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Abstract

We prove Anderson localization (AL) and dynamical localization in expectation (EDL, also known as
trong dynamical localization) for random CMV matrices for arbitrary distribution of i.i.d. Verblunsky
oefficients.
2023 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to establish Anderson localization and dynamical localization in
xpectation (AL and EDL, see Definitions 1 and 2 respectively) for random CMV matrices
ith arbitrary distribution.
CMV matrices were introduced by Cantero, L. Moral, L. Velázquez [3] in 2003 and play an

important role in the study of orthogonal polynomials on the unit circle (OPUC). See [11,22,23]
for a concise and elegant report of the main results and [21] for a detailed monograph on this
subject.

The study of random CMV matrices was motivated by Anderson model for Schrödinger
perators. When the distribution is absolutely continuous, Anderson localization for random
MV matrices has been proved in [10,24], [21, Sec. 12.6] using the spectral averaging method,
ut these techniques cannot be applied in the singular (for instance, Bernoulli) case. For
nderson model, the first proof that can handle arbitrary randomness was given in [4], based
n the multi-scale analysis. In 2019, [14] provided a short proof of Anderson localization and
ynamical localization (for the one-dimensional Anderson model with arbitrary distribution)
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using positive Lyapunov exponents together with uniform large deviation type (LDT) estimates
and uniform Craig–Simon results. In 2020, dynamical localization in expectation was proved
in [9] following this method. In this paper, we exploit the techniques in [9,14] to prove
Anderson localization and strong dynamical localization for random CMV matrices with
arbitrary distribution. In particular, our results apply in the singular case. The main novelties of
the proof are the large-deviation estimates of determinants with modified boundary conditions
(Lemma 4.2) and a streamlined approach to the localization proof in comparison with [9,14], so
that EDL follows directly from our key observation (Theorem 3). It is also worth mentioning
that the singular potential random CMV model was also studied in [2] in 2019 as a close
relative of the Anderson model, for which a new proof of localization was also given in [2]. The
CMV proof in [2] relies on certain results in [16]. However those contain a significant number
of misprints and minor errors (some of those stemming from small misprints in [21,22]).
Article [2] inherits those errors, we discuss them in Appendix B.

As we were completing this paper we learned of [18] where a short proof of Anderson
ocalization for a large class of quasi-one-dimensional operators with singular potentials is
resented. It however does not seem to be applicable to CMV matrices.

Finally, our paper when taken in conjunction with [9,14,19,20], and [18], illustrates the flex-
bility of this general scheme for proving localization in random one-dimensional frameworks.
ndeed, these techniques provide the most direct route to localization in addition to providing
roofs of the strongest known localization results for such models (EDL).

The remainder of the paper is organized as follows:

• In Section 2, we present the model and the main results (AL and EDL).
• In Section 3, we present a key theorem on regularity of Green functions from which AL

and EDL are derived.
• In Section 4, we present uniform large deviation theorem (Lemma 4.2) and uniform

Craig–Simon estimates (Lemma 4.4).
• In Section 5, we first provide an outline of the proof and prove our key Theorem 3.
• Finally, Appendix A provides technical details needed for Section 3.3 and Appendix B

corrects the errors in the formulas found in [2,16,21,22]. It is our hope that these
corrections provide clarification for other readers working on CMV matrices.

. Model and main results

.1. OPUC

Let η be a probability measure which is supported on an infinite subset of ∂D where D is
he open unit disk in C. Let Φn(z) be the monic polynomial of degree n s.t.

⟨Φm(z),Φn(z)⟩ =

∫
∂D

Φm(z)Φn(z)dη(z) = δmn, ∀m, n ∈ N. (2.1)

The Φn(z)’s are called the orthogonal polynomials on the unit circle (OPUC) w.r.t. η. Let
φn(z) =

Φn (z)
∥Φn (z)∥ where ∥ · ∥ is the L2(∂D; dη) norm.

It is clear that given η, we can compute Φn(z) and φn(z) inductively from Φ0(z) = φ0(z) = 1.
oreover, there is a recurrence relation for Φn(z) which we state here without proof (see [21,

heorem 1.5.2]):
2
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Proposition 1 (Szegő’s Recurrence). Given η, there is a sequence of αn ∈ D s.t.

Φn+1(z) = zΦn(z) − αnΦ
∗

n (z)
Φ∗

n+1(z) = Φ∗

n (z) − αnzΦn(z),

where Q(z)∗ := zn Q(1/z̄) for polynomials Q(z) of degree n. The terms {αn}
∞

n=0 are called
Verblunsky coefficients. Furthermore, let ρn = (1 − |αn|

2)1/2. We have

∥Φn∥
2

= ∥Φ∗

n∥
2

= ρ2
n∥Φn−1∥

2
=

n−1∏
k=0

ρ2
k .

hus, for the normalized φn , we have(
φn+1
φ∗

n+1

)
=

1
ρn

(
z −αn

−αnz 1

)(
φn

φ∗
n

)
.

By Szegő’s recurrence, each η corresponds to a sequence of {αn}
∞

n=0 ∈ DN. It turns out that
his correspondence is bijective (e.g. [21, Theorem 1.7.11]).

roposition 2 (Verblunsky’s Theorem). There is a bijection between nontrivial (supported on
n infinite set) probability measures η on ∂D and {αn}

∞

n=0 ∈ DN.

2.2. CMV matrices

CMV matrices are matrix representations of multiplication-by-z operators on L2(∂D; dη)
w.r.t. a basis obtained from orthonormalizing the set {1, z, z−1, z2, z−2, . . .}. It is important to

nderstand the relation between η and αn , especially under perturbations. On the one hand,
he definition implies that η is a spectral measure of the CMV matrix. On the other hand, the
MV matrices can be expressed by the Verblunsky coefficients αn and ρn = (1 − |αn|

2)
1
2 > 0

(See [21, Sec 4.3] for more details):

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α1ρ0 ρ1ρ0
ρ0 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

α4ρ3 −α4α3 α5ρ4 ρ5ρ4
ρ4ρ3 −ρ4α3 −α5α4 −ρ5α4

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2)

We will study a two-sided version of the above matrix. The two-sided version depicted
elow is called an extended CMV matrix.

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0
ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

α4ρ3 −α4α3 α5ρ4 ρ5ρ4
ρ4ρ3 −ρ4α3 −α5α4 −ρ5α4

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

he relationship between C and E is explained in Remark 3.
3
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2.3. Random CMV matrices

As with the Anderson model, we are interested in the random extended CMV matrix Eω

where αn = ωn ∈ D are i.i.d. random variables with common Borel probability distribution µ

supported on a compact subset S of D. We assume µ is non-trivial in the sense that it contains
at least two points and as we introduced in the introduction, there are no regularity requirements
on µ. Let the probability space be Ω = SZ, with elements ω = {ωn}n∈Z ∈ Ω . Denote µZ by P.
Let P[m,n] be µ[m,n]∩Z on Ω[m,n] := S[m,n]∩Z. Hence whenever we write [m, n] in this paper, we
mean [m, n]∩Z. Also let T be the shift on Ω , i.e. (T ω)i = ωi−1. Finally, we denote Lebesgue
measure on the unit circle by m.

