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Abstract—In this work, we investigate the challenging prob-
lem of on-demand federated learning (FL) over heterogeneous
edge devices with diverse resource constraints. We propose a
cost-adjustable FL framework, named AnycostFL, that enables
diverse edge devices to efficiently perform local updates under
a wide range of efficiency constraints. To this end, we design
the model shrinking to support local model training with elastic
computation cost, and the gradient compression to allow param-
eter transmission with dynamic communication overhead. An
enhanced parameter aggregation is conducted in an element-wise
manner to improve the model performance. Focusing on Any-
costFL, we further propose an optimization design to minimize
the global training loss with personalized latency and energy
constraints. By revealing the theoretical insights of the conver-
gence analysis, personalized training strategies are deduced for
different devices to match their locally available resources. Ex-
periment results indicate that, when compared to the state-of-the-
art efficient FL algorithms, our learning framework can reduce
up to 1.9 times of the training latency and energy consumption
for realizing a reasonable global testing accuracy. Moreover,
the results also demonstrate that, our approach significantly
improves the converged global accuracy.

Index Terms—Federated learning, edge intelligence, mobile
computing, resource management.

I. INTRODUCTION

Federated learning (FL) is an emerging distributed learning
paradigm that enables multiple edge devices to train a common
global model without sharing individual data [1]. This privacy-
friendly data analytics technique over massive devices is envi-
sioned as a promising solution to realize pervasive intelligence
[2]. However, in many real-world application areas, mobile de-
vices are often equipped with different local resources, which
raises the emerging challenges for locally on-demand training
[3]. Given different local resources status (e.g., computing
capability and communication channel state) and personalized
efficiency constraints (e.g., latency and energy), it is crucial to
customize training strategies for heterogeneous edge devices.

We perform an in-depth analysis on the time delay and the
energy consumption for performing the local model updates at
edge devices. Specifically, we evaluate and record the cost of
local training on three different NVIDIA Jetson family plat-
forms (i.e., Nano, NX AGX, and Xavier AGX) under different
channel states (i.e., good, medium, and poor). On the one hand,
we observe that the learning efficiency differs significantly
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Fig. 1. The time delay (top) and energy consumption (bottom) of single-
round local update on different hardware platforms with varying communica-
tion conditions.

with diverse learning scenarios. As shown in Fig. 1, the single-
epoch training on Nano with poor communication condition
consumes about 4.0 times training latency than that of Xavier
AGX with good communication condition, while its energy
consumption is about 0.7 times less than the latter one’s. On
the other hand, we observe that the bottlenecks of latency and
energy are induced by parameter transmission and local model
training, respectively.

The above observations provide insights for a proper design
of the on-demand FL system. To handle the resource hetero-
geneity, it is suggested to alleviate the energy and the latency
cost of the local device. More importantly, the computation
and communication costs should be jointly reduced to achieve
efficient local training. In the literature, most existing studies
either employ resource allocation and device scheduling to
mitigate the system cost [4]-[10], or design gradient com-
pression to accelerate the parameter transmission procedure
[11]-[17]. The former method inherits the ideas of traditional
design for mobile edge systems and takes no account of the
optimization for neural networks, while the latter overlooks
the computation cost of local model training.

In this paper, we propose “anycost” FL, named AnycostFL,
to break the latency and energy bottlenecks for on-demand
distributed training over heterogeneous edge devices. Our goal
is to develop a cost-adjustable FL framework that enables
edge devices to perform local updates under diverse learning
scenarios. To this end, we first design the model shrinking and
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gradient compression to enable adaptive local updates with
different computation and communication costs. Meanwhile,
an enhanced parameter aggregation scheme is proposed to
fuse the knowledge of the local updates. Following that,
we investigate the on-demand learning of AnycostFL by
regulating the local model structure, gradient compression
policy and computing frequency under personalized latency
and energy constraints. However, customizing training strategy
for different learning scenarios is a non-trivial task, since how
the global accuracy is affected by the local model structure and
compression rate is still unknown. To address this issue, we
theoretically reveal the convergence insights of our framework,
which are further leveraged to guide optimization analysis.
Finally, the optimal training strategy is derived for each device
according to its locally available resource.
Our main contributions are summarized as follows.

o We propose a novel FL framework, named AnycostFL,
that enables the local updates with elastic computation
cost and communication overhead.

o We theoretically present the optimal aggregation scheme
and convergence analysis for AnycostFL.

o We investigate the on-demand training problem of Any-
costFL, and the optimal training strategy is devised to
adapt the locally available resource.

o Extensive experiments indicate that the proposed Any-
costFL outperforms the state-of-the-art efficient FL meth-
ods in terms of resource utilization and learning accuracy.

The remainder of this paper is organized as follows. Section
IT describes related studies. In Section III, we detail the main
operations of AnycostFL to fulfill the single-round training.
The problem formulation, theoretical analysis and the corre-
sponding solution are provided in Section IV. The experiment
evaluations are presented in Section V, and we finally conclude
the paper in Section VI and discuss the future directions.

II. RELATED WORK

Resource Management Methods. Resource management
methods aim to reduce the FL system cost by arranging
the local and system resources. Resource allocation methods
employ frequency scheduling [18], transmission power control
[19], and bandwidth allocation [20] to balance the cost of local
training. Recent device selection methods directly exclude
those weak devices with poor computation or communication
capabilities to accelerate the convergence time [21]-[23].
Besides, topology-aware management is another very effective
method to mitigate the network throughput [18], [24], [25].
However, these methods inherit the ideas of the efficient design
for traditional mobile systems and overlook the optimization
of neural networks.

