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ABSTRACT

Cancer is one of the leading causes of death in the U.S., and tumorous cancers such as cervical, lung,
breast, and ovarian cancers are the most common types. APOBEC3B is a nonessential cytidine deaminase
found in humans and theorized to defend against viral infection. However, overexpression of APOBEC3B
is linked to cancer in humans, which makes APOBEC3B a potential cancer treatment target through com-
petitive inhibition for several tumorous cancers. Computational studies can help reveal a small molecule
inhibitor using high-throughput virtual screening of millions of candidates with relatively little cost. This
study aims to narrow the field of potential APOBEC3B inhibition candidates for future in vitro assays and
provide an effective scaffold for drug design studies. Another goal of this project is to provide critical
amino acid targets in the active site for future drug design studies. This study simulated 7.8 million drug
candidates using high-throughput virtual screening and further processed the top scoring 241 molecules
from AutoDock Vina, DOCK 6, and de novo design. Using virtual screening, de novo design, and molecular
dynamics simulations, a competitive inhibitor candidate was discovered with an average binding free
energy score of —46.03 kcal/mol, more than 10kcal/mol better than the substrate control (dCMP). These
results indicate that this molecule (or a structural derivative) may be an effective inhibitor of APOBEC3B
and prevent host genome mutagenesis resulting from protein overexpression. Another important finding
is the confirmation of essential amino acid targets, such as Tyr250 and GIn213 within the active site of
APOBEC3B. Therefore, study used novel computational methods to provide a theoretical scaffold for
future drug design studies that may prove useful as a treatment for epithelial cancers.

Abbreviations: APOBEC3B: apolipoprotein B mRNA editing enzyme; dCMP: deoxycytidylate; kcal/mol:
kilocalories/mole; MD: molecular dynamics; MM-GBSA: molecular mechanics-generalized born surface
area; ns: nanosecond; PCA: principal component analysis; ps: picosecond; RMSD: root-mean-squared
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Introduction

Cancer is the second leading cause of death in the United
States, and tumorous cancers make up a significant portion
of those deaths per year (CDCBreastCancer, 2023). Ovarian,
cervical, breast, and lung cancer are the most common types
of tumorous cancers. Cancers are inherently difficult to treat
because there are many independent factors. A common
pharmaceutical route is to identify the location of the cancer
and treat using general chemotherapy, which has several
short-term and chronic side effects.

Apolipoprotein B mRNA editing enzyme (abbreviated as
APOBEC3B) is a human cytidine deaminase that has a role in
innate immunity and has been linked to the mutagenesis of
cancers (Hou et al, 2021). APOBEC3B is a nonessential
human globular protein that is part of the larger APOBEC3
family and is responsible for the deamination of cytosine to
uracil in single-stranded DNA (Harris, 2015). The catalytic site

on APOBEC3B, characterized primarily by the presence of a
zinc ion, binds cytosine noncovalently, catalyzes its conver-
sion to wuracil, and then releases the product. Human
APOBEC3B natively mutates single stranded DNA (ssDNA),
which prevents viral DNA from being used for viral replica-
tion and infecting the host (Kouno et al, 2017).
Overexpression of APOBEC3B in humans causes damage to
host DNA, leading to a variety of random mutations (Harris,
2015). Cancer can result from the accumulation of mutations
caused by overexpression of APOBEC3B (NCI, 2023).
APOBEC3B is often overexpressed near cancerous tumors
and in patients who are experiencing a relapse (Zhang et al.,
2022). APOBEC3B has been linked to common cancers, such
as breast cancer, ovarian cancer, lung cancer, and bladder
cancer (Asaoka et al., 2019), and has been proposed to be an
important drug target to treat cancers through competitive
inhibition (Olson et al., 2018). Inhibition of APOBEC3B may
severely limit tumor growth in patients without other
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Figure 1. (A) Depiction of the representative ligands binding to the catalytic (red) and allosteric (blue) binding sites on the surface of APOBEC3B (gray) as observed
from docking ZINC12 ligands. For perspective, the Zn*t (orange) is shown. (B) The structure of APOBEC3B from the 5CQH PDB (Shi et al., 2015). The secondary
structure of APOBEC3B (PDB: 5CQH) is depicted with a-helices (red), B-sheets (blue), and coils (orange) shown. The catalytic Zn®>" ion (gray sphere) is displayed

coordinated to His253, Cys284, Cys289, and the catalytic water molecule.

underlying conditions and is therefore another treatment
option to prevent the pre-cancerous state caused by
APOBEC3B.

The APOBEC3B protein (Figure 1B) contains 382 amino
acids with two globular Zn-coordinating domains, each con-
taining a hydrophobic core consisting of five B-strands sur-
rounded by six a-helices. There is a pseudo active site at the
N-terminal domain and a catalytic active site that is at the C-
terminal domain. There has been experimental success in the
crystallization of APOBEC3B in isolation and when bound to
ligands. In 2016, Shi et al. crystallized APOBEC3B (PDB: 5TD5)
with the catalytic site accessible to ssDNA (4-mer) (Shi et al.,
2017). In our simulations, we used the crystal structure (PDB:
5CQH) of the catalytic domain (amino acids 189-379) solved
by Shi et al. in 2015 through X-ray diffraction (1.73A reso-
lution) bound by a dCMP nucleotide and four ethylene glycol
molecules (Shi et al., 2015). The 5CQH crystal structure solved
by Shi et. Al was used as the receptor structure for all docking
calculations and provided the starting structure for all molecu-
lar dynamics (MD) simulations performed in this study. This
closed conformation, which is stabilized by Arg211 (loop 1)
and Tyr315 (loop 7) stacking with Tyr313 positioned over the
active site, represents an APOBEC3B conformation similar to
what would be expected in the presence of a small molecule
inhibitor and suggests that conformational changes occur to
allow substrate binding. The Zn-coordinating motif includes
His253, Cys284, Cys289, and the catalytic water molecule (sub-
stituted with ethylene glycol in the 5CQH crystal structure),
which is hydrogen bonding with the activating Glu255. This
structure represents a promising drug target for cancer treat-
ment. Having a robust understanding of the structure and
dynamics of APOBEC3B is key to designing an efficient inhib-
ition candidate.

