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ABSTRACT 
Cancer is one of the leading causes of death in the U.S., and tumorous cancers such as cervical, lung, 
breast, and ovarian cancers are the most common types. APOBEC3B is a nonessential cytidine deaminase 
found in humans and theorized to defend against viral infection. However, overexpression of APOBEC3B 
is linked to cancer in humans, which makes APOBEC3B a potential cancer treatment target through com
petitive inhibition for several tumorous cancers. Computational studies can help reveal a small molecule 
inhibitor using high-throughput virtual screening of millions of candidates with relatively little cost. This 
study aims to narrow the field of potential APOBEC3B inhibition candidates for future in vitro assays and 
provide an effective scaffold for drug design studies. Another goal of this project is to provide critical 
amino acid targets in the active site for future drug design studies. This study simulated 7.8 million drug 
candidates using high-throughput virtual screening and further processed the top scoring 241 molecules 
from AutoDock Vina, DOCK 6, and de novo design. Using virtual screening, de novo design, and molecular 
dynamics simulations, a competitive inhibitor candidate was discovered with an average binding free 
energy score of −46.03 kcal/mol, more than 10 kcal/mol better than the substrate control (dCMP). These 
results indicate that this molecule (or a structural derivative) may be an effective inhibitor of APOBEC3B 
and prevent host genome mutagenesis resulting from protein overexpression. Another important finding 
is the confirmation of essential amino acid targets, such as Tyr250 and Gln213 within the active site of 
APOBEC3B. Therefore, study used novel computational methods to provide a theoretical scaffold for 
future drug design studies that may prove useful as a treatment for epithelial cancers. 

Abbreviations: APOBEC3B: apolipoprotein B mRNA editing enzyme; dCMP: deoxycytidylate; kcal/mol: 
kilocalories/mole; MD: molecular dynamics; MM-GBSA: molecular mechanics-generalized born surface 
area; ns: nanosecond; PCA: principal component analysis; ps: picosecond; RMSD: root-mean-squared 
deviation; RMSF: root-mean-squared fluctuation; ssDNA: single stranded DNA
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Introduction

Cancer is the second leading cause of death in the United 
States, and tumorous cancers make up a significant portion 
of those deaths per year (CDCBreastCancer, 2023). Ovarian, 
cervical, breast, and lung cancer are the most common types 
of tumorous cancers. Cancers are inherently difficult to treat 
because there are many independent factors. A common 
pharmaceutical route is to identify the location of the cancer 
and treat using general chemotherapy, which has several 
short-term and chronic side effects.

Apolipoprotein B mRNA editing enzyme (abbreviated as 
APOBEC3B) is a human cytidine deaminase that has a role in 
innate immunity and has been linked to the mutagenesis of 
cancers (Hou et al., 2021). APOBEC3B is a nonessential 
human globular protein that is part of the larger APOBEC3 
family and is responsible for the deamination of cytosine to 
uracil in single-stranded DNA (Harris, 2015). The catalytic site 

on APOBEC3B, characterized primarily by the presence of a 
zinc ion, binds cytosine noncovalently, catalyzes its conver
sion to uracil, and then releases the product. Human 
APOBEC3B natively mutates single stranded DNA (ssDNA), 
which prevents viral DNA from being used for viral replica
tion and infecting the host (Kouno et al., 2017). 
Overexpression of APOBEC3B in humans causes damage to 
host DNA, leading to a variety of random mutations (Harris, 
2015). Cancer can result from the accumulation of mutations 
caused by overexpression of APOBEC3B (NCI, 2023). 
APOBEC3B is often overexpressed near cancerous tumors 
and in patients who are experiencing a relapse (Zhang et al., 
2022). APOBEC3B has been linked to common cancers, such 
as breast cancer, ovarian cancer, lung cancer, and bladder 
cancer (Asaoka et al., 2019), and has been proposed to be an 
important drug target to treat cancers through competitive 
inhibition (Olson et al., 2018). Inhibition of APOBEC3B may 
severely limit tumor growth in patients without other 
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underlying conditions and is therefore another treatment 
option to prevent the pre-cancerous state caused by 
APOBEC3B.

The APOBEC3B protein (Figure 1B) contains 382 amino 
acids with two globular Zn-coordinating domains, each con
taining a hydrophobic core consisting of five b-strands sur
rounded by six A-helices. There is a pseudo active site at the 
N-terminal domain and a catalytic active site that is at the C- 
terminal domain. There has been experimental success in the 
crystallization of APOBEC3B in isolation and when bound to 
ligands. In 2016, Shi et al. crystallized APOBEC3B (PDB: 5TD5) 
with the catalytic site accessible to ssDNA (4-mer) (Shi et al., 
2017). In our simulations, we used the crystal structure (PDB: 
5CQH) of the catalytic domain (amino acids 189–379) solved 
by Shi et al. in 2015 through X-ray diffraction (1.73 Å reso
lution) bound by a dCMP nucleotide and four ethylene glycol 
molecules (Shi et al., 2015). The 5CQH crystal structure solved 
by Shi et. Al was used as the receptor structure for all docking 
calculations and provided the starting structure for all molecu
lar dynamics (MD) simulations performed in this study. This 
closed conformation, which is stabilized by Arg211 (loop 1) 
and Tyr315 (loop 7) stacking with Tyr313 positioned over the 
active site, represents an APOBEC3B conformation similar to 
what would be expected in the presence of a small molecule 
inhibitor and suggests that conformational changes occur to 
allow substrate binding. The Zn-coordinating motif includes 
His253, Cys284, Cys289, and the catalytic water molecule (sub
stituted with ethylene glycol in the 5CQH crystal structure), 
which is hydrogen bonding with the activating Glu255. This 
structure represents a promising drug target for cancer treat
ment. Having a robust understanding of the structure and 
dynamics of APOBEC3B is key to designing an efficient inhib
ition candidate.

