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ABSTRACT: Machine learned force fields offer the potential for
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faster execution times while retaining the accuracy of traditional  preparation /{a zf”
DFT calculations, making them promising candidates for molecular y- T %
simulations in cases where reliable classical force fields are not R L"g; v,
available. Some of the challenges associated with machine learned 31, "85
force fields include simulation stability over extended periods of time 3 & © N
and ensuring that the statistical and dynamical properties of the @ 2 .

underlying simulated systems are correctly captured. In this work,
we propose a systematic training pipeline for such force fields that
leads to improved model quality, compared to that achieved by
traditional data generation and training approaches. That pipeline
relies on the use of enhanced sampling techniques, and it is
demonstrated here in the context of a liquid crystal, which
exemplifies many of the challenges that are encountered in fluids and materials with complex free energy landscapes. Our results
indicate that, whereas the majority of traditional machine learned force field training approaches lead to molecular dynamics
simulations that are only stable over hundred-picosecond trajectories, our approach allows for stable simulations over tens of
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nanoseconds for organic molecular systems comprising thousands of atoms.

B INTRODUCTION

Molecular simulations play a central role in a wide range of fields,
ranging from materials science to molecular biology. It is widely
appreciated that a simulation can generate a realistic
representation of a given physical process phenomenon only if
the underlying force field is sufficiently accurate and if the
corresponding simulation algorithm is capable of sampling all
relevant regions of phase space. Classical pairwise additive force
fields offer computational efficiency, but parameters are not
always available for a system of interest."”” Quantum mechanical
calculations offer an alternative in such cases,” but they are
computationally demanding, hindering their applicability to
complex systems over long length and time scales. The challenge
that arises then is that of accurately describing the physical and
chemical interactions in such systems, while achieving a
reasonable computational performance.””® This trade-off
motivates ongoing efforts to devise force fields that provide a
balance between tractability and accuracy.

One promising approach to address this challenge is provided
by machine learned force fields (MLFFs).””~" These force
fields leverage the advantages of accurate quantum mechanical
calculations to capture molecular interactions, while also
offering the potential to conduct long time and length scale
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simulations and yielding new insights into complex physico-
chemical phenomena.'*~"”

Several studies have sought to validate MLFFs through a
variety of approaches.'®'® The most common validation
strategy, inherited from the machine learning field, consists of
assessing their predictive accuracy for energies and forces.'”*’
Other assessment approaches try to also evaluate their ability to
compute radial and angular distribution functions,""*" as well as
other physicochemical properties such as the stability of
crystalline structures™ or how well they can reproduce melting
and stress—strain behavior.”> More demanding calculations of
thermodynamic properties such as free energies have not been
performed within the context of standard MLFF training
approaches.

For all of the aforementioned studies, the scaling of
simulations with number of atoms has been explored in the
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Scheme 1. Overview of Our Machine Learning Force Field Learning Pipeline”
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“The first and last steps involve performing enhanced sampling simulations, which represents one of the key strategies proposed to improve the

overall robustness of MLFFs.

context of inorganic materials; for organic molecules, bench-
marks have largely focused on the MLFFs’ performance for data
sets consisting of single molecules.”**~*” Moreover, the stability
of available MLFFs has generally been addressed for relatively
short molecular dynamics simulations,”’ with most MLFF works
to date reporting simulations of hundreds of picoseconds. For
the particular case of organic systems, an exception is provided
by a recent example which reported MD simulations on the
order of a nanosecond.”

The lack of long time simulations using MLFFs in the field can
be attributed to multiple reasons, one being insufficient
sampling of high energy states in the training data or, in some
cases, the high cost associated with long ab initio MD
simulations. For a case-by-case analzrsis, we refer readers to
recent work on the underlying issues.”’

In this work we introduce a consolidated MLFF training
pipeline that incorporates existing ML validation practices along
with data generation strategies based on enhanced sampling
techniques such as steered MD.” Furthermore, we also
integrate into our pipeline available methods for the fast
computation of free energy surfaces, such as spectral adaptive
biasing force method (spectral ABF),”” thereby enabling a more
comprehensive and systematic evaluation of the quality of
MLFFs for free energy calculations and ultimately leading to
more robust force fields.

