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Moving mesh methods were devised to redistribute a mesh in a smooth way, while keeping 
the number of vertices of the mesh and their connectivity unchanged. A fruitful theoretical 
point-of-view is to take such moving mesh methods and think of them as an application of 
the diffeomorphic density matching problem. Given two probability measures 𝜇0 and 𝜇1, the 
diffeomorphic density matching problem consists of finding a diffeomorphic pushforward map 𝑇
such that 𝑇#𝜇0 = 𝜇1. Moving mesh methods are seen to be an instance of the diffeomorphic density 
matching problem by treating the probability density as the local density of nodes in the mesh. 
It is preferable that the restructuring of the mesh be done in a smooth way that avoids tangling 
the connections between nodes, which would lead to numerical instability when the mesh is 
used in computational applications. This then suggests that a diffeomorphic map 𝑇 is desirable 
to avoid tangling. The first tool employed to solve the moving mesh problem between source 
and target probability densities on the sphere was Optimal Transport (OT). Recently Optimal 
Information Transport (OIT) was rigorously derived and developed allowing for the computation 
of a diffeomorphic mapping by simply solving a Poisson equation. Not only is the equation 
simpler to solve numerically in OIT, but with Optimal Transport there is no guarantee that the 
mapping between probability density functions defines a diffeomorphism for general 2D compact 
manifolds.
In this manuscript, we perform a side-by-side comparison of using Optimal Transport and Optimal 
Information Transport on the sphere for adaptive mesh problems. We choose to perform this 
comparison with recently developed provably convergent solvers, but these are, of course, not 
the only numerical methods that may be used. We believe that Optimal Information Transport 
is preferable in computations due to the fact that the partial differential equation (PDE) solve 
step is simply a Poisson equation. For more general surfaces 𝑀 , we show how the Optimal 
Transport and Optimal Information Transport problems can be reduced to solving on the sphere, 
provided that there exists a diffeomorphic mapping Φ ∶𝑀 → 𝕊2. This implies that the Optimal 
Transport problem on 𝑀 with a special cost function can be solved with regularity guarantees, 
while computations for the problem are performed on the unit sphere.

In this manuscript, importantly, we think of moving mesh methods as a particular case of the diffeomorphic density matching 
problem. The diffeomorphic density matching problem has a long history in the imaging sciences. Classical methods consist of positive 
scalar image functions composed from the right by transformations [39]. That is, given a source probability density function 𝑓0 and 
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a target probability density function 𝑓1, classical techniques compute 𝑓0◦𝑇 = 𝑓1. Non-classical methods, like Optimal Transport and 
Optimal Information Transport, allow the transformation to act as a pushforward or pullback on the density, that is 𝑓0 = |𝐷𝑇 |𝑓1◦𝑇 or |𝐷𝑇 |𝑓0◦𝑇 = 𝑓1, respectively. This generalization has particular benefit in that it allows for proving the existence of a diffeomorphic 
mapping over a perhaps surprisingly wide range of densities 𝑓0 and 𝑓1.

Non-classical diffeomorphic density matching has found widespread applications in medical image registration, see, for exam-
ple, [13,14,8,32], random sampling from a probability measure see, for example, [3,27] and adaptive moving mesh methods, for 
example, in meteorology see the line of work in [4,38,5], among other applications. These applications are necessarily more challeng-
ing from a theoretical perspective as well as a computational perspective when the geometry is non-Euclidean. In this manuscript, we 
perform a comparison of Optimal Transport versus Optimal Information Transport for the moving mesh problem in the non-Euclidean 
case and provide a reformulation of the two problems, which are useful in cases beyond the sphere.

Optimal Transport density matching in non-Euclidean geometries is a field of study in which much progress on regularity theory 
has been made recently, see the following for examples of this large line of work [23,19,20,11,34,21]. Recently, the authors in [15,
16] introduced a numerical convergence framework and convergent numerical scheme for the PDE formulation of the optimal 
transport problem on the sphere which included, as one application, the traditional squared geodesic cost 𝑐(𝑥, 𝑦) = 1

2𝑑𝕊2 (𝑥, 𝑦)
2. 

The convergence framework addressed situations where the solutions 𝑢 of the PDE formulation are known to be a priori smooth 
(that is, at least 𝐶2) as well as nonsmooth (but still 𝐶1). This convergence framework required that the numerical schemes were 
consistent, stable in the average value, and monotone and achieved compactness via a Lipschitz constraint imposed on the PDE 
level. Preliminary results in [16] showed the success of using Optimal Transport on the sphere for moving mesh methods. In this 
manuscript, we demonstrate the results in cases where the provably convergent numerical scheme for Optimal Transport on the 
sphere in [16] has success and where possible problems arise.

Optimal Information Transport was developed in the papers [2,26]. This allows for a diffeomorphic map 𝑇 between two smooth 
densities to be computed via solving a Poisson equation. Demonstrations of the success of this method are shown [2] for subsets 
of Euclidean space. Optimal Information Transport methods have subsequently found applications in image registration for medical 
applications, for example in [8,32] and also random sampling [3], also for subsets of Euclidean space. In this manuscript, we use a 
provably convergent scheme for the Optimal Information Transport problem on the sphere and show its success for the moving mesh 
problem in challenging cases on the unit sphere and on an oblate sphere.

In this manuscript, we utilize a class of provably convergent methods (with convergence rate guarantees) for computing the 
Optimal Information Transport on smooth, compact, and connected 2D manifolds 𝑀 . We then provide a comparison of the adaptive 
mesh methods on these manifolds via Optimal Transport and Optimal Information Transport. We show how to reformulate the Op-
timal Transport and Optimal Information Transport problems on manifolds 𝑀 that are diffeomorphic to the sphere, so as to solve 
the diffeomorphic density matching problem. In Section 1 we introduce the applied problem of adaptive moving mesh methods and 
show how the problem of finding a pushforward map 𝑇 can be solved via Optimal Transport and Optimal Information Transport. In 
Section 2 we review briefly the literature on the problem of Optimal Transport on the sphere (and beyond) and highlight the lack of 
regularity guarantees for the Optimal Transport mapping 𝑇 that arise by using the squared geodesic cost function. In Section 3 we 
outline how the Optimal Information Transport problem is derived in the literature. In Section 4, we introduce how, given a diffeo-
morphism Φ ∶𝑀 →𝑀0, our diffeomorphic density matching problem can be solved with Optimal Transport or Optimal Information 
Transport on 𝑀0 and prove that this is equivalent to solving an Optimal Transport and Optimal Information Transport problem 
on 𝑀 with a special cost function. In the case of genus-0 compact surfaces, this choice of cost function allows for smooth Optimal 
Transport mappings 𝑇 as opposed to the squared geodesic cost function which has no such regularity guarantees. In Section 5, we 
show the grid setup and how consistent, monotone, and stable discrete operators are constructed for the PDE in Optimal Transport 
and Optimal Information Transport on the sphere. In Section 6 we demonstrate the following computations on the unit sphere: (1) 
a simple example of redistributing node density smoothly around the equator, (2) a difficult example of redistributing node density 
with a discontinuous globe density, (3) solving a problem for which the exact solution is known for the Optimal Transport problem, 
(4) an example where there is significant compression of the mesh, and (5) redistributing node density to be concentrated about 
the “north pole” of an ellipsoid. And in Section 7, we summarize the key contributions and results and explain future directions of 
investigation.

1. Moving mesh methods

Moving mesh methods are a type of adaptive mesh methods that have found special usage in computational PDE techniques. The 
transformed mesh is then often used in high-resolution PDE computations [4]. Fixing the number of grid points leads to simpler data 
structures (than some other adaptive mesh techniques) in the PDE solving step, as was stressed in the papers [4,38,7].

In the Euclidean setup, the moving mesh problem setup requires the “physical” target domain Ω𝑝 ⊂ ℝ𝑑 , where the PDE is 
posed, while the “computational” input domain Ω𝑐 ⊂ ℝ𝑑 is usually chosen to be a uniform rectangular grid (in Euclidean space). 
In non-Euclidean geometries, one would like to use any simple mesh generator for the computational mesh. Then, the objective 
is to redistribute the points in the mesh to a desired density while avoiding the “tangling” of the mesh. Therefore, our task is to 
find a diffeomorphic mapping 𝑇 ∶ Ω𝑐 →Ω𝑝. Typically, in applications, the local density of grid points in the physical domain Ω𝑝 is 
determined by, for example, the time scales involved in the solution of a fluid mechanics PDE. For example, in an evolving front 
or shock, it is desirable for the density of points in Ω𝑝 to be greater than in the relatively unchanging parts of the solution, as in 
meteorological applications where it is desirable to have high resolution in areas of high precipitation [38]. This process could be 
2

done iteratively to get a very accurate solution of the PDE, by solving the shock on more and more resolved grids as one iterates. The 
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way this is done is by feeding the information from the PDE (desired density) into a scalar monitor function (𝑦, 𝑡) > 0 and then 
solving the change of variables formula:

(𝑦, 𝑡)𝐽 (𝑇 (𝑥)) = 𝜃(𝑡), (1)

where 𝐽 is the Jacobian of the diffeomorphic mapping 𝑇 and ∫Ω𝑝
(𝑦, 𝑡)𝑑𝑦 = 𝜃(𝑡). Moving mesh methods require that the mapping 

be a diffeomorphism, which means that the Jacobian of the mapping 𝑇 satisfies 0 < 𝐽 (𝑇 ) <∞. In other words, we want a smooth, 
invertible mapping 𝑇 . This will prevent the mesh from tangling. An example of a monitor function constructed from information 
from a function 𝑓 (𝑦, 𝑡) is the scaled arc-length function:

(𝑦, 𝑡) =
√

1 + |||𝑆∇𝑦𝑓 (𝑦, 𝑡)
|||2, (2)

where 𝑆 is a normalization factor, see [4].
The moving mesh method can be thought of as a particular case of the diffeomorphic density matching problem, which is solved 

via the Jacobian equation. Let 𝑀 be an 𝑛-dimensional Riemannian manifold. Let 𝜇0 and 𝜇1 be two probability measures on 𝑀
with density functions 𝑓0 and 𝑓1, respectively. Under very general conditions, a weak (distributional) solution of the Jacobian 
equation (3), exists, see [35].

𝑓0(𝑥) = 𝑓1(𝑇 (𝑥))𝐽 (𝑇 (𝑥)). (3)

While the existence theorems for solutions to the Jacobian equation stipulate the conditions for which we have a distributional 
solution of the monitor equation (1), it does not state that such a mapping 𝑇 is unique or when it is diffeomorphic. It does show that, 
however, for fixed source and target mass distributions, there can be many such 𝑇 . What we will find is that under certain assumptions 
on the source and target masses and manifolds, we can find diffeomorphic mappings using the techniques of Optimal Transport and 
Optimal Information Transport, which both satisfy the Jacobian equation and give us diffeomorphic mappings, appropriate for our 
moving mesh methods.

Now that we know that our objective is to solve the Jacobian equation and find a particular 𝑇 that is a diffeomorphism, at 
this point the problem turns into how to find such a 𝑇 . We need to address the following issues: 1.) Under what conditions should a 
diffeomorphism exist and 2.) which equation needs to be solved to find such a diffeomorphism. The regularity results in the literature 
are summarized in this section, but more details are presented in Section 2 and Section 3. For the reader that wishes to quickly 
understand what types of equations need to be solved (and defer the technical details to another time) we refer to the equations that 
need to be solved. The Optimal Transport mapping is computed by solving Equation (8), which is a fully nonlinear elliptic PDE for 
a potential function 𝑢 and Equation (6) to relate the function 𝑢 and the mapping 𝑇 . The Optimal Information Transport mapping 
is computed using Equation (28), which has one PDE computation for a Poisson equation and then a first-order linear ODE which 
computes a path of diffeomorphisms 𝜑(𝑡) that is a horizontal geodesic in the space of volume-preserving diffeomorphisms. Then the 
mapping 𝑇 is found by finding the inverse time-1 map 𝑇 (𝑥) = 𝜑−1(1)(𝑥). The reader more interested in implementation and results 
can read this section for the summary of when a diffeomorphism exists, refer to the equations just mentioned and move directly to 
Section 4.