Historically, small molecule inhibitors of APOBEC3B have
not proved to be effective, so other methods have been
explored. Previous research used a kinase to phosphorylate
APOBEC3B to inhibit its function (Matsumoto et al., 2019)
and ssDNA was used to inhibit APOBEC3B in vivo (Barzak
et al, 2019). There are other studies using macro-scale

molecules, such as antibodies that bind with a Ky ~70nM
and show promise with APOBEC3B inhibition (Tang et al.,
2021). Additionally, the Epstein-Barr virus binds to APOBEC3B
preferentially to prevent APOBEC3B-ssDNA binding, which
provides safety from the viral immune response by
APOBEC3B (Cryo-EM structure of the EBV ribonucleotide
reductase BORF2 and mechanism of APOBEC3B inhibition.,
2023). Most previous studies have dealt with large molecules,
while few have sought to experimentally determine a small
molecule inhibitor for APOBEC3B. Herein a small molecular
inhibitor for APOBEC3B would be classified as a compound
that competes for binding with the native ssDNA substrate.
One such recent study discovered a compound (MN23) with
relatively low efficacy (ICso = 0.15 uM) (Olson, n.d). A pair of
potential small molecules, 2-pyrimidone and sodium iodide,
can force APOBEC3B into an inactive state and prevent its
cytidine deaminase activity were discovered in 2019 (Shi
et al, 2019). However, neither of these small molecules were
considered potent inhibitors in the study performed by Shi
et al. (Shi et al, 2019) Experimental results have not yet pro-
vided a potent small molecule inhibitor for APOBEC3B. One
previous study utilized computational methods by docking
small molecules to narrow down ZINC12 ligands for in vitro
assays (King et al., 2021). Previous computational studies
have been limited to only using docking methods, while our
study greatly increases the computational rigor used to iden-
tify possible drug candidates by combining docking with
molecular dynamics simulations and free energy calculations
to yield small molecules with better predicted efficacy.
Traditionally, drug discovery relied solely on the chemical
and medical intuition of medicinal chemists and the isolation
of natural products to make the process more efficient. This
slowed drug development since researchers had to devise a
structure for the drug, perform a synthesis, purify and char-
acterize the drug, and then finally test the drug in vitro.
Advances in structural biochemical techniques have also
resolved many important protein structures that have
allowed in silico methods to aid the drug discovery process.
With the advent of computational chemistry methods, the



drug screening and development pace has increased expo-
nentially. Molecular docking is a quick and simplistic compu-
tational chemistry method of virtually screening thousands
or millions of compounds to determine potential binding
modes of small molecules to proteins. Docking generates
possible conformations of each ligand and uses empirical for-
mulas based on experiment to calculate rudimentary binding
scores for each pose. Computational drug screening is a fast,
safe and inexpensive way to screen millions of drug candi-
dates in a timely manner and may hold the key to finding
an effective inhibitor to APOBEC3B (Cui et al., 2020; Kant
et al,, 2021; Navyashree et al.,, 2021; Prada-Gracia et al., 2016;
Sharma et al., 2020). Furthermore, molecular dynamics (MD)
simulations utilize classical Newtonian physics to model the
interactions of molecules over time, and can be used by
refine protein-ligand docking poses and provide more rigor-
ous energy calculations to quantify intermolecular interac-
tions between a protein and a drug molecule.

In this study, we utilized molecular docking, MD, binding
free energy calculations, and de novo ligand growth in the
pursuit of potential novel competitive inhibitors of
APOBEC3B. Approximately 7.8 million molecules from the
ZINC12 clean leads database were virtually screened and 211
top-scoring molecules from the database were selected for
further analysis using MD. The drugs we have simulated
show potential for inhibition and are strong candidates for
future in vitro assays. Our results are encouraging as they
demonstrate substantial progress compared to previously
published potential APOBEC3B inhibitors. Continued testing
of these potential inhibitors in vitro may yield effective inhib-
ition of APOBEC3B and prevent the mutagenic activity exhib-
ited by APOBEC3B.

Methods

A potent inhibitor of APOBEC3B has yet to be discovered,
thus a high-throughput in silico approach is critical to narrow
the chemical space of potential inhibitors. The computational
methods utilized in this study included docking 7.8 million
molecules obtained from a similarity search on the ZINC15
database using cytosine (which binds to the active site
natively) as the target of similarity, then performing atomic-
level molecular dynamics simulations and binding free energy
calculations on 211 molecules that showed the most promise
from docking. Finally, we performed novel de novo ligand
growth to generate new potential inhibitors and processed
those new ligands through the same workflow. We drew from
the ZINC12 database (Irwin et al., 2012) for the majority of our
ligands and then used those as a starting point for testing
against the deoxycytidylate (dCMP) control. The 5CQH PDB'™
was obtained from the Protein Data Bank (Berman et al.,
2003) and used as the receptor for the remainder of the pro-
ject with slight modifications as detailed below.

