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ARTICLE INFO ABSTRACT

Keywords: Over the past two decades, Interferometric synthetic aperture radar (InSAR) has been invaluable for studying

InSAR earth surface deformation and related effects. Deformation maps generated through multi-temporal InSAR

Time series displacement processing methods are however difficult to interpret accurately by general individual users, decision-makers,

Spatfo'temp(?ral a"alySI.s and non-domain experts owing to the volume, variety, and velocity they are produced. This paper proposes a

Semi-supervised clustering . . . . . . . . . .
semi-supervised machine learning based information mining approach to simplify these deformation maps and
detect hotspots by extracting prominent signals from time series deformation. The approach initially combines
two machine learning based clustering methods named time series k-means (TSKM) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithms to derive clusters with unique spatiotemporal
deformation behavior, using time series deformation output generated from Wavelet-based InSAR (WabInSAR)
method. Clustering results generated from this unsupervised machine learning approach are later used as
training labels to develop two deep learning models, one using long short term memory (LSTM) networks alone
and another using a combination of LSTM and single-layer perceptron for supervised training. The developed
LSTM and LSTM + Perceptron models efficiently learn from the cluster labels, reaching an accuracy of 97.3 %.
Further, the deep learning models significantly reduce the computational time from orders of days (~5) to hours
(~2) while training and from hours to minutes during prediction. We evaluate the developed approach over Los
Angeles, a highly challenging area affected by umpteen deformation events that are challenging to categorize.
The outcome of the proposed approach produces hotspots of deforming areas in Los Angeles, providing a
generalized and more precise picture of events, much appreciable to non-domain experts. The approach can
augment any of the multi-temporal InSAR processing chains and is applicable to different deformation prone
sites, aiding in derivation of deformation hotspots from time series deformation maps.

1. Introduction

Over the past two decades, the multi-temporal Interferometric syn-
thetic aperture radar (MT-InSAR) technique and its variants have been
effectively used for monitoring earth’s surface deformation associated
with faulting processes (Biirgmann et al., 2000; Shirzaei and Biirgmann,
2013; Shirzaei et al., 2013a; Whipple et al., 2016; Xu et al., 2021),
landslides (Nikolaeva et al., 2014; Rosi et al., 2018; Sun et al., 2015) and
land subsidence (Miller et al., 2017; Ojha et al., 2020; Osmanoglu et al.,
2011), volcanic activity (Hooper et al., 2004; Pritchard and Simons,
2004; Shirzaei et al., 2013b) and infrastructure resilience and stability
(Eppler and Rabus, 2012; Gao et al., 2022; Milillo et al., 2016; Wang
et al., 2016). Further, we now sit on SAR data mountains thanks to the

unprecedented temporal revisit (6-12 days) and global spatial coverage
(~250 km each scene) provided by the Sentinel-1 mission, and also with
data from RADARSAT, ALOS PALSAR, TerraSAR-X, and the upcoming
NISAR mission, yielding InSAR products with high spatiotemporal res-
olution greatly benefitting the scientific community. With the plentiful
availability of SAR images, the requirements of devising time-efficient
methods of processing huge interferometric data stacks and improving
data storage and archival algorithms are also being addressed and
considered (Ansari et al., 2017, 2018; De Luca et al., 2018; Lee and
Shirzaei, 2023; Ma et al., 2022). However, a remaining issue is the un-
derstanding, appreciation, and comprehension of the information within
InSAR-derived deformation maps by the general (non-domain) users.
These users often require a first-order picture of events occurring in an
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area of interest to draw useful conclusions, resulting in critical socio-
economic decisions and policies. The problem is exacerbated when the
InSAR derived deformation pattern for different events appears similar,
confusing decision-makers. Furthermore, different TS-InSAR analysis
methods may generate dissimilar deformation maps and time series,
making it difficult to draw conclusions required for critical decision-
making (Chang and Hanssen, 2015). Even to a domain expert, inter-
preting InSAR deformation maps produced at a staggering rate, volume,
and diversity is often challenging. These maps generally contain time
series information corresponding to millions of geolocated InSAR pixels,
and visual investigation of even a handful of these pixels consumes a
significant amount of time and resources, making it infeasible to analyze
even the major features rigorously.