By the classical ergodicity argument for random operators (e.g. [7, Chapter 9]), we see
that the spectrum of Eω is almost surely deterministic, i.e. there is Σ ⊂ ∂D s.t. for a.e. ω,
σ (Eω) = Σ . Furthermore, the pure point spectrum, a.c. spectrum and s.c. spectrum are all a.s.
deterministic, i.e. σ∗(Eω) = Σ∗, ∗ ∈ {p.p., a.c., s.c.}.

2.4. Main results

We can now introduce our main results.

Definition 1 (AL). We say Eω exhibits Anderson localization (AL, also called spectral
localization) on an interval I if for a.e. ω, Eω has only pure point spectrum in I and its
igenfunctions Ψω(n) decay exponentially in n.

efinition 2 (EDL). We say Eω exhibits dynamical localization in expectation (EDL, also
nown as strong dynamical localization SDL) on an interval I if there is C, η > 0 s.t.

sup
t∈R

E
(
|⟨δx , E t

ωχI(Eω)δy⟩|
)

≤ Ce−η|x−y|, ∀x, y ∈ Z.

where χI is the characteristic function of I.

We will prove in this paper that

Theorem 1 (AL). There is a set D ⊂ ∂D which contains at most three points such that, Eω

exhibits AL on any compact interval I ⊂ ∂D \ D.

Remark 1. The existence of this exceptional set is due to the failure of Fürstenberg’s Theorem
see Section 3.6).

heorem 2 (EDL). There is a set D ⊂ ∂D which contains at most three points s.t. Eω exhibits
DL on any compact interval I ⊂ ∂D \ D.

. Theorem 3 implies AL and EDL

Below, we will formulate the key theorem, Theorem 3. We then prove AL (Theorem 1) and
DL (Theorem 2) from it. To do so, we make some preparations in Sections 3.1–3.3, state
heorem 3 in Section 3.4 and prove Theorems 1 and 2 in Section 3.7.
4
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3.1. Decomposition of CMV matrices

We start with a decomposition of a CMV matrix which helps us to deal with its more
omplicated five-diagonal nature. Let αn ∈ D, ρn = (1 − |αn|

2)
1
2 . Define the unitary matrix

cting on ℓ2({n, n + 1}) by

Θn =

(
αn ρn

ρn −αn

)
. (3.1)

efine

L =

⨁
n even

Θn, M =

⨁
n odd

Θn. (3.2)

hen one can check directly by computation that the extended CMV matrix satisfies

E = LM. (3.3)

y definition of Θn , αn and ρn , it is easy to see that L and M are unitary on ℓ2(Z). Thus E
s also unitary. (More details can be found in [21, Theorem 4.2.5].)

Let P[a,b] : ℓ2(Z) → ℓ2([a, b]) be the projection and X [a,b] = P[a,b] X (P[a,b])∗ for X ∈

E,L,M}. Then it is easily verified that

E[a,b] = L[a,b]M[a,b]. (3.4)

.2. Modification of the boundary conditions

Notice that E[a,b], L[a,b] are not always unitary due to the fact that the “boundary terms”
a−1 and αb satisfy |αa−1| < 1 and |αb| < 1. Thus we can instead manually create unitary
perators by modifying these boundary conditions. Let β, γ ∈ ∂D. Define

α̃n =

⎧⎪⎨⎪⎩
αn, n ̸= a − 1, b
β, n = a − 1
γ, n = b

.

enote the extended CMV matrix with Verblunsky coefficients α̃n by Ẽ . Then define

Eβ,γ

[a,b] = P[a,b]ẼP[a,b].

β,γ

[a,b] and Mβ,γ

[a,b] are defined correspondingly. Now Eβ,γ

[a,b], L
β,γ

[a,b] and Mβ,γ

[a,b] are all unitary.

emark 2. Notice that this modification is only a formal modification of the boundary value
αa−1| < 1 to |β| = 1 and |αb| < 1 to |γ | = 1. So, all the formulas for E[a,b] with αa−1 and αb

till hold for Eβ,γ

[a,b] with β and γ . For example, Eβ,γ

[a,b] = Lβ,γ

[a,b]M
β,γ

[a,b] follows from (3.4).

emark 3. We will use Eβ,·

[a,b], E
β,·

[a,b] to denote single-sided boundary condition modification.
y comparing (2.2) and (2.3), it is easy to see that C = E−1,·

[0,+∞].

.3. Green’s functions, generalized eigenfunctions, Poisson formula

Now we can define the Green’s function. Usually it is defined to be G[a,b],z = (E[a,b],ω −
−1
z) . However, since Eω is five-diagonal, it is more complicated than a Jacobi matrix, and

5
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the restriction to [a, b] is not unitary. Thus we can modify the boundary and rewrite the
haracteristic function (Eβ,γ

[a,b] − z)Ψ = 0 as (z(Lβ,γ

[a,b])
∗

− Mβ,γ

[a,b])Ψ = 0. Then Aβ,γ

[a,b],z :=

z(Lβ,γ

[a,b])
∗
−Mβ,γ

[a,b]) is tri-diagonal (see Lemma A.1 in the appendix) and it is natural to define
he Green’s function to be

Gβ,γ

[a,b],z = (Aβ,γ

[a,b],z)
−1

=

(
z
(
Lβ,γ

[a,b]

)∗

− Mβ,γ

[a,b]

)−1

for |β| = |γ | = 1, z /∈ σ (Eβ,γ

[a,b]).
Exponential decay of the off-diagonal entries of the Green’s function turns out to be essential

in the study of localization phenomenons. It is closely related to the exponential decay of
(generalized) eigenfunctions through Poisson formula.

Definition 3 (Generalized Eigenvalues and Generalized Eigenfunctions). Fix ω. We call zω a
eneralized eigenvalue (g.e.) of Eω, if there exists a nonzero, polynomially bounded function
ω(n) such that EωΨω = zωΨω. We call Ψω(n) a generalized eigenfunction (g.e.f.).

emma 3.1 (Poisson Formula). Let Ψ be a g.e.f. of E w.r.t. a g.e. z, i.e. EΨ = zΨ . Let
β| = |γ | = 1. Then for a < x < b,

Ψ (x) = − Gβ,γ

[a,b],z(x, a)

{
Ψ (a)(zβ̄ − zᾱa−1) + Ψ (a − 1)zρa−1, a odd,

Ψ (a)(αa−1 − β) − Ψ (a − 1)ρa−1, a even,

− Gβ,γ

[a,b],z(x, b)

{
Ψ (b)(−ᾱb + γ̄ ) − Ψ (b + 1)ρb, b odd,

Ψ (b)(zαb − zγ ) + Ψ (b + 1)zρb, b even.

(3.5)

We give a proof in Lemma A.2 in the appendix.