We demonstrate the efficacy of this methodology by training a
MLFF for 4-cyano-4'-pentylbiphenyl (SCB), a widely studied
liquid crystal.”' —*® Our simulations show stability in different
simulations of condensed phases of SCB with thousands of
atoms over tens of nanoseconds. Importantly, to facilitate future
research efforts, we have made our MLFF training pipeline
available as open-source code.

B RESULTS AND DISCUSSION

Workflow Outline. We propose a comprehensive training
and verification pipeline that incorporates four stages: data

preparation, hyperparameter tuning, MLFF training, and quality
evaluation. One delineates the workflow associated with these
stages. We describe the methodology for each stage in the
following subsections using our training process for SCB MLFF
as an example.

Note that, while we have chosen 5CB, a prototypical example
of a liquid crystalline material, to showcase our proposed
pipeline (see Scheme 1), the overall strategy presented here can
be applied to any other system of interest with the appropriate
choice of slow order parameter or collective variable.
Determination of slow modes in a system is an ongoing
effort’’~* on its own, and it is outside the scope of the present
work.

Data Preparation. Most MLFF models rely on descriptors
based on atomic coordinates. These descriptors capture the local
atomic environment of each atom and, ideally, remain
unchanged (are invariant) or transform in the same way (are
equivariant) under rotations or translations of the reference
frame and permutations of identical atoms.”*'"*”*"** This
characteristic enables an accurate prediction of forces and
potential energies associated with every atom and its environ-
ment. It is therefore crucial to prepare a representative and
comprehensive training data set for the training and refinement
of MLFFs. In what follows, we show that direct strategies for
generating data may not adequately capture configurations that
correspond to regions of high free energy. To overcome this
challenge, we propose a data generation strategy based on
dimensionality reduction and enhanced sampling.

Unbiased Sampling. We begin our workflow by running
unbiased classical MD simulations of the SCB system. Following
existing works,””'" we prepared seven SCB systems with
varying box sizes to mimic the density variations observed at
different temperatures (293 K, 298 K, 300 K, 303 K, 308 K, 327
K, 367 K), consisting of 684 atoms from 18 SCB molecules.
These span the nematic and isotropic phases of SCB. We then
perform a canonical ensemble (NVT) simulation on each
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Figure 1. Histogram of the order parameter S collected from snapshots generated by (a, left) unbiased simulations and (a, right) enhanced sampling.
Poor sampling of the extreme values of the nematic order parameter, S € (—0.5, 0.0, 1.0), is a consequence of the finite size of the system (which has
only 18 molecules). Visualization of the principal components of the data embedding, colored by (b) the temperature at which the data is sampled and
(c) the order parameter. Plots (b, left) and (c, left) are derived from unbiased sampling data, while (b, right) and (¢, right) originate from enhanced
sampling data.

system and collect 1000 snapshots from each trajectory. For describes the relative degree of orientational order in a liquid
each of the selected snapshots, DFT calculations are then crystal.” Formally, it is defined as the largest eigenvalue of the
performed to obtain the “ground truth” forces, energies, and 44
tensor Q
stresses.
To evaluate the representativeness of our data set, we examine 31 & 1

the order parameter, S, of the resulting snapshots. The order Q= —— Z (u’\lﬁ? — —[I]

. . . . . 2N = 3 (1)
parameter S is a particularly important collective variable that i=1
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where N is the number of molecules, % is the direction of the
long axis of each molecule, and [ is the identity matrix. The order
parameter S can range from —0.5 to 1, with —0.5 corresponding
to perfectly anti-nematic arrangements, 0 for perfectly isotropic
phases, and 1 for a perfect nematic phase. However, generating
configurations with S values close to these extremes can be
particularly difficult in small systems, such as those accessible to
DEFT calculations.