Historically, small molecule inhibitors of APOBEC3B have 
not proved to be effective, so other methods have been 
explored. Previous research used a kinase to phosphorylate 
APOBEC3B to inhibit its function (Matsumoto et al., 2019) 
and ssDNA was used to inhibit APOBEC3B in vivo (Barzak 
et al., 2019). There are other studies using macro-scale 

molecules, such as antibodies that bind with a Kd �70 nM 
and show promise with APOBEC3B inhibition (Tang et al., 
2021). Additionally, the Epstein-Barr virus binds to APOBEC3B 
preferentially to prevent APOBEC3B-ssDNA binding, which 
provides safety from the viral immune response by 
APOBEC3B (Cryo-EM structure of the EBV ribonucleotide 
reductase BORF2 and mechanism of APOBEC3B inhibition., 
2023). Most previous studies have dealt with large molecules, 
while few have sought to experimentally determine a small 
molecule inhibitor for APOBEC3B. Herein a small molecular 
inhibitor for APOBEC3B would be classified as a compound 
that competes for binding with the native ssDNA substrate. 
One such recent study discovered a compound (MN23) with 
relatively low efficacy (IC50 ¼ 0.15 lM) (Olson, n.d). A pair of 
potential small molecules, 2-pyrimidone and sodium iodide, 
can force APOBEC3B into an inactive state and prevent its 
cytidine deaminase activity were discovered in 2019 (Shi 
et al., 2019). However, neither of these small molecules were 
considered potent inhibitors in the study performed by Shi 
et al. (Shi et al., 2019) Experimental results have not yet pro
vided a potent small molecule inhibitor for APOBEC3B. One 
previous study utilized computational methods by docking 
small molecules to narrow down ZINC12 ligands for in vitro 
assays (King et al., 2021). Previous computational studies 
have been limited to only using docking methods, while our 
study greatly increases the computational rigor used to iden
tify possible drug candidates by combining docking with 
molecular dynamics simulations and free energy calculations 
to yield small molecules with better predicted efficacy. 
Traditionally, drug discovery relied solely on the chemical 
and medical intuition of medicinal chemists and the isolation 
of natural products to make the process more efficient. This 
slowed drug development since researchers had to devise a 
structure for the drug, perform a synthesis, purify and char
acterize the drug, and then finally test the drug in vitro. 
Advances in structural biochemical techniques have also 
resolved many important protein structures that have 
allowed in silico methods to aid the drug discovery process. 
With the advent of computational chemistry methods, the 

Figure 1. (A) Depiction of the representative ligands binding to the catalytic (red) and allosteric (blue) binding sites on the surface of APOBEC3B (gray) as observed 
from docking ZINC12 ligands. For perspective, the Zn2þ (orange) is shown. (B) The structure of APOBEC3B from the 5CQH PDB (Shi et al., 2015). The secondary 
structure of APOBEC3B (PDB: 5CQH) is depicted with A-helices (red), b-sheets (blue), and coils (orange) shown. The catalytic Zn2þ ion (gray sphere) is displayed 
coordinated to His253, Cys284, Cys289, and the catalytic water molecule.
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drug screening and development pace has increased expo
nentially. Molecular docking is a quick and simplistic compu
tational chemistry method of virtually screening thousands 
or millions of compounds to determine potential binding 
modes of small molecules to proteins. Docking generates 
possible conformations of each ligand and uses empirical for
mulas based on experiment to calculate rudimentary binding 
scores for each pose. Computational drug screening is a fast, 
safe and inexpensive way to screen millions of drug candi
dates in a timely manner and may hold the key to finding 
an effective inhibitor to APOBEC3B (Cui et al., 2020; Kant 
et al., 2021; Navyashree et al., 2021; Prada-Gracia et al., 2016; 
Sharma et al., 2020). Furthermore, molecular dynamics (MD) 
simulations utilize classical Newtonian physics to model the 
interactions of molecules over time, and can be used by 
refine protein-ligand docking poses and provide more rigor
ous energy calculations to quantify intermolecular interac
tions between a protein and a drug molecule.

In this study, we utilized molecular docking, MD, binding 
free energy calculations, and de novo ligand growth in the 
pursuit of potential novel competitive inhibitors of 
APOBEC3B. Approximately 7.8 million molecules from the 
ZINC12 clean leads database were virtually screened and 211 
top-scoring molecules from the database were selected for 
further analysis using MD. The drugs we have simulated 
show potential for inhibition and are strong candidates for 
future in vitro assays. Our results are encouraging as they 
demonstrate substantial progress compared to previously 
published potential APOBEC3B inhibitors. Continued testing 
of these potential inhibitors in vitro may yield effective inhib
ition of APOBEC3B and prevent the mutagenic activity exhib
ited by APOBEC3B.

Methods

A potent inhibitor of APOBEC3B has yet to be discovered, 
thus a high-throughput in silico approach is critical to narrow 
the chemical space of potential inhibitors. The computational 
methods utilized in this study included docking 7.8 million 
molecules obtained from a similarity search on the ZINC15 
database using cytosine (which binds to the active site 
natively) as the target of similarity, then performing atomic- 
level molecular dynamics simulations and binding free energy 
calculations on 211 molecules that showed the most promise 
from docking. Finally, we performed novel de novo ligand 
growth to generate new potential inhibitors and processed 
those new ligands through the same workflow. We drew from 
the ZINC12 database (Irwin et al., 2012) for the majority of our 
ligands and then used those as a starting point for testing 
against the deoxycytidylate (dCMP) control. The 5CQH PDB10 

was obtained from the Protein Data Bank (Berman et al., 
2003) and used as the receptor for the remainder of the pro
ject with slight modifications as detailed below.