.4. Schnol’s theorem, regularity

Recall that Schnol’s theorem (see [15, Theorem 7.1], or [7, Sec. 2.4]) says that the spectral
easures are supported on the set of g.e.’s. Thus, to show Anderson localization it is enough to

how that for a.e. ω, for any g.e. zω of Eω, the corresponding g.e.f. Ψω decays exponentially,
ecause this would imply that each g.e. is indeed an eigenvalue, so Eω has only pure point
pectrum.

Thus for a g.e.f. Ψω which is polynomially bounded, if we can show the Green’s function
Gβ,γ

[n+1,3n+1],ω,z(2n + 1, n + 1)| and |Gβ,γ

[n+1,3n+1],ω,z(2n + 1, 3n + 1)| are exponentially small,
hen |Ψω(2n + 1)| will decay exponentially due to the Poisson formula. This idea inspires us
o define regularity as follows:

efinition 4 (Regularity). Let β, γ ∈ ∂D. For fixed ω, z /∈ σ (Eβ,γ

[a,b],ω), c > 0, n ∈ Z, we say
x ∈ Z is (c, n, ω, z)-regular, if

|Gβ,γ

[x−n,x+n],ω,z(x, x − n)| ≤ e−cn,

|Gβ,γ

[x−n,x+n],ω,z(x, x + n)| ≤ e−cn.

therwise, we call it (c, n, ω, z)-singular.
6
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3.5. Transfer matrix and Lyapunov exponents

Recall by Proposition 1,(
φn+1(z)
φ∗

n+1(z)

)
=

1
ρn

(
z −αn

−αnz 1

)(
φn(z)
φn(z)∗

)
enote

Sz(α) =
1
ρα

(
z −α

−αz 1

)
,

hen Sz(αn) is the nth step transfer matrix. Let T[a,b] = Sz(αb) · · · Sz(αa) be b − a step transfer
matrix, then(

φb+1(z)
φ∗

b+1(z)

)
= T[a,b]

(
φa(z)
φ∗

a (z)

)
.

Note that 1
√

z Sz(α) ∈ SU (1, 1), where

SU (1, 1) =

{(
u v

v̄ ū

)
: u, v ∈ C, |u|

2
− |v|

2
= 1

}
.

nd
√

z is taken to be the principle branch. Note also that

SU (1, 1) = Q−1
· SL(2,R) · Q, Q = −

1
2

(
i 1
1 i

)
.

Thus, the definitions of Lyapunov exponents for SL(2,R)-cocycles and the corresponding
properties (positivity and continuity, large deviation and subharmonicity results, if under the
correct conjugation,) generalize to SU (1, 1)-cocycles. Moreover, ∥Sz(α)∥ = ∥

1
√

z Sz(α)∥ when
z| = 1. Thus, for random CMV matrices where the αn’s are i.i.d., the Lyapunov exponent γ (z)
s well-defined:

γ (z) = lim
n→∞

1
n

∫ 1

0
log ∥T[0,n],ω,z∥dP(ω) = lim

n→∞

1
n

log ∥T[0,n],ω,z∥, a.e. ω. (3.6)

.6. Positivity and continuity of Lyapunov exponent

We summarize positivity and continuity of Lyapunov exponent for random CMV matrices
hat is needed for us below and provide the references for readers to explore further.

By Fürstenberg Theorem, random Schödinger operators have positive Lyapunov exponent:
(z) > 0 for any z ∈ R. However, random CMV matrices may have an exceptional set D ⊂ ∂D
hich contains at most three points s.t. γ (E) > 0 on ∂D\D. In fact, depending on the support
f µ, either D = ∅ or D = {1, −1} or D = {1, θ0, θ0}, for some θ0 ∈ ∂D. The reason

is, roughly speaking, the positivity no longer holds when Sz(αi ) and Sz(α j ) have a common
invariant measure. This would happen only if αi , α j and z satisfy certain algebraic conditions
which characterize the exceptional set. See [21, Theorem 12.6.3. and 10.4.18], [2, Sec. 7] for
more details.

Continuity of Lyapunov exponents on I ⊂ ∂D \D can be proved using the general method
(e.g. [5, Sec.V.4.2], [1]) originally developed by Fürstenberg and Kifer [8, Theorem B] for self-
adjoint random matrices, which by conjugation, extend to SU (1, 1) random matrices naturally.
We also refer to [2, Sec.2], [12, Sec. 7] for a review of the proof of continuity of Lyapunov

exponents.

7
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Positivity and continuity of Lyapunov exponent on ∂ D \ D implies that for each compact
nterval I ⊂ ∂D\D, ν := ν(I) = infz∈I γ (z) > 0. We will include the statement above directly
n the next key observation.

.7. Proof of AL and EDL

We can now formulate our key observation:

heorem 3. There is a set D ⊂ ∂D which contains at most three points such that for
ny compact interval I ⊂ ∂D \ D, the Lyapunov exponent is uniformly positive on I,
.e. ν := infz∈I γ (z) > 0. Then, for any 0 < ϵ < ν/2, there is N = N (ϵ), η = η(ϵ) > 0
.t. ∀n > N, ∀x ∈ Z, there is a subset Ωx,n ⊂ Ω[x−n,x+n] s.t.

(1) P(Ωx,n) ≥ 1 − e−η(2n+1).
(2) ∀ω ∈ Ωx,n , either x or x + 2n + 1 is (γ (z) − 2ϵ, n, ω, z)-regular for any z ∈ I.

This Theorem will be proved in the next two sections. We first show Theorem 3 implies
heorems 1 and 2 before proving Theorem 3.

roof of Theorem 1 (AL). Find D, I, ν from Theorem 3. For any 0 < ϵ < ν/2, find N (ϵ),
(ϵ), Ωx,n from Theorem 3. For any x ∈ Z, since

∑
n P
(
(Ωx,n)c

)
< ∞, by the Borel–Cantelli

emma, for a.e. ω, eventually either x or x + 2n + 1 is (γ (z) − 2ϵ, n, ω, z)-regular.
On the other hand, for a.e. ω, take any g.e. z ∈ I. Let Ψω(m) be the corresponding g.e.f.

LOG assume Ψω(x) ̸= 0. Thus by Lemma A.2, we claim that for such x , ω, z and Ψω, x is
eventually (γ (z) − 2ϵ, n, ω, z)-singular. For if x is (γ (z) − 2ϵ, n, ω, z)-regular infinitely often,
then Ψω(x) = 0.