Neuron-aware Techniques. Neuron-aware techniques focus
on revealing the black box of neural networks to improve the
training efficiency of the FL system. Early gradient compres-
sion utilizes sparsification [11], [26], and quantization [14],
[27], [28] to reduce the transmission cost of FL system. In
addition, feature maps fusion and knowledge distillation can be
carried out to improve the information aggregation [29], [30].

Besides, FedMask proposes to train a personalized mask for
each device to improve the test accuracy on the local dataset
[31]. Recently, model structure pruning enables multiple de-
vices with different model architectures to train a shared global
model [32], [33]. Such methods can reduce the cost of local
training, but how to customize optimal training strategies (e.g.,
gradient compression and model pruning policy) for different
learning scenarios is still unknown.

IIT. TRAINING WITH ANYCOSTFL

In this section, we first outline the overall design of Any-
costFL. Next, we detail the key techniques of our framework,
including elastic model shrinking (EMS), flexible gradient
compression (FGC), and all-in-one aggregation (AIO).

A. Outline of AnycostFL

We consider a generic application scenario of FL with a set
of I edge devices Z = {1,2,--- ,I}. We use D; to denote the
local training data of the device i, and D = U/_, D; indicates
the global data. Let F;(w) = {(w,D;) represent the local
training loss of device ¢ with respect to model weight w, where
£(-,-) is the predetermined loss function. The objective of the
FL system is to minimize the following global loss function

I

Fw) 2y |D1;’|' Fy(w), (1)

i=1

where |D;| is the size of D;. Given the specified learning task,
the original training workload of single sample W and the data
size of uncompressed gradient S’ can be empirically measured.

As shown in Fig. 2(a), to reduce the computational com-
plexity of the local model training and the communication cost
of gradient update transmission, we propose AnycostFL with
two device-side techniques, i.e., model shrinking and gradient
compression. At the t-th global iteration of AnycostFL, the
device i is enabled to adjust its training workload and gradient
size as W;; = oy ;W and S;; = (3,95, respectively. Here,
a¢; € (0,1] and B;; € (0, 1] are defined as the model shrink-
ing factor and the gradient compression rate, respectively. The
training procedure of AnycostFL is summarized as follows.

1) Elastic local training: At the t-th global round, the
device ¢ downloads the latest global model w; from the pa-
rameter server. With the pre-calculated model shrinking factor
v i, the specialized sub-model wy'; = shrink(we, ay;) can
be efficiently derived, where function shrink(-,-) indicates
the operations for model shrinking. Then, the local training
is conducted with sub-model wj*; and local data D;, and the
updated local sub-model wi,; ; is obtained. Furthermore, the
local gradient update can be acquired as u;; = wy'; —wi ;.

2) Flexible gradient upload: To further reduce the uplink
traffic, the local device 7 is motivated to compress the gradient
update u, ; before the parameter transmission. With the given
compression rate f3; ;, the compressed gradient update u;; =
cmprs(uy;, B;) is uploaded to the server, where cmprs(-, -)
is the function for gradient compression.
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3) Parameter aggregation: The server collects the com-
pressed local updates {@ ; }v; with different shrinking factors
{a; }v; and compression rates {3 ; }v;. After that, the global
update is calculated by aioagg({ty,;}vi), where
aioagg(-) is the server-side all-in-one aggregation. Then, the
updated global model is computed as w1 = wy — Uy.

After the T-round training of the above three-step iterations,
the final global model w1 is obtained. Before introducing how
to customize the values of {ay;}v; and {8;;}v; in Section
IV, we illustrate the details of model shrinking, gradient
compression and update aggregation in the rest of this section.

B. Elastic Model Shrinking

We aim to derive the sub-model w§’; with training complex-
ity of ay ;W from global model w; by reducing the width of
the global model. The shrinking operations work as follows.

1) Server-side channel sorting: To avoid incurring extra
memory cost for the edge devices, the server first sorts
the channels of the latest global model before the model
distribution. Given one layer of the weight of the global
model, the server sorts the output channels in the current
layer in descending order according to their values of L2
norm, and meanwhile, the input channels of the next layer
should be sorted accordingly in the same order to maintain
the permutation invariance of the whole model [34].

2) Layer-wise uniform shrinking: Next, the server broad-
casts the weight of each layer of the global model in a channel-
by-channel manner. Instead of downloading the full global
model, each device only receives those important parameters
from the global model to assemble the local sub-model. Here,
we utilize the fixed shrinking ratio for each layer in the same
sub-model. Empirically, given model shrinking factor oy ;, we
can reduce the size of the hidden layer by ,/az; to acquire
the sub-model. For example, as shown in Fig. 2(c), when
shrinking a global model with hidden sizes of {16,32,64}
under oy ; = i, we approximately reduce the size of each
hidden layer by half as {8, 16,32} to form the sub-model.

At the beginning of the t¢-th global round, all device ini-
tialize their local sub-models {wg;} , by choosing the most
important channels from the global model w,. In this way, the
training complexity is significantly reduced while maintaining
the performance of local sub-models. After that, the local
training of device k is conducted with sub-model wffi, which
produces the local gradient w, ; with data size of a; ;5.