Protein model preparation

Using MODELLER (Eswar et al., 2006; Fiser et al., 2000; Sali 
and Blundell, 1993) online loop refinement within Chimera 

(Pettersen et al., 2004), we modeled in the missing random 
coil region spanning amino acids Ala242–Tyr250 (loop 3) in 
the 5CQH PDB. We used AMBER’s MCPB.py toolkit (Li and 
Merz, 2016) to generate parameters for the metal-centered 
active site, including forming bonds between the catalytic 
Zn2þ ion and Cys284@S, Cys289@S, His353@ND, and the oxy
gen of a crystallographic water. These modifications allowed 
for simulations to maintain a reasonable conformation of the 
protein using the metal center of APOBEC3B.

Virtual screening

PyRx (Small-Molecule Library, 2023) was used to define a grid 
box and generate pdbqt files for modeling the binding site. 
The QuickVina algorithm (Alhossary et al., 2015) of the 
AutoDock Vina software (Eberhardt et al., 2021; Trott and 
Olson, 2010) was used to perform flexible molecular docking 
with a docking cubic box of width 25 Å length centered on (X 
¼ –1.500, Y ¼ –7.700, Z ¼ 15.000) on the 5CQH PDB after add
ing the zinc and loop as detailed above. The grid box location 
was chosen based on its proximity to the catalytic zinc ion. 
7.8 million molecules were acquired from the ZINC12 (Irwin 
et al., 2012) clean leads database and docked to this structure 
using an exhaustiveness of 8 (default) and scored by the 
AutoDock Vina scoring function. The default mode of docking 
was utilized in AutoDock Vina, which outputs the best nine 
poses for each docked molecule (defaults). For each molecule, 
we selected the top scoring pose for further analysis. A bind
ing free energy cutoff of −7.8 kcal/mol from QuickVina (Li and 
Merz, 2016) was utilized to filter the number of candidates 
proceeding to molecular dynamics and further analysis, result
ing in 211 top-ranked ligands simulated (see below).

Molecular dynamics
All protein-ligand complexes were prepared for MD and 
simulated using the AmberTools (Trott and Olson, 2010) and 
Amber 20 software package (Case et al., 2022). The 5CQH 
PDB structure was used as the starting protein conformation 
for APOBEC3B in all simulations herein. Additionally, the lig
and coordinates for each potential inhibitor were taken from 
the top scoring docking mode from PyRx (see above) in ref
erence to the original 5CQH coordinates. The Amber ff14SB 
force field (Maier et al., 2015) parameters were applied to 
the protein and GAFF (Wang et al., 2004) parameters were 
used for the ligands. The antechamber module (Maier et al., 
2015) in AmberTools was used to generate partial atomic 
charges for all ligands. We used AmberTools’ tleap to neutral
ize the system for each ligand with �3 Naþ ions (to counter 
the negative overall charge of the protein) and solvated a 
truncated octahedron periodic box with TIP3P water models 
(Jorgensen et al., 1983), resulting in a unit cell consisting of 
�23,000 atoms. We used the GPU-accelerated pmemd code 
(Salomon-Ferrer et al., 2013) for Amber 20 to perform MD 
(Salomon-Ferrer et al., 2013; Weinbach & Elber, 2005). 
Minimization of the solvated system consisted of seven 
stages, each comprising a maximum of 5000 steps. The first 
1000 steps contained the steepest descent in potential, with 
the remaining 4000 being of conjugate gradient minimiza
tion. The first of the seven stages was given a restraining 
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force of 10.0 kcal/mol/Å2 on the heavy atoms of the solute 
and this was methodically lowered to 0.0 kcal/mol/Å2 by 
stage seven. After all seven minimization steps, the solvated 
box was heated linearly from 10 K to 300 K at 1 atm pressure 
over 2.0 ns while the solute atoms were again restrained 
with a restraint weight of 10 kcal/mol/Å2. During equilibra
tion the restraining force was lowered from 10 to 0.0 kcal/ 
mol/Å2 every 500 ps over seven stages until fully unre
strained. After equilibration, unrestrained MD was performed 
at a constant pressure of 1 atm with isotropic scaling, and 
constant temperature of 300 K was maintained using a 
Langevin thermostat. Each protein-ligand complex was simu
lated using a 2-fs timestep with the SHAKE algorithm 
(Weinbach and Elber, 2005) for at least 250 ns, which was 
enough to reach a conformational equilibrium (Figures S3– 
S6). During unrestrained MD, each atom in the ligand was 
given a random initial velocity. After running unrestrained 
MD on each of the ligands that passed the docking cutoff 
score (211 ligands with a docking score of −7.8 kcal/mol or 
better), we selected the 30 top performing ligands from the 
ZINC database for further analysis, representing the best 
�15% of ligands simulated for 250 ns. These top 30 ligands 
were simulated in triplicate (each replicate initiated with dif
ferent starting atomic velocities) for 250 ns (750 ns total) to 
determine an average binding free energy that represents 

enhanced sampling of the potential energy surface. All initial 
simulations were performed using identical constraints; lon
ger simulations were used on the best performing ligands to 
further analyze their behaviors.