Since x is eventually (γ (z) − 2ϵ, n, ω, z)-singular, x + 2n + 1 is (γ (z) − 2ϵ, n, ω, z)-
regular. Thus Ψω(x + 2n + 1) decays exponentially as n → ∞. A similar argument applies to
Ψω(x + 2n + 2). Therefore, for a.e. ω, all of the g.e.f.’s Ψω(n) decay exponentially. □

roof of Theorem 2 (EDL). By Theorem 1, for a.e. ω, there is an orthonormal basis {Ψk,ω}

f eigenfunctions of Eω. Denote the corresponding eigenvalues by zk,ω. Define the localization
enter as the left-most ck,ω ∈ Z s.t.

|Ψk,ω(ck,ω)| = max
n∈Z

|Ψk,ω(n)|.

e will employ the following lemma from [13] (but rewritten for unitary operator instead of
elf-adjoint operator) which provides a sufficient condition for EDL: □

emma 3.2 ([13]). If there are C̃ > 0, γ̃ > 0, s.t. for any x, y ∈ Z

E(
∑

k:ck,ω=y

|Ψk,ω(x)|2) ≤ C̃e−γ̃ |x−y|, (3.7)

hen there are C > 0, γ > 0, s.t.

supE(|⟨δx , E t
ωχI (Eω)δy⟩|) ≤ C(|x − y| + 1)e−γ |x−y|.
t∈R

8
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Thus, we only need to show (3.7). To do so, we take any 0 < ϵ < ν/2. And we first observe
hat for any ω, ck,ω, as a localization center, is always (γ (z) − 2ϵ, n, ω, z)-singular for those n

with e−(γ−2ϵ)n < 1
2 , i.e. n > N1 :=

ln 2
γ (z)−2ϵ

. Otherwise

|Ψk,ω(ck,ω)| ≤ 2e−(γ−2ϵ)n
|Ψk,ω(ck,ω)| < |Ψk,ω(ck,ω)|

gives a contradiction.
Secondly, by Theorem 3, there is some N2 such that for any n > N2, for any y ∈ Zd , there

s Ωy,n such that (1) and (2) holds.
In particular, if n > max(N1, N2), for those k, ω such that ck,ω = y, by the first observation,

k,ω is (γ (z) − 2ϵ, n, ω, z)-singular; then by part (2) of Definition 4, x := y + 2n + 1 must be
γ (z) − 2ϵ, n, ω, z)-regular. Then for any γ1 < (γ (z) − 2ϵ)/2,

|Ψk,ω(x)| ≤ 2e−(γ (z)−2ϵ)n
|Ψk,ω(ck,ω)| ≤ 2e−γ1|x−y|

|Ψk,ω(y)|

hen n is large enough. Thus summing up all such k, using Bessel’s inequality, we get∑
k:ck,ω=y

|Ψk,ω(x)|2 ≤ 4e−2γ1|x−y|
∑

k:ck,ω=y

|Ψk,ω(y)|2 ≤ 4e−2γ1|x−y|.

Together with part (1) of Definition 4, we can show (3.7):

E(
∑

k:ck,ω=y

|Ψk,ω(x)|2) ≤

∫
Ωy,n

∑
k:ck,ω=y

|Ψk,ω(x)|2dP(ω)

+

∫
(Ωy,n )c

∑
k:ck,ω=y

|Ψk,ω(x)|2dP(ω)

≤ 1 ∗ 4e−2γ1|x−y|
+ e−η|x−y|

∗ 1

≤ 5e−γ̃ |x−y|

(3.8)

EDL follows from Lemma 3.2.

4. Uniform LDT estimates and uniform Craig–Simon results

In this section, we introduce the uniform large-deviation-type estimates (uniform LDT) and
uniform Craig–Simon results which are preliminary results needed for the proof of Theorem 3.
We begin by connecting the Green’s function with determinants of box-restrictions, transfer
matrices and Lyapunov exponents.

4.1. Determinants with boundary conditions

Let

Pβ,γ

[a,b],ω,z := det(z − Eβ,γ

[a,b],ω) = det(Aβ,γ

[a,b]),

Pβ,γ

[a,b],ω,z := (ρa−1 · · · ρb)−1Pβ,γ

[a,b],ω,z .
(4.1)

If a > b, let Pβ,γ

[a,b],ω,z = 1. Note that although we have modified the boundary conditions in
Pβ,γ

[a,b],ω,z , we keep ρa−1 and ρb unchanged in the second formula above. Moreover, Pβ,·

[a,b],ω,z
nd P ·,γ are defined similarly.
[a,b],ω,z

9



X. Zhu Journal of Approximation Theory 298 (2024) 106008

o

w

4

p
a
b
f
i

L
e

By Cramer’s rule, we have⏐⏐⏐Gβ,γ

[a,b],ω,z(x, y)
⏐⏐⏐ =

|Pβ,·

[a,x−1],ω,zP
·,γ

[y+1,b],ω,z|

Pβ,γ

[a,b],ω,z

y−1∏
k=x

ρk

=

⏐⏐⏐Pβ,·

[a,x−1],ω,z P ·,γ

[y+1,b],ω,z

⏐⏐⏐⏐⏐⏐Pβ,γ

[a,b],ω,z

⏐⏐⏐ , a ≤ x ≤ y ≤ b

(4.2)

4.2. Transfer matrix and determinants

The transfer matrix T[a,b] is related to P[a,b] in the following way, proved by [26, Theorem
1], together with Remark 3:

T[a,b] =
1

ρa · · · ρb

[
zP[a+1,b],z P−1,·

[a,b],z − zP[a+1,b],z

z(P−1,·
[a,b],z − zP[a+1,b],z)∗ (P[a+1,b],z)∗

]
(4.3)

r

T[a,b] =

[
z P[a+1,b],z ρa−1 P−1,·

[a,b],z − z P[a+1,b],z

z(ρa−1 P−1,·
[a,b],z − z P[a+1,b],z)∗ (P[a+1,b],z)∗

]
(4.4)

here Q(z)∗ = zn Q(1/z̄) if Q(z) is a polynomial of degree n.

.3. Uniform large-deviation-type estimates

We now introduce the uniform large-deviation-type estimates, a crucial component of the
roof of Theorem 3. These LDT type estimates for ∥T[a,b],ω,z∥ were proved in [17]. Here we use
matrix-entry version from [25, Theorem 5]. The result was proved for SL(2,R)-cocycle. Here
y conjugation, we rewrite it for our SU (1, 1)-cocycle T[a,b],ω,z . So under the same assumption
or positivity and continuity of Lyapunov exponent, which, in particular, holds for any compact
nterval I ⊂ ∂D, we have the following lemma:

emma 4.1 (“uniform-LDT”). Given a compact interval I ⊂ ∂D \ D. For any ϵ > 0, there
xists η = η(ϵ, I), N = N (ϵ, I) > 0, such that

P
{
ω :

⏐⏐⏐⏐ 1
b − a + 1

log |⟨T[a,b],ω,zu, v⟩| − γ (z)
⏐⏐⏐⏐ ≥ ϵ

}
≤ e−η(b−a+1) (4.5)

for any b − a > N, for any unit vector u, v and any z ∈ I.

Thus for our model, we have

Lemma 4.2. Given a compact interval I ⊂ ∂D \ D. For any ϵ > 0, there is an η̃ =

η̃(ϵ, I), Ñ1 = Ñ1(ϵ, I) > 0 s.t.