C. Flexible Gradient Compression

Given the local update u;; with the desired compression
rate f3;,;, we aim to obtain the compressed update ., with
data size of oy ;5 :S. Let py; and L. ; denote the sparsity
rate and the number of quantization levels, respectively. The
gradient compression scheme works as follows.

1) Kernel-wise sparsification: Without loss of generality,
we take the convolution neural network (CNN) as an example
to illustrate the sparsification procedure. We aim to acquire the
sparse update 4, ; from w, ;. Let u; ;[k] denote the k-th kernel
of wu;, and uw,; = {w,;[k|}ve. We measure the importance
of each kernel and obtain N = {||uy;[k]||2}wi, where || - |2
denotes the L2 norm operation. Next, by selecting the [p; ; K']-
th largest value in N as the threshold II, the kernel-wise
sparsification is expressed as

0 if [|2g i [K]])2 < IL

Wy [k weilH]

2

otherwise.

Meanwhile, the binary mask of 1, ; is denoted as my ;.

2) Probabilistic quantization: Motivated by the studies
in [35], [36], we aim to obtain the quantized update . ;
with the given sparse @ ; and the quantization level L ;.
Let v € ;,; be a scalar value. To begin with, we first
calculate the magnitude range of the non-zero elements of
U4, denoted as [Umin, Umax), Where umin = min{|u|}bvy2o,
and Upmax = max{|u|}yyzo. Next, let Q = {QZ}ZL;I denote
the set of quantization points, where @; is computed by

umin)

l (umax - + u
min -

Q= To

3)
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Fig. 3. An illustration of the all-in-one aggregation.

For any v € 4, ; and u # 0, we can always find a quantization
interval [Q, Q;+1] such that Q; < |u| < @41, and its
corresponding quantized value u is further computed by

. . e Qiy1—|ul
. sgn(u) - @ with probability Z=—7", @

sgn(u) - Q41 otherwise,

where sgn(-) calculates the sign of the given scalar. Fur-
thermore, the set of the quantization indices of all u €
is denoted as £;; = {l,Q; = U}vazo. Now, @;; can be
represented by a tuple of {Umin, Umax, Lt,i; Mti, L1}

3) Lossless encoding: Due to the distribution characteristics
of L;; that smaller indices may occur more frequently, we
apply entropy coding to reduce the data size [14], [37].
Besides, the sparse binary matrix 7, ; can be compressed by
Golomb encoding [11], [38].

After determining the compression scheme, we can vary
the combinations of {p; ;, L; ;} and record the corresponding
compression rates. Based on the results, we can build a
piecewise linear function to predict the compression strategy
{pt,i, Lt,i} with the given §, ;. Notably, this function can be
efficiently fitted by the server with a rather small amount of
public training data (e.g., 16 samples) in an offline manner.

D. All-in-One Aggregation

After all the devices upload their encoded updates, the
server receives, decodes and then reconstructs the compressed
local updates {w;;}v;. Our goal is to obtain the global
update @, by aggregating {@,;}v;. However, the aggregation
of local updates in our framework cannot be supported by
conventional FedAvg [1], since the local updates are produced
by different model structures with different levels of precision
(i.e., different quantization levels and sparsity).

To tackle the above challenge, we propose an all-in-one
aggregation scheme that fuses the local updates in an element-
wise manner. Let the set {1,2,--- ,J} index elements of the
global update u,;, and ﬁgj } denote the j-th element of u;. To
accomplish the aggregation for &Lj], we first determine the
subset of devices Z; C I whose local model structure also
contains the j-th element. Then, we have

0 if Y mYl =0,
ol i€Z;

1 [41,,[4] ;

T E Ptimy uy 0therw1se,
2 Pt,immy . ’ ?

&7, (AT 1€ZJ

(%)

where p, ; is the aggregation coefficient for the j-th device at
the ¢-th global round. The optimal values of {p,;}v; will be
further analyzed in Section IV. Fig. 3 gives an example to illus-
trate the aggregation details. Specifically, different elements in
the global update are updated by different subsets of devices,
and more important elements will “absorb” knowledge from
more devices. When the j-th element is zeroed out by all the

devices in Z;, we have '&[J] =0.

IV. THEORETICAL ANALYSIS AND OPTIMIZATION

In this section, we focus on the optimization of our frame-
work by customizing the training strategies for diverse devices.
We first formulate the on-demand training problem of Any-
costFL. Then, we derive the upper bound of the convergence
rate and reveal the key insights to improve the performance of
AnycostFL. Based on the analysis, the optimization problem is
transformed into a tractable form, and the closed-form solution
is derived.

A. AnycostFL over Wireless Networks

In this subsection, we formulate the computation and com-
munication models for our framework. After that, we build
up an on-demand learning problem that minimizes the global
training loss with given delay and energy constraints.