Molecular dynamics analysis

Molecular Mechanics-Generalized Born Surface Area (MM- 
GBSA) (Sun et al., 2014) calculations were performed using 
Amber’s MMPBSA.py (Miller et al., 2012) to determine the 
average binding free energy scores from the MD trajectories 
for all ligands. Binding free energies (kcal/mol) were calcu
lated every 0.1 ns (all recorded frames) using the GB model 
developed by A. Onufriev, D. Bashford and D.A. Case 
(Onufriev et al., 2000; 2004) in conjunction with bondi radii 
parameters. The binding free energies were further decom
posed on a per-residue basis to quantify each residue’s con
tribution to protein-ligand binding for all simulations. The 
analysis also parses out the energies based on contribution 
type, such as electrostatic, van der Waals, polar solvation, 
and non-polar solvation energies. All other parameters for 
MMPBSA.py were set to default values.

We also used the cpptraj package (Roe and Cheatham, 
2013) included in AmberTools to calculate and compare the 

Table 1. Top 10 docked ZINC12 molecules.

ZINC ID
Docking Score 

(kcal/mol) 2D Structure
Allosteric or 

Catalytic ZINC ID
Docking Score 

(kcal/mol) 2D Structure
Allosteric or 

Catalytic

29528216 −8.5 A 39741670 −8.2 A

40448341 −8.5 C 73637923 −8.2 A

47194834 −8.4 A 20901837 −8.2 A

95529176 −8.3 A 39741667 −8.2 A

06703437 −8.2 C 47194833 −8.1 A

The molecules depicted were docked and discovered to have the lowest binding free energy according to the AutoDock Vina scoring function, as well as an 
allosteric or catalytic designation based on the location of the final docked pose.
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root-mean-squared deviations (RMSD), root-mean-squared 
residue fluctuations (RMSF), hydrogen bonding analysis, and 
principal component analysis (PCA) for the simulations. The 
VMD software (Humphrey et al., 1996) was used for visualiza
tion and generating structural images (Table 1).

Pharmokinetics and drug-likeness calculations were per
formed on the top scoring inhibitors from MD used the 
SwissADME web server (Daina et al., 2017).

2.6. DOCK 6 and de novo design

DOCK 6 (Allen et al., 2017) was used to create a model of 
APOBEC3B that would act as a receptor for de novo ligand 
growth, which creates a series of novel ligands specific to 

the receptor structure that could serve as potential inhibitor 
candidates. The best-performing catalytic ligand was deter
mined through MM-GBSA post-processing of MD simulations 
(above). The ligand, pre-screened catalytic ligand 
ZINC09338246 (Table 2) from the ZINC12 database, was used 
as a model to help DOCK 6 establish a proper docking site. 
The sphere selection was constrained to 1.4 Å within the 
active site on the receptor to prevent over saturation of lig
and growth. The fragment library used for de novo ligand 
growth was propagated from a PDB compilation of 25 of the 
top-scoring ligands from the screened ZINC12 ligands that 
were simulated in triplicate for 250 ns. After de novo ligand 
growth was performed, the top 30 newly generated, grown 
ligands were each simulated for 250 ns once bound to 

Table 2. Top 10 ZINC12 ligands from MD.

Name or  
ZINC ID

MMGBSA  
Binding  
Energy  

(kcal/mol) 2D Structure

Allosteric  
or  

Catalytic  
(A/C)

Name or  
ZINC ID

MMGBSA  
Binding  
Energy  

(kcal/mol) 2D Structure

Allosteric  
or  

Catalytic  
(A/C)

39741667 −33.7 A 72478471 −28.1 A

9338246 −33.3 C 65494139 −24.9 A

69493336 −30.8 A 39741670 −23.2 A

69512841 −29.2 A 03911065 −21.9 A

72152602 −28.2 A MN23 −22.9 C

A list of the top 10 candidates from the ZINC12 database ordered by average MM-GBSA binding free energy, as well as their locations in the allosteric or cata
lytic binding sites. MN23 originates from an in vitro study by Olson et al. (n.d.) that we used as a control to compare with our proposed drug compounds.
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APOBEC3B (following the same procedure above) for com
parison to the ZINC12 ligands. All other parameters were 
used as default based on available DOCK 6 and de novo 
protocols.

Results and discussion

In this study, we performed the first high-throughput virtual 
screening of the APOBEC3B enzyme in search of a novel 
inhibitor that could develop into a future cancer treatment. 
After docking 7.8 million clean lead molecules from the 
ZINC12 database, we simulated the top-ranking 211 com
pounds bound to the APOEBC3B active site using molecular 
dynamics and simulated the top 30 compounds in triplicate 
for 250-ns each. These compounds were then further nar
rowed using average binding free energy calculations to the 
top 25 potential inhibitors, which were used by DOCK 6 to 
generate a fragment library for de novo structure-based drug 
design. The best 30 de novo drugs from DOCK 6 were also 
simulated and analyzed using molecular dynamics and free 
energy calculations. Overall, we report several novel potential 
inhibitors (both purchasable and/or synthesizable) specific to 
APOBEC3B that may lead to the development of new cancer 
treatments.

Docking results

The ZINC clean leads database was used to access structures 
for 7.8 million molecules, which were virtually screened using 
QVina. Table 1 depicts the top 10 drug candidates along 
with their corresponding docking scores (Table S1 provides 
structures and docking scores for all 211 docked compounds 
that met the −7.8 kcal/mol cutoff criteria). The allosteric bind
ing site described in Table 1 is located primarily in the space 
between Asp260 and Leu238, �12.5 Å from the Zn2þ in the 
catalytic site (Figure 1A). There are clear similarities in func
tional groups present among the ligand structures, with 
exceptions such as ZINC40448341. One of these similarities is 
nitrogen-containing p systems, which is unsurprising consid
ering the natural substrate is a pyrimidine (cytosine). The 
active site was decided based on proximity to a zinc ion par
ameterized for the system, however some ligands docked to 
a pocket adjacent to the active site and thus would not be 
considered competitive inhibitors.