Information mining methods can simplify extracting useful contex-
tual information from InSAR-derived deformation maps. The definition
of ’useful contextual information’” may vary depending on the in-
vestigation’s purpose. Initial attempts to assess InSAR-derived time se-
ries deformation were presented by (Chang and Hanssen, 2015), where a
probabilistic hypothesis testing-based approach is proposed to model
the InSAR time series. While yielding satisfactory results, such an
approach requires considerable domain knowledge and may be
computationally expensive for the present-day InSAR data volumes. We
see information mining methods used to alleviate time series noise
through combined spatiotemporal filtering (Wnuk, 2021) and to detect
outlying deformation signals using DBSCAN clustering and principal
component analysis (Bakon et al., 2017). Methods such as PCA and in-
dependent component analysis (ICA) are also explored to resolve and
relate particular geodetic signals, such as settlement due to groundwater
extraction (Karimzadeh et al., 2018), slow slip event modeling (Maubant
et al., 2020), tunneling induced land settlement (Wnuk, 2021) and
coastal land subsidence (Wang et al., 2022b). The statistical mining
methods can segregate different deformation signals, given that the
analyzed dataset does not contain significantly distinct information.
These methods can help generalize the deformation behavior in space
and time, making them comprehensible to general users while saving
domain experts’ time and effort.

Artificial intelligence (AL), machine learning (ML), and deep learning
(DL) have recently evolved to solve many unsolvable and time-
challenging problems in earth observation studies (Chen et al., 2023;
Hasan et al., 2023; Irrgang et al., 2021; Kubo et al., 2020; Mateo-Garcia
et al., 2021; Reichstein et al., 2019; Rolf et al., 2021). InSAR has also
benefitted from deep learning architectures, and there have been studies
attempting detection of volcano-like structures (Anantrasirichai et al.,
2019b), urban area deformation (Anantrasirichai et al., 2019a), land-
slide zones, and hill slope velocities (Devara et al., 2021; Yuan and Chen,
2022), land subsidence (Radman et al., 2021), selection of elite pixels in
time series InSAR processing (Lattari et al., 2022; Tiwari et al., 2020;
Wang et al., 2022a), phase unwrapping (Sica et al., 2020; Zhou et al.,
2022), and deformation prediction (Rouet-Leduc et al., 2021). For
analysing InSAR derived deformation, we see the approach proposed by
(Festa et al., 2023), combining PCA (for dimensionality reduction) and
k-means clustering to identify natural or anthropogenic deformation
signals.

Being cognizant of the significance of detecting useful deformation
signals and a few salient observations from the work done till date, we
observe that there have been studies using machine learning and
dimensionality reduction techniques mostly focused on segregating a
single or few deformation events at regional scales. Also, we see that
deep learning has not been investigated for clustering InSAR time series
displacement. With the rise in the scale of InSAR data both spatially and
temporally, it is worth investigating deep learning methods that auto-
mate feature engineering and can mine information from gigantic InSAR
data volumes with better computational efficiency (Chen and Lin, 2014;
Dargan et al., 2020). In this study, for the first time, we investigate a
combination of traditional machine learning and deep learning models
to address the complexity and tediousness associated with interpreting

International Journal of Applied Earth Observation and Geoinformation 126 (2024) 103611

spatiotemporal deformation patterns derived from InSAR. We demon-
strate the approach over a large study area in Los Angeles, USA, home to
umpteen deformation events (Bawden et al., 2001; Brooks et al., 2007;
Riel et al., 2018), making it challenging to understand and simplify. The
major objectives of this study are (i) to develop an automated semi-
supervised ML-DL approach to explore InSAR deformation time series
and (ii) to detect hotspot signals characterizing the deformation
behavior of the study site.

Section 2 describes the dataset generation process for the study, and
Section 3 describes the methodology. Section 4 presents the results and
analysis, followed by the conclusion.