1) Computation model: For the device 7 at the ¢-th global
round, given the model shrinking factor oy ; and computing
frequency f;;, the time consumption of local model training
can be measured by
Ty = TP ©)

’ fi
where 7 denotes the number of local epochs. Meanwhile, the
corresponding energy consumption can be given by

EY = € f2 7| Dilay W, (7)

where ¢; is the hardware energy coefficient of the device .
2) Communication model: We consider the frequency divi-
sion multiple access (FDMA) scheme for the transmission of
the local gradient update. For the device ¢ at the ¢-th global
round, the achievable transmitting rate can be estimated by

hy com
I
00;

where P™ is the transmitting power; b; is the achievable
bandwidth; |k ;| denotes the path loss of wireless channel; N
is the power spectral density of the additive white Gaussian
noise. For the device ¢ at t-th global round, given the update
u;; generated by the local model with a shrinking factor
of ay,; and compression rate of (3 ;, the required time 779"
and energy consumption E;%" of uplink transmission can be
respectively measured by
at,i,Bt,iS

Tt,i

re; = bilog, (1 +

com __
Tii =

com com pHcom
, and Et,i :Tt,i Pt,i . )

With the above computation and communication models,
we next focus on the optimization problem of AnycostFL.
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3) Problem formulation: To optimize AnycostFL, we study
an on-demand training problem. Specifically, the shared max-
imal latency for each round 7™* is determined by the server.
The local energy consumption budget for each round E3™ 1
customized by the device itself. Given multiple devices w1th
diverse local resources (e.g., computation, communication and
data), our goal is to customize the training strategy for each
device to minimize the global training loss with personalized
constraints (e.g., latency and energy). To sum up, at the ¢-th
global round, we aim to optimize the following problem.

(P1)  min F(we; {0, bvi {Bri bwi) (10)
subject to: TP 4 Teg™ < T, i, (10a)
EC‘“P T R e R (10b)
Q™ < oy <1,V (10c)
0 < B < B, Vi, (10d)
FI < foa < PV (10e)

variables: {aei, Beyi, fribvis

where F(wy; {a,i}vi, {Bti }vi) denotes the global loss of the
t-th round with given the global model weight w; under the
training strategies of {o ; }v; and {5 ;}v;. In the rest of this
section, we analyze the relationship between training loss and
training strategies. After that, Problem (P1) is further solved
based on the theoretical insights.

B. Assumptions and Key Lemmas

Being in line with the studies in [5], [39], we make the
following assumptions for the local loss function Fj, V.
Assumption 1. F; is A-Lipschitz: ||F;(w) — F;(w’)|| <
AJJw — w’||, where A > 0.

Assumption 2. F; is v-strongly convex: F;(w) > F;(w') +
(w —w')TVF(w) + % |lw - w'||*.

Assumption 3. F; is twice-continuously differentiable. Based
on Assumptions 1 and 2, we have vI < V2F;(w) < AL
Assumption 4. The ratios between the norms of VF;(w) and
V F(w) are bounded: |V F;(w)|* < & | VF(w)]|*, where e >
0 is a positive constant.

Assumption 5. For the moderate shrinking factor o > «
the first-shrinking-then-training can be approximated as first-
training-then-shrinking: VF;(w®) = [VF;(w)]*. Here, we
use [V F;(w)]* to denote the shrinking operation for VF;(w).

Next, we give the following two definitions.

Definition 1 (Local gradient divergence). The local gradient
divergence 4 ; is defined as the difference between u;; and
W ;, which is given by 0, ; = |lw; — e,

Definition 2 (Global gradient divergence). The global gra-
dient divergence A, is defined as the difference between

min
9

u; and Uy, Which is measured by A; = |Jur — Uy
I

Zptiutz Zptzutz

=1 =

Notably, in Deﬁnmon 1, u;; and u;; may have different
dimensions. We pad the missing elements in u;; with zeros
before the arithmetic operation. Next, we are interested in how

the training strategies {c i, 01 }vi affect {0, ;}v; and A, We
derive the following two lemmas.
Lemma 1. For the local training with the model shrinking
factor o ; and compression rate 3; ;. The square of the local
gradient divergence is bounded by

EJ|6,4]% < (1 — ari(2 — ar.)v/Bea) Ellue® (1)

Proof. See Appendix A. O
Lemma 2. For the local update {@,;,Vi} with the corre-
sponding training strategies {c ;, 8, }vi and aggregation co-
efficients {p; ; }v;, the square of the global gradient divergence
is bounded by

I
El| A < Ien®> pii(1

i=1

Proof. See Appendix B.

— ,i(2 = ari)V/Bei) "BV F (w,)|)?.
12
2

C. Optimal Aggregation Scheme and Convergence Analysis

Intuitively, the local update wu;; generated with larger
{at,i, Bt.i} may carry more accurate information, and thus a
larger p, ; should be assigned during the aggregation. Based
on Lemma 2, we deduce the following theorem.

Theorem 1 (Optimal aggregation scheme). Given the lo-
cal updates {w@,;}v; with corresponding training strategies
{4, B }wi, the optimal aggregation coefficients are

1
* (1_0%,1'(2_0(1,,11)\/ Bt,i)2
pt,i = Z 1 }
‘ (1*at,i(2*0u,,i)\/5f,,i)

Proof. Based on Lemma 2, we study the following optimiza-
tion problem to minimize the global gradient divergence.

Vi (13)

{mln Zp“ l—a“ 2—a“)\/,817i)2 (14)
Peitvi S5
subject to: pe,i >0, Vi, (14a)
I
> pei=1. (14b)
i=1

It can be verified that Problem (P2) is a convex op-
timization problem. We further solve the problem by the
Karush-Kuhn-Tucker (KKT) conditions. Let {zw}y; and 0
be the Lagrange multipliers for Constraints (14a) and (14b),

respectively. Then, we obtain s

@i >0, @wipti =0, pei >0, Y pri=1,

et (15)

2pt,1:(1 —ai(2 — i)/ ,Bt,i)Q —w; +0=0, Vi.