Upon inspection, ZINC29528216 has key interactions with 
Arg257 and Arg252 through hydrogen bonding interactions. 
ZINC40448341 shows strong interactions with Tyr313, 
His253, Arg211, and Asn240 inside the catalytic site. Tyr313 
shows in vitro binding relevance by having important 
p-stacking interactions with the cytosine base in the active 
site as well as helping create a hydrophobic pocket for the 
−1 base in the ssDNA chain (Shi et al., 2017). His253 shows 
binding relevance as well through similar p-stacking interac
tions with the cytosine in the active site, proving crucial to 
binding in addition to Tyr313 (Shi et al., 2015). Asn240 also 
proves to be important by hydrogen bonding with the 
backbone of the cytosine base in vitro (Shi et al., 2017). 
However, it is important to note that neither of these 

ligands performed well enough to score in the top 10 
ZINC12 ligands after modeling them with molecular dynam
ics simulations (see below).

Molecular dynamics simulations

After docking, molecular dynamics simulations were used to 
provide a more accurate and dynamic view of the interac
tions involved in these protein-drug complexes. As noted in 
the Methods, a Qvina docking score cutoff of −7.8 kcal/mol 
was established to filter out less promising candidates and 
allow for further analysis with the most promising candi
dates. This resulted in 211 docked molecules being analyzed 
using MD. Table S1 depicts the structures and binding free 
energy results for all simulated molecules. A table of the top 
10 performing candidates from our MD analysis is shown 
below (Table 2), and it is important to note that not all of 
these candidates match with those of the top 10 docked 
candidates. That is to be expected due to the rigor and 
increased sampling of MD simulations when compared to 
docking. However, there are some conserved candidates 
between these tables such as ZINC39741667 and 
ZINC39741670. These two ligands are particularly similar in 
structure, and thus the consistency in their results across 
docking and MD helps give credibility to the consistency of 
our methodology. The structures of the most promising 
ligands from docking similarly resemble those from MD, such 
as the nitrogen ring systems and the carbonyls that resemble 
the natural substrate (cytosine) of APOBEC3B. Many inhibitors 
seek to emulate the natural substrate due to the specificity 
of the binding site, so this similarity is expected.

A control for this project was established by simulating a 
single dCMP nucleotide. This control dCMP was removed 
from a larger crystal structure of ssDNA (PDB 5TD5), docked 
to APOBEC3B, and simulated in triplicate using the same pro
cedure detailed below for 250 ns. This control scored an 
average of −34.09 kcal/mol, though we recognize that an 
extended ssDNA sequence would likely have a more potent 
binding affinity. One molecule (MN23) listed in the table is a 
drug previously described by Olson et al. who tested com
pounds in vitro, which resulted in an IC50 value of 0.15 lM 
(Olson, n.d). This drug was also used as a comparison with 
these newly tested ZINC and de novo ligands and the top 
ZINC candidates from this project scored up to 10 kcal/mol 
more favorably than this comparison drug (DGbind ¼

−22.9 kcal/mol).
Our MD results from the molecules screened from the 

ZINC database suggest ZINC09338246 is the second most 
promising inhibitor of APOBEC3B. PCA results on the top 
four normal modes (Figure S11) from MD displayed a stable 
enzyme core near the binding pocket, while the solvent 
exposed loops were more dynamics. Figure 2 shows the 
binding and efficiency of ZINC09338246 from the 250 ns MD 
simulation. Figure 2A shows a representative conformation 
of the APOBEC3B-ZINC09338246 complex from MD, depicting 
how deeply the molecule binds within the active site. A free 
energy decomposition analysis (Figure 2D) of ZINC09338246 
bound to APOBEC3B for 250 ns shows that the amino acids 
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that contribute most to binding are the His253 and Tyr250 
primarily through p-stacking interactions. His253 is important 
for in vitro p-stacking with the cytosine base (Shi et al., 2015; 
2017), thus ZINC09338246 is replacing a key interaction with 
the native ssDNA. Trp287 interacts much the same way, 
while Gly251 and Asn240 contribute more through hydrogen 
bonding and dipole-dipole interactions (Figure 2B). Trp287 is 
structurally important to APOBEC3B by stabilizing the closed 
loop conformation of APOBEC3B (Shi et al., 2015), making 
Trp287 a logical amino acid to target for inhibition. Along 
with Trp287, Asn240 is another important residue hypothe
sized to be interacting well with the C2 carbonyl group of 
the cytosine base in vitro (Shi et al., 2015), again demonstrat
ing the potential potency of ZINC09338246 by directly com
peting with the natural ligand in the catalytic site. Based on 
the binding free energy throughout the simulation (Figure 
2C), the ligand appears to change conformation slightly, 
resulting in a marginally more potent bound conformation at 

�190 ns (Figure 2C). Through visual inspection, the ligand 
was shown to begin forming a water bridge with Gly248 
through hydrogen bonding with the ligand for �25% of the 
simulation, which correlates with the decrease in binding 
free energy observed in Figure 2C at �190 ns.