P
{
ω :

⏐⏐⏐⏐ 1
b − a + 1

log |P−1,·
[a,b],ω,z| − γ (z)

⏐⏐⏐⏐ ≥ ϵ

}
≤ e−η(b−a+1) (4.6)

P
{
ω :

⏐⏐⏐⏐ 1
log |P ·,1

[a,b],ω,z| − γ (z)
⏐⏐⏐⏐ ≥ ϵ

}
≤ e−η(b−a+1) (4.7)
b − a + 1
10
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f

P
i

(

c

B

N

P
{
ω :

⏐⏐⏐⏐ 1
b − a + 1

log |P−1,1
[a,b],ω,z| − γ (z)

⏐⏐⏐⏐ ≥ ϵ

}
≤ e−η(b−a+1) (4.8)

or every b − a > Ñ0, and any z ∈ I.

roof. First recall that αk is supported on a compact subset of D, ρk =

√
1 − |αk |

2. Thus there
s δ > 0 s.t.{

|αk | ≤ 1 − δ < 1,

0 < δ ≤ |ρk | ≤ 1 − δ < 1.
(4.9)

4.6), (4.7) and (4.8) above each require separate considerations.
To prove (4.6), let u = (1, 1)T , v = (1, 0)T in Lemma 4.1. By (4.4), the z P[a+1,b],z term

ancels and we get

P
{
ω :

⏐⏐⏐⏐ 1
b − a + 1

log |ρa−1 P−1,·
[a,b],ω,z| − γ (z)

⏐⏐⏐⏐ ≥ ϵ

}
≤ e−η(b−a+1).

y (4.9), ρa−1 can be absorbed by large enough b − a + 1 and a modified ϵ.
As for (4.7), the inequality follows from (4.6) by setting α̃ j = −αa+b−1− j for a−1 ≤ j ≤ b

and observing that P ·,1
[a,b],z (̃α j ) = P−1,·

[a,b],z(α j ).
Lastly, to prove (4.8), we invoke (B.5) with β = −1, γ = 1, i.e.

P−1,1
[a,b] (z) =

1
ρb

⟨(
z
1

)
, T[a,b−1](z)

(
1
1

)⟩
.

otice that |z| = 1. Thus we can apply Lemma 4.2 when u =
1

√
2
(1, 1)T , vz =

1
√

2
(z, 1)T to

get (4.8). □

4.4. “Bad sets” and singularity

To simplify the notation, we introduce “bad sets” and use them to characterize “singularity”
in Definition 4. Denote

Bβ,γ ,+

[a,b],ϵ =

{
(ω, z) ∈ I × Ω : |Pβ,γ

[a,b],ω,z| ≥ e(γ (z)+ϵ)(b−a+1)
}

Bβ,γ ,−

[a,b],ϵ, =

{
(ω, z) ∈ I × Ω : |Pβ,γ

[a,b],ω,z| ≤ e(γ (z)−ϵ)(b−a+1)
} (4.10)

Let Bβ,γ ,±

[a,b],ϵ,z and Bβ,γ ,±

[a,b],ϵ,ω be the z and ω sections of Bβ,γ ,±

[a,b],ϵ . Let Bβ,γ

[a,b],ϵ,∗ = Bβ,γ,+

[a,b],ϵ,∗∪Bβ,γ,−

[a,b],ϵ,∗.
All of these sets have corresponding definitions for the single-sided boundary case. Thus, (4.6),
(4.7), (4.8) can be rewritten as

P(B∗

[a,b],ϵ,z) ≤ e−η(b−a+1) (4.11)

where ∗ can be any of the three kinds of boundary conditions β, γ or β, ·, or ·, γ .
We can characterize singular points using the bad sets:

Lemma 4.3. For any ϵ < ν/2, for n ≥ 2, if x is (γ (z) − 2ϵ, n, ω, z)-singular, then

(ω, z) ∈ Bβ,γ,−

[x−n,x+n],ϵ ∪ Bβ,·,+

[x−n,x−1],ϵ ∪ B ·,γ,+

[x+1,x+n],ϵ

Proof. The result follows immediately from the definition of singularity and (4.2). □
11
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4.5. Uniform Craig–Simon results

We will also use a uniform version of Craig–Simon’s results. The Craig–Simon estimates [6]
re a general subharmonicity upper bound estimate. It is extended in [14, Theorem 5.1] to the
niform version. See [14, Section 5] for more details.

emma 4.4 (Uniform Craig–Simon). Let Eω satisfy uniform-LDT condition in Lemma 4.1.
Then for any ϵ, there is η̃ = η̃(ϵ), Ñ2 = Ñ2(ϵ) > 0 s.t. for any x ∈ Z, n > N1, there is Ω̃x,n

.t.

(1) P(Ω̃x,n) ≥ 1 − ne−η(n+1),
(2) for any ω ∈ Ω̃x,n , we have for every z ∈ I.

max{|Pβ,·

[x+1,x+n],z|, |P
·,γ

[x−n,x−1],z|} ≤ e(γ (z)+ϵ)(n+1), i.e.

(ω, z) /∈ Bβ,·,+

[x+1,x+n],ϵ ∪ B ·,γ,+

[x−n,x−1],ϵ . (4.12)

roof. The deterministic result is a direct reformulation of [14, Theorem 5.1], while the
robabilistic results can be extracted from the last line on Page 9 in [14]. □

emark 4. We mention in particular that η̃ in Lemmas 4.2 and 4.4 for the same ϵ are the
ame. In fact, the η̃ in Lemma 4.4 comes from applying 4.2. (See [14]).

. Proof of Theorem 3

We will prove Theorem 3 in this section. Heuristically, Theorem 3 says, with high
robability, one of two points will be regular if they are far enough from each other. The
dea is that with high probability, if x is a (γ (z) − 2ϵ, n, ω, z)-singular point, then z will be
xponentially close to σ (E[x−n,x+n],ω). We will denote this set by Ω (1)

x,n . So, if we have two
ar away singular points x , y, then σ (E[x−n,x+n],ω) and σ (E[x−n,x+n],ω) are also exponentially
lose to the same z. However, we can also show that with high probability σ (E[x−n,x+n],ω) and
(E[x−n,x+n],ω) cannot be exponentially close. We will denote this set by Ω (2)

x,n . Then Ω (1)
x,n ∩Ω (2)

x,n
ill be the set of high probability where one of these two points must be regular.
For convenience, we will omit ω, z from the subscript of T[a,b],ω,z , P∗

[a,b],ω,z , G∗

[a,b],ω,z and
A[a,b],ω,z in this section unless it is necessary.

.1. The first set Ω (1)
x,n

As we mentioned above, we choose Ω (1)
x,n s.t. singularity implies exponential closeness to

he spectrum:

emma 5.1. For any 0 < ϵ < ν, there are η1 = η1(ϵ), N1 = N1(ϵ1) s.t. for any n > N1,
x ∈ Z, 0 < δ < η1, there is Ω (1)

x,n = Ω (1)
x,n(δ), s.t.