In the Euclidean case, the mapping arising from Optimal Transport is usually chosen by further requiring that the map 𝑇 minimize 
the following integral:

𝐼 = ∫
Ω𝑐

|𝑇 (𝑥) − 𝑥|2 𝑑𝜇0(𝑥). (4)

It can be shown that such a mapping is the gradient of a convex function 𝑢, that is: 𝑇 (𝑥) =∇𝑥𝑢(𝑥), which makes it irrotational 
(meaning ∇ × 𝑇 = 0 [5]) if the underlying manifold is ℝ𝑑 . More specifically, the regularity theory of Caffarelli (see the summary 
in [33]) shows us that if 𝑓0, 𝑓1 ∈ 𝐶0,𝛼(ℝ𝑑 ) for 0 < 𝛼 < 1 and 0 < 𝑓0, 𝑓1 <∞, then we are guaranteed that the mapping is, in fact, a 
diffeomorphism.

In the more general manifold setting, we have that the mapping solving the Optimal Transport problem with squared geodesic 
cost is given by 𝑇 (𝑥) = exp𝑥 (∇𝑢) (as long as the manifold is geodesically complete), see [23], where 𝑢 is as a 𝑐-convex function, a 
technical definition that is common in the Optimal Transport literature, see [19] for a discussion of this condition and more about the 
general case of manifolds. For the 𝑛-sphere, fairly general conditions on the source and target masses are given in [20], which show 
that mass transports to a distance bounded strictly below the injectivity radius and gives us differentiability. In order for the mapping 
to be a diffeomorphism also need 0 < 𝑓0, 𝑓1 <∞ and 𝑓0, 𝑓1 ∈ 𝐶1,1(𝕊2). More detail on the regularity results of the Optimal Transport 
problem will be shown in 2. The more general manifold with the squared geodesic cost function fails in terms of differentiability, see 
the result in [11] for a simple example of an oblate sphere where differentiability fails to be guaranteed.

Optimal Information Transport provides another option for computing a mapping that solves the diffeomorphic density matching 
problem. We will provide much more detail on the Optimal Information Transport problem in Section 3, but we summarize the 
relevant details here. In this case, given a geodesic 𝜇(𝑡) in the space of probability measures endowed with the infinite-dimensional 
Fisher-Rao metric, such that 𝜇(0) = 𝜇0 and 𝜇(1) = 𝜇1, where 𝜇0 and 𝜇1 are given positive and smooth probability measures, there 
exists a unique path of diffeomorphisms 𝜑𝑡 such that 𝜑∗(1)𝜇0 = 𝜇1. The key here is the manifold 𝑀 can be any compact, connected 
3

and complete manifold and the equation for the path of diffeomorphisms 𝜑(𝑡) is particularly simple (28).
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For the moving mesh problem, then, we expect both Optimal Transport and Optimal Information Transport to be versatile and 
useful in ℝ𝑑 and 𝕊𝑑 . Beyond these cases, Optimal Information Transport is preferable. In Section 4, we offer means of reformulating 
these problems on more general manifolds 𝑀 so that we have a hope of finding a diffeomorphic mapping.

Looking at moving mesh methods as a particular type of adaptive mesh methods, we can see that a possible disadvantage lies 
in the inability to add points in the mesh to refine the resolution. In a grid built from placing vertices at points of equally spaced 
longitude and latitude, for example, one cannot increase the number of vertices exactly along the equator without “tangling” the 
mesh. Thinking about moving mesh methods as diffeomorphic density matching between two 𝐶∞ probability measures bounded 
away from zero, one can only “borrow” vertices from elsewhere in the mesh and create a higher local density of points along the 
equator. On the bright side, however, by using OT and OIT for moving mesh methods, the only really important quantity is the ratio

of the source and target density. That is, starting with any given mesh, we can redistribute the density of vertices as if the original 
mesh had constant vertex density. Thus, the tradeoff in not being able to exactly specify where the new nodes go allows for tremendous 
flexibility in the local density of nodes, and in computations vertices can always be added to the grid, before or after the mesh 
redistribution, in order to refine the mesh as desired.

In applications, there is interest in applying moving mesh methods to the (non-compact) ocean. Suppose one begins with a mesh 
that is only over the oceans. Can one use diffeomorphic density matching techniques, such as Optimal Information Transport, in 
order to restructure this mesh over the ocean? Geometrically, Optimal Information Transport is posed over manifolds. Therefore, the 
natural choices are to pose the mesh on 𝑀 = 𝕊2, or, perhaps, conformally map the oceans to a subset of ℝ2 and then use the geometry 
from the torus 𝑀 = 𝕋 2. The source density in Optimal Information Transport is constant. The target density must be bounded away 
from zero in order to guarantee a diffeomorphic mapping 𝑇 . This would lead to some mass-transfer across the boundary of the 
oceans. That is, some nodes leaving the oceans and entering the continents are inevitable (and therefore the number of nodes over 
the oceans will not be conserved). Using Optimal Transport it is also not possible to guarantee a diffeomorphic mapping for the mesh 
over the ocean. In this case, also, the source and target mass densities must be bounded away from zero, which will lead to the target 
mesh having some nodes, inescapably, over the continents. It is not possible either to map the oceans conformally, say, to a subset 
of Euclidean space, use source and target densities that have support on this set, and then solve the Monge-Ampère equation to 
guarantee the mapping 𝑇 is diffeomorphic. This is because the set of oceans contains holes (continents) and is therefore not convex. 
Since the target set is not convex, the classical regularity results by Caffarelli in subsets of Euclidean space do not guarantee that the 
map is differentiable.

2. Optimal Transport on compact manifolds

Our main objective in this section is to review the regularity theory for the Optimal Transport mapping between probability 
measures on compact and connected 2D manifolds, since our goal is to know when the Optimal Transport mapping is a diffeomor-
phism (i.e. sufficiently smooth and invertible). The regularity results can largely be divided into two régimes. These two régimes 
are 1.) positive 𝐶∞ source and target probability density functions lead to a 𝐶∞ Optimal Transport mapping 𝑇 and 2.) positive 𝐶∞

source and target probability density functions do not necessarily lead to a 𝐶∞ Optimal Transport mapping 𝑇 . The first case (smooth 
mapping) is possible for the squared geodesic cost function on the 𝑛-sphere [20]. Beyond the 𝑛-sphere, there exist compact and 
connected 2D manifolds where a smooth mapping is not possible [11] when using the squared geodesic cost function. This suggests 
that either it is not possible to guarantee the existence of smooth mappings 𝑇 or perhaps it is possible with a different cost function. 
For genus-0 manifolds, in Section 4, in fact, we make the assertion that a change of cost function will, in fact, guarantee regularity 
for the mapping 𝑇 . The case beyond genus-0 manifolds will be explored in future work.

Since our objective is to study the mapping between probability distributions, we consider the Monge problem of Optimal 
Transport on smooth compact, connected manifolds 𝑀 without boundary. The Monge problem of Optimal Transport considers 
finding the mapping which minimizes the total cost of moving mass from a given source probability measure to a target probability 
measure. This total cost is computed by integrating a cost function over the source measure. Optimal Transport allows for a wide 
variety of cost functions to be chosen. In this manuscript we will often discuss the squared geodesic cost, that is 𝑐(𝑥, 𝑦) = 1

2𝑑𝑀 (𝑥, 𝑦). 
However, it should be strongly emphasized here that any cost function which allows one to construct a diffeomorphic pushforward 
map 𝑇#𝜇0 = 𝜇1 is possible to use. For the unit sphere 𝕊2 this includes, but is not limited to, any cost function that satisfies the 
hypotheses of Theorem 4.1 from [20], as well as the reflector antenna cost 𝑐(𝑥, 𝑦) =− log‖𝑥− 𝑦‖, where ‖ ⋅ ‖ is the vector 2-norm in 
ℝ3, again, see [20] for more details.

Given source and target probability measures 𝜇0 and 𝜇1 supported on the manifold that have density functions 𝑓0 and 𝑓1, 
respectively, that is 𝑑𝜇0(𝑥) = 𝑓0(𝑥)dvol(𝑥) and 𝑑𝜇1(𝑥) = 𝑓1(𝑦)dvol(𝑦), the Monge Problem of Optimal Transport consists of finding a 
mapping 𝑇 ∶𝑀 →𝑀 such that 𝑇#𝜇0 = 𝜇1, that is 𝜇1 is the pushforward measure of 𝜇0 via the mapping 𝑇 such that:

𝑇 = argmin
𝑆 ∫

𝑀

1
2
𝑑𝑀 (𝑥,𝑆(𝑥))𝑓0(𝑥)𝑑𝑥. (5)

The Monge problem of Optimal Transport can be formulated as a partial differential equation given some additional assumptions 
on the cost function, known as the MTW conditions, which are satisfied by the squared geodesic cost function [22].

Hypothesis 1 (Conditions on cost function). The squared geodesic cost function 𝑐(𝑥, 𝑦) = 1
2𝑑𝑀 (𝑥, 𝑦) satisfies the following conditions:
4

(a) The function ∇𝑀,𝑥𝑐(𝑥, 𝑦) is Lipschitz for all 𝑥, 𝑦 ∈𝑀 and invertible in 𝑦,
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(b) For any 𝑥, 𝑦 ∈𝑀 , we have det𝐷2
𝑀,𝑥𝑦

𝑐(𝑥, 𝑦) ≠ 0.

As first shown in [23], the optimal map corresponding to this cost function is determined from the condition

𝑇 (𝑥) = exp𝑥(∇𝑀𝑢(𝑥)), 𝑥 ∈𝑀, (6)

which, for the unit sphere 𝕊2 has the explicit expression:

𝑇 (𝑥) = 𝑥 cos
(‖‖∇𝕊2𝑢(𝑥)‖‖)+ ∇𝕊2𝑢(𝑥)‖‖∇𝕊2𝑢(𝑥)‖‖ sin

(‖‖∇𝕊2𝑢(𝑥)‖‖) (7)

where 𝑢 is the solution of the fully nonlinear partial differential equation

𝐹
(
𝑥,∇𝑀𝑢(𝑥),𝐷2

𝑀
𝑢(𝑥)

)
= 0, (8)

where

𝐹 (𝑥, 𝑝,𝑀) ≡ −det (𝑀 +𝐴(𝑥, 𝑝)) +𝐻(𝑥, 𝑝), (9)

and

𝐴(𝑥, 𝑝) =𝐷2
𝑀,𝑥𝑥

𝑐 (𝑥,𝑇 (𝑥, 𝑝))

𝐻(𝑥, 𝑝) = |||det𝐷2
𝑀,𝑥𝑦

𝑐 (𝑥,𝑇 (𝑥, 𝑝))|||𝑓0(𝑥)∕𝑓1 (𝑇 (𝑥, 𝑝)) .
The PDE (8) is also subject to the 𝑐-convexity condition, which requires that

𝐷2
𝑀
𝑢(𝑥) +𝐴(𝑥,∇𝑀𝑢(𝑥)) ≥ 0. (10)

2.1. Regularity

We consider the optimal transport problem (8) under the following hypothesis.

Hypothesis 2 (Conditions on data (smooth)). We require problem data to satisfy the following conditions:

(a) There exists some 𝑚 > 0 such that 𝑓0(𝑥) ≥𝑚 and 𝑓1(𝑥) ≥𝑚 for all 𝑥 ∈ 𝕊𝑛.
(b) The mass balance condition holds, ∫𝕊2 𝑓0(𝑥) 𝑑𝑥 = ∫𝕊2 𝑓1(𝑦) 𝑑𝑦.

(c) The cost function is the squared geodesic cost function 𝑐(𝑥, 𝑦) = 1
2𝑑𝕊2 (𝑥, 𝑦)

2.

(d) The data satisfies the regularity requirements 𝑓0, 𝑓1 ∈ 𝐶1,1(𝕊𝑛).
(e) The geometry is the 𝑛-sphere 𝕊𝑛.

