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Abstract

We prove Anderson localization (AL) and dynamical localization in expectation (EDL, also known as
strong dynamical localization) for random CMV matrices for arbitrary distribution of i.i.d. Verblunsky
coefficients.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to establish Anderson localization and dynamical localization in
expectation (AL and EDL, see Definitions | and 2 respectively) for random CMV matrices
with arbitrary distribution.

CMV matrices were introduced by Cantero, L. Moral, L. Velazquez [3] in 2003 and play an
important role in the study of orthogonal polynomials on the unit circle (OPUC). See [11,22,23]
for a concise and elegant report of the main results and [21] for a detailed monograph on this
subject.

The study of random CMV matrices was motivated by Anderson model for Schrodinger
operators. When the distribution is absolutely continuous, Anderson localization for random
CMV matrices has been proved in [10,24], [21, Sec. 12.6] using the spectral averaging method,
but these techniques cannot be applied in the singular (for instance, Bernoulli) case. For
Anderson model, the first proof that can handle arbitrary randomness was given in [4], based
on the multi-scale analysis. In 2019, [14] provided a short proof of Anderson localization and
dynamical localization (for the one-dimensional Anderson model with arbitrary distribution)

E-mail address: xiaowenz@uw.edu.

https://doi.org/10.1016/j.jat.2023.106008
0021-9045/© 2023 Elsevier Inc. All rights reserved.


http://www.elsevier.com/locate/jat
https://doi.org/10.1016/j.jat.2023.106008
http://www.elsevier.com/locate/jat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jat.2023.106008&domain=pdf
mailto:xiaowenz@uw.edu
https://doi.org/10.1016/j.jat.2023.106008

X. Zhu Journal of Approximation Theory 298 (2024) 106008

using positive Lyapunov exponents together with uniform large deviation type (LDT) estimates
and uniform Craig—Simon results. In 2020, dynamical localization in expectation was proved
in [9] following this method. In this paper, we exploit the techniques in [9,14] to prove
Anderson localization and strong dynamical localization for random CMV matrices with
arbitrary distribution. In particular, our results apply in the singular case. The main novelties of
the proof are the large-deviation estimates of determinants with modified boundary conditions
(Lemma 4.2) and a streamlined approach to the localization proof in comparison with [9,14], so
that EDL follows directly from our key observation (Theorem 3). It is also worth mentioning
that the singular potential random CMV model was also studied in [2] in 2019 as a close
relative of the Anderson model, for which a new proof of localization was also given in [2]. The
CMYV proof in [2] relies on certain results in [16]. However those contain a significant number
of misprints and minor errors (some of those stemming from small misprints in [21,22]).
Article [2] inherits those errors, we discuss them in Appendix B.

As we were completing this paper we learned of [18] where a short proof of Anderson
localization for a large class of quasi-one-dimensional operators with singular potentials is
presented. It however does not seem to be applicable to CMV matrices.

Finally, our paper when taken in conjunction with [9,14,19,20], and [18], illustrates the flex-
ibility of this general scheme for proving localization in random one-dimensional frameworks.
Indeed, these techniques provide the most direct route to localization in addition to providing
proofs of the strongest known localization results for such models (EDL).

The remainder of the paper is organized as follows:

e In Section 2, we present the model and the main results (AL and EDL).

e In Section 3, we present a key theorem on regularity of Green functions from which AL
and EDL are derived.

e In Section 4, we present uniform large deviation theorem (Lemma 4.2) and uniform
Craig—Simon estimates (Lemma 4.4).

e In Section 5, we first provide an outline of the proof and prove our key Theorem 3.

e Finally, Appendix A provides technical details needed for Section 3.3 and Appendix B
corrects the errors in the formulas found in [2,16,21,22]. It is our hope that these
corrections provide clarification for other readers working on CMV matrices.

2. Model and main results

2.1. OPUC

Let n be a probability measure which is supported on an infinite subset of dD where D is
the open unit disk in C. Let $,(z) be the monic polynomial of degree n s.t.

(@0 (2). $:(2)) = / (BN = 8y, Ym.m € N, @.1)
oD
The &,(z)’s are called the orthogonal polynomials on the unit circle (OPUC) w.r.t. n. Let
on(z) = % where || - || is the L*(3D; dn) norm.

It is clear that given 1, we can compute 9, (z) and ¢, (z) inductively from Py(z) = ¢o(z) = 1.
Moreover, there is a recurrence relation for ¢,(z) which we state here without proof (see [21,

Theorem 1.5.2]):
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Proposition 1 (Szegd’s Recurrence). Given n, there is a sequence of a, € D s.t.

Py11(2) = 2Pu(z) — @0, ,(2)

Dr (1) = D,(2) — 2, 29,(2),
where Q(z)* = z"Q(1/Z) for polynomials Q(z) of degree n. The terms {an )2, are called
Verblunsky coefficients. Furthermore, let p, = (1 — |o,|*)'/?. We have

n—1

12,17 = 18,12 = 21l 1> = [ ] 7.
k=0

Thus, for the normalized ¢,, we have

<¢n+l> — i < Z _an> <¢n>
;lkJrl Pn \ %2 1 ¢;lk ’

By Szegd’s recurrence, each 1 corresponds to a sequence of {e,}°°, € DM. It turns out that
this correspondence is bijective (e.g. [21, Theorem 1.7.11]).