(1) P(Ω (1)
x,n) ≥ 1 − m(I)e−(η1−δ)(2n+1)

− ne−η1(2n+1),
(2) For ω ∈ Ω (1)

x,n , if x is (γ (z) − 2ϵ, n, ω, z)-singular, then
−δ(2n+1)
dist(z, σ (E[x−n,x+n],ω)) ≤ e .

12
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Proof. Fix any 0 < ϵ < ν/2. Let η̃(ϵ), Ñ1(ϵ) be as in Lemma 4.2. Let Ñ2(ϵ), Ω̃x,n be as in
emma 4.4. Then let η := η̃, N := max{N1, N2}, and

Ω (1)
x,n :=

{
ω : m(Bβ,γ ,−

[x−n,x+n],ω) ≤ e−δ1(2n+1)
}

∩ Ω̃x,n. (5.1)

y Chebyshev’s Inequality and Fubini’s Theorem, we obtain part (1):

P
(
(Ω (1)

x,n)c)
≤ m × P

{
(ω, z) : (ω, z) ∈ Bβ,γ ,−

[x−n,x+n], z ∈ I
}

+ P(Ω̃x,n)

≤ m(I)e−(η1−δ)(2n+1)
+ ne−η1(2n+1).

ow for part (2), take any ω ∈ Ω (1)
x,n , and any (γ (z) − 2ϵ, n, ω, z)-singular point x . By

emma 4.3,

(ω, z) ∈ Bβ,γ,−

[x−n,x+n],ϵ ∪ Bβ,·,+

[x−n,x−1],ϵ ∪ B ·,γ,+

[x+1,x+n],ϵ,

owever, since ω ∈ Ω̃x,n , by Lemma 4.4,

(ω, z) /∈ Bβ,·,+

[x−n,x−1],ϵ ∪ B ·,γ,+

[x+1,x+n],ϵ .

e see that (ω, z) ∈ Bβ,γ,−

[x−n,x+n],ϵ . Thus

z ∈ Bβ,γ,−

[x−n,x+n],ϵ,ω with m(Bβ,γ,−

[x−n,x+n],ϵ,ω) ≤ e−δ(2n+1),

here the latter is due to (5.1). Notice further that

Bβ,γ,−

[x−n,x+n],ϵ,ω = {z : |Pβ,γ

[x−n,x+n],ω,z| ≤ e(γ (z)−ϵ)(2n+1)
}

here for each ω, |Pβ,γ

[x−n,x+n],ω,z| is a polynomial in z with roots σ (Eβ,γ

[x−n,x+n],ω). Thus
Bβ,γ,−

[x−n,x+n],ϵ,ω is a finite union of intervals, each centered around points of σ (Eβ,γ

[x−n,x+n],ω), of
verall length less than e−δ(2n+1). Thus,

dist(z, σ (Eβ,γ

[x−n,x+n],ω)) ≤ e−δ(2n+1). □

.2. The second set Ω (2)
x,n

As mentioned above, the aim of choosing Ω (2)
x,n is to make sure σ (Eβ,γ

[x−n,x+n],ω) and
(Eβ,γ

[x+n+1,x+3n+1],ω) are not exponentially close for ω ∈ Ω (2)
x,n .

emma 5.2. For any δ > 0, there is η2(δ), N2(δ) s.t. for any n > N2, x ∈ Z, there is Ω (2)
x,n ,

.t.

(1) P(Ω (2)
x,n) ≥ 1 − 2(2n + 2)3e−η2(2n+1),

(2) If ω ∈ Ω (2)
x,n , then

dist
(
σ (Eβ,γ

[x−n,x+n],ω), σ (Eβ,γ

[x+n+1,x+3n+1],ω)
)

≥ 2e−δ(2n+1)

roof. Since each entry in E is bounded, there is M s.t.

b−a+1

|P[a,b],z| ≤ M , ∀a ≤ b ∈ Z, ∀z ∈ I.

13
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Choose ϵ′ < δ/2. Apply Lemma 4.2 to get η̃(ϵ′), Ñ1(ϵ′). Choose K ≥
2 log M
δ−2ϵ′ . Let η2 :=

η̃

2K ,
Ñ2 := K Ñ1 and

(Ω (2)
x,n)c

:=

⋃
zi ∈Z (ω)

(y1,y2)∈Y

(
Bβ,·

[x−n,x+y1−1],ϵ′,zi
∪ B ·,γ

[x+y2+1,x+n],ϵ′,zi

)
∪ Bβ,γ

[x−n,x+n],ϵ′,zi

where

Y = {(y1, y2) : x − n ≤ y1 ≤ y2 ≤ x + n, |y1 − (−n)|, |n − y2| ≥
n
K

},

Z = Z (ω) = Z (ω[x+n+1,x+3n+1]) = σ (E[x+n+1,x+3n+1],ω).

e remark here that while zi (ω) and Z (ω) depend on ω, they actually only depend on
[x+n+1,x+3n+1] which is independent from Ω[x−n,x+n]. Thus zi = zi (ω) = zi (ω[x+n+1,x+3n+1])

n Bβ,γ

[x−n,x+n],zi
operates like any other fixed z that does not depend on ω. A rigorous argument

s as follows:
For any fixed ωc, . . . , ωd , with [c, d] ∩ [a, b] = ∅, assume d − c, b − a ≥ Ñ1. By

ndependence,

P[c,d]c (B∗

[a,b],ϵ′,zi,(ωc ,...,ωd )
) = P[a,b](B∗

[a,b],ϵ′,zi,(ωc ,...,ωd )
) ≤ e−η2(b−a+1)

here ∗ represents corresponding boundary conditions, zi,(ωc,...,ωd ) ∈ σ (E[c,d]). Applying to
a, b] = [x −n, x + y1 −1] or [x + y2 +1, x +n] or [x −n, x +n], [c, d] = [x +n+1, x +3n+1]
nd integrating over ωa, . . . , ωb, we obtain for n ≥ Ñ2,

P(Bβ,·

[x−n,x+y1−1],ϵ′,zi
∪ B ·,γ

[x+y2+1,x+n],ϵ′,zi
) ≤ 2e−η2( n

K +1),

P(Bβ,γ

[x−n,x+n],ϵ′,zi
) ≤ e−η2(2n+1).

Thus we obtain part (1):

P(Ω (2)
x,n) ≥ 1 − (2n + 1)((2n + 1)2

+ 1)2e−η2
n
K ≥ 1 − 2(2n + 2)3e−η2

n
K

We prove part (2) by contradiction. Let ω ∈ Ω (2)
x,n , assume that there is zi ∈ σ

E[x+n+1,x+3n+1]), z j ∈ σ (E[x−n,x+n]) s.t.

|zi − z j | ≤ 2e−δ(2n+1).

hen

∥Gβ,γ

[x−n,x+n],ω,zi
∥ ≥

1
2

eδ(2n+1).

hus there are x − n ≤ y1 ≤ y2 ≤ x + n s.t.
|P[x−n,x+y1−1],ω,zi P[x+y2+1,x+n],ω,zi |

|P[x−n,x+n],ω,zi |
= |Gβ,γ

[x−n,x+n],ω,zi
(y1, y2)| ≥

1
2n

eδ(2n+1).

here are three cases, and we claim that each leads to a contradiction.