As reported in past studies, MLFFs may not perform well on
unseen configurations.**® This necessitates that the training
data span as wide a range of configurations as possible. One
would therefore expect a proper training data set to include a
uniform distribution of S values. Figure 1(a, left) plots the
distribution of S values on the data set collected by unbiased
simulations. As evidenced by Figure 1(a, left), the data sampled
with a conventional strategy—which is one of the most common
approaches to train MLFFs—roughly corresponds to a bimodal
distribution of gaussians centered around —0.25 and 0.35 and
values mostly ranging from —0.4 to 0.65, leaving large regions of
the projected state space either heavily undersampled or not
sampled at all. These gaps in the order parameter space
negatively impact the performance of MLFFs trained on such
data.

Data Dimensionality Reduction and Enhanced Sampling.
As shown above, unbiased sampling alone may not adequately
capture the full range of relevant configurations for training
MLFFs. One approach to overcome this could be the use of an
active learning procedure to increase the training data set
quality. Some authors have suggested that, in the active learning
for interatomic potentials, the goal of active learning should be
maximizing the entropy of the training data set distribution with
respect to some descriptors, so the model can be accurate and
transferable.*”*® It is known that, without constraints, the
distribution that maximizes the entropy is the uniform
distribution; therefore, an active learning procedure eventually
will generate a uniform distribution over the descriptors used.
This uniform distribution over a descriptor can be obtained
more efficiently by the use of enhanced sampling techniques,
since some of them were designed for this goal.49 For this reason,
we turn to enhanced sampling techniques, which lead to a more
efficient exploration of phase space by directly forcing the system
to overcome the high free energy barriers that separate
metastable states. This idea has recently been adopted®* > to
improve sampling for training MLFFs.

In our study, we rely on steered molecular dynamics
simulations to incrementally adjust the order parameter, S,
from —0.5 to 1 for a set of initial configurations of the SCB liquid
crystal. This allows us to systematically drive the system across a
range of nonequilibrium states important for training,”” thereby
covering the full range of values of the nematic order parameter.
See the Computational Details section for how we implemented
steered MD simulation. Figure 1(a, right) depicts the
distribution of S values collected by steered MD. We observe
that the distribution of S is mostly uniform except for S € (—0.5,
0.0, and 1.0), which is a consequence of the finite size of the
system.

Beyond focusing on the order parameter, we also aim to
capture the behavior of SCB at different densities. Therefore, we
conducted steered MD simulations on the seven systems of
different densities (293, 298, 300, 303, 308, 327, and 367 K) to
achieve thorough coverage of SCB’s behavior across the nematic
and isotropic phases.

Given the high computational demands of DFT calculations
and the training and inference of MLFFs, it is helpful to
undertake a preliminary analysis of the data to ensure model
quality and training efficiency. This initial step involves a
detailed a priori examination of the feature space, which is
inherently high-dimensional due to the aggregation of local
environmental information from all atoms in the data set
snapshots. We then apply dimensionality reduction (DR)
techniques to identify the underlying patterns and character-
istics within the data. DR has long been adopted to analyze the
feature space of the neural network and MLFFE.”**™>* Through
both linear and nonlinear transformations, DR methods offer a
succinct yet comprehensive view of the data set’s structure,
capturing the relationships between collected frames.

Here we implement the following steps. Initially, the local
environment of each atom within a data set is transformed into
input features of the neural network. Subsequently, features
derived from atoms in individual frames are aggregated in a
composite embedding for each frame. The aggregation is
conducted by summing all of the atom embeddings within a
single frame, ensuring that the data embedding maintains
permutational invariance. This preprocessing step is necessary
for two primary reasons: first, extracting information directly
from the snapshots, such as atomic positions and forces, is
problematic due to the lack of translational and rotational
invariance and equivariance. Such data are significantly
influenced by periodic boundary conditions and minor
disturbances within the system. Second, it allows for an analysis
of the neural network’s potential perspective during training,
offering insights into the input space the neural network will
encounter. This alignment ensures a coherent understanding of
the neural network’s operational environment. Following this
preprocessing step, principal component analysis (PCA) is
applied to these frame embeddings. This process effectively
reduces the dimensionality of the data, mapping each frame onto
a 2-dimensional embedding space conducive to direct visual-
ization.