Proposition 2 (Verblunsky’s Theorem). There is a bijection between nontrivial (supported on
an infinite set) probability measures n on 0D and {a,}2, € DN,

2.2. CMV matrices

CMV matrices are matrix representations of multiplication-by-z operators on L>(dDD; dn)
w.r.t. a basis obtained from orthonormalizing the set {1, z, 772,772, ) Tis important to
understand the relation between 7 and «,, especially under perturbations. On the one hand,
the definition implies that n is a spectral measure of the CMV matrix. On the other hand, the
CMYV matrices can be expressed by the Verblunsky coefficients o, and p, = (1 — |o, |2)% >0
(See [21, Sec 4.3] for more details):

oy o[Po £100
Lo —diap —pP1

P —hop 03P P3P2
C = 02pP1  —p20  —U3Ay  —O3002 (2.2)
0403 —oq03 0504 P54
P43 —pP403  —Us5Q4  —P504

We will study a two-sided version of the above matrix. The two-sided version depicted
below is called an extended CMV matrix.

wpp-1 —OpU_1  ALPg P10
PoP—1  —Pod—1 —U1y —P100

= 0201 —00] 063_,02 P302 (2.3)
P21 —pP20]  —030p  —030
4Pz —0403 U504 D504
Pap3  —p4ds  —U504  —Ps504

The relationship between C and € is explained in Remark 3.

3
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2.3. Random CMYV matrices

As with the Anderson model, we are interested in the random extended CMV matrix &,
where o, = w, € D are i.i.d. random variables with common Borel probability distribution
supported on a compact subset S of D. We assume u is non-trivial in the sense that it contains
at least two points and as we introduced in the introduction, there are no regularity requirements
on s. Let the probability space be 2 = S%, with elements w = {w,},cz € 2. Denote u” by P.
Let Py, . be u™™% on (2, := SN2 Hence whenever we write [m, n] in this paper, we
mean [m, n]NZ. Also let T be the shift on {2, i.e. (Tw); = w;_;. Finally, we denote Lebesgue
measure on the unit circle by m.

By the classical ergodicity argument for random operators (e.g. [7, Chapter 9]), we see
that the spectrum of &, is almost surely deterministic, i.e. there is X~ C 9D s.t. for a.e. w,
0(&,) = X. Furthermore, the pure point spectrum, a.c. spectrum and s.c. spectrum are all a.s.
deterministic, i.e. 04(&,) = Xy, * € {p.p.,a.c.,s.c.}.

2.4. Main results

We can now introduce our main results.

Definition 1 (AL). We say &, exhibits Anderson localization (AL, also called spectral
localization) on an interval Z if for a.e. w, &, has only pure point spectrum in Z and its
eigenfunctions ¥, (n) decay exponentially in #.

Definition 2 (EDL). We say &, exhibits dynamical localization in expectation (EDL, also
known as strong dynamical localization SDL) on an interval Z if there is C, n > 0 s.t.

supIE (I(ax’ gé;XI(gw)SyH) < Ce_nlx_yl, Vx, y € 7.
teR

where x7 is the characteristic function of Z.

We will prove in this paper that

Theorem 1 (AL). There is a set D C 0D which contains at most three points such that, &,
exhibits AL on any compact interval T C 0D \ D.

Remark 1. The existence of this exceptional set is due to the failure of Fiirstenberg’s Theorem
(see Section 3.6).

Theorem 2 (EDL). There is a set D C 8D which contains at most three points s.t. £, exhibits
EDL on any compact interval T C 0D \ D.

3. Theorem 3 implies AL and EDL

Below, we will formulate the key theorem, Theorem 3. We then prove AL (Theorem 1) and
EDL (Theorem 2) from it. To do so, we make some preparations in Sections 3.1-3.3, state
Theorem 3 in Section 3.4 and prove Theorems | and 2 in Section 3.7.

4
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3.1. Decomposition of CMV matrices

We start with a decomposition of a CMV matrix which helps us to deal with its more
1
complicated five-diagonal nature. Let «, € D, p, = (1 — |a,|*)2. Define the unitary matrix
acting on £2({n, n + 1}) by

(% P
6, = (pn _an>. (3.1)
Define
L= 6, M=p 6. (32)
n even n odd

Then one can check directly by computation that the extended CMV matrix satisfies
E=LM. (3.3)

By definition of 6,, a, and p,, it is easy to see that £ and M are unitary on ¢>(Z). Thus &
is also unitary. (More details can be found in [21, Theorem 4.2.5].)

Let Py @ €2(Z) — €*([la, b)) be the projection and Xiup = PlapX(Pap))* for X €
{€, L, M}. Then it is easily verified that

E[a’h] - E[a’h]M[ah] (34)
3.2. Modification of the boundary conditions

Notice that &), Lia.5) are not always unitary due to the fact that the “boundary terms”
o,—1 and o satisfy |a,—1| < 1 and |op| < 1. Thus we can instead manually create unitary
operators by modifying these boundary conditions. Let 8, y € 0ID. Define

o, nFEa—1,b
ay = ,3, n=a-—1
y, n=b
Denote the extended CMV matrix with Verblunsky coefficients &, by €. Then define
8[";:2] = P[a,b]gP[a,b]-

/3’51”’;71 and ./\/l’fa);]J are defined correspondingly. Now 5@’},’71, E’i,’?;,l and Mﬁ;z,] are all unitary.

Remark 2. Notice that this modification is only a formal modification of the boundary value
loa—1] < 1to |B] =1and |ap| < 1to |y]| = 1. So, all the formulas for &, ;; with o,—; and o
still hold for £5%, with 8 and y. For example, £5% = L7 ML follows from (3.4).

Remark 3. We will use E[’Z”‘b], 5[’?1’;17] to denote single-sided boundary condition modification.

By comparing (2.2) and (2.3), it is easy to see that C = 5[5’14'00].

