])(C)C(OCC(O)CSC1=CC=C(F)C(F)
=C1)=O} with an OPLS-AA force field75,76 including long-range
Coulomb forces via particle mesh Ewald (PME). We simulate a bulk
system of 40mers with 31 macromolecules present, adding up to
40,981 atoms. As a proof of concept, we calculated the center of mass
for every polymer chain and biased it harmonically via PySAGES. As a
performance metric, we evaluate how many simulation nano-seconds
are executed per day on the same hardware configuration as a the
HOOMD-blue example above. For the unbiased, pure OpenMM
simulation we achieve a performance of ≈136 ns per day. For the
PySAGES biased simulation, we achieve a performance of ≈75 ns
per day, equating to a biasing overhead of approximately 50%. Figure
9b shows a similar time series analysis as for HOOMD-blue.
It is notable that OpenMM’s execution model makes more use of

parallel execution of independent kernels, which also changes the
order of execution compared to HOOMD-blue. As a result, the

same GPU synchronization changes the execution more drastically
than in HOOMD-blue. Additionally, a single time step for this system is
faster executed compared to HOOMD-blue, making the synchroniza-
tion overhead more noticeable. In this case, parallelization of PySAGES
and OpenMM is projected to have a bigger performance advantage.
Furthermore, we notice that the calculation of the center of mass and
the biasing of all 31 polymer chains is more costly than the single CV
in the previous example. The combination of these factors explain the
higher PySAGES overhead for this OpenMM simulation, but overall
performance is good and significantly better for alternative
implementations that require CV calculations on the GPU.

Outlook
We have introduced PySAGES, a library for enhanced sampling in
molecular dynamics simulations, which allows users to utilize a
variety of enhanced sampling methods and collective variables, as
well as to implement new ones via a simple Python and JAX-based
interface.
We showed how PySAGES can be used through a number of

example applications in different fields such as drug design,
materials engineering, polymer physics, and ab-initio MD simula-
tions. We hope that these convey to the reader the flexibility and
potential of the library for addressing a diverse set of problems in
a high-performance manner.
As our analysis showcased, for large problems, PySAGES can

perform biased simulation well over one order of magnitude faster
than a library such as SSAGES even when the backend already
performs computations on a GPU.
Nevertheless, as with any newly developed software, PySAGES

will continue to undergo improvements. In the near term, we plan

Fig. 9 Profiled timelines for a single-time step of unbiased and biased execution with HOOMD-blue and OpenMM. The profiles were
recorded with Nvidia Nsight systems on an Nvidia V100 GPU. Light-blue represents the GPU activity while dark-blue represents individual
CUDA compute kernels. The numbered lines indicate the same compute steps in all simulations: (1) start of integration step, (2) compute of
bond forces, (3) pair-wise forces, (4) calculation of the CV, (5) addition of the harmonic biasing force to the backend, and (6) end of the
integration step. (4) and (5) are PySAGES only and are executed on the GPU. We observe GPU idle time during the PySAGES Python
coordination with GPU--JAX/CuPy (green bar), but note that there is no memory copies even within the GPU memory. a 1.8 ms of recorded
HOOMD-blue execution. The top row shows a vanilla HOOMD-blue simulation step, while the bottom row shows a PySAGES/HOOMD-blue
simulation with harmonic biasing of a center of mass CV. The additional time for CV biasing per time step is 247 μs. b 1.6 ms recorded
execution time line of an OpenMM OPLS simulation of 40,981 particles as polymers with PME summation for long-range Coulomb forces.
OpenMM works with asynchronous GPU kernel execution, which leads to less linearly-sorted timelines. Overall, the performance degradation
is more pronounced with OpenMM compared to HOOMD-blue.
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to optimize PySAGES-side computations to run fully asynchro-
nously with the computation of the forces of the backend, which
will further enhance its current performance. We also invite the
community to contribute to the development of PySAGES,
whether by suggesting new features, reporting bugs, or
contributing code.
Overall, we believe that PySAGES provides a useful tool for

researchers interested in performing molecular and ab-initio
simulations in multiple fields, due to its user-friendly framework
for defining and using sampling methods and collective variables,
as well as its high performance on GPU devices.
Looking further ahead, we are excited about the potential for

PySAGES to enable fully end-to-end differentiable free energy
calculations. This will provide new possibilities for force-field and
materials design, which would drive significant advances in
these areas.

DATA AVAILABILITY
The data supporting the findings of this study is available within this article, its
Supplementary Information, and the GitHub repository https://github.com/
SSAGESLabs/PySAGES-examples.

CODE AVAILABILITY
The code for PySAGES is available in the GitHub repository: https://github.com/
SSAGESLabs/PySAGES.
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