We thus get the following regularity result, from Loeper [20]:

Theorem 3 (Regularity). The optimal transport problem (8) with data satisfying Hypothesis 2 has a classical solution 𝑢 ∈ 𝐶3(𝕊2). Further-

more, if 𝑓0, 𝑓1 ∈ 𝐶∞(𝕊2) and positive, then 𝑢 ∈ 𝐶∞(𝕊2).

Such Optimal Mapping 𝑇 is also a diffeomorphism. This is because 𝑇 is measure preserving, which means it solves the Jacobian 
equation:

𝑓0(𝑥) = 𝑓1 (𝑇 (𝑥)) |𝐷𝑇 | , (11)

which implies:

|𝐷𝑇 | = 𝑓0(𝑥)∕𝑓1(𝑇 (𝑥)) > 0, (12)

by the assumption that 𝑓0 and 𝑓1 are bounded and positive given in Hypothesis 2.
In Section 6, we will perform a computation cases where the source and target densities are piecewise continuous. So, for our 

purposes, the weakest regularity guarantees for the Optimal Transport problem on the sphere are that 𝑇 is merely Hölder continuous, 
see Theorem 2.4 in Loeper [20] for more details.

The solution to (8) is unique only up to additive constants. In this manuscript, for computations, we will fix a point 𝑥0 ∈𝑀 and 
add the additional constraint:
5

𝑢(𝑥0) = 0. (13)
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2.2. Beyond the sphere

The regularity guarantees may fail once we move beyond the 𝑛-sphere. There exist compact and connected 2D manifolds for 
which the same regularity results apply as long as they are small perturbations of the sphere [34], however in general even with 
positive 𝐶∞ source and target masses, we cannot be guaranteed a smooth mapping 𝑇 with even the squared geodesic cost function. 
The mapping 𝑇 may fail to be smooth when the so-called cost-sectional curvature is found to be negative for some point 𝑥 ∈𝑀 . 
In fact, in some cases, manifolds 𝑀 with non-positive cost-sectional curvature at any point 𝑥 ∈ 𝑀 can have positive measures 
𝜇0, 𝜇1 ∈ 𝐶∞(𝑀), but 𝑇 is not even guaranteed to be continuous when the cost function is the squared geodesic cost [19].

In order to define cost-sectional curvature, we introduce the Ma, Trudinger, Wang tensor [22,19]:

𝔊𝑐(𝑥0, 𝑦0)(𝜉, 𝜈) =𝐷4
𝑝𝜈 ,𝑝𝜈 ,𝑥𝜉 ,𝑥𝜉

[
(𝑥, 𝑝)↦ −𝑐

(
𝑥,𝑇𝑥0

(𝑝)
)] |𝑥0 ,𝑝0=−∇𝑥𝑥(𝑥0 ,𝑦0). (14)

The cost-sectional curvature is negative at a point (𝑥, 𝑦) if there exist 𝜉, 𝜈 such that 𝔊𝑐(𝑥, 𝑦)(𝜉, 𝜈) < 𝐶0 |𝜉|2 |𝜈|2. In this case of the 
squared geodesic cost function, the non-positivity of the cost-sectional curvature is equivalent to the negativity of the sectional 
curvature of 𝑀 at any point 𝑥 ∈𝑀 due to the equality:

𝔊𝑐(𝑥,𝑥)(𝜈, 𝜉)|𝜉|2 |𝜈|2 − (𝜉 ⋅ 𝜈)2
= 2

3
⋅ sectional curvature of 𝑀 at 𝑥 in the plane (𝜉, 𝜈). (15)

Notice in (15) that we are looking at the diagonal (where 𝑥 = 𝑦), but even if the underlying manifold has strictly positive curvature 
everywhere, the Ma, Trudinger, Wang tensor 𝔊𝑐(𝑥, 𝑦) may be negative on the off-diagonal (𝑥, 𝑦) s.t 𝑥 ≠ 𝑦. This was shown true even 
for some ellipsoids of revolution in the paper [11]. This suggests that computing Optimal Transport for such cases using the squared 
geodesic cost function is not guaranteed to result in a diffeomorphic mapping 𝑇 .

3. Optimal Information Transport on compact manifolds

Here we review the Optimal Information Transport problem on a compact and connected manifold 𝑀 , which yields a diffeomor-
phic mapping as long as the source and target masses are positive and smooth. The benefit here is that the diffeomorphism exists 
over all such 𝑀 , contrasting with the Optimal Transport mapping. For much more information about Optimal Information Transport, 
see the background and more detail presented in [2,26]. For all the discussion in this section, we will assume that the underlying 
manifold 𝑀 is compact and connected and is equipped with the standard volume form vol.

3.1. Geometry of space of diffeomorphisms on 𝑀 and space of positive smooth densities on 𝑀

In order to find a diffeomorphism between two positive, smooth probability measures, one approach is to work directly in the 
space of diffeomorphisms. Denote by Diff(𝑀) the set of diffeomorphisms from the manifold 𝑀 to itself. This set is nonempty, since 
Id ∈ Diff(𝑀). Also, if 𝜑1, 𝜑2 ∈ Diff(𝑀), then 𝜑1◦𝜑2 ∈ Diff(𝑀). Also, for every 𝜑 ∈ Diff(𝑀), there exists a 𝜑−1 ∈ Diff(𝑀) such that 
𝜑◦𝜑−1 = Id. Thus, Diff(𝑀) has an algebraic structure and, equipped with a metric 𝑔, is a Lie group. Denote by 𝔛(𝑀) the space of 
smooth vector fields on 𝑀 with the “information” inner product ⟨𝑈,𝑉 ⟩𝐼

𝜑
for a fixed 𝜑 ∈ Diff(𝑀) and 𝑈, 𝑉 ∈ 𝜑:

⟨𝑈,𝑉 ⟩𝐼
𝜑
= ∫

𝑀

𝑔(Δ𝑢, 𝑣)𝑑𝑥+ 𝜆

𝑘∑
𝑖=1

∫
𝑀

𝑔(𝑢, 𝜉𝑖)𝑑𝑥∫
𝑀

𝑔(𝑣, 𝜉𝑖)𝑑𝑥, (16)

where 𝑔 is the induced metric on 𝑀 , 𝑢 = 𝑈◦𝜑−1, 𝑣 = 𝑉 ◦𝜑−1, 𝜆 > 0, 𝑢 = 𝑈◦𝜑−1, 𝑣 = 𝑉 ◦𝜑−1, 𝑔 is the underlying metric of the 
manifold, Δ is the Laplace-de Rham operator (Hodge Laplacian) on the space of vector fields, and {𝜉𝑖}𝑖 is an orthonormal basis of 
the harmonic vector fields on 𝑀 , that is those vector fields 𝜉 for which Δ𝜉 = 0.

Notice there is a natural “connection” between Diff(𝑀) and measures defined on 𝑀 . That is, fix a positive, smooth probability 
density on the manifold 𝜇, then there exist measure-preserving mappings (for example, the identity map Id) 𝜑𝜇 such that 𝜑∗

𝜇
𝜇 = 𝜇. 

That is,

∫
𝐸

𝜇(𝑥)𝑑𝑥 = ∫
𝜑𝜇 (𝐸)

𝜇(𝑦)𝑑𝑦, (17)

for any Borel set 𝐸 ⊂𝑀 . For a fixed 𝜇, these measure-preserving diffeomorphisms 𝜑𝜇 form a subgroup of Diff(𝑀).
Now, we define the space of smooth volume forms over 𝑀 with total volume vol(𝑀):

Dens(𝑀) =
⎧⎪⎨⎪⎩𝜇 ∈Ω𝑛(𝑀) ∶ ∫

𝑀

𝜇 = vol(𝑀), 𝜇 > 0
⎫⎪⎬⎪⎭ , (18)

where the notation Ω𝑛(𝑀) denotes the 𝑛-forms over the manifold 𝑀 . The metric we choose on this space is the Fisher-Rao metric, 
6

defined by:
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⟨𝜎1, 𝜎2⟩𝐹𝜇 = 1
4 ∫
𝑀

𝑑𝜎1
𝑑𝜇

𝑑𝜎2
𝑑𝜇

𝑑𝜇, (19)

where 𝑑𝜎𝑖
𝑑𝜇

denotes the Radon-Nikodym derivative of 𝜎𝑖 with respect to 𝜇. The space Dens(𝑀) is a Fréchet Manifold.

With this choice of metric, for compact and connected manifolds 𝑀 , the geodesics in Dens(𝑀) have explicit expressions. Define 
𝑊 ∶ Dens(𝑀) → 𝐶∞(𝑀) by 𝜇↦

√
𝑑𝜇

𝑑vol
, then the geodesic 𝜇(𝑡) between 𝜇0, 𝜇1 ∈ Dens(𝑀) are given by the mapping:

[0,1] ∋ 𝑡↦

(
sin ((1 − 𝑡)𝜃)

sin𝜃
𝑓0 +

sin(𝑡𝜃)
sin𝜃

𝑓1

)2
vol, (20)

where

𝜃 = arccos
(⟨𝑓0, 𝑓1⟩𝐿2

vol(𝑀)

)
, (21)

and 𝑓𝑖 =𝑊 (𝜇𝑖).
The question then can be asked if there are geodesics in Diff(𝑀) that descend onto the explicit geodesic (20), therefore yielding a 

path 𝜑(𝑡) ⊂ Diff(𝑀) such that 𝜑(𝑡)∗𝜇0 = 𝜇(𝑡). The answer is yes (for the rather complicated looking metric (16)), and, when 𝜇0 = vol, 
the expression to find 𝜑(𝑡) is particularly simple!

Fix a reference measure 𝜇 ∈ Dens(𝑀). Then, define the space Diff𝜇(𝑀) consisting of 𝜇-preserving mappings on 𝑀 . As noted 
before, this is a subspace of Diff(𝑀), so we can define the quotient space Diff𝜇(𝑀) ⧵ Diff(𝑀) that consists of elements of the form:

[𝜑] ∶= Diff𝜇(𝑀)◦𝜑 ∈ Diff𝜇(𝑀) ⧵ Diff(𝑀). (22)

An important result from Moser says that the map Diff𝜇(𝑀) ⧵ Diff(𝑀) ∋ [𝜑] ↦ 𝜑∗𝜇 ∈ Dens(𝑀) is bijective [28].
Again, 𝜇 is fixed. Define the projection:

𝜋𝜇 ∶ Diff(𝑀) ∋ 𝜑↦ 𝜑∗𝜇 ∈ Dens(𝑀). (23)

Then we can define the following principal bundle structure:

Diff𝜇(𝑀) Diff(𝑀)

Dens(𝑀)

𝜋𝜇

Now, fix 𝜇 = vol, then we denote the projection 𝜋vol = 𝜋 and we will observe the important properties that result. We define 
the vertical distribution 𝜑, which is a subbundle of the tangent bundle 𝜑 that is tangent to the fibers. The horizontal distribution 
𝜑 consists of all 𝑈 ∈ 𝜑 such that 𝐺𝐼

𝜑
(𝑈, 𝑉 ) = 0, where 𝑉 is in the vertical distribution. The horizontal distribution has a special 

characterization:

𝜑 =
{
𝑈 ∈ 𝜑Diff(𝑀) ∶𝑈◦𝜑−1 = grad(𝑓 ), 𝑓 ∈ 𝐶∞(𝑀)

}
, (24)

and if 𝜑(𝑡) is a geodesic (in Diff(𝑀)), then if 𝜑̇(0) ∈𝜑(0), then 𝜑̇(𝑡) ∈𝜑(𝑡). Most critically, if 𝜑(𝑡) is a horizontal geodesic curve in 
Diff(𝑀), then 𝜇(𝑡) = 𝜋(𝜑(𝑡)) is a geodesic curve in Dens(𝑀).

3.2. Diffeomorphic density matching

At this point, we will utilize the geometric properties we noted in Section 3.1 to derive simple equations for finding a horizontal 
geodesic curve 𝜑(𝑡) such that 𝜇(𝑡) = 𝜋(𝜑(𝑡)) is a geodesic curve in Dens(𝑀). Specifically, given a geodesic curve 𝜇(𝑡), we desire to 
find a 𝜑(𝑡) that descends to 𝜇(𝑡). To find a unique path 𝜑(𝑡), we also require that the path minimize an energy functional:

𝜑(0) = Id,

𝜑∗𝜇0 = 𝜇(𝑡),

minimizing

1

∫
0

⟨𝜑̇(𝑡), 𝜑̇(𝑡)⟩𝐼
𝜑(𝑡) 𝑑𝑡.