The resulting visual representation is illustrated in Figure 1(b,
c). Figure 1(b) shows the strong correlation between phases and
the data embedding: the nematic phase (293,298, 300, 303, 308
K) and the isotropic phase (327, 367 K) are clearly separated on
the plot. Figure 1(c) shows that the DR visualizations can be
misleading in some cases. While the two data sets have a similar
appearance, the data set curated through enhanced sampling
exhibits a more uniform distribution in S compared to that of its
traditional counterpart.

Importantly, exploring the behavior of SCB across various
phases from nematic to isotropic helps broaden the data set and
the sampling space, thereby improving the quality and
robustness of the model.

Hyperparameter Tuning. Like other neural networks,
neural-network-based MLFFs also involve a large number of
hyperparameters, underscoring their shared complexity. The
specific hyperparameters for MLFFs depend on the exact
architecture of the neural network and can be basically separated
into three major categories:

1. Cutoff Radius: This parameter defines the size of the local
environment for each atom.

2. Network Structure Parameters: These parameters deter-
mine the size and shape of each layer of neurons.

https://doi.org/10.1021/acs.jpca.4c01546
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Figure 2. Scatter plot of the energy of the validation set calculated by DFT versus calculated by (a) MLFF-S and (b) MLFF-L. The energy shown is
standardized by subtracting the mean of DFT energy from both MLFF energy and DFT energy. (c) Scatter plot of force on all atoms in the validation
set in all directions, generated by DFT and MLFE-S. (d) Scatter plot of force generated by DFT and MLFF-L.

3. Learning-Related Parameters: This category includes the
choice of optimizer for minimizing the loss, the coeflicient
of the loss function, and the learning rate.

Each of these categories presents unique challenges and trade-
offs, necessitating a thoughtful approach to hyperparameter
tuning. Striking a balance between model fidelity and practical
constraints (such as computational resources and training time)
is important. To explore the vast landscape of possible
hyperparameter configurations, techniques like grid search and
random search are commonly employed. In our software suite,
we offer scripts that scan user-provided hyperparameter spaces
and automatically perform grid searches or random searches
within the configuration space.

In this study, we refrain from comparing learning-related
parameters, as our experiments suggest that the learning rate has
a minimal effect on the final performance of the force field.
Instead, we focused on analyzing the effects of the cutoff radius
and network size. For the sake of simplicity, we consider two
distinct cases.

1. MLFF-S: A small network with a cutoff radius of 4 A (R =
4A).
2. MLFF-L: A large network with a cutoff radius of S A (R =

5 A) (refer to the Computational Details section for
additional details).

To better understand the impact of enhanced sampling, we
train the neural network on both the enhanced sampling data set

and the unbiased sampling data set for each case. Our primary
focus is on enhanced sampling. Therefore, in the main text, we
analyze only the behavior of the model trained on the enhanced
sampling data sets. Additional analysis of the models trained on
the unbiased sampling data set is provided in the Supporting
Information.

Model Training. Once the data set has been created, we
proceed to train multiple MLFFs with different neural network
architectures and hyperparameters. We chose Allegro,” which is
based on NequIP,11 as our neural network architecture for
training. MLFFs are trained with the DFT potential energy and
force information from the prepared training data. Following
previous works,”” we use 90% of the data for the training process
and use the other 10% of the data for validation purposes. As the
DFT data are computationally expensive to obtain, we seek to
maximize our training data as much as possible. In addition, our
validation set is randomly sampled from the variety of
configurations that we collected, and 10% is assumed to be
sufficiently representative to reliably estimate the model’s
performance.

Quality Evaluation. Before MLFFs are incorporated into
any molecular dynamics simulation, a rigorous evaluation of
their quality is essential. Our evaluation framework follows a
two-tiered approach to ensure the fidelity of the MLFF models.