Being in line with the study in [40], we can obtain

0
Pri = — 3 (16)
2(1 — i (2 — i)/ Bri)
By putting Eqn. (16) into Eqn. (14b), we obtain
2

0=— a7

1
Zk (1_at,i(2_at,i)\/ﬂt,i)2
Putting Eqn. (17) into Eqn. (16) completes the proof. L]
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With the optimal aggregation scheme, we investigate the

upper bound of the convergence rate of AnycostFL.
Definition 3 (Local and global learning gains). The local
and global learning gains are defined as g;; = Oz?’iﬂtﬂ' and
gt =y, 9t,i/ I, respectively. Specifically, the local and global
learning gains (i.e., g;; € [0,1] and g, € [0, 1]) measure the
amount of effective information carried in the local and global
updates, respectively.
Theorem 2 (Convergence rate of AnycostFL). Let g
min{g; }v; be the minimal global learning gain over the 7'-
round training. The upper bound of the convergence rate of
AnycostFL satisfies

E(F(wr) — F(w*)) < Z"'E(F(wy) — F(w*)), (18)

where Z = 1 — % (1 —¢(1 — g™™)). Recall that parameters

v, A and € are defined in Assumptions 1 to 4 before.

Proof. See Appendix C. O
Based on Definition 3 and Theorem 2, we derive the

following proposition.

Proposition 1. The key to minimizing the training loss of

AnycostFL is to maximize the learning gain g, for each global

round. If g; = 1 V¢, AnycostFL degrades to conventional FL

without model shrinking and gradient compression.

D. Solution for Problem (PI)

Based on Theorem 2 and Proposition 1, Problem (P1) can
be transformed into the following problem.

min

I
1 4
(P3) max - ; ol B (19)
subject to: Constrains (10a) to (10e),
variables: {ai, B, fritvi-

Based on Constraints (10a) and (10b) for the training latency
and energy, we obtain the following lemma.
Lemma 3. The equality will always hold for Constraints
(10a) and (10b) when confirming the optimal training strategy
{af ;. B, [ bvi, and thus T}, = T™** and E,; = E}, Vi.
Probf. The lemma can be prdved by showing the contradic-
tion. Suppose that there exists io such that T3, < 7™
We can find a new solution {ov ; , 57, , f{,,} for device ig
and o, > op,, fi. < fi,, such that T, = Tm
and E;, = B Since the global learning gain increases
with the increase of v ;,, we have g; > g;. Likewise, the
contradiction also appears when EY; < E/"*, and thus we
complete the proof. O
Based on Lemma 3, we employ two intermediate variables
(i.e., ¢+ and ¢y ;) for each device to reparameterize Problem
(P3). Specifically, ¢, ; € [0,1] and ¢, ; € [0, 1] are the splitting
factors for latency and energy, respectively, such that
TEP = 6T, TP = (1— 6 T™,

max max . 20
B = g ER EO = (1— o )EPS, vi, 0

By combining Eqns (6) and (20), the local learning gain of
the device ¢ at the ¢{-th round can be rewritten as

9ei(Pri) = ki (B — (1= o) T P) (87 — ¢2.), (21)

T max 3
Where K/t’l - SE,; (T"DI‘W)

Note that Problem (P3) can be transformed into I sub-
problems because the decision-making procedure of each
device is independent. Based on Eqn. (21), the i-th sub-
problem can be expressed as a single-variable optimization
problem with respect to ¢, ; as follows.

(P4) mAxX g, (Ae) (22)

subject to: Pt < i <o

tyi

where the lower and upper limits of ¢, ; can be acquired by

. min D; max
‘Zﬁnzln = max { afnl;'TmL}:V 1— Tﬂ_Tmix }7
i . (23)
¢max _ min T |Dz‘ W 1_ amm/@m]ns}
tye T fiminTmax ) Tt,iTmaX .

Based on the first-order optimality condition dg; ;/¢:; = 0,
we obtain the stationary points as

Vbt = 3ETTT 3
At S +Zu ¢§,2z =

B = VAR L S OV
bt gPgommax 4

8 Ptcom Tmax
N

where 1), ; = 4(Pff§meaX)2 — 4B PR TM 4+ 9(Ermax)2,
Let Sp; = {¢fn, ¢, ¢3!, ¢34} denote the union of the
stationary points and the boundary points for Problem (P4).
Then, S; ; = {prilpri € [O]", O], dri € S} is the set
of the feasible solutions of &;;. The optimal solution for
Problem (P4) can be acquired by

¢p; = argmax gy i(d;)- (25)

$1,i€S]

Furthermore, we obtain the optimal solution for device ¢ at the
i-th global round by putting ¢; ; into the following equations.

* 1ax * max 2 * max
* 1 (1- ¢t,i)Tna Pf,oim x« _ 3 (d)t,iT ) ‘Pt,iEt,i
L;Dt,z E?iax y Kt e 67;(7' ‘D7,| W)3 )
Br. = rei(1 = ¢f)T™™ 1= o7 D W
t,1 a;iS v Jt,T QSZ’iTmax

(26)

Notably, the decision-making process of each device does

not involve the auxiliary information of the resource status

from other devices. At the beginning of each global round,
each device can determine its training strategy locally.