(25)

From the observations in Section 3.1, we note that when 𝜇 = vol that the horizontal geodesics have a particularly simple form given 
by Equation (24). Thus, from now on, we assume that 𝜇0 is the canonical volume form. We take the equation 𝜑∗(𝑡)𝜇0 = 𝜑∗(𝑡)vol = 𝜇(𝑡)
and differentiate with respect to 𝑡:( )
7

𝜇̇(𝑡) = 𝜕𝑡 𝜑(𝑡)∗vol = 𝜑∗divvol𝑣(𝑡), (26)



Journal of Computational Physics 500 (2024) 112726A.G.R. Turnquist

where 𝑣(𝑡) = 𝜑̇◦𝜑−1. This can be rewritten as:

𝜇̇(𝑡) = div (𝑣(𝑡))◦𝜑(𝑡)𝜇(𝑡). (27)

From here we write a Hodge-Helmholz decomposition for the vector field 𝑣, by writing 𝑣 = grad𝑓 +𝑤. We look for a horizontal 
geodesic, so 𝜑̇(0) ∈Id and therefore 𝜑̇(𝑡) ∈𝜑(𝑡) as was noted in 3.1 and thus from Equation (24), we see that we can choose 𝑤 = 0. 
Therefore, the expression in Equation (27) simplifies to Equation (28) solving for the curl-free term 𝑓 , with all other terms known, 
see Equation (20) for the equation for 𝜇(𝑡) and 𝜇̇(𝑡).

Δ𝑓 (𝑡) = 𝜇̇(𝑡)
𝜇(𝑡)

◦𝜑(𝑡)−1,

𝜑̇(𝑡) = grad (𝑓 (𝑡))◦𝜑(𝑡), 𝜑(0) = id.

(28)

This system of equations (28) is essentially the equation for the horizontal geodesic 𝜑(𝑡). The Optimal Information Transport 
problem is then to find a diffeomorphism 𝑇 such that:

𝑇∗𝜇0 = 𝜇1, (29)

where 𝑇∗𝜇0 denotes the pushforward of 𝜇0, which is then given by the time-1 map: 𝑇 = 𝜑−1(1), where 𝜑(𝑡) solves Equation (28).

4. Simplifying the geometry for moving mesh methods

The numerical methods proposed below in Section 5 show that diffeomorphic density matching for moving mesh methods com-
putations via Optimal Transport and Optimal Information Transport both rely on some computational analysis of the underlying 
manifold 𝑀 . They require precise computations of geodesics of 𝑀 and Optimal Information Transport computations rely heavily on 
a well-chosen interpolation on the manifold 𝑀 . In order to simplify greatly the amount of geometric analysis that must be performed, 
here we have found it useful to simplify the geometry by assuming that we have a diffeomorphic mapping Φ ∶𝑀 →𝑀0, where 𝑀0
is a manifold where computations are simpler to perform. Since the smooth, connected, and compact surfaces 𝑀 we address in this 
manuscript lie in ℝ3, any two such manifolds that are homeomorphic are automatically diffeomorphic, see [18]. The first example 
of two homeomorphic manifolds that are not diffeomorphic, for example, was found by Milnor in 1956, see [25], in ℝ7. This means 
that for our purposes, any two such smooth surfaces 𝑀 that we wish to perform computations on that are of the same homotopy 
class are also diffeomorphic. Therefore, provided that 𝑀 is, say, genus-0, we have that there exists a diffeomorphism Φ ∶𝑀 → 𝕊2. 
Constructing the diffeomorphism is another matter, although we show a simple example below in Section 4.6.

For example, for all smooth, compact genus-0 surfaces, we have found it particularly useful to choose 𝑀0 = 𝕊2. So instead of 
performing computations on each individual ellipsoid 𝑀 , we perform computations on the unit sphere, taking advantage, especially, 
of the fact that the sphere has explicit formulas for the geodesics. In this section we outline how, given two probability measures 
𝜇0, 𝜇1 ⊂𝑀 with density functions 𝑓0, 𝑓1 ∶𝑀 → ℝ, respectively, we may produce a diffeomorphic mapping 𝑇 ∶𝑀 →𝑀 such that 
𝑇#𝜇0 = 𝜇1, by instead performing computations on 𝑀0, given a diffeomorphic mapping Φ ∶𝑀 →𝑀0. For the sake of exposition, in 
this section, we will only show the theory for 𝑀0 = 𝕊2.

This also has implications for solving Optimal Transport on genus-0 manifolds 𝑀 for the purposes of producing a smooth Optimal 
Transport mapping 𝑇 . As was mentioned in Section 2, if one desires to solve the Optimal Transport problem on a manifold 𝑀 with 
the squared geodesic cost (which is often the natural choice in computations), there is no guarantee that the mapping 𝑇 will be 
smooth, again see [11] for an example of an ellipsoid. In this section, we will show that if one has a diffeomorphism Φ ∶𝑀 → 𝕊2, 
then, letting 𝑧, 𝜉 ∈𝑀 , solving the Optimal Transport problem with the cost function 𝑐(𝑧, 𝜉) = 1

2 (arccos(Φ(𝑧) ⋅Φ(𝜉)))2, where ⋅ denotes 
the dot product in ℝ3 will guarantee a smooth Optimal Transport mapping 𝑇 when 𝑓0, 𝑓1 are sufficiently smooth.

4.1. Choice of density functions on 𝕊2

Let 𝑥 denote the coordinates on 𝕊2 and 𝑧 denote the coordinates on 𝑀 . Therefore, in coordinates, Φ(𝑧) = 𝑥. The density functions 
𝑓0, 𝑓1 satisfy ∫

𝑀
𝑓0𝑑𝑥 = ∫

𝑀
𝑓1𝑑𝑥 = 1. Let 𝑑Φ𝑧 ∶ 𝑇𝑧𝑀 → 𝑇𝑥𝕊2 denote the (pushforward) differential of the map Φ and 𝑑Φ−1

𝑥
∶

𝑇𝑥𝕊2 → 𝑇𝑧𝑀 the differential of the inverse function Φ−1. With a choice of coordinates, 𝑑Φ𝑧 is simply the Jacobian matrix of Φ and ||𝑑Φ𝑧
|| denotes its determinant. Then, for the Optimal Transport problem, we can define the following density functions on 𝕊2:

𝑓0(𝑥) = 𝑓0(Φ−1(𝑥)) |||𝑑Φ−1
𝑥

|||
𝑓1(𝑥) = 𝑓1(Φ−1(𝑥)) |||𝑑Φ−1

𝑥

||| . (30)

Then,

∫
𝕊2

𝑓0(𝑥)𝑑𝑥 = ∫
Φ−1(𝕊2)

𝑓0(Φ(𝑧)) ||𝑑Φ𝑧
||𝑑𝑧, (31)

= 𝑓0(𝑧)𝑑𝑧 = 𝑓0(𝑧)𝑑𝑧 = 1, (32)
8

∫
Φ−1(𝕊2)

∫
𝑀
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and likewise ∫𝕊2 𝑓1(𝑥)𝑑𝑥 = 1. Therefore, 𝑓0, 𝑓1 are density functions on 𝕊2 that integrate to 1.

For Optimal Information Transport, we perform computations on the unit sphere 𝕊2 where we need for 𝜇0 = vol in order to use 
the equations (28). Therefore, although we would like to perform computations for densities on 𝑀 , we start in the other direction 
by setting 𝑓0 = 1. Then, we define:

𝑓0(𝑧) =
vol(𝑀)
4𝜋

||𝑑Φ𝑧
||

𝑓1(𝑧) =
vol(𝑀)
4𝜋

||𝑑Φ𝑧
||𝑓1(Φ(𝑧)).

(33)

Then,

∫
𝑀

𝑓0(𝑧)𝑑𝑧 =
vol(𝑀)
4𝜋 ∫

𝑀

||𝑑Φ𝑧
||𝑑𝑧 = vol(𝑀)

4𝜋 ∫
𝕊2

𝑑𝑥 = vol(𝑀) (34)

and

∫
𝑀

𝑓1(𝑧)𝑑𝑧 =
vol(𝑀)
4𝜋 ∫

𝑀

||𝑑Φ𝑧
||𝑓1(Φ(𝑧))𝑑𝑧 = vol(𝑀)

4𝜋 ∫
𝕊2

𝑓1(𝑥)𝑑𝑥 = vol(𝑀) (35)

4.2. Producing a mass-preserving mapping 𝑇̄ on 𝑀

In this section, we show that if we have a mass-preserving diffeomorphic mapping 𝑇 on 𝕊2, then we can use it to build a mass-
preserving diffeomorphic mapping 𝑇̄ on 𝑀 . This result will apply to both Optimal Transport and Optimal Information Transport 
mappings.

Lemma 4. Given that 𝑇 is mass preserving and diffeomorphic on 𝕊2 for 𝑓0, 𝑓1, the map 𝑇̄ (𝑧) = 𝑇 (Φ(𝑧)) is mass preserving and diffeomorphic 
on 𝑀 for 𝑓0, 𝑓1.

Proof. Since 𝑇 is mass preserving, for any Borel set 𝐵 ⊂𝑀 , we have that:

∫
Φ(𝐵)

𝑓0(𝑥)𝑑𝑥 = ∫
𝑇 ◦Φ(𝐵))

𝑓1(𝑦)𝑑𝑦. (36)

Therefore, for both the Optimal Transport and the Optimal Information Transport problems,

∫
Φ(𝐵)

𝑓0(Φ−1(𝑥)) |||𝑑Φ−1
𝑥

|||𝑑𝑥 = ∫
𝑇 ◦Φ(𝐵)

𝑓1(Φ−1(𝑦)) |||𝑑Φ−1
𝑦

|||𝑑𝑦. (37)

Using the change of variables Φ(𝑧) = 𝑥 and Φ(𝜉) = 𝑦, we get:

∫
𝐵

𝑓0(𝑧)𝑑𝑧 = ∫
𝑇̄ (𝐵)

𝑓1(𝜉)𝑑𝜉, (38)

and therefore, 𝑇̄ is mass-preserving for 𝑓0, 𝑓1 on 𝑀 . □

If 𝑇 is a diffeomorphism, then 𝑇̄ = 𝑇 ◦Φ is a diffeomorphism. Therefore, since the moving mesh problem is simply concerned with 
changing the local density of the mesh, if we desire to change the local density of nodes by a factor 𝑓1, we can solve the Optimal 
Information Transport problem using the densities 𝑓0 = 1 and 𝑓1 on the unit sphere 𝕊2 for a mapping 𝑇 , then 𝑇 ◦Φ(𝑧) gives the 
pushforward mapping that locally changes the density by 𝑓1(Φ(𝑧)) on the genus-0 manifold 𝑀 . Beyond just thinking about 𝑇 as 
simply a pushforward map, what is more interesting is that we can define a new Optimal Transport problem on 𝑀 .

4.3. A good choice for the Optimal Transport cost function on 𝑀

We will show that by using a new cost function inherited from the unit sphere 𝕊2, we will be solving a new Optimal Transport 
problem on the manifold 𝑀 . Here we outline a good choice for a class of cost functions 𝑐 ∶𝑀 ×𝑀 →ℝ.

The squared geodesic cost function 𝑐 ∶ 𝕊2 × 𝕊2 →ℝ on the unit sphere is:

𝑐(𝑥, 𝑦) = 1
2
(arccos(𝑥 ⋅ 𝑦))2 , (39)

where ⋅ denotes the dot product in ℝ3. We define a new cost function 𝑐 ∶𝑀 ×𝑀 →ℝ on the manifold 𝑀 for points 𝑧, 𝜉 ∈𝑀 by:
9

𝑐(𝑧, 𝜉) = 1
2
(arccos (Φ(𝑧) ⋅Φ(𝜉)))2 = 𝑐 (Φ(𝑧),Φ(𝜉)) . (40)
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It should be noted here that the choice of the diffeomorphism Φ ∶𝑀 → 𝕊2 is not necessarily unique, allowing for many such cost 
functions 𝑐. Also, any cost function in Theorem 4.1 of [20], as well as the logarithmic cost appearing in the reflector antenna can be 
used as 𝑐.