1. Energies and Forces Validation: We begin by examining the
MLFF’s predictive accuracy using the collected training and
validation data sets. This step ensures that the model accurately

https://doi.org/10.1021/acs.jpca.4c01546
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Figure 3. Radial distribution function between any pair of elements in the SCB bulk system canonical ensemble (NVT) simulation.

reproduces the known outcomes. By comparing predictions
against ground truth data, we verify the model’s ability to
replicate essential properties.

2. Detailed Quality Assessment: Beyond the preliminary
assessment, we conducted a more thorough evaluation. Our
focus shifts to preserving critical physical and chemical
properties during MD simulations. Key properties include the
radial distribution function, bond stability, dihedral distribution,
and dimer formation. To explore the model’s predictive
performance across diverse conditions, we employ enhanced
sampling techniques. This comprehensive evaluation ensures
that the MLFF models meet the necessary criteria for reliable
MD simulations.

Energies and Forces Validation. As with any machine
learning model, MLFFs are trained to minimize a loss function
defined on the reference set. Subsequently, the performance of
MLFFs can be assessed with how well the MLFFs are able to
minimize the error in predicting the energies and forces.

The evaluation process begins by feeding validation data into
the MLFF to observe how accurately it predicts relevant
properties. Specifically, the evaluation includes a comparison of
the root mean squared error (RMSE) across two key metrics:
force prediction on a per-atom basis and energy prediction on a
per-frame basis. These comparisons yield validation errors
associated with the MLFF, setting an initial quality threshold.
However, it is essential to recognize that, while correct force and
energy predictions are necessary, they alone do not guarantee
overall model quality.

Figure 2 illustrates the performance of models with selected
hyperparameters trained on the respective data set. From the
plot, we can see that for the validation set both models are able to

achieve a high level of accuracy on both tasks. Specifically, in
Figure 2(a, c), with a small model the MLFF is able to achieve a
RMSE of 1.04 meV/atom on energy prediction and 0.0217 eV/
A on force prediction, far beyond the chemical accuracy (1 kcal/
mol &~ 43 meV/atom). With a larger model, in Figure 2(b, d),
the performance is even better, with 0.61 meV/atom RMSE on
energy prediction and 0.0209 eV/A on force prediction.

Detailed Quality Assessment. Accurate prediction of the
forces and energy is only one aspect of a successful MLEF,*
especially for soft materials such as liquid crystals. The MLFF
must reproduce the important behaviors of the liquid crystal.
Though some of these properties can be estimated with short
simulations, many typically require long simulations. As noted
earlier, MLFFs are in general much faster than DFT calculations,
but they are not as fast as classical force fields, which presents
challenges for long simulations.'**° To mitigate this problem,
we adopted enhanced sampling techniques to measure proper-
ties efficiently. Our observations indicate that the MLFF
proposed here exhibits remarkable robustness throughout our
production evaluations. Notably, in our enhanced sampling
experiments, the duration of simulations is extended up to 15
ns—a time frame that significantly surpasses those reported in
prior studies.'*° This observation underscores the reliability of
our MLFF pipeline and represents a new benchmark for
duration and stability in such simulations.

We begin by studying the radial distribution function (RDF)
of SCB systems. Accurately replicating RDF is a critical goal in
the development of new force fields® as it reflects the preferred
distances for particle arrangements. We run a canonical
ensemble simulation on an 18 molecule system with the
MLFF for 1 ns and then measure the RDF between any pair of
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elements in the molecule. To estimate the ground truth, we
performed the same experiment with ab initio MD simulation
for 100 ps. Our simulation with MLFF encompasses 1 order of
magnitude longer simulations than those accessible with ab
initio simulation. Both yield comparable results, serving to
highlight the ability of MLFF to carry out extended simulations
without compromising accuracy.

Figure 3 shows the RDF between each pair of elements
estimated by each of the MLFFs obtained here as well as the
ground truth estimated by DFT. Both the large model and the
small model achieve a high level of agreement (RMSE < 0.025)
on all pairs of elements. The level of agreement is one magnitude
higher than that of the classical force fields (Supporting
Information Table 1).