V. EXPERIMENT EVALUATIONS
A. Experiment Settings

1) Setup for FL training: We consider the FL application
with image classification on Fashion-MNIST and CIFAR-
10 datasets [41], [42]. For Fashion-MNIST, we use a small
convolutional neural network (CNN) with data size of model
update as 53.22Mb [1]. For the CIFAR-10 dataset, we employ
VGG-9 with data size of model update as 111.7Mb [43].
For IID and non-IID data settings, we follow the dataset
partition strategy in [34]. For the learning hyper-parameters,
the learning rate, batch size and local epoch are set as {0.01,
32, 1} for Fashion-MNIST and {0.08, 64, 1} for CIFAR-10
dataset. The maximal latency is set as 7™ = 10 seconds
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Fig. 4. Performance on various network architectures and datasets. ((a-b): global accuracy vs. time consumption with Fashion MNIST on 2-layer CNN; (c-d):

global accuracy vs. energy consumption with CIFAR-10 on VGG-9.)

TABLE I
PERFORMANCE COMPARISON BETWEEN ANYCOSTFL AND OTHER METHODS ON FASHION-MNIST AND CIFAR-10 DATASETS.

IID non-I11D

Energy Latency Comp. Comm. Best Acc. Energy Latency Comp. Comm. Best Acc.

Dataset Method  #Round (K)) (min)  (TFLOPs) (GB) (%) #Round (KJ) (min)  (TFLOPs) (GB) (%)
STC 305 (1.7x) 10.94 (1.4x) 2542 (1.7x) 15271  0.71 90.28+0.18 283 (1.3x) 10.17 (1.1x) 23.56 (1.3x) 141.53  0.66 89.47+0.16
QSGD 283 (1.6x) 11.40 (1.4x) 23.56 (1.6x) 141.53  0.80 90.394+0.04 279 (1.3x) 11.27 (1.2x) 23.28 (1.3x) 139.86  0.79 89.49+0.07
FMNIST  UVeQFed 247 (1.4x) 11.36 (1.4x) 20.58 (1.4x) 123.67  0.72 90.44+0.10 266 (1.2x) 12.21 (1.3x) 22.14 (1.2x) 133.01  0.77 89.6440.16
{90%,89%}" HeteroFL 233 (1.3x) 12.03 (1.5x) 21.78 (1.5%)  92.21 0.57 90.4340.13 242 (1.1x) 12.51 (1.3x) 22.62 (1.3x) 9577 0.59 89.42+0.10
FedHQ 288 (1.6x) 13.89 (1.7x) 24.03 (1.6x) 14436  0.86 90.2140.07 313 (1.5%) 14.96 (1.6x) 26.06 (1.5x) 156.55  0.93 89.274+0.19
AnycostFL 179 (1.0x) 8.07 (1.0x) 14.94 (1.0x) 67.49 0.35 91.20+0.09 214 (1.0x) 9.63 (1.0x) 17.83 (1.0x) 80.51 042 90.3210.14
STC 341 (1.2x) 35.39 (1.3x) 56.83 (1.2x) 4160.56 1.78 85.384£0.29 412 (1.1x) 42.39 (1.3x) 68.67 (1.1 x) 5026.84 2.15 83.094+0.53
QSGD 337 (1.2x) 39.82 (1.5%) 56.17 (1.1x) 4111.76  2.14 84.83£0.54 430 (1.2x) 50.29 (1.5x) 71.61 (1.2x) 524239 2.73 81.944+0.13
CIFAR-10 UVeQFed 296 (1.0x) 40.77 (1.5x) 49.28 (1.0x) 3607.45 2.12 85.09£0.16 377 (1.0x) 51.59 (1.5x) 62.89 (1.0x) 4603.87 2.71 82.30+0.28
{82%,80%}* HeteroFL 332 (1.1x) 50.07 (1.9%x) 69.14 (1.4x) 322226 1.65 83.7540.55 413 (1.1x) 62.88 (1.9x) 85.78 (1.4x) 3990.49 2.05 80.68+0.45
FedHQ 340 (1.2x) 48.95 (1.9%) 56.67 (1.2x) 4148.36 232 84.0240.22 435 (1.2x) 61.99 (1.9x) 72.44 (1.2x) 5303.40 296 81.00+0.41
AnycostFL 294 (1.0x) 26.43 (1.0x) 48.94 (1.0x) 2459.92 1.56 87.724+0.23 372 (1.0x) 33.51 (1.0x) 62.06 (1.0x) 3118.60 1.98 84.914+0.51

“{z,y}: = and y denote the target global model accuracy under IID and non-IID data settings, respectively.

and the energy budget is set as £} ~ U[3, 9] joules for the
CIFAR-10 dataset, and the corresponding hyper-parameters for
the FMNIST dataset are halved by default. Additionally, we
set @™ = 1/4 and ™ = 1/15.

2) Setup for mobile system: We investigate a mobile system
with 1 60 devices located within a circle cell with a
radius of 550 meters, and a base station is situated at the
center. To simulate the mobility, the position of each device
is refreshed randomly at the beginning of each round [44].
For the computation, the energy coefficient is set as ¢; ~
Ul5 x 107271 x 1725]. For communication, the bandwidth
is set as 1MHz equally for each device, and the path loss
exponent is 3.76. The transmission power is set as 0.1W, and
Ny is set as —114dBm/MHz.