4.4. Producing an optimal mapping 𝑇̄ for the Optimal Transport problem on 𝑀

First, we define the two Optimal Transport problems, one on 𝕊2 and the other on 𝑀 .

Define 𝜇̄0, 𝜇̄1 by 𝑑𝜇̄0
𝑑vol𝑀

= 𝑓0(𝑥), and 𝑑𝜇̄1
𝑑vol𝑀

= 𝑓1(𝑥). The mapping 𝑇 solves the following Optimal Transport problem:

𝑇 = argmin𝑆∶𝑆#𝜇0=𝜇1 ∫
𝕊2

𝑐(𝑥,𝑆(𝑥))𝑓0(𝑥)𝑑𝑥. (OT’)

And there exists a 𝑇̃ , see [23], solving the problem:

𝑇̃ = argmin𝑆∶𝑆#𝜇̄0=𝜇̄1 ∫
𝑀

𝑐(𝑥,𝑆(𝑥))𝑓0(𝑥)𝑑𝑥. (OT)

We desire to show that 𝑇̄ = 𝑇̃ . We have already shown that 𝑇̄ is mass-preserving. Define the function 𝑢̄ as a function (up to a 
constant) that solves the following equation:

∇𝑀𝑢̄(𝑧) = ∇𝑀,𝑧𝑐(𝑧, 𝜉)|𝜉=𝑇̄ (𝑧). (41)

It remains to show that any 𝑢̄ solving Equation (41) is 𝑐-convex. Since Φ is a diffeomorphism, 𝑑Φ𝑧 ∶ 𝑇𝑧𝑀 → 𝑇𝑥𝕊2 is invertible. 
Therefore, defining the function 𝑢̃(𝑧) = 𝑢(Φ(𝑧)), we get:

∇𝑀𝑢̃(𝑧) = 𝑑Φ−1
𝑥
◦∇𝕊2𝑢(𝑥)|𝑥=Φ(𝑧), (42)

= 𝑑Φ−1
𝑥
◦
(
∇𝕊2 ,𝑥𝑐(𝑥, 𝑦)|𝑦=𝑇 (𝑥)) |𝑥=Φ(𝑧), (43)

=∇𝑀,𝑧𝑐 (Φ(𝑧),Φ(𝜉)) |𝜉=𝑇 ◦Φ(𝑧)=𝑇̄ (𝑧), (44)

and therefore, ∇𝑀𝑢̃(𝑧) =∇𝑀𝑢̄(𝑧). Therefore, 𝑢̄ = 𝑢(Φ(𝑧)) +𝐶 , for some arbitrary constant 𝐶 .
We show that 𝑢̄ is 𝑐-convex.

Lemma 5. Given that 𝑢 is 𝑐-convex on 𝕊2, the function 𝑢̄ is 𝑐-convex on 𝑀 .

Proof. Since 𝑢 is 𝑐-convex on 𝕊2, we know that for each 𝑥 ∈ 𝕊2, there exists a 𝑦 ∈ 𝕊2 such that:{
−𝑢𝑐(𝑦) − 𝑐(𝑥, 𝑦) = 𝑢(𝑥)
−𝑢𝑐(𝑦) − 𝑐(𝑥′, 𝑦) ≤ 𝑢(𝑥′), ∀𝑥′ ∈ 𝕊2.

(45)

Fix 𝑥 ∈ 𝕊2 and a diffeomorphism Φ ∶𝑀 → 𝕊2 and let Φ(𝑧) = 𝑥. Let 𝜉 ∈𝑀 satisfy Φ(𝜉) = 𝑦. Then,

−𝑢̄𝑐(𝜉) − 𝑐(𝑧, 𝜉) = −sup
𝑧̃

(−𝑐(𝑧̃, 𝜉) − 𝑢̄(𝑧̃)) − 𝑐(𝑧, 𝜉), (46)

= −sup
𝑧̃

(−𝑐(Φ(𝑧̃),Φ(𝜉)) − 𝑢(Φ(𝑧̃)) −𝐶) − 𝑐(Φ(𝑧),Φ(𝜉)), (47)

= −sup
𝑦̃

(−𝑐(𝑦̃, 𝑦) − 𝑢(𝑦̃−𝐶)) − 𝑐(𝑥, 𝑦), (48)

= −𝑢𝑐(𝑦) +𝐶 − 𝑐(𝑥, 𝑦) = 𝑢(𝑥) +𝐶 = 𝑢(Φ(𝑧)) −𝐶 +𝐶 = 𝑢̄(𝑧). (49)

Fix 𝑥 ∈ 𝕊2 and a diffeomorphism Φ ∶𝑀 → 𝕊2 and let Φ(𝑧) = 𝑥. Let 𝜉 ∈𝑀 satisfy Φ(𝜉) = 𝑦 and let 𝑥′ be any point in 𝕊2, and let 
Φ(𝑧′) = 𝑥′. Then,

−𝑢̄𝑐(𝜉) − 𝑐(𝑧′, 𝜉) = −sup
𝑧̃

(−𝑐(𝑧̃, 𝜉) − 𝑢̄(𝑧̃)) − 𝑐(𝑧′, 𝜉), (50)

= −sup
𝑧̃

(−𝑐(Φ(𝑧̃),Φ(𝜉)) − 𝑢(Φ(𝑧̃)) −𝐶) − 𝑐(Φ(𝑧′),Φ(𝜉)), (51)

= −sup
𝑦̃

(−𝑐(𝑦̃, 𝑦) − 𝑢(𝑦̃) −𝐶) − 𝑐(𝑥′, 𝑦), (52)

= −𝑢𝑐(𝑦) +𝐶 − 𝑐(𝑥′, 𝑦) ≤ 𝐶 + 𝑢(𝑥′), (53)

= 𝐶 + 𝑢(Φ(𝑧′)) = 𝐶 + 𝑢̄(𝑧′) −𝐶 = 𝑢̄(𝑧′). □ (54)
10

Therefore, 𝑢̄ is 𝑐-convex and thus 𝑇̄ = 𝑇 (Φ(𝑧)) is a solution to the Optimal Transport problem on 𝑀 with cost function 𝑐.
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Of course, (OT) and (OT’) are different problems. If the application one has in mind requires anything but the mapping 𝑇 , then 
solving (OT’) as a surrogate for (OT) could certainly be inappropriate. However, for the purposes of mesh redistribution, it is not 
advisable to use the squared geodesic cost on 𝑀 , as it is potentially fraught with regularity issues, whereas using 𝑐 is not, since it 
yields an Optimal Transport map 𝑇 which is a diffeomorphism by the guarantees from Theorem 3.

4.5. Diffeomorphic density matching for genus-1 compact surfaces

For genus-1 compact and connected surfaces (surfaces with one hole), like the torus, the computational scheme to solve the Opti-
mal Transport problem or Optimal Information Transport problem just needs to be developed for a single 𝑀0 , then all computations 
can be done on a representative torus. For Optimal Transport on the torus, we do not have the same regularity guarantees that we 
did for the unit sphere. Therefore, we recommend to solve the diffeomorphic density matching problem via Optimal Information 
Transport in these cases, which will be explored in future work.

Exploring these kinds of computations is perhaps useful in real-world examples where data is known a priori to lie on a torus, as 
sometimes is the case in molecular biology and environmental sciences [31,9,10]. For data science applications, the results of [29]
show that one can take data set and determine its homology with high degree of confidence. This would then inform one which 𝑀0
would be appropriate for a diffeomorphic density matching problem for use in either redefining a mesh for computations or sampling 
from a desired distribution 𝜇1 ⊂𝑀 .

4.6. Example computations for the oblate sphere

The results from [11] state that even for smooth density functions 𝑓0, 𝑓1, the Optimal Transport mapping 𝑇 with the squared 
geodesic cost function is not even guaranteed to be continuous. Therefore, using the cost function 𝑐 on the unit sphere 𝕊2 is greatly 
preferable for performing diffeomorphic density matching computations using Optimal Transport.

We desire to solve the diffeomorphic mapping problem on the oblate sphere{
(𝑥, 𝑦, 𝑧) ∶ 𝑥2 + 𝑦2 + 16𝑧2 = 1

}
. (55)

The diffeomorphism we choose is quite simple: Φ(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 4𝑧) (note that this diffeomorphism is infinitely differentiable, 
but its inverse is only once differentiable). In local coordinates, we compute the Jacobian 𝑑Φ𝑧. We see how 𝑑Φ𝑧 acts on tangent 
elements, but choosing a path 𝛾 ∶ [0, 1] →𝑀 and computing:

𝑑Φ𝑧(𝛾 ′(0)) = (Φ◦𝛾)′(0). (56)

We use a system of spherical polar coordinates on 𝑀 . That is, (𝑥, 𝑦, 𝑧) = (sin𝜃 cos𝜙, sin𝜃 sin𝜙, 0.25 cos𝜃) At a point 𝑥 ∈𝑀 , we 
use the local tangent coordinates given by the unit vectors 𝜃̂, 𝜙̂, where

𝜃̂ = 1√
cos2 𝜃 + 1

16 sin
2 𝜃

(
cos𝜃 cos𝜙, cos𝜃 sin𝜙,−1

4
sin𝜃

)
, 𝜙̂ = (−sin𝜙, cos𝜙,0). (57)

Start with a path just in the 𝜙̂ direction 𝛾1(𝑡) = (sin𝜃0 cos(𝑡0+𝑡), sin𝜃0 sin(𝑡0+𝑡), 0.25 cos𝜃0). Then, 𝛾 ′1(0) = (− sin𝜃0 sin 𝑡0, sin𝜃0 cos 𝑡0,
which has magnitude sin𝜃0. After the diffeomorphism, we have Φ◦𝛾1(𝑡) = (sin𝜃0 cos(𝑡0 + 𝑡), sin𝜃0 sin(𝑡0 + 𝑡), cos𝜃0). Therefore,

(Φ◦𝛾1)′(0) = (−sin𝜃0 sin 𝑡0, sin𝜃0 cos 𝑡0,0), (58)

which has magnitude sin𝜃0. Let’s define another path 𝛾2(𝑡) = (sin(𝑡0 + 𝑡) cos𝜙0, sin(𝑡0 + 𝑡) sin𝜙0, 0.25 cos(𝑡0 + 𝑡)) whose derivative is 
𝛾 ′2(𝑡) = (cos(𝑡0 + 𝑡) cos𝜙0, cos(𝑡0 + 𝑡) sin𝜙0, −0.25 sin(𝑡0 + 𝑡)), which has magnitude 

√
cos2 𝑡0 +

1
16 sin

2 𝑡0. Then,

(Φ◦𝛾)′(0) = (cos 𝑡0 cos𝜙0, cos 𝑡0 sin𝜙0,−sin 𝑡0), (59)

which has magnitude 
√

cos2 𝜃0 + sin2 𝜃0 = 1. Therefore, the linear map 𝑑Φ𝑧 takes vectors in the 𝜙̂-direction and stretches them by a 

factor of 1, and takes vectors in the 𝜃̂-direction and stretches them by a factor of 1∕
√

cos2 𝜃0 +
1
16 sin

2 𝜃0. Hence,

||𝑑Φ𝑧
|| = 1√

cos2 𝜃0 +
1
16 sin

2 𝜃0

. (60)

Therefore, in order to solve the Optimal Transport, we redefine the mass density functions 𝑓0, 𝑓1 ∶𝑀 →ℝ as:√
1

√
1

11

𝑓𝑖(𝜃,𝜙) = 𝑓𝑖(Φ−1(𝜃,𝜙)) cos2 𝜃 +
16

sin2 𝜃 = 𝑓 (𝜃,𝜙) cos2 𝜃 +
16

sin2 𝜃. (61)
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5. Numerical methods for Optimal Transport and Optimal Information Transport

In this section, we propose using provably convergent methods for solving the Optimal Transport and Optimal Information 
Transport problem on the unit sphere, as developed in the line of work [15,16]. The first numerical scheme developed to solve the 
Optimal Transport problem on the sphere with the squared geodesic cost function was from [38] and continued in a line of work, 
including a finite-element method in [24]. The scheme in [38] relied on computing a fixed-point iteration from a linearization of an 
equidistribution equation on 𝕊2, which corresponds to the Optimal Transport problem with squared geodesic cost. This method was 
not furnished with a convergence proof. Nevertheless, the methods worked very well in various computational examples.