Protein model preparation

Using MODELLER (Eswar et al., 2006; Fiser et al., 2000; Sali
and Blundell, 1993) online loop refinement within Chimera
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(Pettersen et al., 2004), we modeled in the missing random
coil region spanning amino acids Ala242-Tyr250 (loop 3) in
the 5CQH PDB. We used AMBER’'s MCPB.py toolkit (Li and
Merz, 2016) to generate parameters for the metal-centered
active site, including forming bonds between the catalytic
Zn*" ion and Cys284@S, Cys289@S, His353@ND, and the oxy-
gen of a crystallographic water. These modifications allowed
for simulations to maintain a reasonable conformation of the
protein using the metal center of APOBEC3B.

Virtual screening

PyRx (Small-Molecule Library, 2023) was used to define a grid
box and generate pdbqt files for modeling the binding site.
The QuickVina algorithm (Alhossary et al, 2015) of the
AutoDock Vina software (Eberhardt et al., 2021; Trott and
Olson, 2010) was used to perform flexible molecular docking
with a docking cubic box of width 25 A length centered on (X
= -1.500, Y = -7.700, Z= 15.000) on the 5CQH PDB after add-
ing the zinc and loop as detailed above. The grid box location
was chosen based on its proximity to the catalytic zinc ion.
7.8 million molecules were acquired from the ZINC12 (Irwin
et al,, 2012) clean leads database and docked to this structure
using an exhaustiveness of 8 (default) and scored by the
AutoDock Vina scoring function. The default mode of docking
was utilized in AutoDock Vina, which outputs the best nine
poses for each docked molecule (defaults). For each molecule,
we selected the top scoring pose for further analysis. A bind-
ing free energy cutoff of —7.8 kcal/mol from QuickVina (Li and
Merz, 2016) was utilized to filter the number of candidates
proceeding to molecular dynamics and further analysis, result-
ing in 211 top-ranked ligands simulated (see below).

Molecular dynamics

All protein-ligand complexes were prepared for MD and
simulated using the AmberTools (Trott and Olson, 2010) and
Amber 20 software package (Case et al., 2022). The 5CQH
PDB structure was used as the starting protein conformation
for APOBEC3B in all simulations herein. Additionally, the lig-
and coordinates for each potential inhibitor were taken from
the top scoring docking mode from PyRx (see above) in ref-
erence to the original 5CQH coordinates. The Amber ff14SB
force field (Maier et al., 2015) parameters were applied to
the protein and GAFF (Wang et al., 2004) parameters were
used for the ligands. The antechamber module (Maier et al.,
2015) in AmberTools was used to generate partial atomic
charges for all ligands. We used AmberTools’ tleap to neutral-
ize the system for each ligand with ~3Na™ ions (to counter
the negative overall charge of the protein) and solvated a
truncated octahedron periodic box with TIP3P water models
(Jorgensen et al., 1983), resulting in a unit cell consisting of
~23,000 atoms. We used the GPU-accelerated pmemd code
(Salomon-Ferrer et al., 2013) for Amber 20 to perform MD
(Salomon-Ferrer et al, 2013; Weinbach & Elber, 2005).
Minimization of the solvated system consisted of seven
stages, each comprising a maximum of 5000 steps. The first
1000 steps contained the steepest descent in potential, with
the remaining 4000 being of conjugate gradient minimiza-
tion. The first of the seven stages was given a restraining
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force of 10.0kcal/mol/A? on the heavy atoms of the solute
and this was methodically lowered to 0.0kcal/mol/A? by
stage seven. After all seven minimization steps, the solvated
box was heated linearly from 10K to 300K at 1atm pressure
over 2.0ns while the solute atoms were again restrained
with a restraint weight of 10 kcal/mol/A. During equilibra-
tion the restraining force was lowered from 10 to 0.0 kcal/
mol/A> every 500ps over seven stages until fully unre-
strained. After equilibration, unrestrained MD was performed
at a constant pressure of 1atm with isotropic scaling, and
constant temperature of 300K was maintained using a
Langevin thermostat. Each protein-ligand complex was simu-
lated using a 2-fs timestep with the SHAKE algorithm
(Weinbach and Elber, 2005) for at least 250ns, which was
enough to reach a conformational equilibrium (Figures S3-
S6). During unrestrained MD, each atom in the ligand was
given a random initial velocity. After running unrestrained
MD on each of the ligands that passed the docking cutoff
score (211 ligands with a docking score of —7.8 kcal/mol or
better), we selected the 30 top performing ligands from the
ZINC database for further analysis, representing the best
~15% of ligands simulated for 250 ns. These top 30 ligands
were simulated in triplicate (each replicate initiated with dif-
ferent starting atomic velocities) for 250ns (750ns total) to
determine an average binding free energy that represents

Table 1. Top 10 docked ZINC12 molecules.

enhanced sampling of the potential energy surface. All initial
simulations were performed using identical constraints; lon-
ger simulations were used on the best performing ligands to
further analyze their behaviors.