B. Performance Comparisons

We compare the proposed AnycostFL with the following
efficient FL algorithms with three different random seeds.
e STC. The sparse ternary compression (STC) is adapted
to reduce the cost of uplink parameter transmission [11].
e QSGD. The TopK sparsification and probabilistic quanti-
zation are combined to compress the local gradient [36].
o UVeQFed. The TopK sparsification and universal vector
quantization are used to compress the local gradient [14].
o HeteroFL. Each device trains the local sub-model in
different widths to match its computation capacity [32].
o FedHQ. Each device uses different quantization levels to
compress the gradient according to its channel state [40].

Fig. 4 shows the performance of the global model over
time consumption and energy consumption under the IID and
the non-1ID data setting. With the same training efficiency
(i.e., time and energy consumption), the proposed AnycostFL
consistently outperforms the baseline schemes to improve the
test accuracy of the global model. Meanwhile, Table I provides
the best accuracy and required system cost for achieving
the specified test accuracy. Particularly, when compared with
HeterFL and FedHQ, AnycostFL can reduce up to 1.9 times
the energy consumption to reach the test accuracy of 82%
on CIFAR-10 dataset under the IID setting. When compared
with STC, AnycostFL can reduce up to 1.7 times the time
consumption to reach the test accuracy of 90% on FMNIST
dataset under the IID setting. Moreover, our framework can
significantly improve the best accuracy of the global model
by 2.33% and 1.82% on CIFAR-10 dataset under the IID and
the non-IID settings, respectively.

C. Impact of Key Mechanisms and Hyper-parameters

Fig. 5(a) verifies the advantages of the main techniques of
AnycostFL. We gradually remove the elastic model shrinking
(w/o EMS), the flexible gradient compression (w/o FGC) and
the all-in-one aggregation (w/o AIO), and record the required
system cost to achieve 80% test accuracy with CIFAR-10
dataset under the IID setting. We observe that the proposed
EMS and FGC can significantly save the energy consumption
and training time, respectively. Besides, AIO contributes to
saving both energy and time.
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Fig. 5. The main advantages of AnycostFL. ((a): the impact of key mechanisms; (b-c): the impact of system heterogeneity; (d): the performance of sub-models.)

We next evaluate the impact of resource heterogeneity on
the training efficiency in Fig. 5(b-c). We set the average energy
coefficient ¢; as 7.5 x 10727 and the average distance between
the base station and edge devices as 400 meters, and then
change their variances to simulate the computation and com-
munication heterogeneity, respectively. The larger variance
indicates a higher level of system heterogeneity. As we expect,
the proposed AnycostFL shows more resilience than other
baselines to tackle the high level of system heterogeneity.

We also evaluate the performance of sub-models in different
widths in Fig. 5(d). Specifically, We compare AnycostFL with
HeteroFL (i.e., local training with different widths) and STC
(i.e., the best-performing compression-only method). The sub-
models are derived from the well-trained global model without
further re-training. Surprisingly, the sub-models of the global
model trained by AnycostFL can still maintain satisfactory test
accuracy, which provides dynamic inference for diverse edge
devices after the training time.

VI. CONCLUSION

In this paper, we proposed AnycostFL, a joint computation
and communication efficient framework for FL, that enables
edge devices with diverse resources to train a shared global
model. We aimed to minimize the global training loss under
given personalized latency and energy constraints. By leverag-
ing the theoretical insight of AnycostFL, we decomposed the
optimization problem into multiple sub-problems. Following
that, the optimal training strategy is derived for each de-
vice according to its locally available resource. Experiments
demonstrate the advantage of our framework in improving the
system efficiency and model performance compared to the
state-of-the-art methods.
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APPENDIX A
PROOF OF LEMMA 1

Proof. For the given local gradient u,; with shrinking factor
ay,; and gradient compression rate 3, ;, we aim to capture the
divergence between u;; and w ;. Suppose that the absolute
value of the element in u; ; follows uniform distribution |u| ~
U(0, tmax), and tmax = max{|u|}vucu, -

For clear notation, we sort the element-wise absolute
value of w;; in ascending order. Then, we obtain u;; =

lll ool f)T and )] < ) Thus, we have
]2 ]2 Jumax
Ellueil? EDu P = JElu)? = .Q@7)

Based on Assumption 5, the update generated from lo-
cal training with w{; is equal to shrink(wg;, ;). The
operation of model shrinking on wu;; with «a;; can be
viewed as removing (1 — «;;)J elements with the least
value from wu,;;. Then, we obtain shrink(u;;, o ;) =

[0,...,0, pli—oed)J+1] u%]]T

Hy e . Thus, we have
,

(I—ay,i)J

W=k 3

- J(l - at,i)sufnax/3 = (1 - at,i)s

E|lut,; — shrink(us,i, s |u£71|2

We next focus on the gradient compression. The operation
of gradient sparsification on w,; with sparsity of p;; can
be viewed as removing p;;J elements with the least value
from u; ;. Then, the quantization is conducted on the non-
zero elements of w;;, and we obtain cmprs(uy, i)

[0,...,0 'ilgpi"i‘]ﬂ], e ,ﬁ,[;]i]]T. Furthermore, we have
Eljws,; — cmprs (e, Bei) )
pt,id )
=E Z [} +E Z wl —a. (29
J=pt,iJ+1
@

(B)

Likewise to Eqn. (28), we have (A) = p} ;E[lu; ;||*. Based on
Eqn. (4) and the statistical feature of u;;, we obtain (B) =
(1= prs) Ellur ]|/ (2L2,).