2. Study area, datasets and exploratory analysis

For this study, we use a publicly available line-of-sight (LOS)
deformation dataset from Los Angeles, CA, published by (Lee and Shir-
zaei, 2023) using the Wavelet-based InSAR algorithm (Lee and Shirzaei,
2023; Shirzaei, 2012; Shirzaei and Biirgmann, 2012; Shirzaei et al.,
2019) (see Data Availability). Several deformation hotspots characterize
the InSAR velocity map. In the following, a few major ones are briefly
described. A subsidence rate of —1.5 cm/yr affects the Santa Ana area
(Longitude: ~-117.84, Latitude: ~33.73) and an uplift rate of ~ 0.5 cm/
yr adjacent to it due to extraction of groundwater and aquifer recharge
operations, respectively. The areas near Seal Beach (Longitude:
~-118.14, Latitude: ~33.76) and Long Beach (Longitude: ~-118.21,
Latitude: ~33.77) are characterized by several subsidence and uplift
hotspots with absolute rates up to 1 cm/yr, associated with activities on
Newport-Inglewood Fault and oil and gas production from the Wil-
mington oil field. The Los Angeles central area (Longitude: ~-118.21,
Latitude: ~33.95) subsides at a rate of —0.4 cm/yr. Subsidence and
uplift hotspots are also located near the Hollywood Fault (Longitude:
~-118.39, Latitude: ~34.08) and are associated with the Los Angeles D-
line extension transit project. The slow deformation of Santa Ana
Mountain (Longitude: ~-117.60, Latitude: ~33.76) is due to slow
landslides in the form of creep affecting the hillslopes.

The LOS deformation time series and velocity of 3,039,151 mea-
surement pixels at ~ 25 m x ~ 25 m spatial resolution are obtained from
interferometric processing of 247 SAR images acquired in descending
orbit of Sentinel-1A/B satellites during 2016-2022. Fig. 1 a-d shows
each pixel’s LOS velocity, mean interferometric coherence, velocity
standard deviation, and local incidence angle. Also, Fig. 1e shows the
outline of deformation hotspots (marked in red) retrieved from a dis-
cussion with authors (Lee and Shirzaei, 2023). Prior information about
the deformation events in a study site (as shown in Fig. le) is not
required to implement the method used herein and the sole purpose is to
validate the performance of the proposed method.

We used temporal-spatial clustering to mine information from the
dataset shown above. For temporal clustering, we used the LOS defor-
mation time series derived from the WabInSAR algorithm. This is treated
as a sequential predictor variable, incorporating temporal nature. In
addition, we also used static predictor variables (i.e., no temporal
variation) for training the models. The static predictors include the LOS
velocities, their standard deviation, local incidence angles, and mean
coherence. Since we deal with an unsupervised problem, the target
variable is a cluster label representing statistical spatiotemporal simi-
larities within a cluster and dissimilarities among different cluster la-
bels. LOS velocity information helps understand which areas have
higher, lower, or negligible surface movement given the associated
standard deviations. Local incidence angles distinguish different surface
topologies and account for the topographic changes. Mean coherence
characterizes pixels affected by noise within the time series. One can
introduce other features into the learning approach, such as elevation
data and related parameters (e.g., slope, aspect). Note that there is a
trade-off between the dimension of the input parameter space used to
optimize learning and the overall complexity of the approach, yielding
acceptable or similar performance (Belkin et al., 2019; Briscoe and
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Fig. 1. Study area and dataset used for the proposed approach. a) LOS velocity map of Los Angeles generated using Sentinel-1 SAR images from WabInSAR method,
b) Mean coherence for the interferograms, ¢) Standard deviation corresponding to mean velocities, and d) incidence angle for each selected measurement point, and
e) Study area with red polygons denoting areas affected by deformation events. Inset plots in panels a) to d) show histograms of each static variable. Units on
horizontal axes are the same as those for the big plots and vertical axes denote the frequency (no. of measurement pixels). Latitude and longitude values are in
Decimal degrees. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Feldman, 2011; Geman et al., 1992). Since the problem dealt with is
unsupervised, the target variable is a cluster label representing statisti-
cal spatio-temporal similarities within a cluster and dissimilarities
among different cluster labels.