Molecular dynamics analysis

Molecular Mechanics-Generalized Born Surface Area (MM-
GBSA) (Sun et al.,, 2014) calculations were performed using
Amber's MMPBSA.py (Miller et al., 2012) to determine the
average binding free energy scores from the MD trajectories
for all ligands. Binding free energies (kcal/mol) were calcu-
lated every 0.1ns (all recorded frames) using the GB model
developed by A. Onufriev, D. Bashford and D.A. Case
(Onufriev et al,, 2000; 2004) in conjunction with bondi radii
parameters. The binding free energies were further decom-
posed on a per-residue basis to quantify each residue’s con-
tribution to protein-ligand binding for all simulations. The
analysis also parses out the energies based on contribution
type, such as electrostatic, van der Waals, polar solvation,
and non-polar solvation energies. All other parameters for
MMPBSA.py were set to default values.

We also used the cpptraj package (Roe and Cheatham,
2013) included in AmberTools to calculate and compare the

Docking Score Allosteric or Docking Score Allosteric or
ZINC ID (kcal/mol) 2D Structure Catalytic ZINC ID (kcal/mol) 2D Structure Catalytic
29528216 -85 A 39741670 -8.2 A
40448341 -85 l M C 73637923 -8.2 A
" NN
H \ﬂ/ \l(l/a
47194834 -84 f A 20901837 -8.2 A
95529176 -83 A 39741667 -8.2 i A
)\\N/n ! N
HN e =
)
N 3 N
e o
06703437 -8.2 C 47194833

-8.1 i A
o9
o
S

The molecules depicted were docked and discovered to have the lowest binding free energy according to the AutoDock Vina scoring function, as well as an

allosteric or catalytic designation based on the location of the final docked pose.
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root-mean-squared deviations (RMSD), root-mean-squared
residue fluctuations (RMSF), hydrogen bonding analysis, and
principal component analysis (PCA) for the simulations. The
VMD software (Humphrey et al., 1996) was used for visualiza-
tion and generating structural images (Table 1).

Pharmokinetics and drug-likeness calculations were per-
formed on the top scoring inhibitors from MD used the
SwissADME web server (Daina et al., 2017).

2.6. DOCK 6 and de novo design

DOCK 6 (Allen et al., 2017) was used to create a model of
APOBEC3B that would act as a receptor for de novo ligand
growth, which creates a series of novel ligands specific to

Table 2. Top 10 ZINC12 ligands from MD.
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the receptor structure that could serve as potential inhibitor
candidates. The best-performing catalytic ligand was deter-
mined through MM-GBSA post-processing of MD simulations
(above). The ligand, pre-screened catalytic ligand
ZINC09338246 (Table 2) from the ZINC12 database, was used
as a model to help DOCK 6 establish a proper docking site.
The sphere selection was constrained to 1.4A within the
active site on the receptor to prevent over saturation of lig-
and growth. The fragment library used for de novo ligand
growth was propagated from a PDB compilation of 25 of the
top-scoring ligands from the screened ZINC12 ligands that
were simulated in triplicate for 250 ns. After de novo ligand
growth was performed, the top 30 newly generated, grown
ligands were each simulated for 250ns once bound to

MMGBSA Allosteric MMGBSA Allosteric
Binding or Binding or
Name or Energy Catalytic Name or Energy Catalytic
ZINC ID (kcal/mol) 2D Structure (A/Q) ZINC ID (kcal/mol) 2D Structure (A/Q)
39741667 -33.7 A 72478471 —28.1 P " i A
N,
% —
9338246 -333 C 65494139 —24.9 A
69493336 -30.8 A 39741670 -232 A
HZC——\ —
AW
L N
W\\“““ N
H
69512841 -29.2 A A 03911065 -21.9 A
\, N\
k \ _
= N
W N § /N\
N
\ NH
OH
72152602 —28.2 A MN23 —22.9 OH H C
7z N/N\\N o
/
AP HN®
o
HO
HO o]

A list of the top 10 candidates from the ZINC12 database ordered by average MM-GBSA binding free energy, as well as their locations in the allosteric or cata-
lytic binding sites. MN23 originates from an in vitro study by Olson et al. (n.d.) that we used as a control to compare with our proposed drug compounds.
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APOBEC3B (following the same procedure above) for com-
parison to the ZINC12 ligands. All other parameters were
used as default based on available DOCK 6 and de novo
protocols.

Results and discussion

In this study, we performed the first high-throughput virtual
screening of the APOBEC3B enzyme in search of a novel
inhibitor that could develop into a future cancer treatment.
After docking 7.8 million clean lead molecules from the
ZINC12 database, we simulated the top-ranking 211 com-
pounds bound to the APOEBC3B active site using molecular
dynamics and simulated the top 30 compounds in triplicate
for 250-ns each. These compounds were then further nar-
rowed using average binding free energy calculations to the
top 25 potential inhibitors, which were used by DOCK 6 to
generate a fragment library for de novo structure-based drug
design. The best 30 de novo drugs from DOCK 6 were also
simulated and analyzed using molecular dynamics and free
energy calculations. Overall, we report several novel potential
inhibitors (both purchasable and/or synthesizable) specific to
APOBEC3B that may lead to the development of new cancer
treatments.

Docking results

The ZINC clean leads database was used to access structures
for 7.8 million molecules, which were virtually screened using
QVina. Table 1 depicts the top 10 drug candidates along
with their corresponding docking scores (Table S1 provides
structures and docking scores for all 211 docked compounds
that met the —7.8 kcal/mol cutoff criteria). The allosteric bind-
ing site described in Table 1 is located primarily in the space
between Asp260 and Leu238, ~12.5 A from the Zn?" in the
catalytic site (Figure 1A). There are clear similarities in func-
tional groups present among the ligand structures, with
exceptions such as ZINC40448341. One of these similarities is
nitrogen-containing m systems, which is unsurprising consid-
ering the natural substrate is a pyrimidine (cytosine). The
active site was decided based on proximity to a zinc ion par-
ameterized for the system, however some ligands docked to
a pocket adjacent to the active site and thus would not be
considered competitive inhibitors.