Recently, it came to the author’s attention that numerical methods were also proposed for solving mean-field games on manifolds 
in [40], which included the Benamou-Brenier formulation of Optimal Transport as a subcase.

It should also be mentioned, as was stated in Section 2, that any choice of cost function that guarantees the regularity results in 
Theorem 3 would be appropriate for diffeomorphic density matching. This means that the entire line of numerical work that computes 
the reflector shape for the reflector antenna problem (using a logarithmic cost function) is appropriate (since the mapping 𝑇 can 
be constructed from the reflector shape) to use for any genus-0 manifold, following the reformulation of the problem outlined in 
Section 4. The author is unaware of any numerical studies for the moving mesh problems using costs like the logarithmic cost arising 
in the reflector antenna problem, but wishes to bring to the attention of the computational community the viability of performing 
such computations.

The discretizations presented here are designed to be consistent and monotone, see [1,30] for more detail on the definition 
of monotonicity in finite-difference schemes. The properties of consistency, monotonicity, and Lipschitz stability are sufficient to 
guarantee convergence even in nonsmooth cases [15]. Furthermore, these are direct discretizations of the PDE (8), and do not rely 
on performing a linearization. They are also flexible enough to easily work with other cost functions, such as the logarithmic cost 
arising in the reflector antenna problem. Thus, they are well-suited to directly discretize the PDE (8) for any appropriate cost function 
(see [20]) and have convergence guarantees.

5.1. Grid, computational neighborhoods, & discrete derivatives

We describe the grid and discretization on the unit sphere, since computations on genus-0 surfaces can be reduced to computations 
on the unit sphere, as shown in Section 4. We start with a finite set of 𝑁 grid points  ⊂ 𝕊2, that have some given connectivity 
(usually given as an adjacency matrix). This connectivity matrix  will remain unchanged after applying the computed mapping 
𝑇 to the grid . We let 𝑑𝕊2 (𝑥, 𝑦) denote the usual geodesic distance between points 𝑥, 𝑦 on the unit sphere 𝕊2. To the grid , we 
associate a number ℎ which serves as a parameter indicating the overall spacing of grid points. More precisely,

ℎ = sup
𝑥∈𝕊2

min
𝑦∈ℎ 𝑑𝕊2 (𝑥, 𝑦) =(

𝑁−1∕2) . (62)

This discretization parameter is the minimum radius ℎ on the sphere that guarantees that the ball of radius ℎ contains at least one 
discretization point. The grid must sufficiently resolve the sphere and satisfy some technical regularity requirements which are not 
difficult in practice to achieve, as detailed in [15]. These regularity requirements ensure that the grid is more or less isotropic with 
respect to direction.

5.1.1. Computation of second- and first-order directional derivatives

Both the Optimal Transport and Optimal Information Transport PDE involve a PDE computation involving the eigenvalues of a 
Hessian matrix of a function and the gradient of a function. In the former, the PDE (8) has a determinant of a Hessian matrix, which 
is equal to the product of the eigenvalues of the Hessian matrix. In the latter, the PDE (28) involves the computation of a Laplacian, 
which is the sum of the eigenvalues of a Hessian matrix. The eigenvalues of a Hessian matrix are second directional derivatives. Of 
course, the gradient is simply a first directional derivative in the tangent direction of steepest ascent.

To perform computations of the first and second directional derivatives at 𝑥𝑖, we begin by projecting grid points within a radius 
𝑟 of 𝑥𝑖 onto the tangent plane at 𝑥𝑖. That is, we consider the set of relevant neighboring discretization points

(𝑥𝑖) =
{
𝑧 = Proj(𝑥;𝑥𝑖) ∣ 𝑥 ∈ , 𝑑𝕊2 (𝑥,𝑥𝑖) ≤ 𝑟

}
. (63)

The choice of the radius of the neighborhood is 𝑟 = (√ℎ) is optimal for the second directional derivative, see [12]. We use the 
same radius for our gradient computations.

The projection onto local tangent planes is accomplished using geodesic normal coordinates, which are chosen to preserve the 
distance from 𝑥𝑖 (i.e. 𝑑𝕊2 (𝑥, 𝑥𝑖) = ‖𝑥𝑖 − Proj(𝑥; 𝑥𝑖)‖). This prevents any distortions that a non-zero curvature of a manifold introduces 
to second-order derivatives. This allows for monotone approximation schemes to be more easily constructed, which is our goal, since 
this will lead to a guarantee of convergence to the true solution. On the unit sphere, there are explicit formulas for geodesic normal 
coordinates about a point 𝑥 ∈ 𝕊2. If, as mentioned in Section 4 we are performing computations for a genus-1 manifold, then, it is 
only necessary to have a consistent approximation for geodesic coordinates at a point 𝑥, since explicit formulas for geodesic normal 
coordinates do not exist in general. However, the case of genus-1 manifolds will not be treated in this manuscript, but will be deferred 
to future work.

When computing second and first-order directional derivatives, we will consider the following finite set of possible directions in 
12

the tangent plane (in geodesic normal coordinates),



Journal of Computational Physics 500 (2024) 112726A.G.R. Turnquist

Fig. 1. The computational points are chosen so as to ensure that they are within 2𝑑𝜃 of the axis of computation, but also stay at least 𝑑𝜃 away from the axis to ensure 
monotonicity of the scheme.

𝑉 =
{
{(cos(𝑗𝑑𝜃), sin(𝑗𝑑𝜃)), (− sin(𝑗𝑑𝜃), cos(𝑗𝑑𝜃))} ∣ 𝑗 = 1,… ,

𝜋

2𝑑𝜃

}
, (64)

where the angular resolution 𝑑𝜃 = 𝜋

2⌊𝜋∕(2√ℎ)⌋ .

In order to build approximations for second directional derivatives in each direction 𝜈 ∈ 𝑉 , we will select four grid points 
𝑥𝑗 ∈(𝑥𝑖), 𝑗 = 1, … , 4, which will be used to construct the directional derivatives in this direction. To accomplish this, we let 𝜈⟂ be 
a unit vector orthogonal to 𝜈 and represent points in 𝑥 ∈(𝑥𝑖) using (rotated) polar coordinates (𝑟, 𝜃) centered at 𝑥𝑖 via

𝑥 = 𝑥𝑖 + 𝑟(𝜈 cos𝜃 + 𝜈⟂ sin𝜃), 𝑥 ∈(𝑥𝑖).

Then we select four points, each in a different quadrant (𝑄1, … , 𝑄4), that are well-aligned with the direction of 𝜈 and approximately 
symmetric about the axis 𝜈 via

𝑥𝑗 ∈ argmin
𝑥∈(𝑥𝑖)

{|sin𝜃| ∣ |sin𝜃| ≥ 𝑑𝜃, 𝑟 ≥√
ℎ− 2ℎ,𝑥 ∈𝑄𝑗

}
, (65)

where cos𝜃 ≥ 0 for points in 𝑄1 or 𝑄4 and sin𝜃 ≥ 0 for points in 𝑄1 or 𝑄2, see Fig. 1.
From here, we construct approximations of second directional derivatives of the form

𝜈𝜈𝑢(𝑥𝑖) =
4∑

𝑗=1
𝑎𝑗 (𝑢(𝑥𝑗 ) − 𝑢(𝑥𝑖)). (66)

Denote 𝜃𝑖 to be the angle that 𝑥𝑖 makes with the axis 𝜈. Also, denote ℎ𝑖, as the distance from 𝑥𝑖 to 𝑥0. The work in [12] shows 
that the optimal choice is ℎ𝑖, 𝜃𝑖 =(√ℎ). After performing a Taylor expansion of the sums in (66) we get explicit values for 𝑎𝑗 . The 
Taylor expansion proceeds as follows:

4∑
𝑗=1

𝑎𝑗 (𝑢(𝑥𝑗 ) − 𝑢(𝑥𝑖)) =
4∑
𝑖=1

𝑎𝑖
(
ℎ𝑖 cos𝜃𝑖𝑢𝜈(𝑥0) + ℎ𝑖 sin𝜃𝑖𝑢𝜈(𝑥0) +…

)
. (67)

In order to approximate the second directional derivative in the 𝜈 direction, this requires that 
∑4

𝑖=1
1
2𝑎𝑖ℎ

2
𝑖
cos2 𝜃𝑖 = 1. This indicates 

that 𝑎𝑖 =(ℎ−1). Thus, we find the asymptotic ordering:

𝑎𝑖ℎ𝑖 cos𝜃𝑖 =(ℎ−1∕2),
𝑎𝑖ℎ𝑖 sin𝜃𝑖 =(1),

𝑎𝑖ℎ
2
𝑖
cos2 𝜃𝑖 =(1).

(68)

The system is augmented by another condition 𝑎1ℎ1 sin𝜃𝑖 + 𝑎4ℎ4 sin𝜃4 = 0 and the coefficients 𝑎𝑖 are given explicitly in [12]. They, 
importantly, satisfy 𝑎𝑖 ≥ 0, allowing us to build monotone discretizations.

One possible discretization for the gradient, again guided by the work in [12], suggests that we choose 𝑟 =(√ℎ) and consider 4
points, where one point is in each quadrant (𝑄1, … , 𝑄4), and are well-aligned with the direction of computation 𝜈 and approximately 
symmetric about the axis 𝜈, as above for the second-directional derivatives. We approximate first directional derivatives in the 
direction 𝜈 as:

𝜈𝑢(𝑥0) ≈
8∑
𝑖=1

𝑏𝑖
(
𝑢(𝑥𝑖) − 𝑢(𝑥0)

)
. (69)

Again, denote 𝜃𝑖 to be the angle that 𝑥𝑖 makes with the axis 𝜈, which is (√ℎ), by [12]. Also, denote ℎ𝑖, which is also (√ℎ) as 
13

the distance from 𝑥𝑖 to 𝑥0. Then,
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8∑
𝑖=1

𝑏𝑖
(
𝑢(𝑥𝑖) − 𝑢(𝑥0)

)
= ℎ𝑖 cos𝜃𝑖𝑢𝜈(𝑥0) + ℎ𝑖 sin𝜃𝑖𝑢𝜈⟂ (𝑥0) +… (70)

By the equation 
∑8

𝑖=1 𝑏𝑖ℎ𝑖 cos𝜃𝑖 = 1, we see that 𝑏𝑖 =(ℎ−1∕2). Thus, we get the asymptotic ordering:

𝑏𝑖ℎ𝑖 cos𝜃𝑖 =(1),
𝑏𝑖ℎ𝑖 sin𝜃𝑖 =(√ℎ),

𝑏𝑖ℎ
2
𝑖
cos2 𝜃𝑖 =(√ℎ).