3.3. Green’s functions, generalized eigenfunctions, Poisson formula

Now we can define the Green’s function. Usually it is defined to be Gap1.; = (Elaplo —
z)’l. However, since &, is five-diagonal, it is more complicated than a Jacobi matrix, and

5
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the restriction to [a, b] is not unitary. Thus we can modify the boundary and rewrite the
characterlstlc functlon (S[a p— ¥ = 0as (z(ﬁfu};])* M. b])w 0. Then Afu ’;]Z =
(z(ﬁ[a )= M) b]) is tri-diagonal (see Lemma A.1 in the appendix) and it is natural to define
the Green’s function to be

* -1
B. 1 B.
Gla: = (A )" = (Z (,C[af;]) - M b])

for |l =yl =1,z ¢ o(E%).

Exponential decay of the off-diagonal entries of the Green’s function turns out to be essential
in the study of localization phenomenons. It is closely related to the exponential decay of
(generalized) eigenfunctions through Poisson formula.

Definition 3 (Generalized Eigenvalues and Generalized Eigenfunctions). Fix w. We call z, a
generalized eigenvalue (g.e.) of &,, if there exists a nonzero, polynomially bounded function
¥, (n) such that £, ¥, = z, ¥,,. We call ¥,(n) a generalized eigenfunction (g.e.f.).

Lemma 3.1 (Poisson Formula). Let W be a g.ef. of € wrt. a ge. z, i.e. EW = zW. Let
|Bl = |y| = 1. Then for a < x < b,

W(a)(zP — 28,1) + ¥(a — 1)zpa_1, a odd,
Y(a)as—1—B)— ¥(@a—1)ps1, a even,

b { U(b)(—ap +7) — Wb+ Dpy, b odd,

U(x)=—GLl (x.a) {
3.5

B,
G[u);a] z
YD) zap —zy)+ Y(b + 1)zpp, b even.

We give a proof in Lemma A.2 in the appendix.

3.4. Schnol’s theorem, regularity

Recall that Schnol’s theorem (see [15, Theorem 7.1], or [7, Sec. 2.4]) says that the spectral
measures are supported on the set of g.e.’s. Thus, to show Anderson localization it is enough to
show that for a.e. w, for any g.e. z,, of &,, the corresponding g.e.f. ¥, decays exponentially,
because this would imply that each g.e. is indeed an eigenvalue, so &, has only pure point
spectrum.

Thus for a g.ef. ¥, which is polynomially bounded, if we can show the Green’s function
|G[nJrl sniilw(2n+ 1, n+ 1| and |G[nJrl 3nt1lw(2n + 1,30+ 1)| are exponentially small,
then | ¥,(2n + 1)| will decay exponentially due to the Poisson formula. This idea inspires us
to define regularity as follows:

Definition 4 (Regularity). Let 8, y € 0D. For fixed w, z ¢ 0(5
x €Z 1is (¢, n, w, z)-regular, if

), ¢ > 0,n € Z, we say

la,b],w/>

B,y —c
|G[,\ nx+n]u)z(x —I’l)| <e Ln,
B, _
|G[an x+n], wZ(X,X +}’l)| <e o,

Otherwise, we call it (c, n, w, z)-singular.
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3.5. Transfer matrix and Lyapunov exponents

Recall by Proposition 1,

<¢n+1(z)) _ 1 ( z —Oé_n> <¢n(z))
;+1(Z) Pn \ %2 1 @n(2)*

Denote

1z —a&
Sz(“)-p:(_az 1 >,

then S, () is the nth step transfer matrix. Let T, ) = S;(@p) - - - S; () be b — a step transfer
matrix, then

<¢b+1(z)) _7 <¢a(z))
$p41(2) P\ g2(2))
Note that %Sz(a) e SU(1, 1), where

SU(l,l):{(? y):u,ve@,|u|2—|v|2=1},
VU
and ,/zZ is taken to be the principle branch. Note also that

. 1 (i 1
SU(,1)= Q"' -SLQ2,R)- 0, Q=—§<l l.).

Thus, the definitions of Lyapunov exponents for SL(2, R)-cocycles and the corresponding
properties (positivity and continuity, large deviation and subharmonicity results, if under the
correct conjugation,) generalize to SU(1, 1)-cocycles. Moreover, || S ()| = ||\/LESZ(01)|| when
|z| = 1. Thus, for random CMV matrices where the «,,’s are i.i.d., the Lyapunov exponent y(z)
is well-defined:

1! 1
y(z) = lim —/ log || T0,n).0,: ldP(w) = lim —log | Tjo,n).0.zll, ae. w. (3.6)
n—oon Jo n—oo n

3.6. Positivity and continuity of Lyapunov exponent

We summarize positivity and continuity of Lyapunov exponent for random CMV matrices
that is needed for us below and provide the references for readers to explore further.

By Fiirstenberg Theorem, random Schédinger operators have positive Lyapunov exponent:
y(z) > 0 for any z € R. However, random CMV matrices may have an exceptional set D C oD
which contains at most three points s.t. y(E) > 0 on 0D\ D. In fact, depending on the support
of u, either D = JorD = {1,—1} or D = {1, 6y, By}, for some 6, € dD. The reason
is, roughly speaking, the positivity no longer holds when S.(¢;) and S (ct;) have a common
invariant measure. This would happen only if «;, «; and z satisfy certain algebraic conditions
which characterize the exceptional set. See [21, Theorem 12.6.3. and 10.4.18], [2, Sec. 7] for
more details.

Continuity of Lyapunov exponents on Z C 9D\ D can be proved using the general method
(e.g. [5, Sec.V.4.2], [1]) originally developed by Fiirstenberg and Kifer [8, Theorem B] for self-
adjoint random matrices, which by conjugation, extend to SU(1, 1) random matrices naturally.
We also refer to [2, Sec.2], [12, Sec. 7] for a review of the proof of continuity of Lyapunov
exponents.
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Positivity and continuity of Lyapunov exponent on 0D \ D implies that for each compact
interval Z C 0D\ D, v := v(Z) = inf,c7 y(2) > 0. We will include the statement above directly
in the next key observation.