ZINC39741667 was determined to be the strongest bind
ing ZINC molecule from this study based on binding free 
energy calculations from MD (Figure 3). ZINC39741667 is 
observed as binding in an allosteric site (Figure 3A), as 
reported in Table 2. Thus, ZINC39741667 should not be con
sidered a competitive inhibitor, but still demonstrates prom
ise as a potentially effective drug candidate. Furthermore, 
the amino acids interacting with ZINC39741667 (Figure 3B) 
help depict the difference in binding pockets as none of 
these amino acids are present in the decompositions of the 
other top molecules from ZINC or de novo, which are bind
ing in the catalytic active site. Arg257 stands out as the most 
stabilizing amino acid in this simulation of this protein-ligand 

Figure 2. Comprehensive analysis of ZINC09338246 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and 
ZINC09338246 shown in VDW representation. B) Representation of the ZINC09338246 binding pocket showing the catalytic Zn2þ ion and top amino acid residues 
contributing to binding: His253 (orange), Tyr250 (gray), Trp287 (yellow), and Gly251 (blue). the dotted lines represent the hydrogen bonds observed during the 
simulation between Gly251 and ZINC09338246, along with the percent occupancy of those hydrogen bonds during the simulation. C) a graph of the binding free 
energy (kcal/mol) during the 250 ns APOBEC3B-ZINC09338246 MD simulation with the average binding free energy shown. D) Depiction of the decomposed free 
energy (kcal/mol) of each of the top five amino acids from APOBEC3B that contribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation 
and fluctuation of the ZINC09338246, which indicates the stability of the ligand. Figure S8 depicts a table of values relevant to the hydrogen bonding as well as an 
accompanying 2D structure to assist with atom naming conventions. Finally, Table S7 features an ADMET prediction which reports 0 violations in the Lipinski rules 
for druglikeness and a log[P] ¼ –0.06 which indicates a slight difficulty in crossing the cell membrane once administered. It should also be noted that while 
Asn240 is mentioned in panel D, it was removed from the image in panel B due to obstruction of view.
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complex; this is primarily due to the dipole interactions 
between the sidechain and the tertiary amide atoms present 
in the molecule. Arg252 has similar interactions between the 
sidechain and the oxygen-nitrogen fragment of the molecule. 
Phe249 contributes in two considerable ways that influence 
ligand binding, one being a p-stacking interaction and the 
other is a hydrogen bond between the backbone and the 
ZINC39741667 (Figure 3B). Shi et al. also observed important 
protein-substrate interactions in this region (amino acids 
242–255), such as direct or water-mediated hydrogen bonds 
with the backbone phosphate of the þ1 nucleotide (Shi 
et al., 2017). The binding free energy begins to worsen near 
the end of the simulation (Figure 3C), which is indicative of 
the molecule becoming less stable in the binding pocket. 
This change in stability can be accounted for by the p-stack
ing interaction breaking around 170 ns and by making the 
molecule less stable for the rest of the simulation. PCA 
results on the top four normal modes (Figure S12) from MD 
suggest the structure of APOBEC3B is most stable when 

bound to ZINC39741667 compared with the other potential 
inhibitors analyzed (Figures S11–S14). While this ligand has a 
better average binding affinity than ZINC09338246, it should 
be noted that it is an allosteric inhibitor, and it does become 
less energetically stable toward the end of the simulation, 
suggesting potentially greater instability than the previous 
ligand at larger time frames.

De novo design

Using de novo ligand design with DOCK 6, 919 ligands were 
generated from the fragment library created using the top 
performing 25 ZINC12 clean leads. The DOCK 6 software was 
used to dock these novel ligands to the APOBEC3B active 
site, and the top 30 were then simulated with MD (Table S2). 
However, while the protocol for MD and MM-GBSA calcula
tions were identical to the ZINC12 clean leads, the DOCK 6 
docking scores are not directly comparable to the QVina 

Figure 3. Comprehensive analysis of ZINC39741667 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and 
ZINC39741667 shown in VDW representation. B) Representation of the ZINC09338246 binding pocket showing the catalytic Zn2þ ion and top amino acid residues 
contributing to binding: Arg257 (orange), Arg252 (gray), Phe249 (yellow), and Cys247 (blue). C) a graph of the binding free energy (kcal/mol) during the 250 ns 
APOBEC3B-ZINC39741667 MD simulation with the average binding free energy shown. D) Depiction of the decomposed free energy (kcal/mol) of each of the top 
five amino acids from APOBEC3B that contribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation and fluctuation of the ZINC39741667, 
which indicates the stability of the ligand. Figure S8 depicts a table of values relevant to the hydrogen bonding as well as an accompanying 2D structure to assist 
with atom naming conventions. Finally, Table S7 features an ADMET prediction which reports 0 violations in the Lipinski rules for druglikeness and a log[P] ¼ 1.80 
which indicates a drug that absorbs well orally and intestinally without being sequestered into adipocytes.
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scores due to the difference in scoring functions, and thus 
the DOCK 6 docking scores have been omitted from Table 3
(and Table S2) for clarity. As shown in Table 3, several of the 
de novo ligands (DN08, DN29, etc.) have a conserved frag
ment involving a purine-like ring that is a direct product of 

the de novo ligand growth process using ZINC09338246 as 
one of the model ligands in the fragment library generation. 
The 30 most promising ligands from DOCK 6 and de novo 
ligand design were simulated using Amber (see results 
below). These top 30 ligands docked in the same vicinity of 

Table 3. Top 10 de novo ligands.

Name 2D Structure
MMGBSA Binding 
Energy (kcal/mol) Name 2D Structure

MMGBSA Binding 
Energy (kcal/mol)

DN29 −46.0 DN06 −23.4

DN08 −29.4 DN24 −22.3

DN28 −26.2 DN26 −21.6

DN19 −25.8 DN02 −22.0

DN04 −25.1 DN14 −21.6

A list of the top 10 performing de novo ligands found in this study ordered by most favorable average MM-GBSA binding free energy to least favorable. All de 
novo ligands docked to the same binding site (catalytic) as ZINC09338246.
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the catalytic binding site as the conserved fragment we see 
with ZINC09338246 and are typically interacting with Arg212 
through hydrogen bonding interactions.