(71)

Thus, an approximation with consistency error (ℎ) is furnished by solving the following system of linear equations for 𝑏𝑖:

8∑
𝑖=1

𝑏𝑖ℎ𝑖 cos𝜃𝑖 = 1,

8∑
𝑖=1

𝑏𝑖ℎ𝑖 sin𝜃𝑖 = 0,

8∑
𝑖=1

𝑏𝑖ℎ
2
𝑖
cos2 𝜃𝑖 = 0,

𝑏1ℎ1 sin𝜃𝑖 + 𝑏4ℎ4 sin𝜃4 = 0

(72)

And the approximation for the gradient at 𝑥𝑖 is thus,

∇ℎ𝑢ℎ(𝑥𝑖) = max
𝜈∈𝑉

𝜈𝑢(𝑥𝑖) (73)

5.2. Discretization of Optimal Transport and Optimal Information Transport PDE

The full monotone discretization for the discrete operator 𝐹ℎ for the Optimal Transport PDE (8) on the sphere is (see [16] for 
more details and analysis):

𝐹ℎ
(
𝑥𝑖, 𝑢

ℎ(𝑥𝑖)
)
= min

{𝜈1 ,𝜈2}∈𝑉

2∏
𝑗=1

max
{ℎ

𝜈𝑗𝜈𝑗
𝑢ℎ(𝑥𝑖) + 𝑔−1,𝜈𝑗

(
∇ℎ𝑢ℎ(𝑥𝑖)

)
,0
}
− 𝑓1(𝑥0)𝑔+2

(
∇ℎ𝑢ℎ(𝑥𝑖)

)
, (74)

where 𝑔1(𝑝; 𝜈) = −ℎ
𝜈𝜈
𝑐(𝑥𝑖, 𝑦)|𝑦=𝑇 (𝑥𝑖,𝑝) and 𝑔2(𝑝; 𝜈) =

sin‖𝑝‖‖𝑝‖ and 𝑔±
𝑖,𝜈

(
∇ℎ𝑢ℎ(𝑥𝑖)

)
= 𝑔𝑖

(
∇ℎ𝑢ℎ(𝑥𝑖); 𝜈

)
∓ 𝜖𝑔Δℎ𝑢ℎ(𝑥𝑖).

And the full monotone discretization for the Laplacian operator 𝐹ℎ solving the Poisson equation in (28) on the sphere is:

𝐹ℎ
(
𝑥𝑖, 𝑢

ℎ(𝑥𝑖)
)
=Δℎ𝑢ℎ(𝑥𝑖) + 𝜖ℎ𝑢ℎ(𝑥𝑖) = 𝑓 (𝑥𝑖), (75)

where Δℎ𝑢ℎ(𝑥𝑖) =ℎ
𝜈
𝑢ℎ(𝑥𝑖) +ℎ

𝜈⟂
𝑢ℎ(𝑥𝑖), for any 𝜈 ∈ 𝑉 and 𝜖ℎ → 0 is chosen to be the consistency error of the operator Δℎ .

5.3. Convergence results

The full details of the convergence proof and scheme for solving the Optimal Transport PDE (8) with a consistent and monotone 
discretization with an additional discrete Lipschitz control are given in [15,16]. The result is that the computed solution 𝑢ℎ converges 
uniformly to the solution 𝑢 of (8), but thus far no explicit rates of convergence have been established.

For the discretization of the Poisson equation (75), results on monotone and consistent discretizations of linear elliptic PDE 
in divergence form recently obtained in [17] show that there exist schemes for which the explicit convergence rate is at worst ||𝑢ℎ − 𝑢|| =  

(
ℎ𝛼∕3

)
, where 𝑢 are a priori 𝐶3 solutions of the Poisson equation on 𝑀 and (ℎ𝛼) is the discretization error of the 

Laplacian.

5.4. Algorithm for Optimal Transport

The procedure for solving the discrete Optimal Transport PDE (74) is by using a parabolic scheme presented in Algorithm 1.

5.5. Algorithm for Optimal Information Transport

In order to solve the Optimal Information Transport problem on 𝑀 , we must solve the system of equations (28) for the diffeo-
morphic mapping 𝑇 . First, we precompute 𝜃 from (20). Denote the forward map at a time step 𝑛 will be denoted by 𝑇𝑛 and the 
corresponding inverse map at a time step 𝑛 will be denoted by 𝑆𝑛. Then, we update 𝑇𝑛 and 𝑆𝑛 via a forward Euler scheme with time 
14

step size Δ𝑡 and iterate until 𝑛Δ𝑡 = 1.
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Algorithm 1 Computing the solution to elliptic PDE 𝐹 [𝑢] = 0.

1: Initialize 𝑢ℎ0 ;
2: Fix 𝜖 > 0, Δ𝑡 > 0;
3: while

|||𝐹ℎ
(
𝑥𝑖, 𝑢

ℎ
𝑛
(𝑥𝑖)

)||| > 𝜖, where 𝐹ℎ is given by (74) do

4: Compute 𝑢ℎ
𝑛+1(𝑥𝑖) = 𝑢ℎ

𝑛
(𝑥𝑖) +Δ𝑡𝐹 ℎ

(
𝑥𝑖, 𝑢

ℎ
𝑛
(𝑥𝑖)

)
;

5: end while

6: Compute the gradient of 𝑢ℎ via ∇ℎ𝑢ℎ(𝑥𝑖) using (73).
7: Use the explicit expression (7) for the exponential map to compute the approximation to the mapping 𝑇 ℎ .

The algorithm requires two important functions: Proj, a projection map, and Interp, a consistent interpolation map. For the unit 
sphere, we use explicit formulas for the exponential map for the projection map. Given a tangent vector 𝑝 ∈ 𝑇𝑥𝕊2, the explicit 
expression for the exponential map on the unit sphere is:

exp𝑥(𝑝) = 𝑥 cos(‖𝑝‖) + 𝑝‖𝑝‖ sin(‖𝑝‖) (76)

The interpolation map Interp is of especial importance and the Matlab package ‘griddata’ was used.

Algorithm 2 Computing the diffeomorphic mapping 𝜑 = 𝑆(1).
1: Initialize 𝑇0 = Id;
2: Initialize 𝑆0 = Id;
3: Fix Δ𝑡 ≪ 1;
4: Precompute 𝜃 via quadrature;
5: while 𝑛Δ𝑡 < 1 do

6: Compute the density function 𝜈𝑛 ∶= 𝜇̇𝑛∕𝜇𝑛 using the explicit formulas on the grid {𝑆(𝑥𝑗 )}𝑗
;

7: Solve Δℎ𝑓𝑛(𝑥𝑖) = 𝜈𝑛
(
𝑆𝑛(𝑥𝑖)

)
for 𝑓𝑛(𝑥𝑖) with the monotone, consistent discretization of the Laplacian given in (75) and solve the resulting linear system of 

equations using standard linear algebra techniques;
8: Compute ∇ℎ𝑓𝑛(𝑥𝑖) for all 𝑥𝑖 using (73);
9: Interpolate: ∇ℎ𝑓𝑛(𝑥𝑖) onto the grid {𝑇 (𝑥𝑗 )}𝑗

;

10: Compute 𝑇𝑛+1(𝑥𝑖) = Proj
{
𝑇𝑛(𝑥𝑖) + Δ𝑡∇ℎ𝑓𝑛

(
𝑇𝑛(𝑥𝑖)

)}
, using (76);

11: Compute 𝑆𝑛+1(𝑥𝑖) = 𝑆𝑛

(
Proj

{
𝑥−Δ𝑡∇ℎ𝑓𝑛(𝑥𝑖)

})
;

12: end while

For nonsmooth densities, we used a nearest-neighbor interpolation (piecewise discontinuous), in order to retain the discontinuities 
of the densities for more challenging computational examples, but otherwise used linear interpolation, especially for the mapping 𝑆
and the gradient ∇𝑓𝑛. It is of vital importance not to use a piecewise constant interpolation on ∇𝑓𝑛 and 𝑆 , since otherwise for small 
enough Δ𝑡, the updates would remain unchanged.

6. Computational results

In this section, we show the results of diffeomorphic density matching computations using Optimal Transport and Optimal 
Information Transport. We provide evidence that in the absence of higher-order schemes for Optimal Transport, the preferred 
method should be Optimal Information Transport, due to the ease of implementation, speed, and accuracy of solutions. With the 
same finite-difference discretizations on unstructured grids of first- and second-order derivatives in both the Optimal Transport and 
Optimal Information Transport computations, we see improved regularity of the mapping with Optimal Information Transport.

As shown in Section 4, for manifolds diffeomorphic to the sphere, diffeomorphic density matching computations can always be 
performed on the sphere. Therefore, we are able to carry out an Optimal Information Transport computation of densities on the 
oblate sphere by modifying the problem appropriately to the unit sphere.

Our objective is to perform adaptive mesh computations on the sphere. Here we will be using a mesh defined on a cube which is 
then projected onto the sphere, see Fig. 2 for an example of the generation of such a mesh.

The original mesh, therefore, does not have constant density of nodes. However, in the moving mesh problem, we will be perform-
ing computations that produce diffeomorphic maps from a constant source density to a variable target density. This allows us to 
redistribute the mesh as desired treating the original cube mesh projected on the sphere as if it had constant density of nodes.

While a convergence theorem, such as in Section 5.3, gives convergence guarantees for the discretization of the Optimal Infor-
mation Transport problem, it is difficult to furnish explicit solutions on manifolds and also difficult to define a residual. For both the 
Optimal Transport and Optimal Information Transport problems, the residual can be defined as the discretization of the following 
PDE operator:

𝐻(𝑥,𝑇 (𝑥)) = 𝑓0(𝑥) − |𝐷𝑇 (𝑥)|𝑓1(𝑇 (𝑥)), (77)

where |𝐷𝑇 (𝑥)| is the determinant of the Jacobian for the mapping. For the Optimal Transport problem, this has the PDE formula-
tion (8) and thus the 𝐿∞ residual can be computed simply using the discretization of the PDE (77) and then computing the maximum 
15

of the absolute value of this quantity over all computational points.
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Fig. 2. A mesh is generated on a cube 2(a) which is then projected to the unit sphere to create a mesh on the sphere 2(b). The view of one hemisphere of the mesh 
on the sphere is shown in 2(c).

For the Optimal Information Transport problem, once we have run a computation, we can approximate the quantity |𝐷𝑇 | by 
computing the amplification factor of the area of a Voronoi cell about a given node after being transformed by the mapping. A 
workable definition for the residual is the average of the absolute value of the discretization of the quantity:

𝐻̃(𝑥,𝑇 (𝑥)) =
𝑓0(𝑥)

𝑓1(𝑇 (𝑥))
− |𝐷𝑇 (𝑥)| , (78)

provided that 𝑓1 ≠ 0. In practice, computing this residual is very inaccurate. In Section 6.3, we perform the computation for the 
Optimal Information Transport problem.

Exact solutions are possible to construct for the Optimal Transport problem on the sphere for many cost functions. We perform 
a computation for a solution known exactly in Section 6.3 for the squared geodesic cost function on the sphere. Constructing exact 
solutions for the Optimal Information Transport problem, on the other hand, is much harder. These computations would rely on one 
being able to construct paths 𝜑(𝑡) which are already known to be horizontal geodesics. Thus, most work using Optimal Information 
Transport lacks traditional convergence plots. An investigation into using better residuals and computing exact solutions for Optimal 
Information Transport will be deferred to future work.

All computations were performed using Matlab R2021b on a 13-inch 2017 MacBook Pro, with a 2.3 GHz Dual-Core Intel Core 
i5 and 16 GB of 2133 MHz LPDDR3 memory. The grid sizes in the figures had 𝑁 = 5048, 𝑁 = 10088, or 𝑁 = 20888 nodes. The 
Optimal Transport computations ran for about 10 − 60 minutes for computations of size 𝑁 = (104) and the Optimal Information 
Transport computations took about 5 minutes for computations of comparable size. The computations could have been scaled up, 
but are limited in this manuscript since it was desirable to produce a mesh that could be seen in the figures and as proof of concept.

6.1. Equatorial node density concentration

First, we demonstrate that the computation of mesh redistribution using Optimal Transport and Optimal Information Transport 
16

can be both successful in producing meshes which do not exhibit tangling. We select density functions with the goal of producing a 
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Fig. 3. Density in the original mesh (left) and the modified density (right).

Fig. 4. The potential function 𝑢 in Fig. 4(a) and the residual of the computation by iteration in Fig. 4(b).

transport map 𝑇 that will concentrate mesh points around the equator, see (79). These 𝑓0, 𝑓1 are defined for the Optimal Transport 
problem. For the Optimal Information Transport problem, each will be multiplied by a factor of 4𝜋 so that ∫𝕊2 𝑓0𝑑𝑥 = ∫𝕊2 𝑓1𝑑𝑥 =
vol(𝕊2).