3.7. Proof of AL and EDL

We can now formulate our key observation:

Theorem 3. There is a set D C 0D which contains at most three points such that for
any compact interval T C 0D \ D, the Lyapunov exponent is uniformly positive on Z,
i.e. v := inf,ez y(z2) > 0. Then, for any 0 < € < v/2, there is N = N(e),n = n(e) > 0
s.t. Yn > N, Vx € Z, there is a subset 2, C x—n.x+n) S-t.

(l) ]P)(\Qx,n) > 1 - e—n(2n+1).
(2) Yo € (2, either x or x +2n + 1 is (y(z) — 2¢, n, w, z)-regular for any z € I.

This Theorem will be proved in the next two sections. We first show Theorem 3 implies
Theorems 1 and 2 before proving Theorem 3.

Proof of Theorem 1 (AL). Find D, Z, v from Theorem 3. For any 0 < € < v/2, find N(e),
n(€), 2, from Theorem 3. For any x € Z, since Y_, P ((,,)°) < oo, by the Borel-Cantelli
Lemma, for a.e. w, eventually either x or x 4+ 2n + 1 is (y(z) — 2¢, n, w, z)-regular.

On the other hand, for a.e. w, take any g.e. z € Z. Let ¥, (m) be the corresponding g.e.f.
WLOG assume ¥, (x) # 0. Thus by Lemma A.2, we claim that for such x, w, z and ¥, x is
eventually (y(z) — 2¢, n, w, z)-singular. For if x is (y(z) — 2¢, n, o, z)-regular infinitely often,
then ¥,(x) = 0.

Since x is eventually (y(z) — 2¢,n, w, z)-singular, x + 2n + 1 is (y(z) — 2¢,n, w, 2)-
regular. Thus ¥, (x + 2n + 1) decays exponentially as n — oo. A similar argument applies to
VU,(x + 2n + 2). Therefore, for a.e. w, all of the g.e.f.’s ¥,(n) decay exponentially. [

Proof of Theorem 2 (EDL). By Theorem 1, for a.e. w, there is an orthonormal basis { ¥y .}
of eigenfunctions of &,. Denote the corresponding eigenvalues by z; .. Define the localization
center as the left-most cx, € Z s.t.

| ¥k o(Ck0)| = max | ¥y ,(n)|.
nez
We will employ the following lemma from [13] (but rewritten for unitary operator instead of

self-adjoint operator) which provides a sufficient condition for EDL: [

Lemma 3.2 ([/3]). If there are C >0, y >0, s.t. forany x,y € Z
E( Y Vo)) < Ce 7, 3.7)
ki w=y

Then there are C > 0, y > 0, s.t.

sup E(|(8y, £ x1(E)8y)) < C(lx — y| + De 71,

Xy C
teR

8
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Thus, we only need to show (3.7). To do so, we take any 0 < € < v/2. And we first observe
that for any w, ¢ 4, as a localization center, is always (y(z) — 2¢, n, o, z)-singular for those n
In2

with e~ 729" < 1 je. n > Ny := 122 Otherwise
y(2)—2€

|Wk,w(ck,a))| =< 23_(y_26)n| Wk,w(ck,w” < | Wk,w(ck,w”

gives a contradiction.

Secondly, by Theorem 3, there is some N, such that for any n > N,, for any y € 74, there
is {2, », such that (1) and (2) holds.

In particular, if n > max(N;, N,), for those k, w such that ¢, = y, by the first observation,
Cr.w 18 (¥(2) — 2€, n, w, 7)-singular; then by part (2) of Definition 4, x := y 4+ 2n 4 1 must be
(y(z) — 2¢, n, w, z)-regular. Then for any y; < (y(z) — 2¢€)/2,

|V w(0)] < 267 TO2N (e 0| < 267 o (9)]
when n is large enough. Thus summing up all such k, using Bessel’s inequality, we get

D @) < e N ()] < dem P,

kzck.a):y kick w=y

Together with part (1) of Definition 4, we can show (3.7):

E( Y 1P < /Q D W (0)PdP(w)

kick o=y VI kick =Yy
+ f Y TP dP@) (3.8)
Gyn) kg =y

< 1% de2r1lx—yl + e Ml 4 1
< 56*7;‘)‘*)4

EDL follows from Lemma 3.2.

4. Uniform LDT estimates and uniform Craig—Simon results

In this section, we introduce the uniform large-deviation-type estimates (uniform LDT) and
uniform Craig—Simon results which are preliminary results needed for the proof of Theorem 3.
We begin by connecting the Green’s function with determinants of box-restrictions, transfer
matrices and Lyapunov exponents.