Upon inspection, ZINC29528216 has key interactions with
Arg257 and Arg252 through hydrogen bonding interactions.
ZINC40448341 shows strong interactions with Tyr313,
His253, Arg211, and Asn240 inside the catalytic site. Tyr313
shows in vitro binding relevance by having important
n-stacking interactions with the cytosine base in the active
site as well as helping create a hydrophobic pocket for the
—1 base in the ssDNA chain (Shi et al., 2017). His253 shows
binding relevance as well through similar n-stacking interac-
tions with the cytosine in the active site, proving crucial to
binding in addition to Tyr313 (Shi et al., 2015). Asn240 also
proves to be important by hydrogen bonding with the
backbone of the cytosine base in vitro (Shi et al., 2017).
However, it is important to note that neither of these

ligands performed well enough to score in the top 10
ZINC12 ligands after modeling them with molecular dynam-
ics simulations (see below).

Molecular dynamics simulations

After docking, molecular dynamics simulations were used to
provide a more accurate and dynamic view of the interac-
tions involved in these protein-drug complexes. As noted in
the Methods, a Qvina docking score cutoff of —7.8 kcal/mol
was established to filter out less promising candidates and
allow for further analysis with the most promising candi-
dates. This resulted in 211 docked molecules being analyzed
using MD. Table S1 depicts the structures and binding free
energy results for all simulated molecules. A table of the top
10 performing candidates from our MD analysis is shown
below (Table 2), and it is important to note that not all of
these candidates match with those of the top 10 docked
candidates. That is to be expected due to the rigor and
increased sampling of MD simulations when compared to
docking. However, there are some conserved candidates
between these tables such as ZINC39741667 and
ZINC39741670. These two ligands are particularly similar in
structure, and thus the consistency in their results across
docking and MD helps give credibility to the consistency of
our methodology. The structures of the most promising
ligands from docking similarly resemble those from MD, such
as the nitrogen ring systems and the carbonyls that resemble
the natural substrate (cytosine) of APOBEC3B. Many inhibitors
seek to emulate the natural substrate due to the specificity
of the binding site, so this similarity is expected.

A control for this project was established by simulating a
single dCMP nucleotide. This control dCMP was removed
from a larger crystal structure of ssDNA (PDB 5TD5), docked
to APOBEC3B, and simulated in triplicate using the same pro-
cedure detailed below for 250ns. This control scored an
average of —34.09 kcal/mol, though we recognize that an
extended ssDNA sequence would likely have a more potent
binding affinity. One molecule (MN23) listed in the table is a
drug previously described by Olson et al. who tested com-
pounds in vitro, which resulted in an ICs value of 0.15uM
(Olson, n.d). This drug was also used as a comparison with
these newly tested ZINC and de novo ligands and the top
ZINC candidates from this project scored up to 10 kcal/mol
more favorably than this comparison drug (AGping =
—22.9kcal/mol).

Our MD results from the molecules screened from the
ZINC database suggest ZINC09338246 is the second most
promising inhibitor of APOBEC3B. PCA results on the top
four normal modes (Figure S11) from MD displayed a stable
enzyme core near the binding pocket, while the solvent
exposed loops were more dynamics. Figure 2 shows the
binding and efficiency of ZINC09338246 from the 250 ns MD
simulation. Figure 2A shows a representative conformation
of the APOBEC3B-ZINC09338246 complex from MD, depicting
how deeply the molecule binds within the active site. A free
energy decomposition analysis (Figure 2D) of ZINC09338246
bound to APOBEC3B for 250 ns shows that the amino acids
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Figure 2. Comprehensive analysis of ZINC09338246 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and
ZINC09338246 shown in VDW representation. B) Representation of the ZINC09338246 binding pocket showing the catalytic Zn>" ion and top amino acid residues
contributing to binding: His253 (orange), Tyr250 (gray), Trp287 (yellow), and Gly251 (blue). the dotted lines represent the hydrogen bonds observed during the
simulation between Gly251 and ZINC09338246, along with the percent occupancy of those hydrogen bonds during the simulation. C) a graph of the binding free
energy (kcal/mol) during the 250 ns APOBEC3B-ZINC09338246 MD simulation with the average binding free energy shown. D) Depiction of the decomposed free
energy (kcal/mol) of each of the top five amino acids from APOBEC3B that contribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation
and fluctuation of the ZINC09338246, which indicates the stability of the ligand. Figure S8 depicts a table of values relevant to the hydrogen bonding as well as an
accompanying 2D structure to assist with atom naming conventions. Finally, Table S7 features an ADMET prediction which reports 0 violations in the Lipinski rules
for druglikeness and a log[P] = -0.06 which indicates a slight difficulty in crossing the cell membrane once administered. It should also be noted that while
Asn240 is mentioned in panel D, it was removed from the image in panel B due to obstruction of view.