𝑓0(𝜃,𝜙) =
1
4𝜋

𝑓1(𝜃,𝜙) =

(
1 − exp

(
−1

30 (𝜃 − 𝜋∕2)2

))
∕3.53552

(79)

We then require that the density concentrates about the equator according to (79), which is shown in Fig. 3. The Optimal 
Transport computation first yields the potential function 𝑢 and the residual, see Fig. 3. Then, the mapping 𝑇 is computed via the 
potential function, see Fig. 4, and the resulting mesh restructuring computed using Optimal Transport is pictured in Fig. 5.

Now we perform the same computation using Optimal Information Transport, see Fig. 6.

6.2. Oceanic node density concentration

Another example serves to demonstrate the versatility and desirability of using Optimal Information Transport over Optimal 
Transport for moving mesh problems. We take a constant source density 𝑓0 = 1 and using Optimal Information Transport map it 
to a complicated, discontinuous map of the world, where a higher density of grid points is required over the oceans and lower 
density over the continents, see Fig. 7. From the end of Section 2.1, using Optimal Transport methods to find a mapping 𝑇 to a 
discontinuous target density function only guarantees that the mapping 𝑇 is at least continuous. There are no such guarantees for 
Optimal Information Transport, since the source and target densities must be smooth. Nevertheless, we proceed and try and apply 
these PDE and solve for the numerical solution anyway.

The result is shown in Fig. 8.
Some difficulties are encountered when attempting to perform the same numerical computation via Optimal Transport, where we 

instead choose 𝑓0 to encode the globe density and 𝑓1 = 1∕(4𝜋) to be the constant density, see Fig. 9. Having solved for the potential 
17

function, see Fig. 10, we still have significant tangling for very complicated images like the world map, see Fig. 11.
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Fig. 5. In Fig. (a) we have 3D view of the mesh obtained via Optimal Transport map, in Fig. (b) a top view, and in Fig. (c) a detailed view of the mesh around the 
equator showing that the grid lines do not tangle, with 𝑁 = 10088 nodes.

One potential solution is to develop higher-order discretizations of the Optimal Transport PDE and will be explored in future 
work.

6.3. Computations for explicit solutions

Following the derivation in [6], if the Optimal Transport potential function is axi-symmetric, that is, if 𝑢(𝜃, 𝜙) = 𝑢(𝜃), then the 
mapping 𝑇 (𝜃, 𝜙) =

(
𝜃′, 𝜙

)
=

(
𝜃 + 𝑑𝑢

𝑑𝜃
,𝜙

)
. Using this, we can compute the determinant of the Jacobian of the Optimal Transport 

mapping 𝑇 .

′ ′
18

𝐹 (𝜃) ∶= |𝐷𝑇 | = sin𝜃
sin𝜃

𝑑𝜃

𝑑𝜃
. (80)
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Fig. 6. Fig. (a) shows the 3D view of the mesh obtained via Optimal Information Transport, Fig. (b) shows the top view, and a detailed view of the equator is shown 
in Fig. (c), demonstrating that the grid lines do not tangle and the solution has nice regularity properties with 𝑁 = 10088 nodes.

For the squared geodesic cost function, this becomes

𝐹 (𝜃) =
sin

(
𝜃 + 𝑑𝑢

𝑑𝜃

)
sin𝜃

𝑑

𝑑𝜃

(
𝜃 + 𝑑𝑢

𝑑𝜃

)
=

sin
(
𝜃 + 𝑑𝑢

𝑑𝜃

)
sin𝜃

(
1 + 𝑑2𝑢

𝑑𝜃2

)
. (81)

We restate here that diffeomorphic density matching can also be achieved using the logarithmic cost function 𝑐(𝑥, 𝑦) =
− log (1 − 𝑥 ⋅ 𝑦) arising in the reflector antenna problem, see [36,37]. Therefore, it is possible to compute the potential function 
𝑢 using numerical methods for the reflector antenna problem. If so, the factor 𝐹 will be different, because 𝜃′ = 𝜃 − 2(

𝑑𝑢

𝑑𝜃

)2
+1

. In this 

case, we derive a slightly more complicated expression:

sin
(
𝜃 + arccos𝑅

(
𝑑𝑢

𝑑𝜃

)) ( ( ))

19

𝐹 (𝜃) =
sin𝜃

1 + 𝑑

𝑑𝜃
arccos𝑅 𝑑𝑢

𝑑𝜃
, (82)
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Fig. 7. Constant density in the source density (left) and the target globe density (right) concentrating mesh nodes in the oceans.

Fig. 8. Spherical mesh after redistribution of the density of nodes via Optimal Information Transport. The view is of North and South America, where the density of 
the mesh is less than the density of the mesh over the oceans with 𝑁 = 20888 nodes.
20

Fig. 9. Source globe density (right) concentrating mesh nodes in the continents and constant target density (right).
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Fig. 10. The potential function 𝑢 in Fig. 10(a) and the residual of the computation by iteration in Fig. 10(b).

Fig. 11. The mesh after redistribution of the density of nodes using Optimal Transport. Detail on Africa, the Middle East, and Asia with other side of sphere hidden 
from view in order to show the mesh more clearly. One can observe some tangling with 𝑁 = 5048 nodes.

where

𝑅(𝜉) = 𝜉2 − 1
𝜉2 + 1

. (83)

Returning to the squared geodesic cost function, in contrast to the paper [6], we are concerned not with the monitor function, 
but with producing the density functions 𝑓0 and 𝑓1 given the determinant of the Jacobian of the mapping in (81). In order to 
have such an axi-symmetric mapping, it can easily be shown that the density functions 𝑓0 and 𝑓1 must also be axi-symmetric, i.e. 
𝑓0(𝜃, 𝜙) = 𝑓0(𝜃) and 𝑓1(𝜃, 𝜙) = 𝑓1(𝜃). Furthermore, the measure-preserving property implies that 𝑓0 and 𝑓1 must satisfy the following 
Jacobian equation:

𝑓0(𝜃) = 𝐹 (𝜃)𝑓1
(
𝜃 + 𝑑𝑢

𝑑𝜃

)
. (84)

For simplicity and ease of computation, let us take the target density to be constant 𝑓1 = 1∕4𝜋 and we will solve for the source 
density function 𝑓0 given a known smooth potential function 𝑢. The density function 𝑓0 must satisfy

𝑓0(𝜃) =
𝐹 (𝜃)
4𝜋

. (85)

In this subsection, we will perform computations for the known explicit solution 𝑢 = cos𝜃
𝑎0

, where 𝑎0 ∈ ℝ, 𝑎0 ≠ 0. Given this 
21

particular potential function, we have
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Fig. 12. The densities 𝑓0 and 𝑓1 in Fig. 12(a) yielding the potential function 𝑢 = 𝑧∕𝑎0 in Fig. 12(b). The convergence of the error is shown in 12(c), as a function of 
iterations.

𝑓0 (𝜃) =
sin

(
𝜃 − sin𝜃

𝑎

)
4𝜋 sin𝜃

(
1 − cos𝜃

𝑎

)
. (86)

This integrates to 1 over 𝕊2, by Equation (84). We can perform an Optimal Transport computation using Algorithm 1 with the 
choice 𝑎0 = 3 yielding the densities and potential function in Fig. 12, with an 𝐿∞ error equal to 0.0038 using 𝑁 = 5048 nodes. Note, 
that the potential function we plot here is 𝑣 ∶= 𝑢 −min𝑢 = 1

𝑎0
(𝑧 + 1). The resulting mesh redistribution is shown in Fig. 13.

In order to perform the same computation using Optimal Information Transport, we take 𝑓0 =
1
4𝜋 and 𝑓1 = 𝐶0

sin𝜃
sin

(
𝜃− sin𝜃

𝑎

)(
1− cos𝜃

𝑎

) , 

where 𝐶0 > 0 is chosen such that ∫𝕊2 𝑓1(𝑥)𝑑𝑥 = 1. There is no analogue to the Optimal Transport potential function for Optimal 
Information Transport, but we can compute the residual by taking the maximum of Equation (78) over all nodes. We restate here 
that a search for better residuals is deferred to future work. The result is a residual error of 0.1929 computed via (78) and the 
computation is shown in Fig. 14.

6.4. Optimal Information Transport computation with significant compression

Here we show an example where there is significant compression. The target density we use is:

𝑓1(𝜃,𝜙) = (1 − 𝜖) 4𝜋
1.57949

𝑒−30(arccos(sin𝜃 cos𝜙)−0.9)
2 + 𝜖 (87)

where 𝜖 = 0.05, see Fig. 15. Using Optimal Information Transport, we compress the mesh severely around a ring, the result we can 
22

see in Fig. 16.
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Fig. 13. The mesh redistribution via densities 𝑓0 and 𝑓1 via an Optimal Transport computation. As expected, we see a decrease in concentration at the south pole and 
an increase in concentration at the north pole, since the ratio 𝑓1∕𝑓0 is less than 1 at the south pole and greater than 1 at the north pole.

Fig. 14. The mesh redistribution via Optimal Information Transport. As expected, we see a decrease in concentration at the south pole and an increase in concentration 
at the north pole and the grid is more regular.

6.5. Optimal Information Transport computation on an oblate sphere

Here, we perform a computation on the oblate sphere 𝑀 =
{
(𝑥, 𝑦, 𝑧) ∶ 𝑥2 + 𝑦2 + 16𝑧2 = 1

}
using Optimal Information Transport 

to show the success of the method, following the derivation in Section 4. We desire to change the density of nodes on the oblate 
sphere by the following ratio of densities, as shown in Fig. 17:

𝑓 = vol(𝑀)
(
1 − 𝑒

−1
10𝜃2

)
∕0.878646. (88)

As shown in 4, we can modify the density of nodes in the same way by instead finding the pushforward 𝑇 between the following 
23

density functions on 𝕊2:
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Fig. 15. A constant density mapping to a significantly compressed density.

Fig. 16. A significantly compressed mesh with 𝑁 = 5048 nodes.

Fig. 17. Constant density in the source density (left) and the target density (right) concentrated about the north pole of the oblate sphere.

𝑓0 = 1,

𝑓1 = 4𝜋
(
1 − 𝑒

−1
10𝜃2

)
∕0.878646.

(89)

We perform the computation on 𝕊2 to find the new mesh, as shown in Fig. 18 and Fig. 19.

7. Conclusion

We have provided a comparison of Optimal Transport and Optimal Information Transport on the sphere for the diffeomorphic 
density matching problem with applications to adaptive mesh methods by using convergent finite-difference schemes and in doing 
24

so identified a much broader set of Optimal Transport cost functions which would be appropriate for moving mesh methods. In the 
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Fig. 18. Redistribution of mesh on an oblate sphere using Optimal Information Transport. The mesh before redistribution of nodes is in Fig. 18(a) and the result of 
the restructured mesh is in Fig. 18(b) with 𝑁 = 5048 nodes.

Fig. 19. A side view shows the original mesh in 19(a) and the effect of the increase of the density of nodes on one side of the oblate sphere and decrease of the density 
of nodes on the other side in 19(b).

Optimal Information Transport problem, we solve a Poisson equation, compute a gradient, perform projections (via the exponential 
map), and perform interpolations. The choice of interpolation has a lot of bearing on the success of the computation. However, the 
output of the Optimal Information Transport computation is a mapping, whereas the output of the Optimal Transport problem is a 
potential function which then needs to undergo a further computation in order to yield a mapping. In order for Optimal Transport 
computations for diffeomorphic density matching to compete with Optimal Information Transport computations, it will be necessary 
25

to develop higher-order schemes, which will be pursued in further research.
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We also showed how to reduce the diffeomorphic density matching problem on manifolds 𝑀 that are diffeomorphic (i.e. there 
exists a diffeomorphism Φ ∶ 𝑀 → 𝕊2) to the sphere by solving a related problem on the sphere. Consequently, by denoting the 
squared geodesic cost between 𝑥, 𝑦, ∈ 𝕊2 by 𝑐(𝑥, 𝑦), we derived regularity guarantees for the Optimal Transport problem on 𝑀 with 
the cost function 𝑐(Φ(𝑧), Φ(𝜉)), for 𝑧, 𝜉 ∈ 𝑀 . Future work will explore diffeomorphic density matching computations on genus-1
compact and connected surfaces with applications, by using a fixed “standard” torus upon which all computations will be performed.
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