(1) If |y1 − (−n)| ≥
n
K , |n − y2| ≥

n
K , since

ω /∈ Bβ,·

[x−n,x+y1−1],ϵ′,zi
∪ B ·,γ

[x+y2+1,x+n],ϵ′,zi
∪ Bβ,γ

[x−n,x+n],ϵ′,zi
,

if K > 1, we have
1

eδ(2n+1)
≤ e(γ (zi )+ϵ′) 2n

K −(γ (zi )−ϵ′)(2n+1)
≤ e(2n+1)(2ϵ′).
2n
14
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But δ > 2ϵ′. Thus when n is large enough, say, n > Ñ3, there will be a contradiction.
(2) If one of |y1 − (−n)| and |n − y2| ≥

n
K , then if K > 1, we have

1
2n

eδ(2n+1)
≤ M

n
K en (γ (zi )+ϵ′)

K −(γ (zi )−ϵ′)(2n+1)
≤ e(2n+1)( log M

2K +2ϵ′)

By our choice of K ≥
2 log M
δ−2ϵ′ , we have δ >

log M
2K + 2ϵ′. Thus again, when n is large

enough, say, n > Ñ4, we arrive at a contradiction.
(3) If both |y1 − (−n)| ≤

n
K , |n − y2| ≤

n
K , then

1
2n

eδ(2n+1)
≤ M

2n
K e−(γ (zi )−ϵ′)(2n+1)

≤ e(2n+1)( log M
2K +ϵ′)

By our choice of K , we have δ >
log M

2K + ϵ′. Thus when n is large enough, say, n > Ñ5,
again we arrive at a contradiction.

ake N2 = max{Ñ1, Ñ2, Ñ3, Ñ4, Ñ5}. Then for any n > N2, we have a contradiction for all
hree cases, and hence

dist
(
σ (Eβ,γ

[x−n,x+n],ω), σ (Eβ,γ

[x+n+1,x+3n+1],ω)
)

≥ 2e−δ(2n+1) □

We now prove Theorem 3:

roof of Theorem 3. By Lemma 5.1, for any ϵ > 0, we can find η1(ϵ), N1(ϵ) and δ = η1/2,
.t. (1) and (2) of Lemma 5.1 hold. For such δ, apply Lemma 5.2 to find η2, N2 and Ω (2)

x,n for
ny x ∈ Z, n > N2. Now let η := min{η1, η2/2}, N := max{N1, N2}. Set

Ωx,n := Ω (1)
x,n ∩ Ω (1)

x+2n+1,n ∩ Ω (2)
x,n.

hen we obtain part (1):

P(Ωx,n) ≥ 1 − 2m(I)e−η1(2n+1)/2
− 2ne−η1(2n+1)

− 2(2n + 2)3e−η2(2n+1)

≥ 1 − Ce−η(2n+1).

s for part (2), let ω ∈ Ωx,n . Assume both x and x + 2n + 1 are (γ (zi ) − 2ϵ, n, ω, z)-singular.
hen by Lemma 5.1, we have

dist(z, σ (E[x−n,x+n],ω)) ≤ e−δ(2n+1),

dist(z, σ (E[x+n+1,x+3x+1],ω)) ≤ e−δ(2n+1).

hus

dist
(
σ (Eβ,γ

[x−n,x+n],ω), σ (Eβ,γ

[x+n+1,x+3n+1],ω)
)

≤ 2e−δ(2n+1).

owever, Lemma 5.2 guarantees that if ω ∈ Ωx,n , then

dist
(
σ (Eβ,γ

[x−n,x+n],ω), σ (Eβ,γ

[x+n+1,x+3n+1],ω)
)

> 2e−δ(2n+1).

hich is a contradiction. Thus at least one of the two points x or x+2n+1 must be regular. □
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ppendix A

emma A.1. The matrix Sz = (z(L)∗−M) is tridiagonal. We omit z and denote the (i, j)-entry
y Ai, j for convenience, when a ≤ i, j ≤ b. Then we have

A j, j =

{
zα j + α j−1, j even,

−zα j−1 − α j , j odd
, A j+1, j = A j, j+1 =

{
zρ j , j even,

−ρ j , j odd.

emark 5. If we modify the extended CMV matrix at a − 1 and b by β and γ , then the
orresponding matrix Aβ,γ

[a,b],z is the restriction of Sz on [a, b] but with αa−1 = β and αb = γ .
ix an interval [a, b]. We denote Sβ,γ

z by the infinite matrix Sz with αa−1 = β and αb = γ .

emma A.2. Let Ψ solve EΨ = zΨ , then for a < n < b,

Ψ (n) = − Gβ,γ

[a,b],z(n, a)

{
Ψ (a)(zβ̄ − zᾱa−1) + Ψ (a − 1)zρa−1, a odd
Ψ (a)(αa−1 − β) − Ψ (a − 1)ρa−1, a even

− Gβ,γ

[a,b],z(n, b)

{
Ψ (b)(−ᾱb + γ̄ ) − Ψ (b + 1)ρb, b odd,

Ψ (b)(zαb − zγ ) + Ψ (b + 1)zρb, b even

roof.
P[a,b]SzΨ = 0

⇒P[a,b]Sβ,γ
z Ψ + P[a,b](A − Aβ,γ )Ψ = 0

⇒P[a,b]Sβ,γ
z (P[a,b]Ψ + P[a,b]cΨ ) + P[a,b](Sz − Sβ,γ

z )Ψ = 0

⇒Aβ,γ

[a,b],zΨ = −P[a,b](Sz − Sβ,γ
z )Ψ − P[a,b]Sβ,γ

z P[a,b]cΨ =: I + I I

hen

I I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

Aβ,γ

a,a−1 Aβ,γ
a,a Aβ,γ

a,a+1 0 · · ·

. . .
. . .

. . .

· · · 0 Aβ,γ

b,b−1 Aβ,γ

b,b Aβ,γ

b,b+1
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ (a − 1)
0

...

0
Ψ (b + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

...

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

row a − 1
row a

...

row b

row b + 1

,
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w

w

T

A

1
c
g

B

where we use Remark 5 and Lemma A.1 to get Aβ,γ

a,a−1 = Aβ,γ

b,b+1 = 0. While

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

A−

a,a−1 A−
a,a A−

a,a+1 0 · · ·

. . .
. . .

. . .

· · · 0 A−

b,b−1 A−

b,b A−

b,b+1
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ (a − 1)
Ψ (a)

...