that contribute most to binding are the His253 and Tyr250
primarily through m-stacking interactions. His253 is important
for in vitro m-stacking with the cytosine base (Shi et al.,, 2015;
2017), thus ZINC09338246 is replacing a key interaction with
the native ssDNA. Trp287 interacts much the same way,
while Gly251 and Asn240 contribute more through hydrogen
bonding and dipole-dipole interactions (Figure 2B). Trp287 is
structurally important to APOBEC3B by stabilizing the closed
loop conformation of APOBEC3B (Shi et al., 2015), making
Trp287 a logical amino acid to target for inhibition. Along
with Trp287, Asn240 is another important residue hypothe-
sized to be interacting well with the C2 carbonyl group of
the cytosine base in vitro (Shi et al., 2015), again demonstrat-
ing the potential potency of ZINC09338246 by directly com-
peting with the natural ligand in the catalytic site. Based on
the binding free energy throughout the simulation (Figure
2C), the ligand appears to change conformation slightly,
resulting in a marginally more potent bound conformation at

~190ns (Figure 2C). Through visual inspection, the ligand
was shown to begin forming a water bridge with Gly248
through hydrogen bonding with the ligand for ~25% of the
simulation, which correlates with the decrease in binding
free energy observed in Figure 2C at ~190ns.

ZINC39741667 was determined to be the strongest bind-
ing ZINC molecule from this study based on binding free
energy calculations from MD (Figure 3). ZINC39741667 is
observed as binding in an allosteric site (Figure 3A), as
reported in Table 2. Thus, ZINC39741667 should not be con-
sidered a competitive inhibitor, but still demonstrates prom-
ise as a potentially effective drug candidate. Furthermore,
the amino acids interacting with ZINC39741667 (Figure 3B)
help depict the difference in binding pockets as none of
these amino acids are present in the decompositions of the
other top molecules from ZINC or de novo, which are bind-
ing in the catalytic active site. Arg257 stands out as the most
stabilizing amino acid in this simulation of this protein-ligand
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Figure 3. Comprehensive analysis of ZINC39741667 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and
ZINC39741667 shown in VDW representation. B) Representation of the ZINC09338246 binding pocket showing the catalytic Zn>" ion and top amino acid residues
contributing to binding: Arg257 (orange), Arg252 (gray), Phe249 (yellow), and Cys247 (blue). C) a graph of the binding free energy (kcal/mol) during the 250 ns
APOBEC3B-ZINC39741667 MD simulation with the average binding free energy shown. D) Depiction of the decomposed free energy (kcal/mol) of each of the top
five amino acids from APOBEC3B that contribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation and fluctuation of the ZINC39741667,
which indicates the stability of the ligand. Figure S8 depicts a table of values relevant to the hydrogen bonding as well as an accompanying 2D structure to assist
with atom naming conventions. Finally, Table S7 features an ADMET prediction which reports 0 violations in the Lipinski rules for druglikeness and a log[P] = 1.80
which indicates a drug that absorbs well orally and intestinally without being sequestered into adipocytes.

complex; this is primarily due to the dipole interactions
between the sidechain and the tertiary amide atoms present
in the molecule. Arg252 has similar interactions between the
sidechain and the oxygen-nitrogen fragment of the molecule.
Phe249 contributes in two considerable ways that influence
ligand binding, one being a m-stacking interaction and the
other is a hydrogen bond between the backbone and the
ZINC39741667 (Figure 3B). Shi et al. also observed important
protein-substrate interactions in this region (amino acids
242-255), such as direct or water-mediated hydrogen bonds
with the backbone phosphate of the +1 nucleotide (Shi
et al, 2017). The binding free energy begins to worsen near
the end of the simulation (Figure 3C), which is indicative of
the molecule becoming less stable in the binding pocket.
This change in stability can be accounted for by the r-stack-
ing interaction breaking around 170ns and by making the
molecule less stable for the rest of the simulation. PCA
results on the top four normal modes (Figure S12) from MD
suggest the structure of APOBEC3B is most stable when

bound to ZINC39741667 compared with the other potential
inhibitors analyzed (Figures S11-S14). While this ligand has a
better average binding affinity than ZINC09338246, it should
be noted that it is an allosteric inhibitor, and it does become
less energetically stable toward the end of the simulation,
suggesting potentially greater instability than the previous
ligand at larger time frames.

De novo design

Using de novo ligand design with DOCK 6, 919 ligands were
generated from the fragment library created using the top
performing 25 ZINC12 clean leads. The DOCK 6 software was
used to dock these novel ligands to the APOBEC3B active
site, and the top 30 were then simulated with MD (Table S2).
However, while the protocol for MD and MM-GBSA calcula-
tions were identical to the ZINC12 clean leads, the DOCK 6
docking scores are not directly comparable to the QVina
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A list of the top 10 performing de novo ligands found in this study ordered by most favorable average MM-GBSA binding free energy to least favorable. All de

novo ligands docked to the same binding site (catalytic) as ZINC09338246.

scores due to the difference in scoring functions, and thus
the DOCK 6 docking scores have been omitted from Table 3
(and Table S2) for clarity. As shown in Table 3, several of the
de novo ligands (DNO8, DN29, etc.) have a conserved frag-
ment involving a purine-like ring that is a direct product of

the de novo ligand growth process using ZINC09338246 as
one of the model ligands in the fragment library generation.
The 30 most promising ligands from DOCK 6 and de novo
ligand design were simulated using Amber (see results
below). These top 30 ligands docked in the same vicinity of
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Figure 4. Comprehensive analysis of DN29 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and DN29 shown
in VDW representation. B) Representation of the DN29 binding pocket showing the catalytic Zn*" ion and top amino acid residues contributing to binding: Arg212
(orange), Asn240 (gray), Phe249 (yellow), and Tyr250 (blue). C) a graph of the binding free energy (kcal/mol) during the 250 ns APOBEC3B-DN29 MD simulation
with the average binding free energy shown. D) Depiction of the decomposed free energy (kcal/mol) of each of the top five amino acids from APOBEC3B that con-
tribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation and fluctuation of the DN29, which indicates the stability of the ligand. Figure