4.1. Determinants with boundary conditions

Let
77'8’

la,

o = detz — ELT 1y = det(A])),

“.1)
B,y — —-1pBy
P[a.b],w,z = (Pa—1"""P») P[a,b],w,z‘

Ifa>b,let P[f[,Z],w,z = 1. Note that although we have modified the boundary conditions in

P[’fl’,};]yw’z, we keep p,—1 and p, unchanged in the second formula above. Moreover, P[i’.'b]’w’z

and P’ , . are defined similarly.
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By Cramer’s rule, we have

fPﬂs‘ 'P'»V | y—1
By _ | [a,x—1],0,z2" [y+1,b],0,2
Glabw. s y)‘ = P 1_[ Pk

[a,bl,w,z k=x

5. . “4.2)
‘P[a,x—l].w,zP[y+|,b],w,Z
= , a<x=<y=<b
‘PﬂvV
[a,bl,w,z

4.2. Transfer matrix and determinants

The transfer matrix T}, p is related to P, 5 in the following way, proved by [26, Theorem
1], together with Remark 3:

—1,-
Tiap = ; ZPla+1.61.2 P[a,b],z — ZPla+1.b].2 “43)
a,b] = _1. .
PaPo | Z(Pra .z = ZPlat161.2)" (Pras1.61.2)"
or
71’_
T[ b = ZP[a+|,b],Z Pa-1 P[a,b],z — ZP[a-‘rl,b],z (4 4)
a,b] = 1. .
Z(paflpla,b],z - ZP[a+l,b],z)* (P[aJrl’b]’z)*

where Q(2)* = 7"Q(1/z) if Q(z) is a polynomial of degree n.
4.3. Uniform large-deviation-type estimates

We now introduce the uniform large-deviation-type estimates, a crucial component of the
proof of Theorem 3. These LDT type estimates for || 77, 1,0 | were proved in [17]. Here we use
a matrix-entry version from [25, Theorem 5]. The result was proved for SL(2, R)-cocycle. Here
by conjugation, we rewrite it for our SU(1, 1)-cocycle T4 p).0.;- So under the same assumption
for positivity and continuity of Lyapunov exponent, which, in particular, holds for any compact
interval Z C dD, we have the following lemma:

Lemma 4.1 (“uniform-LDT”). Given a compact interval Z C 0D \ D. For any € > 0, there
exists n = n(e, ), N = N(¢,ZI) > 0, such that

Plow:|——
{ b—a—+1

for any b — a > N, for any unit vector u, v and any z € I.

log [(Tja,p).0.:1t, V)| — ¥(2)

> e} < e nb=ath (4.5)

Thus for our model, we have

Lemma 4.2. Given a compact interval I C 9D \ D. For any € > 0, there is an 1) =
n(e, L), Ny = Ni(¢,7) > 0 s.t.

1 _1. n(h—
P{wi ‘mlogw[a,‘m,w,A -y ze} < e et (4.6)

1 : “n(b—a
P {a) : ’mlog |P[{;}h]’w’z| — )/(Z) > 6} <e n(b—a+1) 4.7

10
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1 _
P {w : ‘m log | Pyt | = ¥(@)] 2 6} < e et 4.8)

for every b —a > No, and any z € I.

Proof. First recall that o is supported on a compact subset of D, p; = v/1 — |a|*. Thus there
is§ > 0 s.t.

{|ak|sl—a<1,

4.9
O0<d=<|ml<1-=-6<1.

(4.6), (4.7) and (4.8) above each require separate considerations.
To prove (4.6), let u = (1, DT, v = (1,0)7 in Lemma 4.1. By (4.4), the zPj,41.5).. term
cancels and we get

1 -1
. ) —n(b—a+1)
P{w~ ‘b_a+110g|pa—lP[a,bJ,w,z|_V(Z) 26} <e .

By (4.9), p,—1 can be absorbed by large enough b — a + 1 and a modified €.

As for (4.7), the inequality follows from (4.6) by setting &; = —&44p—1—; fora—1 < j <b
and observing that P}, (@) = P (o).

Lastly, to prove (4.8), we invoke (B.5) with 8 = —1, y =1, i.e.

1
it 2{() o3}

Notice that |z| = 1. Thus we can apply Lemma 4.2 when u = \/LE(I’ DT, v, = \/LE(Z’ DT to
get (4.8). O

4.4. “Bad sets” and singularity

To simplify the notation, we introduce “bad sets” and use them to characterize “singularity”
in Definition 4. Denote

V.t . > 4 b—a+1
Bl =@ 0 eTx iR, | z @00

(4.10)

V= s —€)(b—a+1
BiT = {(w, eI x 0[P, | <er@-ob-at )]

By, £ B.y. £ : By £ B.y B.y.+ By.—
Let B, %), and B, be the z and w sections of By, %, .. Let By o = B e YB3 e v
All of these sets have corresponding definitions for the single-sided boundary case. Thus, (4.6),
(4.7), (4.8) can be rewritten as

]P(B* ) < e*'](b*aﬂq) (411)

[a,bl.€,z

where * can be any of the three kinds of boundary conditions g8, y or B, -, or -, y.
We can characterize singular points using the bad sets:
Lemma 4.3. For any € < v/2, forn > 2, if x is (y(2) — 2¢, n, w, 2)-singular, then

(w,7) € BP"~ uBlT uB Yt

[x—n,x+nl.e [x—n,x—1],e [x+1,x+n],e

Proof. The result follows immediately from the definition of singularity and (4.2). O
11
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4.5. Uniform Craig—Simon results

We will also use a uniform version of Craig—Simon’s results. The Craig—Simon estimates [6]
are a general subharmonicity upper bound estimate. It is extended in [14, Theorem 5.1] to the
uniform version. See [14, Section 5] for more details.

Lemma 4.4 (Uniform Craig-Simon). Let &, satisfy uniform-LDT condition in Lemma 4.1.
Then for any €, there is 1 = 1(€), Ny = Ny(€) > 0 s.t. for any x € Z, n > Ny, there is (2, ,
s.L.

(1) P(2,,) = 1 — ne~ D),
(2) for any w € (2, ,, we have for every z € L.

B.- LY (y(2)+€)n+1) .
max{lP[XH,Hn]’ZL |P[x—n,x—l],z|} < VRTINTY e,

Bt LY.+

(w’ Z) ¢ B[x+l,x+n],e U B[xy—n,x—l],e' (412)
Proof. The deterministic result is a direct reformulation of [14, Theorem 5.1], while the
probabilistic results can be extracted from the last line on Page 9 in [14]. U

Remark 4. We mention in particular that 77 in Lemmas 4.2 and 4.4 for the same € are the
same. In fact, the 7 in Lemma 4.4 comes from applying 4.2. (See [14]).