Ψ (b)
Ψ (b + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Ψ (a − 1)A−

a,a−1 + Ψ (a)A−
a,a

· · ·

Ψ (b)A−

b,b + Ψ (b + 1)A−

b,b+1

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
here A−

x,y = Ax,y − Aβ,γ
x,y . Now

Ψ (n) = − Gβ,γ

[a,b],z(n, b)
(
Ψ (b)A−

b,b + Ψ (b + 1)A−

b,b+1

)
− Gβ,γ

[a,b],z

(
Ψ (a − 1)A−

a,a−1 + Ψ (a)A−

a,a

)
here A−

x,y is derived from Lemma A.1 and Remark 5

A−

a,a−1 =

{
zρa−1, a odd,

−ρa−1, a even.
A−

a,a =

{
−zᾱa−1 + zβ̄, a odd,

αa−1 − β, a even.

A−

b,b+1 =

{
−ρb, b odd,

zρb, b even.
A−

b,b =

{
−ᾱb + γ̄ , b odd,

zαb − zγ, b even.
.

hat proves the result. □

ppendix B. Corrections

As mentioned in the introduction, we provide corrections for some of the issues from [2,
6,21,22]. We first provide the correct results in their notations and then, for the reader’s
onvenience, we rewrite them in our notation when there is a correspondence. Finally, we
ive either a short proof or a reference for those citations in [16] which are invalid now.

.1. Corrections for [16]

(1) Formula (3.6) in Lemma 3.3 should be C = E [0,∞)
−1,· . Or in our notation, C = E−1,·

[0,+∞]. It
follows from the definition, see Remark 3.

(2) Formula (3.14) in Lemma 3.6 should be Φn(z) = Φ[0,n−1]
−1,· (z). Or in our notation,

−1,·
Φn(z) = P[0,n−1](z). See [22, Theorem 5.3] for a proof.

17
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T
w
i

w
−

w

(3) Formula (3.16) and (3.17) in Lemma 3.7 should be

Φβ
n (z) = Φ[0,n−1]

−β̄,·
(z) and Φβ

n (z; γ ) = Φ[0,n−1]
−β̄,γ

(z) (B.1)

where Φ
β
n (z; γ ) means first replacing αn−1 by γ , then multiplying every αk, 0 ≤ k <

n − 1 and γ by β (instead of the reversed order). In our notation there is no direct
correspondence, but if we denote Xβ,γ

[a,b](ζ ) to be Xβ,γ

[a,b] with coefficients αa, . . . , αb−1, γ

being multiplied by ζ , where X can be C, E,P, . . ., then

P−1,·
[0,n−1](β) = P−β̄,·

[0,n−1] and P−1,γ

[0,n−1](β) = P−β̄,γ

[0,n−1].

See [21, Theorem 4.2.9] for a proof. See also [22, Theorem 5.6] for a more clear
restatement but with a typo. Here we provide a correct version of it using the notation
there (Notice that their M is half-line while our M is a full-line matrix):

heorem (Theorem 5.6 corrected). Let λ ∈ ∂D, αn ∈ DN. Let D be a half-line diagonal matrix
ith elements 1, λ−1, 1, λ−1, . . .. Let Mλ differs from M by having λ at the (0, 0)-position

nstead of 1, then

DC({λαn})D−1
= L({αn})Mλ̄({αn}),

here C(λαn) represents the CMV matrices with Verblunsky coefficient {λαn}n∈N (Notice α−1 =

1 is defaulted for half-line CMV matrix).

As a corollary,

Φβ
n (z) = det(C({βαn})) = det

(
L({αn})Mβ̄({αn})

)
= Φ

−β̄,·

[0,n−1](z)

here the last equality follows from the observation that Mβ̄({αn}) means α−1 = −β̄. This
proves (B.1).

(4) Formula (3.18) in Prop. 3.8 should be

|G[a,b]
β,γ (z; k, l)| =

1
ρl

⏐⏐⏐⏐⏐ϕ
[a,k−1]
β,· (z)ϕ[l+1,b]

·,γ (z)

ϕ
[a,b]
β,γ (z)

⏐⏐⏐⏐⏐ .
In our notation, the equality is given in (4.2). Notice that we have no extra parameters
1
ρl

because our definition of Pβ,γ

[a,b],ω,z =
1

ρa−1
ϕ

[a,b]
β,γ (z). This result follows by direct

computation using Cramer’s rule.
(5) Formula (3.22) in Lemma 3.10 should be

T[a,b](z) =
1
2

(
ϕ

[a,b]
−1,· (z) + ϕ

[a,b]
1,· (z) ϕ

[a,b]
−1,· (z) − ϕ

[a,b]
1,· (z)

(ϕ[a,b]
−1,· )∗(z) − (ϕ[a,b]

1,· )∗(z) (ϕ[a,b]
−1,· )∗(z) + (ϕ[a,b]

1,· )∗(z)

)
.

This transfer matrix is the same as ours but we did not use this formula in this paper.
For a proof of the correct form, see [21, (3.2.17), (3.2.27)].

(6) Formula (3.23), (3.24) in Cor. 3.11 should be(
ϕ

[a,b]
β,· (z)

−β(ϕ[a,b]
β,· )∗(z)

)
= T[a,b](z)

(
1

−β

)
(B.2)

and

ϕ
[a,b]
β,γ (z) =

1
⟨(

z
)

, T[a,b−1](z)
(

1
)⟩

. (B.3)

ρb γ̄ −β

18
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(

i

I

B

Proof. (B.2) follows from [21, (3.2.26)], which has a typo and the correct form should be(
ϕλ

n+1

λ̄(ϕλ
n+1)∗

)
= Tn(z)

(
1
λ̄

)
. (B.4)

B.4) together with (B.1) gives us (B.2). For the second equality, first notice that

Φ[a,b]
β,γ = Φ−β̄

n (z; γ ) = zΦ[a,b−1]
β,· + βγ̄ (Φ[a,b−1]

β,· )∗

where we used (B.1) and Szego’s recurrence relation Prop. 1. Notice that the nth Verblunsky
coefficient of Φ−β̄

n (z; γ ) is −β̄γ instead of γ by (3) above. Thus

ϕ
[a,b]
β,γ =

1
ρb

(zϕ[a,b−1]
β,· + βγ̄ (ϕ[a,b−1]

β,· )∗)

mplies (B.3). □

n our notation,

Pβ,γ

[a,b](z) =
1
ρb

⟨(
z
γ̄

)
, T[a,b−1](z)

(
1

−β

)⟩
. (B.5)

.2. Corrections for [2]

(1) Equation (7.4) (in 2017 arxiv version) should be

φ
β,γ

ω,[a,b](z) =
1
ρb

⟨(
z
γ̄

)
, Sz

b−a(T aω)
(

1
−β

)⟩
.

We believe this can be used then to derive (4.8) by [25, Theorem 5]. Then one could
complete the proof of double elimination in [2].

(2) The second to the last equation of Page 39 (in 2017 arxiv version) should be

|Gτ1,τ2
ω,Λ ( j, k; z)| =

⏐⏐⏐⏐⏐φ
τ1,·

ω,[a, j−1](z)φ·,τ2
ω,[k+1,b](z)

ρ
τ1,τ2
ω,[a,b](z)

⏐⏐⏐⏐⏐
k−1∏
i= j

ρi .
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