S8 depicts a table of values relevant to the hydrogen bonding as well as an accompanying 2D structure to assist with atom naming conventions. Finally, Table S7
features a table with ADMET predictions with O violations of the Lipinski rules for druglikeness and a log[P] = -0.37 which indicates a slight difficulty in crossing

the cell membrane once administered.

the catalytic binding site as the conserved fragment we see
with ZINC09338246 and are typically interacting with Arg212
through hydrogen bonding interactions.

DN29 is clearly the best scoring molecule produced
from both the ZINC database screening and de novo
design methodology. DN29 shares a similar structure and
chemical features with ZINC09338246, especially regarding
the imidazole ring that sits deep in the catalytic site. DN29
scored on average —12kcal/mol lower than the other top
performing molecules from either methodology and that
is due to several compounding factors. An important
structural part of this molecule is the guanidinium frag-
ment that interacts well with the aromatic structures
around it, such as Trp287 and Tyr250. These residues show
high-affinity m-stacking interactions with this fragment
throughout the simulation and both contribute heavily to
the binding free energy. Another important part of this
molecule is the presence of polar atoms that interact most
with Arg212 and Asn240. These polar interactions heavily

contribute to the binding free energy as seen in Figure 4D.
These fragments were all pulled from the library created
from the ZINC12 database molecules, which helps
explain the structural similarity to molecules such as
ZINC09338246.

Molecular dynamics on de novo molecules

The ZINC12 clean leads yielded no candidates that outper-
formed the control dCMP, however the results from de novo
ligand growth were more promising. The control dCMP
scored an MM-GBSA average binding free energy of
—34.09 kcal/mol over the course of running 250ns MD in
triplicate, and the de novo candidate, DN29, scored an aver-
age of —46.03 kcal/mol. Figure 4 shows the binding efficiency
of DN29 from the 250 ns MD simulation. Figure 4A shows a
representative conformation of the APOBEC3B-DN29 complex
from MD, depicting how deeply the molecule binds within
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Figure 5. Comprehensive analysis of DNO8 MD. A) 3D surface representation of the protein-ligand complex with the surface of APOBEC3B in gray and DNO8 shown
in VDW representation. B) Representation of the DNO8 binding pocket showing the catalytic Zn?" ion and top amino acid residues contributing to binding: Arg212
(orange), His253 (gray), GIn213 (yellow), and Tyr250 (blue). C) a graph of the binding free energy (kcal/mol) during the 250-ns APOBEC3B-DN08 MD simulation
with the average binding free energy shown. D) Depiction of the decomposed free energy (kcal/mol) of each of the top five amino acids from APOBEC3B that con-
tribute to binding. Additionally, Figure S4 depicts the root-mean-squared deviation and fluctuation of the DN08, which indicates the stability of the ligand. Figure
S8 depicts a table of values relevant to the hydrogen bonding as well as an accompanying 2D structure to assist with atom naming conventions. Finally, Table S7
features ADMET predictions with 2 violations of the Lipinski rules for druglikeness (MW > 500, MLOGP > 4.15) and a log[P] = 3.85 which indicates a preference for

being sequestered into adipocytes without reaching its target cell.

the catalytic site as well as how loop 3 of the protein closes
over the molecule. A free energy decomposition analysis
(Figure 4D) of DN29 bound to APOBEC3B for 250 ns shows
that the amino acids that contribute most to binding are
Arg212 and Asn240. The interaction with Arg212 is primarily
due to the interaction between the carbonyl oxygen of
DN29 and the sidechain polar hydrogens of Arg212. The
interaction between Asn240 and the molecule primarily relies
on the dipole-dipole interaction between the DN29 and
Asn240. Asn240 is important for in vitro as it has been shown
to interact with the C2 carbon of the backbone of the cyto-
sine in ssDNA (Shi et al., 2017). GIn213, is also one of the top
contributing amino acids (Figure 4D), and has been theorized
to be an important amino acid residue in vitro due to its
preference for adenosine at the +1 position (Shi et al.,, 2017).
Each of these residues are critical and would serve as rational
targets for future drug design. Based on the binding free
energy throughout the simulation (Figure 4C), the ligand
appears to be energetically stable, as well as structurally sta-
ble within the binding pocket, which indicates a stable

binding conformation throughout the simulation. In fact, the
binding free energy appears to be trending downwards as
time progresses, indicating a stabilizing binding affinity.
Through visual inspection, the increase in binding free
energy beginning at ~190ns can be attributed to loop 3
detaching from DN29, while the ligand remains stable in the
binding site. However, the loop does return to its initial pos-
ition interacting with DN29 later in the simulation. PCA
results (Figure S13) from MD suggest the structure of
APOBEC3B shares dynamic similarities (though greater mag-
nitude) when bound to DN29 compared with ZINC39741667
(Figure S12) for all four of the top normal modes.