5. Proof of Theorem 3

We will prove Theorem 3 in this section. Heuristically, Theorem 3 says, with high
probability, one of two points will be regular if they are far enough from each other. The
idea is that with high probability, if x is a (y(z) — 2¢, n, w, z)-singular point, then z will be
exponentially close to o (Ey—n, x+n.0)- We Will denote this set by (2)512[ So, if we have two
far away singular points x, y, then 6 (Epx—n x4nl.w) aNd 0(Ex—n x+n).0) are also exponentially
close to the same z. However, we can also show that with high probability o (Ex—n. x4n1.) and
0 (Elx—n.x4+n].0) cannot be exponentially close. We will denote this set by £2(2). Then £2{!) N 22
will be the set of high probability where one of these two points must be regular.

For convenience, we will omit w, z from the subscript of Tja p1.0,25 P pw.zr Olablw.. a0d
Ala.bl,0,; 1n this section unless it is necessary.

5.1. The first set Q)

As we mentioned above, we choose Q)E'g s.t. singularity implies exponential closeness to
the spectrum:

Lemma 5.1. For any 0 < € < v, there are n; = ni(€), Ni = Ni(€1) s.t. for any n > Ny,
x €7Z,0 <8 <n, there is 2{) = 20 (8), s.1.

(l) ]P)(‘nglr)l) > 1— m(I)ef(mfﬁ)(ZnJrl) _ nefn1(2n+1)’

(2) For w € 2O if x is (y(z) — 2¢, n, w, z)-singular, then

X,n’
: —5Q2n+1
dlSt(Z’ U(g[x—n,x+n],u))) <e @nt+ )~

12
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Proof. Fix any 0 < € < v/2. Let 7(¢), 1\71 (€) be as in Lemma 4.2. Let 1\72(6), f)x,n be as in
Lemma 4.4. Then let n .= 5, N := max{N;, N,}, and

20 = om0 = e 0 T 5.1)

By Chebyshev’s Inequality and Fubini’s Theorem, we obtain part (1):
P((20)) <m x P {(a) D@2 e BT L ze z} LR,
< m(T)e~ M=+ 4 pp=m@rth),

Now for part (2), take any w € (2! and any (y(z) — 2¢, n, w, z)-singular point x. By
Lemma 4.3,

uBt

(w,2) € B [x n,x— l]e [x+1,x+n]e’

u B

[x n x+n] €

However, since w € Qx.,,, by Lemma 4.4,
vt
((,() Z)¢B[x n,x—1],e B[x+1)t+n]e

We see that (w, z) € B Thus

[x n x+n] €

with m(B

7€ B )< 6—5(2n+1)’

[x n x+n] €0 [x—n x+n] €,w

where the latter is due to (5.1). Notice further that

B.v.— By (y(2)—€)(2n+1)
B[x n.x+nle,0 {Z |P[x nx+n]wz|<eyz o }
where for each w, |P[€ yn N +n]w,| is a polynomial in z with roots 0(€[x e +n]w) Thus
[’i‘f;:x 4n].e.w 18 @ finite union of intervals, each centered around points of O(S[X L pxinlo)s Of
overall length less than e~%?"+1_ Thus,
—5(2n+1
dist(z, 0 (€17, i) < €D O
5.2. The second set £22)
As mentioned above, the aim of choosing 2 is to make sure (&7, ,,,) and

U(S’S’y

(bt 1x43ns1).0) are not exponentially close for w € 2.

Lemma 5.2. For any § > 0, there is 1,(8), N2(8) s.t. for any n > Ny, x € Z, there is Qf,)l,
S.1.

@)) ]P)(Q)EZ)) > 1 —2(2n + 2)3e M+
Q) If w € NP then

x,n’

—5(2n+1
dist (U(g[x n,x+n], w) G(g[x+n+1 x+3n+1], w)> = 2e @b

Proof. Since each entry in £ is bounded, there is M s.t.

[Pyl < MP™*' . Va<beZ,Vzel.
13
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Choose 6: < 8/2. Apply Lemma 4.2 to get ij(¢'), Ni(¢'). Choose K > 2513%3,4. Let np = %,
N, := KN, and

@y\e . B “Y B,y
(“Qx,n) - U (B[xfn,erylfl],e/,z,- U B[x+y2+1,x+n],e/,z,-> U B[xfn,x+n],e/,zi

z;€Z(w)
(y1.3)€Y

where

n
Y ={(1,y):x—n=<y1<y=<x+n, |y1—(—n)|,|n—yzlz?},

Z = Z(0) = Z(Opxqn+1,543n+11) = O (Elxpnt1 x+3n+11,0)-

We remark here that while z;(w) and Z(w) depend on w, they actually only depend on
Q[x+n+].x+3n+]] which is independent from -Q[x—n,x+n]~ Thus Zi = z,-(a)) = zi(a)[x+n+1,x+3n+1])
in B[X’ZM +n),z; OPerates like any other fixed z that does not depend on w. A rigorous argument
is as follows:
For any fixed w, ..., wy, with [c,d] N [a,b] = @, assume d — ¢, b —a > 1\71. By
independence,
P[C,d]C(B* ) — P[a,b](B* wd)) S 67772(b7a+1)

[a.b).€'.2i (we.....wq) la,bl.€ .7 (we....,

where * represents corresponding boundary conditions, z; (..., € 0(Erc.q)). Applying to
[a,b] =[x—n,x+y;—1]or [x+y,+1, x+n] or [xjn,x—i—n], [e,d]=[x+n+1,x+3n+1]

and integrating over @, ..., ®p, We obtain for n > N,
B, Sy —np (& +1)

< X
HD(B[X—&X-&-M—I],G’,Z; u B[X+y2+l.,x+n],e’,z;) =2 ’

IP’(B’S'V 7.) < e_”2(2’l+1).