Given plain update w;; in 32-bit floating point and the
desired compression rate 3; ;, we can set p; ; = 1 — \/E and

Ly; = 232V Pt for the analysis. In this way, the operations

Authorized licensed use limited to: University of Houston. Downloaded on August 28,2024 at 17:39:18 UTC from IEEE Xplore. Restrictions apply.



of sparsification and quantization contribute equally to the
gradient compression. Furthermore, we have
E|luei — emprs (we, Be) | < (1= Bea) Elluesl®.  (30)
Next, we focus on the local divergence d; ; with respect to
oy; and B¢ ;. According to the Definition 1, we have
E||6::)1* = Bllws,; — cmprs ([wei]®, B,0)|*
= Ellue,i — [we,i]*||” + Ell[we ] — cmprs([us,]®, Bei)]
+2<we — [we]”, [ue]® — emprs([ued®, Bei) >

| 2

3D

©

It can be verified that the two vectors in term (C) are
orthogonal, and we obtain (C) = 0. According to Eqns (28)
and (30), we further obtain

B0l < (1~ 0 Bl + (1~ V/Boo)Elfu )
(a
< (1= i) Elu,q ||
+ (1 — \/BTJ)QOQJ(&?,’L — 306t,i + 3)EH'U¢,1H2
(®)
2 (1~ a2 - @) /Ber) Bl

(32)
Likewise to Eqn. (28), inequality (a) stems from the fact that
E||[we:]*]]* = ar,i(of ;—3ay,i+3)E|u, ;|| Besides, inequal-
ity (b) holds for all c ; € [@™", 1] and f3; ; € [0, 3™#*]. Thus,
we complete the proof. O

APPENDIX B
PROOF OF LEMMA 2

Proof. Based on Definition 2 and Lemma 1, we have

I I
E[lA? = EHZPt,iut,i - Zpt,i{l:t,i
i=1 i=1

I
< EB(X pei(l — a2 — a0, V/Bur) fuesl)

i=1

2

(33)

We use 7 to denote the learning rate, and u;; = nVF;(w,).
Based on Assumption 4, we obtain

I
2
B AP < =n” (3 pui(1 = aui( = ari) /Be) ) EIVE(w0)]?,

i=1

(34)

According to Cauchy—Schwarz inequality, we obtain
I

E||At|\2 < IenQZpii(l — (2 — at,i)\/ﬂt,i)2EHVF(’wt)||2-
=1

(35)

Thus, we complete the proof. O

APPENDIX C
ON THE CONVERGENCE OF ANYCOSTFL

Proof. Inspired by the studies in [5], [39], we deduce the
convergence analysis of AnycostFL. According to Taylor
expansion and Assumption 3, we have

A
F(wi1) < F(w;) + (wip1 — wi) VF(w) + Sllwers = w,?

= F(w:) — @ VF(w) + %Hﬁt||2~
(36)

By using learning rate n = %, we obtain
A
E(F(wis1)) < E(F(wt) — A (s = A0 T+ 5 ui = AtHz)

= B(F(w) — g5 [VF@)l* + 2 [A). .

We now pay attention to the upper bound of ||A||*>. Based on
Jensen’s inequality and Eqn. (34), we obtain

I

E| A <en®> " pri(1 — ani(2 — o) /Bri) “E| VE (wy)]|*.

i=1

(D)
(38)
By putting Eqn. (13) into (A), we have
1 (©) 1
E[D| <E|l— 1 <E|— 1 ,
1; (1*Oét,z‘(2*04t,i)\/ ﬁtn‘,)2 ,; 1—aj B
(39)

where (c) always holds for «y; € [0,1] and §8,; € [0,1].
According to Definition 3, we have g;; = af’iﬂm and g; =
> gei/1. Since 1/(35; =5) is a concave function with
respect to gy ;, based on Jensen’s inequality, we obtain

EfA|l <

=1-g: (40)

1
Zi 1_E((X?,i5t,i)

Since the training strategies of each device and the norm of
the gradient of global data ||V F(w,)| are independent, by
putting Eqn. (40) back to Eqn. (38), we obtain

Ella” <B(n*(1-g) IVF@)|?). @D
Next, by putting Eqn. (41) back to Eqn. (37), we have

B 1+ E(gt — 1)
2\
Subtracting F'(w™*) in both sides of Eqn. (42) yields

E(F(th — F(’LU*))

E(F(wi)) < E(F(w) IVP(w)|?). (42)

<B(F(w) - 0= g - ).
Based on Assumptions 2 and 3, we have [5], [45]
[VF(w,)|?* > 2v(F(w) — F(w*)). (44)
Plugging Eqn. (44) into Eqn. (43), we have
E(F(we) = F(w")) < ZE(F(w,) - F(w")),  (45)

where Z; =1 — 5 (1 —&(1 — g¢)).
Let g™ = min{g,}v; be the minimal global learning
gain over T' global rounds. By recursively applying the above

inequality from iteration round O to 7', we can obtain
E(F(wr) — F(w*)) < Z"'E(F(wo) — F(w*)), (46)

where Z =1 — % (1 —&(1 — g™™")). Thus, we complete the
proof. O
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