3. Methodology

The proposed semi-supervised learning approach can be divided into
three primary steps. Step 1 involves temporal-spatial unsupervised
learning for generating accurate cluster labels. Step 2 uses the labels
generated in Step 1 as training inputs for supervised deep learning. Step-
3 uses the clusters predicted from Step-2 and a stochastic approach to
finally derive hotspots of deformation. The approach begins from un-
supervised learning using a combination of temporal and spatial ma-
chine learning based clustering methods, and later switches to the
development of automated deep learning based time series clustering
models. Finally, statistical post-analysis of the predicted clusters yield
the planned outcome. The overall approach is illustrated in Fig. 2. InSAR
displacement time series obtained from the WabInSAR algorithm enters
time-series k-means clustering. We initially label InSAR time series
displacements of similar temporal behavior to identify areas undergoing

InSAR velocity map

Displacement time series
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similar or different deformation phenomena. Subsequently, we test
whether the clusters follow spatial separability, and to perform spatial
clustering, the individual temporal clusters undergo spatial clustering
using the DBSCAN algorithm. The resulting spatiotemporal clusters are
used as training labels to develop two deep-learning models for super-
vised learning. The clusters generated as output from supervised
learning are analyzed stochastically to identify the insignificant clusters,
and the important clusters are retained.

3.1. Machine learning based spatiotemporal clustering

This method uses statistical criteria to group the time series defor-
mation into different clusters (labels). The static k-means algorithm
initializes m clusters at random locations, with m chosen based on the
Elbow method or Silhouette score, two widely used metrics for evalu-
ating the number of statistically independent clusters in the data
(Pedregosa et al., 2011; Rousseeuw, 1987). For each new data point, the
method computes the distance between the point and every cluster. The
cluster to which the data point has the minimum distance is assigned to
the point. This operation is repeated for all the points, and after each
data point is clustered into one of the clusters, the cluster centers move
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Fig. 2. Workflow for the proposed approach. Input includes displacement time series obtained from WabInSAR algorithm, passed through time series k-means for
temporal and DBSCAN algorithm for spatial clustering (unsupervised learning). Output of DBSCAN is passed to deep learning models for supervised learning. Blue
shapes correspond to unsupervised learning methods, while black ones denote deep learning methods. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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and the process ends when it reaches a convergence threshold on the
amount of cluster center shifts. The major limitation of using k-means is
that it does not account for the temporal nature of the datasets and treats
the input time series as a group of t features, where t is the number of
time steps in the data. We, therefore, deploy the time series k-means
(TSKM) algorithm using dynamic time warping (DTW) following earlier
works (Berndt and Clifford, 1994; Huang et al., 2016; Niennattrakul and
Ratanamahatana, 2007) as the distance metric for computing time series
distances between the InSAR pixels. A unique benefit of using DTW is
that it is invariant to signal shifts, scales, or Doppler effects in the time
domain (Cai et al., 2021). It measures the similarity between two tem-
poral sequences which do not align precisely in time. The DTW distance
computation is shown in Equation (1), where x and y denote two sample
time series, d is the Euclidean distance, and = = 7, 71, ..., 7] denote
index pairs.

DTW(x,y) = min, /Zd(xhyj)z 1
M ijen

Again, having DTW as a minimization function for computing the dis-
tance has the limitation of not being differentiable everywhere. Another
variant of the DTW metric is the softdtw metric proposed in (Cuturi and
Blondel, 2017), which replaces the min function in Equation (1) with the
softmin function given in Equation (2).

2
softdtw(x,y) = softminy d(xi,y;)", 7 = [mo, 7y.... 70,
iy [Ste)

softmin(ay, @z, a3, ...04,) = *}’logZe’“’/’ 9

The softdtw function uses a log sum exponential formulation to guar-
antee differentiability everywhere (Cuturi and Blondel, 2017). In
Equation (2), y is a smoothing hyperparameter, e is the exponential
operator, and a1, a3, @3, ...a, denote computed distances. More details on
DTW can be found in (Portilla et al., 2019) and on softdtw in (Cuturi and
Blondel, 2017; Petitjean et al., 2011; Sakoe and Chiba, 1978; Zhang
et al.,, 2017). Here, we used the softdtw method to do the time-series
clustering.