DNO8 is the second most potent inhibitor found using de
novo design. PCA results on the top four normal modes
(Figure S14) from MD suggest the binding pocket of
APOBEC3B near the Zn?" ion is most dynamic when bound
to DNO8 compared with our other analyzed ligands (Figure
S11-S13). Figure 5A shows the protein-ligand complex and
the most notable difference from DN29 is the lack of protein
enclosure of the ligand. This gives an initial indicator of the
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lower binding free energy observed compared to DN29.
DNO08 did not perform as well as DN29, and that is clear
based on the much more erratic binding free energy during
the simulation (Figure 5C) relative to DN29 (Figure 4CQ).
Figure 5B shows the relevant interactions between the pro-
tein and DNO8. DNO8 does share a strong m-cation inter-
action between itself and Arg212 with DN29; this interaction
is consistent among the best performing ligands in this
study. We hypothesize Arg212 could become one of the
most important amino acids to target in future drug trials.
DNO8 also has interactions with the Tyr250, similar to DN29
and ZINC09338246, which makes it another important target
residue for drug design. His253 and Tyr250 are two other
reoccurring residues shown in Figure 5D which, according to
Shi et al., contribute via important direct or water-mediated
hydrogen bonds with the backbone phosphate of the +1
nucleotide between the nucleotide and amino acids 242-255
(Shi et al., 2017). One amino acid that does not appear in
Figure 5D is Tyr313, which forms a T-shaped n-stacking inter-
action with the cytosine in the active site in vitro, as well as
interacting with the —1 thymine in the ssDNA chain (Shi
et al, 2017). Tyr313 actually has very similar contribution to
the binding free energy (-1.0kcal/mol) as Leu245, but falls
just short of the top five interacting residues shown (Figure
5D). The amide oxygen on DNO8 hydrogen bonds with the
side chain hydroxyl of Tyr313 for ~80% of the simulation,
and a halogen-r interaction also stabilizes the DNO8 fluorine
near Tyr313 for much of the simulation, similar to the inter-
action Tyr313 has with the natural substrate in vitro. DNO8 is
among the most promising molecules in our study, and it
helps to illuminate the importance of Arg212 for inhibitor
binding.

Overall, our MD results from the molecules created in the
de novo design process suggest that DN29 is the most prom-
ising inhibitor of APOBEC3B. DN29 is a de novo grown ligand
that has not yet been synthesized to our knowledge.
However, future work will investigate the most feasible syn-
thetic pathway for DN29. Currently, a synthetic pathway for
DN29 is underway through the Olson lab at Truman State
University. Another important note to make is that we are
currently unaware of any catalytic activity the enzyme may
have on DN29 itself in the active site, since it, too, has an
amine group deep in the binding site near the zinc atom,
which coordinates the cytidine deaminase reaction in vivo.
These studies will be investigated more in future work as
well to determine an ICsq value for DN29 and to discover the
impact of DN29 on the catalytic efficiency of APOBEC3B
in vitro. However, this drug remains a promising scaffold for
future APOBEC3B drug development. DNO8 is another prom-
ising inhibitor for APOBEC3B and focuses on other related
interactions between the protein and bound ssDNA that
could be important for inhibitor design. De novo ligand
design has yielded the most promising drugs in this study
and has provided successful results in only one iteration.
With successive iterations of de novo ligand design and more
expansive libraries, de novo ligand design has the promise to
generate more potent drug candidates in the future for
APOBEC3B.

Conclusion

To help treat cancer proliferation, we have searched for and
designed a small molecule inhibitor for APOBEC3B. This small
molecule inhibitor could be another tool in the fight against
tumorous cancers and provides us with a straightforward
method for treating these cancers. Previous small molecule
studies have proved largely ineffective when testing in vitro
with ICsq values in the uM range, which is not comparable to
marketable drug candidates. Therefore, our work in creating
a well-performing drug candidate is a huge step in the fight
against APOBEC3B mutagenesis. The ultimate goal of this
project is to provide a scaffold for further drug development
and reveal the most important amino acids to bind to when
designing an APOBEC3B-specific inhibitor.

We are the first to conduct high-throughput virtual
screening and MD on this scale as well as the first to utilize
de novo ligand design for APOBEC3B. These analyses have
shown that a small molecule inhibitor for APOBEC3B is plaus-
ible and could allow for further testing on their efficacy
against APOBEC3B. The ZINC database has provided a func-
tional scaffold in the way of ZINC09338246 that could com-
pete with the natural substrate in some capacity and was
used to generate promising novel potential inhibitors using
de novo ligand design. Our use of de novo ligand growth has
yielded a potentially successful, and synthesizable, drug can-
didate to test in vitro. Certain amino acid targets seem to be
essential as the top de novo candidates interact with similar
residues as well as the top performing ZINC ligand. Through
binding free energy decompositions using MMPBSA.py these
residues appear to be Arg212, GIn213, and Tyr250, which
makes them the most rational targets for future drug trials
and design. We believe the small molecules described herein
provide the best-known lead molecules and scaffolds for
future drug design efforts for APOBEC3B, and by utilizing
computational chemistry methods we were able to reason-
ably screen millions of compounds in chemical space to nar-
row down the search for potent APOBEC3B inhibitors.

Future work would include performing syntheses and
in vitro inhibition assays (Nair and Rein, 2014) on the top
ZINC and de novo candidates. In these studies, we would
test the efficacy of these drugs on APOBEC3B along with
enantiomeric studies of the most potent candidates and
determine how these drugs affect APOBEC3B catalysis using
fluorescence methods as described by Nair (Nair and Rein,
2014). This project has provided future drug designers with a
scaffold from which to continue to build ligands and has
provided a list of important residues to consider when
designing an inhibitor of APOBEC3B.
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