[x—n,x+n],€,

Thus we obtain part (1):
P(22) > 1 —2n+ D)(@n+ 1)? + 127K > 1 —22n +2)% "k

We prove part (2) by contradiction. Let w € 2@, assume that there is z; € o

x,n?

(Elxtnt1.x+3n+11> Zj € 0 (Erx—n.x+n]) St

|zi — 2] < 272D,

Then
By 1 52n+1)

”G[xfn,x+n],w,zl‘ ” z 56 °
Thus there are x —n < y; <y, < x +n s.t.

|P[x7n,x+v171],a),z,~ P[x+y2+1,x+n],w,z,-| By 1 8(2n+1

- = IG[x,,,,Hn],w,zi(yl, »)| = —e @ntl)
|P[x7n,x+n],w,z,-| 2n

There are three cases, and we claim that each leads to a contradiction.

(D) If [y1 = (=)l = %, [n — y2| = %, since

— K 9
B.: % By
w ¢ B[xfn,ery]fl],e’,z,- U B[x+y2+1,x+n],e’,z,— U B[xfn,ern].e’,zi’

if K > 1, we have

1
—e

B2+ < (@R (=N < ,2n+DEE).
2n - -

14
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But § > 2¢’. Thus when 7 is large enough, say, n > N3, there will be a contradiction.
(2) If one of |y; — (—n)| and |n — y,| > %, then if K > 1, we have

n @)
e

log M

i
D <k
2n

2log M

By our choice of K > Og -,

enough, say, n > N4, we arrive at a contradictlon.
(3) If both [y) — (—n)| < %, |n — ya| < %, then

—(y(zi)—€)(2n+1) < e(2n+l)( +2€')

log M
we have § > Og

+ 2¢’. Thus again, when n is large

logM

5(2n+1) < MKe (y(z;)—€)2n+1) < e(2n+1)( +€')

2n

By our choice of K, we have § >
again we arrive at a contradiction.

k’gM +¢€’. Thus when n is large enough, say, n > N,

Take N, = max{]\?l, Nz, 1\73, 1\74, ]\75}. Then for any n > N,, we have a contradiction for all
three cases, and hence

—8(2n+1)
dist (U(g[x n,x+nj, w) U(£[x+n+l x+3n+1], w)) 2 2e " D

We now prove Theorem 3:

Proof of Theorem 3. By Lemma 5.1, for any € > 0, we can find 1,(¢), Ni(¢) and § = n,/2,
s.t. (1) and (2) of Lemma 5.1 hold. For such §, apply Lemma 5.2 to find #n,, N, and _Q)Ezr)l for
any x € Z, n > N;,. Now let n := min{n;, n2/2}, N := max{N;, N;}. Set

1 (e8] 2
“Q = ‘Q( ) N ‘Qx+2n+1 n N Q;,r):
Then we obtain part (1):
P(2,,)>1-— zm(I)e—m(2n+l)/2 — dne Mm@+ _ 202n + 2)3e—n2(2n+1)

>1— Ce—n(2n+1)‘

As for part (2), let @ € §2 ,. Assume both x and x +2n + 1 are (y(z;) — 2¢, n, w, z)-singular.
Then by Lemma 5.1, we have

diSt(Z, O‘(g[xfn,ern],a))) < 6—6(2n+l),

: —5Cn+1
dist(z, 0 (Epepnt1 r3e11,0)) < € 23D,

Thus

—8(2n+1
dist (0(5[.7( —n,x+n], a)) 0(5[x+n+1 x+3n+1], w)) <2e " )'

However, Lemma 5.2 guarantees that if w € 2, ,, then

dist (a(g ), o (&Y )) > 2¢~d@n+D)

[x—n,x+n],0 [x+n+1,x4+3n+1],0

which is a contradiction. Thus at least one of the two points x or x +2n+1 must be regular. [J
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Appendix A

Lemma A.1. The matrix S, = (z(L)*—M) is tridiagonal. We omit 7 and denote the (i, j)-entry
by A, j for convenience, when a <1i, j < b. Then we have

zpj, J even,

—Pj, J odd.

A= za; +ajy, j even,
Jj =

s Ajp = A =
@ — @, Jjodd e

Remark 5. If we modify the extended CMV matrix at ¢ — 1 and b by § and y, then the
corresponding matrix A/[SJ,};;],Z is the restriction of S, on [a, b] but with o,_; = 8 and o, = y.
Fix an interval [a, b]. We denote Sf "7 by the infinite matrix S, with oy_; = 8 and o, = y.