Surface displacement detected by TS-InSAR is spatially and tempo-
rally variable, and above we attempt to cluster the measurement pixels
primarily using displacement time series. We further note that a similar
underlying physical process (such as groundwater pumping) may drive a
surface deformation of similar temporal behavior at different locations.
However, clusters generated from the TSKM algorithm consider only the
temporal nature of the measurement pixels. Thus, two pixels with
similar temporal behavior at a significant distance and associated with
two different driving mechanisms may still end up in the same cluster.
This pertains to the characteristic of the clustering algorithm that is
inherently translation invariant. However, to achieve the desired clus-
tering outcomes, we need to split a cluster into multiple smaller clusters
if it includes pixels separated at far spatial distances. To estimate the
spatial correlation length of the displacement among the measurement
points, we generate a co-variogram for the displacement time series. The
co-variogram is computed using Equation (3) proposed in (Chiles and
Delfiner, 2012), where h, is the distance bin, d is the vector of
displacement time series and N is the number of data point pairs. The
terms r; and s; denote randomly generated measurement pixel location
pairs such that 0 < r<m,, 0 < s<n,, where n, is the number of InSAR
measurement pixels used in the analysis. We use displacements atr and s
locations for computing displacement co-variogram, where (.) repre-
sents element-wise multiplication.

Clhe) = g >0 () d(s) 3

We pass the output of the TSKM algorithm to the Density-based spatial
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clustering of applications with noise (DBSCAN) algorithm to overturn
the clustering done by TSKM in cases of ignoring the spatial separation.
DBSCAN algorithm works on clustering points assuming that densely
located points in space belong to the same cluster. The algorithm is
subjective and includes two input parameters: distance threshold € and a
minimum number of points min (generally > D + 1, where D is data
dimensionality). We use € as a distance threshold to split clusters ob-
tained by the TSKM algorithm into smaller ones with the same label. To
arrive at suitable values of ¢ for each cluster, we use information
retrieved from the co-variogram and visual analysis of the individual
clusters.

The output from the machine learning approach above is suitable for
general users. However, computing the DTW distance requires O(n?)
computational time, where O stands for the big-O notation, showing the
worst case complexity of the algorithm run and n stands for the number
of data points. The computation is cumbersome for millions of points in
the case of SAR interferograms. Further, the prediction time using TSKM
is significantly large (order of days). However, one definite advantage
here is that we obtain reliable cluster labels which can be used to
formulate and perform the DL based supervised training explained in
section 3.2, finally yielding mined information from InSAR spatio-
temporal displacement estimates.

3.2. Supervised learning with deep learning models

With a rationale to reduce the computation time, we propose two
clustering methods that use deep learning models that are quick at
training and prediction and suited for analyzing time series input. The
first model is based on LSTM, taking the InSAR time series displacement
as input and the cluster map generated above through unsupervised
learning as training labels. Fig. 3 shows the general structure of an LSTM
cell. Equations 4.1-4.4 present the operation of the LSTM cell. Here, x;,
Ye X1, and y; 1 denote inputs and outputs for time steps t and t-1. The
terms w and b represent weights and biases (randomly initialized)
tweaked during the model learning. Both the forget and the input gates
use the input at the present step (x;) and the output of the previous time
step (y:-1) in a sigmoid activation function o5, (Equations (4.1) and
(4.2). The forget gate has the job of discarding non-useful signals in the
time series, while the input gate retains useful information from the time
series. The outputs of the forget and input gates are used to compute the
cell state (Equation (4.3). The cell state is updated by using the predicted
cell state S;, again using x; and y, ; in a hyperbolic tangent activation,
and the cell state at time step t-1 (equation (4.2). The output gate also
uses x; and y;_; in a sigmoid activation function and is used to compute
the output of the present time step y, (Equation (4.4). This output and
cell state go to the next LSTM cell, and in this way, the LSTM cell keeps
the information about the time series data and learns from it based on
the output label. The symbols '+’ and * x * denote pointwise vector
addition and multiplication, respectively.

fe = 0 (wfg et %] + by ) }Forget gate 4.1
in1 = Osm (Win LYthxz] + hhl )

~ Input gate 4.2
8, = tanh(ws[y1,x] + bs) [T 8

S =fg X S-1 +in X g,}Cell state 4.3

out, = g (Wou [Yi—1,X:] + bou

t N o (gm,’glmlnh[(]s,) ‘) }OMIPMI gate 4.4
Fig. 4 shows the architecture of the proposed LSTM model. The model
has an input layer, two hidden LSTM layers, and a fully connected layer
as the output layer. This model uses the MT-InSAR displacement as input
for training and prediction. The input layer dimension equals the
number of pixels times the number of time steps times the number of
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Fig. 4. Architecture of the proposed LSTM model for clustering MT-InSAR time series.