DN29 is clearly the best scoring molecule produced 
from both the ZINC database screening and de novo 
design methodology. DN29 shares a similar structure and 
chemical features with ZINC09338246, especially regarding 
the imidazole ring that sits deep in the catalytic site. DN29 
scored on average −12 kcal/mol lower than the other top 
performing molecules from either methodology and that 
is due to several compounding factors. An important 
structural part of this molecule is the guanidinium frag
ment that interacts well with the aromatic structures 
around it, such as Trp287 and Tyr250. These residues show 
high-affinity p-stacking interactions with this fragment 
throughout the simulation and both contribute heavily to 
the binding free energy. Another important part of this 
molecule is the presence of polar atoms that interact most 
with Arg212 and Asn240. These polar interactions heavily 

contribute to the binding free energy as seen in Figure 4D. 
These fragments were all pulled from the library created 
from the ZINC12 database molecules, which helps 
explain the structural similarity to molecules such as 
ZINC09338246.

Molecular dynamics on de novo molecules

The ZINC12 clean leads yielded no candidates that outper
formed the control dCMP, however the results from de novo 
ligand growth were more promising. The control dCMP 
scored an MM-GBSA average binding free energy of 
−34.09 kcal/mol over the course of running 250 ns MD in 
triplicate, and the de novo candidate, DN29, scored an aver
age of −46.03 kcal/mol. Figure 4 shows the binding efficiency 
of DN29 from the 250 ns MD simulation. Figure 4A shows a 
representative conformation of the APOBEC3B-DN29 complex 
from MD, depicting how deeply the molecule binds within 

Figure 4. Comprehensive analysis of DN29 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and DN29 shown 
in VDW representation. B) Representation of the DN29 binding pocket showing the catalytic Zn2þ ion and top amino acid residues contributing to binding: Arg212 
(orange), Asn240 (gray), Phe249 (yellow), and Tyr250 (blue). C) a graph of the binding free energy (kcal/mol) during the 250 ns APOBEC3B-DN29 MD simulation 
with the average binding free energy shown. D) Depiction of the decomposed free energy (kcal/mol) of each of the top five amino acids from APOBEC3B that con
tribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation and fluctuation of the DN29, which indicates the stability of the ligand. Figure 
S8 depicts a table of values relevant to the hydrogen bonding as well as an accompanying 2D structure to assist with atom naming conventions. Finally, Table S7 
features a table with ADMET predictions with 0 violations of the Lipinski rules for druglikeness and a log[P] ¼ –0.37 which indicates a slight difficulty in crossing 
the cell membrane once administered.
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the catalytic site as well as how loop 3 of the protein closes 
over the molecule. A free energy decomposition analysis 
(Figure 4D) of DN29 bound to APOBEC3B for 250 ns shows 
that the amino acids that contribute most to binding are 
Arg212 and Asn240. The interaction with Arg212 is primarily 
due to the interaction between the carbonyl oxygen of 
DN29 and the sidechain polar hydrogens of Arg212. The 
interaction between Asn240 and the molecule primarily relies 
on the dipole-dipole interaction between the DN29 and 
Asn240. Asn240 is important for in vitro as it has been shown 
to interact with the C2 carbon of the backbone of the cyto
sine in ssDNA (Shi et al., 2017). Gln213, is also one of the top 
contributing amino acids (Figure 4D), and has been theorized 
to be an important amino acid residue in vitro due to its 
preference for adenosine at the þ1 position (Shi et al., 2017). 
Each of these residues are critical and would serve as rational 
targets for future drug design. Based on the binding free 
energy throughout the simulation (Figure 4C), the ligand 
appears to be energetically stable, as well as structurally sta
ble within the binding pocket, which indicates a stable 

binding conformation throughout the simulation. In fact, the 
binding free energy appears to be trending downwards as 
time progresses, indicating a stabilizing binding affinity. 
Through visual inspection, the increase in binding free 
energy beginning at �190 ns can be attributed to loop 3 
detaching from DN29, while the ligand remains stable in the 
binding site. However, the loop does return to its initial pos
ition interacting with DN29 later in the simulation. PCA 
results (Figure S13) from MD suggest the structure of 
APOBEC3B shares dynamic similarities (though greater mag
nitude) when bound to DN29 compared with ZINC39741667 
(Figure S12) for all four of the top normal modes.

DN08 is the second most potent inhibitor found using de 
novo design. PCA results on the top four normal modes 
(Figure S14) from MD suggest the binding pocket of 
APOBEC3B near the Zn2þ ion is most dynamic when bound 
to DN08 compared with our other analyzed ligands (Figure 
S11–S13). Figure 5A shows the protein-ligand complex and 
the most notable difference from DN29 is the lack of protein 
enclosure of the ligand. This gives an initial indicator of the 