Lemma A.2. Let V¥ solve EV = z U, then for a <n < b,

¥(a)zP — 2@u-1) + ¥(a — 1)zp,-1, a odd

_ _ By
U(n) == Gp..(n,a) { U(a)(ai — B) — U(a — 1)pai, a even

V() (—ap+y)— ¥b+ Dpp, bodd,

= GiJyy(n.b)
U(b)(zap — zy) + (b + 1)zpp, b even

Proof.
PupnS.:¥ =0

:>P[a,b]Sf'y U+ P[a,b](A — Aﬂ’y)kp =0
:P[a,b]Sf’y(P[mb] v+ Prape v) + Pap(S; — Sf’y) U =0

:>A/[31;,);9],Z v = _P[a,b](Sz - Sf’y) v — P[u’b]Sf’yP[a_b]c UV=1+1I
Then

. . F¥(a—1)] 07 row a — 1
Af‘gfl Agfg Aaﬁ’gﬂ 0 e 0 0 rowd
B, B. B,
0 Ab,g—l Ab,z); Ab,gﬂ 0 0 rowb
. | Y+ 1) | 10 ] rowb+1

16
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where we use Remark 5 and Lemma A.l to get Af:g_] = Af"};ﬂ = 0. While
- . 1 r@@—1)7
Aj, A, A,y O ¥(a)
I =
0 Ay Apy Appn v(b)
. . | b+ 1) |
V(a— l)A;’a_l + V@A,
T(b)A,, + T+ DA, , .,

where A7 = A, — Afj}f. Now
U(n) = — Gl (0, b) (DDA, , + T(b+ 1A, .,

— G (Wa= DA, | + V@A)

where A; y is derived from Lemma A.l and Remark 5

A e aodd, Ao |7t 2B, aodd,
aal T, a even. w4 N, — B, a even.
_ —pp, b odd, _ —op + v, b odd,
Ab,b+1 = Ab,b =
zpp, b even. o0 — 2V, b even.

That proves the result. [

Appendix B. Corrections

As mentioned in the introduction, we provide corrections for some of the issues from [2,
16,21,22]. We first provide the correct results in their notations and then, for the reader’s
convenience, we rewrite them in our notation when there is a correspondence. Finally, we
give either a short proof or a reference for those citations in [16] which are invalid now.

B.1. Corrections for [16]

(1) Formula (3.6) in Lemma 3.3 should be C = 5[_01’?_0). Or in our notation, C = 5[6,1Jr'oo]' It
follows from the definition, see Remark 3.
(2) Formula (3.14) in Lemma 3.6 should be &,(z) = @E)if’,_”(z). Or in our notation,

®,(z) = P[B’lrl;ll(z). See [22, Theorem 5.3] for a proof.
17
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(3) Formula (3.16) and (3.17) in Lemma 3.7 should be
oh@ = 2@ and Bz y) = o5 (B.1)
where & (z; y) means first replacing «,,—; by y, then multiplying every oy, 0 < k <
n — 1 and y by B (instead of the reversed order). In our notation there is no direct

correspondence, but if we denote x5 la. b](c) to be X 511;,] with coefficients oy, ..., ®p—1, ¥
being multiplied by ¢, where X can be C, &, P, ..., then

_ 1
P[On nB) = [On j; and P[Onyl](ﬂ) [On 1]

See [21, Theorem 4.2.9] for a proof. See also [22, Theorem 5.6] for a more clear
restatement but with a typo. Here we provide a correct version of it using the notation
there (Notice that their M is half-line while our M is a full-line matrix):

Theorem (Theorem 5.6 corrected). Let » € 3D, o, € DN. Let D be a half-line diagonal matrix
with elements 1,271, 1,271, ... Let M, differs from M by having A at the (0, 0)-position
instead of 1, then

DC({ra,)D™" = L h M (ltn}),

where C(Aay,) represents the CMV matrices with Verblunsky coefficient {,a, },en (Notice o« =
—1 is defaulted for half-line CMV matrix).

As a corollary,
BP(2) = det(C({Ban)) = det (Lo DM (@) = B 1(2)

where the last equality follows from the observation that Mz({e,}) means a_; = —B. This
proves (B.1).

(4) Formula (3.18) in Prop. 3.8 should be

k-1
o 1 la ](Z)QDUH b](z)
G, @k, D] = P
o1 (@)
In our notation, the equality is glven in (4.2). Notice that we have no extra parameters
; because our definition of P[a bz = l = gl; ](z) This result follows by direct

computation using Cramer’s rule.
(5) Formula (3.22) in Lemma 3.10 should be

| 0" + 01" (2) 0" (2) — 91" (2)
T 2 @40 (@) — @YD) @4 @) + @Y )

This transfer matrix is the same as ours but we did not use this formula in this paper.
For a proof of the correct form, see [21, (3.2.17), (3.2.27)].
(6) Formula (3.23), (3.24) in Cor. 3.11 should be

o5"(2) 1
Bty ) = Ta.)(2) (_ﬂ) (B.2)

1
‘P,[gayb](Z) = <<)Z;> s Tia,p—11(2) (—1,3>> (B.3)

18
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Proof. (B.2) follows from [21, (3.2.26)], which has a typo and the correct form should be

(pr)zL-H <1)
=T, T B4
) =1 (7 (B.4)

(B.4) together with (B.1) gives us (B.2). For the second equality, first notice that
Oyt = 0, y) = 2@ 4 prcag Ty

where we used (B.1) and Szego’s recurrence relation Prop. 1. Notice that the nth Verblunsky
coefficient of &, " (z; y) is —By instead of y by (3) above. Thus

1
b b— — la.b—
‘/’;[eay] = b( @,[g[f. Tt ,BV(QD,[g[f. Iy

implies (B.3). O

In our notation,

[a b](Z) = <<)Z7> s T[a,bfl](Z) <_1'3)> . (B.5)

B.2. Corrections for [2]

(1) Equation (7.4) (in 2017 arxiv version) should be

o (z)—i<<1) 5 (T“w)(1)>
w,|a,b] _pb )7 sy Pp_qa _'3 .

We believe this can be used then to derive (4.8) by [25, Theorem 5]. Then one could
complete the proof of double elimination in [2].
(2) The second to the last equation of Page 39 (in 2017 arxiv version) should be

R w7 k=1
la,j— 1(Z)¢ ,[k+1,b](z)
Go 2 ks 2)) = | =2 []o:-
P la, b](Z) imj
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