features. We use two LSTM layers which use the temporal input to derive
useful information while discarding irrelevant components of the time
series. To this end, the first LSTM layer has 128 units and 246 cells. The
number of cells corresponds to the number of time steps in the time
series data. Each LSTM cell acts as a neural network, having three
different gates: forget gate, input gate, and output gate, and a separate
cell state. The output of the LSTM layer goes to a dropout layer, where
units are switched off randomly to avoid overfitting or chance agree-
ment. This output goes to the next LSTM layer. This LSTM layer has 64
units for learning and is connected to a fully connected layer with the
number of units equal to the number of clusters detected from the

DBSCAN output (training labels). The output layer gives the class
probabilities based on its learning over multiple epochs, and from these
probabilities, the class with the maximum probability and above a
threshold (generally 0.5) is chosen as the final cluster label.

LSTMs work well with time series inputs by storing and propagating
important contextual information by means of its cell states. However,
we also have access to static inputs, which could assist with the clus-
tering. The static inputs include the mean LOS velocity, mean coherence,
incidence angle, and velocity standard deviation for each pixel. Further,
we initially used a forward LSTM layer for learning, which could learn
the forward progression of displacement time series by keeping a record
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of important sequence information seen earlier in the series. However, it
may be significant to see both forward and reverse flow of the input time
series to derive useful contextual information. Therefore, we propose
another deep learning model to incorporate static inputs in the learning.
We call the new model LSTM + Perceptron, which combines Bidirec-
tional LSTM and perceptron layers for training. The Bidirectional LSTM
adds another LSTM layer to the general LSTM layer with reversed input
temporal information and combines the general and additional LSTM
layers to give a time series output learnt from both forward and back-
ward progressions (Siami-Namini et al., 2019). The perceptron layer is
fully connected, with each layer’s neuron connected to every other
neuron of the subsequent layer. This layer uses the static inputs (mean
LOS velocity, mean coherence, incidence angle, and standard deviation)
for learning. The complete model hence performs a combination of
temporal and static feature learning. As seen in Fig. 5, the model consists
of four LSTM layers and two Perceptron layers. The time series
displacement is passed to the LSTM layer as input, while the static input,
i.e., mean velocity, the standard deviation of velocity, coherence, and
incidence angle, is passed as input to the Fully Connected Perceptron
(FCP) layer. The output of two layers of LSTM and one layer of the
perceptron is combined at a new layer which is LSTM + FCP. This layer
concatenates both the recurrent and static inputs, and outputs go into
another combined FCP-connected layer. The output of the two sequen-
tial LSTM + FCP layers goes to the output layer, which is again a fully
connected layer with the number of units equal to the number of clusters
generated by the DBSCAN algorithm. We use the categorical cross en-
tropy as the loss function to evaluate the model error during training for
both LSTM and LSTM + Perceptron, as shown in Equation (5), where y;
and y; are the true and predicted cluster, respectively. It is generally
used in classifying multi-label (more than two) data. Other training
hyperparameters for the model are shown in Table 1. Total number of
trainable parameters for the LSTM and LSTM + Perceptron models are
335,265 and 272,673, respectively.

N
CCE = =) yilog(5:) 5
i=1

128 hidden LSTM
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Table 1
Architecture of LSTM and LSTM + Perceptron models for supervised learning. N
stands for the number of pixels used for training.

LSTM + Perceptron model LSTM model

Layer Dimension Layer Dimension

Input nx 246 x 1 Input nx 246 x 1

Bidirectional LSTM + Dropout n x 246 x LSTM + n x 246 x
0.2) 256 Dropout (0.2) 128

Bidirectional LSTM + Dropout nx 128 LSTM + n x 256
0.2) Dropout (0.2)

Static Input nx4 Output nx 33

(features)

Perceptron nx 128

Concatenated Timeseries and n x 256
Static (Fully connected)