Figure 5. Comprehensive analysis of DN08 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and DN08 shown 
in VDW representation. B) Representation of the DN08 binding pocket showing the catalytic Zn2þ ion and top amino acid residues contributing to binding: Arg212 
(orange), His253 (gray), Gln213 (yellow), and Tyr250 (blue). C) a graph of the binding free energy (kcal/mol) during the 250-ns APOBEC3B-DN08 MD simulation 
with the average binding free energy shown. D) Depiction of the decomposed free energy (kcal/mol) of each of the top five amino acids from APOBEC3B that con
tribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation and fluctuation of the DN08, which indicates the stability of the ligand. Figure 
S8 depicts a table of values relevant to the hydrogen bonding as well as an accompanying 2D structure to assist with atom naming conventions. Finally, Table S7 
features ADMET predictions with 2 violations of the Lipinski rules for druglikeness (MW > 500, MLOGP > 4.15) and a log[P] ¼ 3.85 which indicates a preference for 
being sequestered into adipocytes without reaching its target cell.
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lower binding free energy observed compared to DN29. 
DN08 did not perform as well as DN29, and that is clear 
based on the much more erratic binding free energy during 
the simulation (Figure 5C) relative to DN29 (Figure 4C). 
Figure 5B shows the relevant interactions between the pro
tein and DN08. DN08 does share a strong p-cation inter
action between itself and Arg212 with DN29; this interaction 
is consistent among the best performing ligands in this 
study. We hypothesize Arg212 could become one of the 
most important amino acids to target in future drug trials. 
DN08 also has interactions with the Tyr250, similar to DN29 
and ZINC09338246, which makes it another important target 
residue for drug design. His253 and Tyr250 are two other 
reoccurring residues shown in Figure 5D which, according to 
Shi et al., contribute via important direct or water-mediated 
hydrogen bonds with the backbone phosphate of the þ1 
nucleotide between the nucleotide and amino acids 242–255 
(Shi et al., 2017). One amino acid that does not appear in 
Figure 5D is Tyr313, which forms a T-shaped p-stacking inter
action with the cytosine in the active site in vitro, as well as 
interacting with the −1 thymine in the ssDNA chain (Shi 
et al., 2017). Tyr313 actually has very similar contribution to 
the binding free energy (–1.0 kcal/mol) as Leu245, but falls 
just short of the top five interacting residues shown (Figure 
5D). The amide oxygen on DN08 hydrogen bonds with the 
side chain hydroxyl of Tyr313 for �80% of the simulation, 
and a halogen-p interaction also stabilizes the DN08 fluorine 
near Tyr313 for much of the simulation, similar to the inter
action Tyr313 has with the natural substrate in vitro. DN08 is 
among the most promising molecules in our study, and it 
helps to illuminate the importance of Arg212 for inhibitor 
binding.

Overall, our MD results from the molecules created in the 
de novo design process suggest that DN29 is the most prom
ising inhibitor of APOBEC3B. DN29 is a de novo grown ligand 
that has not yet been synthesized to our knowledge. 
However, future work will investigate the most feasible syn
thetic pathway for DN29. Currently, a synthetic pathway for 
DN29 is underway through the Olson lab at Truman State 
University. Another important note to make is that we are 
currently unaware of any catalytic activity the enzyme may 
have on DN29 itself in the active site, since it, too, has an 
amine group deep in the binding site near the zinc atom, 
which coordinates the cytidine deaminase reaction in vivo. 
These studies will be investigated more in future work as 
well to determine an IC50 value for DN29 and to discover the 
impact of DN29 on the catalytic efficiency of APOBEC3B 
in vitro. However, this drug remains a promising scaffold for 
future APOBEC3B drug development. DN08 is another prom
ising inhibitor for APOBEC3B and focuses on other related 
interactions between the protein and bound ssDNA that 
could be important for inhibitor design. De novo ligand 
design has yielded the most promising drugs in this study 
and has provided successful results in only one iteration. 
With successive iterations of de novo ligand design and more 
expansive libraries, de novo ligand design has the promise to 
generate more potent drug candidates in the future for 
APOBEC3B.

Conclusion

To help treat cancer proliferation, we have searched for and 
designed a small molecule inhibitor for APOBEC3B. This small 
molecule inhibitor could be another tool in the fight against 
tumorous cancers and provides us with a straightforward 
method for treating these cancers. Previous small molecule 
studies have proved largely ineffective when testing in vitro 
with IC50 values in the mM range, which is not comparable to 
marketable drug candidates. Therefore, our work in creating 
a well-performing drug candidate is a huge step in the fight 
against APOBEC3B mutagenesis. The ultimate goal of this 
project is to provide a scaffold for further drug development 
and reveal the most important amino acids to bind to when 
designing an APOBEC3B-specific inhibitor.

We are the first to conduct high-throughput virtual 
screening and MD on this scale as well as the first to utilize 
de novo ligand design for APOBEC3B. These analyses have 
shown that a small molecule inhibitor for APOBEC3B is plaus
ible and could allow for further testing on their efficacy 
against APOBEC3B. The ZINC database has provided a func
tional scaffold in the way of ZINC09338246 that could com
pete with the natural substrate in some capacity and was 
used to generate promising novel potential inhibitors using 
de novo ligand design. Our use of de novo ligand growth has 
yielded a potentially successful, and synthesizable, drug can
didate to test in vitro. Certain amino acid targets seem to be 
essential as the top de novo candidates interact with similar 
residues as well as the top performing ZINC ligand. Through 
binding free energy decompositions using MMPBSA.py these 
residues appear to be Arg212, Gln213, and Tyr250, which 
makes them the most rational targets for future drug trials 
and design. We believe the small molecules described herein 
provide the best-known lead molecules and scaffolds for 
future drug design efforts for APOBEC3B, and by utilizing 
computational chemistry methods we were able to reason
ably screen millions of compounds in chemical space to nar
row down the search for potent APOBEC3B inhibitors.

Future work would include performing syntheses and 
in vitro inhibition assays (Nair and Rein, 2014) on the top 
ZINC and de novo candidates. In these studies, we would 
test the efficacy of these drugs on APOBEC3B along with 
enantiomeric studies of the most potent candidates and 
determine how these drugs affect APOBEC3B catalysis using 
fluorescence methods as described by Nair (Nair and Rein, 
2014). This project has provided future drug designers with a 
scaffold from which to continue to build ligands and has 
provided a list of important residues to consider when 
designing an inhibitor of APOBEC3B.
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