We also conducted an analysis of the potential energy for key
dihedral angles within the SCB molecular structure. This
analysis focuses on two critical angles: the inter-ring dihedral,
which is the angle between the molecule’s two benzene rings,
and the tail dihedral, which pertains to the molecule’s aliphatic
chain (defined by the last four carbons, see the Supporting
Information).

For each dihedral angle, we rotate part of a molecule to sweep
through a set of angles and calculate the potential energy of each
configuration using the MLFF. Parallel DFT calculations are
provided as baseline comparisons.

Figure 4 displays the comparison of the potential energy on
the two major dihedral angles. From the plot we can see that our
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Figure 4. Potential energy obtained by trained MLFFs and calculated
from DFT on the (a) inter-ring dihedral and (b) the tail dihedral of a
SCB molecule.

MLFF is able to achieve high accuracy on learning the dihedral
angle’s potential energy. With the small model, the MLFF can
achieve an RMSE of 3.9661 meV on the inter-ring dihedral and
9.4882 meV on the tail dihedral. With the large model, MLFF
can achieve an RMSE of 1.4201 meV on the inter-ring dihedral
and 7.5756 meV on the tail dihedral.

Numerous applications of liquid crystals stem from their
ability to undergo reorientation when exposed to different
surfaces or interfaces. This characteristic positions liquid crystals

as effective sensors for monitoring interfacial events, an area that
has attracted significant interest.® ~%¢ Building on this feature,
we now examine how the SCB—air interface influences liquid
crystal behavior using MLFFs. A SCB interface system was
created with 18 molecules, by expanding the vacuum on both
sides of the SCB bulk in order to mimic the SCB—air interface, as
reported in previous work.”’ We run a canonical ensemble
simulation with the two MLFFs over 250 ps.

When MLEFF-S is employed, the simulation struggles to
accurately form the SCB—vacuum interface. In this scenario,
SCB molecules tend to disperse throughout the simulation box,
failing to exhibit the cohesive behavior characteristic of liquid
crystal phases. On the contrary, for MLFF-L, Figure 5(a,b)
provides a visual representation of the stable interface under
different system sizes: 18 molecules (684 atoms) and 64
molecules (2432 atoms).

We also calculate the free energy between the distance of the
center of mass of two SCB molecules using the spectral adaptive
biasing force method (spectral ABF)*” in Figure 5(c). Utilizing
MLFEF-L facilitates the formation of the SCB—vacuum interface.
This is reflected in the free energy profile in (c), which notably
features two local minima at approximately 4 and 7 A. These
minima correspond to the stable configurations that the system
can maintain. The existence of these local minima in the free
energy profile illustrates the model’s ability to capture the
complex intermolecular interactions that govern the equilibrium
state of SCB molecules. We also provided the free energy profiles
generated by classical MD simulations and unbiased MLFF
models in Figure 2 in the Supporting Information. It is noted the
free energy estimated by the MLFF-unbiased model (Support-
ing Information Figure 2(b, c)) remains constant or decreasing
when the distance between the two molecules exceeds 8 A,
unlike the behavior observed in the MLFF model. This indicates
that the MLFF-unbiased model has failed to accurately capture
the cohesive energy responsible for maintaining the alignment of
the dimer.

The alignment of dimers plays a crucial role in determining
not only the surface orientation (“anchoring”) behavior but also
the formation of a nematic phase, which in turn significantly
impacts their optical and electro-optical properties, essential for
applications from displays to sensors.”’~%°

To further study the alignment of dimers, we evaluate the free
energy between a SCB dimer on a 2D plane to evaluate the
dimer alignment, using spectral ABF. Specifically, we use two
collective variables; the distance projected between two carbon
6 atoms in two different SCB molecules, where the axis of
projection is defined as the direction from the carbon atom with
index 6 to the nitrogen atom with index 1 of the first molecule
(see the Supporting Information), whereas the second collective
variable is defined as the perpendicular component of distance
with respect to the same axis. These simulations provide a
comprehensive examination of the energy landscape of dimer
configurations and serve as a robust measure of the MLFF’s
performance for simulations of the complex behavior of liquid
crystals.

Figure 6(a, b) shows the free energy of the dimer alignment
generated by the two MLFFs. The 2D free energy profile of
MLFF-S in (a) has a monotonically decreasing trend,
encouraging dispersion. On the other hand, MLFF-L in (b)
exhibits three local minima. Figure 6(c) shows the correspond-
ing dimer configurations of each local minimum. These dimer
configurations at local minima are in good agreement with the
most stable dimer alignments in previous work®” using DFT.
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trajectory.

From top to bottom, the first local minimum corresponds to the
side-to-side configuration in the parallel arrangement. The
steepest local minimum, which is the second from the top,
corresponds to the side-to-side configuration in the antiparallel
arrangement, which has been reported to have the lowest
potential energy.’” Additionally, dimer conformations at the
local minima have an average length of 25.33 A, matching the
correlation length of SCB molecules in experimental X-ray
measurements at interfaces’’ with an error of 2.69%. The third
local minimum corresponds to a metastable region, where both
parallel configurations and cross configurations exist. With the
proper hyperparameter setting, the MLFF is able to replicate the
correct dimer alignment of the SCB molecules. As a comparison,
Supporting Information Figure 3 shows that the free energy
surface generated from the classical FF exhibits only one local
minimum. Similarly, Supporting Information Figure 4(a, b)
illustrates that the free energy surface generated from the MLFF-
unbiased model also fails to capture all significant local minima,
which are crucial for representing the stable dimer alignment.

Finally, we conduct a comparative analysis of the computa-
tional performance of the selected MLFFs with varying cutoff
radii and classical force fields across multiple SCB system sizes.
As expected for Allegro, a reduction in the cutoff radius
significantly enhances the simulation speed. Specifically, the
performance of an MLFF with a 4 A cutoff radius is observed to
be twice as fast as that of an MLFF with a 6 A cutoff radius.
Additionally, our analysis reveals that the computational cost
depends linearly on the inverse of the system size. Nevertheless,
MLFFs are still 3 orders of magnitude slower than their classical
pairwise additive counterparts, limiting their usage as general
purpose MD force fields. As shown here, we cannot reduce the
cutoft without losing the ability to properly capture the free
energy of the system. Other MLFF models might fair better in
this regard,”” but we expect the orders of magnitude of the gap in
Figure 7 to remain with other existing ML models.

B COMPUTATIONAL DETAILS

We performed all density functional theory (DFT) calculations
utilizing CP2K, an open-source software package for electronic
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Figure 7. Simulation speed of MLFF with different cutoff radii and
classical FF over different system sizes.

structure and molecular dynamics analysis.”® These calculations
were conducted by employing the Gaussian plane wave (GPW)
method. Specifically, the GTH-PBE pseudopotential and the
DZVP-GTH-PBE basis set were selected for our analysis. A
plane-wave cutoff energy of S50 Ry was determined from the
convergence tests. Furthermore, we used the Perdew—Burke—
Ernzerhof (PBE) model® as the exchange-correlation func-
tional. Additionally, to account for dispersion correction, the
DFT-D3 method”’ was integrated into the calculations. It has
been shown to capture the interfacial interaction of SCB liquid
crystal.”!

Classical molecular dynamics simulations were conducted
employing the general AMBER force field (GAFF2)”* within
the OpenMM software package.”” The study involves a
periodically repeating system comprised of 18 SCB molecules.
We initialized the system by randomly packing the 5CB
molecules using Packmol at fixed densities. We prepared seven
SCB systems with varying box sizes to mimic the experimental
density variations observed at different temperatures (293, 298,
300, 303, 308, 327, and 367 K), covering the nematic and
isotropic phases of SCB. These systems were then equilibrated at
1000 K for a duration of 12 ns using the Langevin thermostat
with a friction coeficient of 1 ps™'. Nonbonded interactions
were calculated up to 0.8 nm. The particle mesh Ewald (PME)
method was employed for the long-range electrostatic
interactions. The production simulations for all the systems
were run for 2 ns in the NVT ensemble, and we sample 1000
frames at the interval of 2 ps from each of the seven systems for
both unbiased and enhanced sampling.

For the enhanced sampling simulations, we implement
steered MD using a time dependent harmonic bias in
PySAGES.”* Formally, for any collective variable of interest &
and time t, we amend the Hamiltonian H with a term H(E, t)

H = H, + Hyp(E, t) (2)

in which

k
Hoo(E 1) = —(& + vt — &)
where k is the spring constant, &, is the initial desired CV value,
and v is the velocity of the desired CV value w.r.t. time ¢. In this
case, we use ¢ = S, k = 10,000 kJ/mol, &, = —0.5, and v = 0.75

ns~'. Before the production run, an additional steered MD
simulation of 1 ns is performed to ensure that the system’s order
parameter is sufficiently close to &.

The training of MLFF for SCB was _}aerformed using
NequIP'' v0.6.0 and the Allegro package.” For all models
mentioned in this paper, we utilized an initial learning rate of
0.002 and a batch size of 2 and trained the model for 48 h.
MLFEF-S adopts an environment embedding multiplicity of 64,
an edge latent dimension of 128, a two-body latent multilayer
perceptron (MLP) dimension of [128, 256, 512], and a latent
MLP latent dimension of [512, 512, §12]. MLFF-L adopts an
environment embedding multiplicity of 64, an edge latent
dimension of 128, a two-body latent MLP dimension of [128,
256, 512, 1024], and a latent MLP latent dimension of [1024,
1024, 1024].

During the inference phase, MD simulations were performed
using the atomic simulation environment (ASE).” The system
was coupled to a Langevin thermostat with a friction of 0.001
s~

Enhanced sampling during data preparation and validation
was conducted using the PySAGES package,”* to facilitate a
thorough exploration of configuration space. Data preparation
employed the steered MD method. The collective variable
chosen during training data preparation was the S order
parameter of SCB molecules, with a range spanning from —0.5
to 1, to accurately capture the systems’ configurational diversity.

For model validation, we used the spectral ABF technique™ to
obtain free energy surfaces through enhanced sampling.

In performing spectral ABF simulations, we consistently
utilized a grid size of 64 in each dimension. In the case of 1D
dimer free energy calculations, the intermolecular distance was
adjusted from 2 to 10 A. Furthermore, for the 2D dimer free
energy landscape, we employed a grid spanning from —10 to 10
A along the axis parallel to the molecular orientation and from 1
to 10 A along the perpendicular axis. The analysis of potential
energy for dihedral angles was modulated across a range from
—7 to m, partitioned into 36 equal intervals.

B CONCLUSIONS

We have introduced a thoroughly validated machine learning
force field training pipeline. The pipeline was developed and
tested in the context of the liquid crystal SCB, which exhibits
considerable variability in the orientational degrees of freedom
and presents considerable challenges for traditional two-body
classical force fields. During the data generation stage, we
distorted our simulations to ensure that the slow modes of the
system are properly sampled. By employing dimensionality
reduction techniques on our training data, we provide a
comprehensive visualization of the data set across various states,
ensuring both representativeness and robustness. Our method-
ology integrates MD simulations and free energy calculations via
enhanced sampling to validate the quality of the trained MLFFs.
Our findings illustrate that, through careful data set preparation
and validation, some MLFFs can effectively model soft materials,
such as liquid crystals, and potentially other complex molecular
systems. We demonstrated this not only by running long and
stable simulations, which have been elusive in the past, but also
through validation of several physicochemical properties
predicted in these simulations. This suggests that our approach
could be applicable across a diverse range of systems, including
both soft and solid-state materials.

We conclude with a few cautionary remarks about MLFFs.
Despite a cutoff radius of 4 or S A for the network architectures
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examined here, computational efficiency remains inferior to that
of traditional force fields. The MLFF’s ability to capture rare
events and long-term behaviors could still be somewhat limited,
even after taking advantage of the strategy presented here.
Nonetheless, a systematic approach to data set curation,
combined with enhanced sampling and hyperparameter tuning,
is shown to yield a more robust and effective MLFF, thereby
suggesting promising directions for future research.
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