Fully connected nx 128

Output n x 33

A confusion (or error) matrix to evaluate the classification quality is
not trivial to present for this study due to the possibility of obtaining a
large number of clusters. Thus, we try to simplify the visualization of the
confusion matrix, highlighting the clusters for which the prediction is
incorrect. The confusion matrix is a square matrix of size m x m, with m
as the number of clusters. Each row entry represents an actual cluster
label, and each column entry represents a predicted cluster label. Di-
agonal entries (actual label = predicted label) show correct classifica-
tions, while off-diagonal entries show incorrect predictions (actual label
+# predicted label). Overall accuracy for clustering is computed based on
Equation (6), where TP, TN, FP and FN stand for true positives (label k
predicted as label k), true negatives (label not k and also predicted not be
k), false positives (label not k but predicted as k) and false negatives
(label k but predicted as not k), respectively. More details on multi-class
confusion matrix evaluation can be found in (Grandini et al., 2020). To
highlight incorrect predictions in a matrix computed for millions of
pixels, we normalize the confusion matrix CM(i,j) by converting each
entry (i,j) between 0 and 1 via dividing by the total number of pixels in a
row. With this arrangement, the sum of each row becomes 1. The terms i

64 hidden LSTM units

units in birectional Dropout 64 hidden LSTM in birectional LSTM ol:'l:":t Class
LSTM layer layer units layer ye probabilities
T o ) n
Deformation time ol 3 o o Q [
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Fig. 5. Architecture of the LSTM + Perceptron model used to cluster InSAR time series.
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and j denote the rows and columns. Results and discussions will follow in
the next section.
TP + TN

A = 6
CUTaY =Tp TN + FP+ FN

Once we obtain the clustering results from the semi-supervised learning,
we try to find important signals and expel the unimportant ones from the
generated cluster map. We observe individual cluster behaviors over
space by computing standard distance, a measure of spatial dispersion
used in Geostatistics. The coordinates of points occurring in a cluster are
used to compute the standard distance S; shown in Equation (7), where
(Xi, ;) denote point pairs within a cluster and (X.,Y.) represent the
cluster mean center. From Syx and Syy, the standard distances in X and Y
directions, we compute and draw two-dimensional standard deviation
ellipses for each cluster, guiding us to examine individual clusters’
spatial variability visually. We use the distance threshold of 5 km ob-
tained from the co-variogram on S, to decide whether a cluster should be
retained or removed. The retained clusters will be notified as hotspots of
deformation, showing distinct deformation activity in the study area
while the removed clusters (high variability) represent unimportant
signals treated as noise.

(X~ X) 2, - v X Y,
Sd—\/( )+ X( ')Xczz—,nzz— 7
n n n

4. Results and discussion

The time series clustering results using TSKM and subsequent
DBSCAN execution are shown in Fig. 6. A total of 7 clusters were formed
based on the Silhouette score, which gave the maximum score (0.52) for
7 clusters. As seen in Fig. 6a, the TSKM approach efficiently extracted
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the deformation features from the InSAR time series deformation.
However, this method cannot separate two similar but spatially apart
time series signals from each other. For example, the areas shown with
white rectangles in Fig. 6a have the same cluster because of similar time
series behavior. However, they are spatially separated and thus are
affected by different underlying processes. We subsequently estimated
the spatial correlation lengths by randomly generated 107 pairs from the
dataset for computing the sample co-variogram. The co-variogram is
provided in Fig. 7, showing covariance values with increased spatial
distance. We find a sharp drop in the covariance value at about 5 km,
and it remains low afterward, indicating the spatial correlation between
two time series is likely to be insignificant for pixels apart at a distance
larger than 5 km.

The DBSCAN output generated using TSKM generated clusters as
input is shown in Fig. 6b. DBSCAN overcomes the issue of spatial sep-
aration but creates 33 clusters out of the initial 7 generated by TSKM,
some of which carry no useful information or background signals. We
observe from the co-variogram that a distance threshold of 5 km holds
for spatial correlation in the whole dataset. Further, by visually
observing the cluster assignments done by TSKM, we chose ¢ values
between a range of 1 to 5 km for individual clusters. We assume that a
common deformation activity should not affect areas separated by dis-
tance > &. The min values were chosen by carefully observing the density
of InSAR pixels in individual clusters. Table 2 gives the values of the
input parameters chosen for each cluster in the DBSCAN algorithm.
Fig. 6¢ shows mean time series displacements for cluster detected as 1,2
and 7 by DBSCAN algorithm and cluster 1 (single cluster) by TSKM. We
observe that the mean time series curves for these clusters are not
identical but labeled as single clusters by TSKM. This probably is due to
the displacement variances values falling within the threshold, keeping
pixels in the same cluster. Similarly, Fig. 6d shows mean time series

d) Time series displacements for DBSCAN clusters 24 and 25

Cluster 24
Cluster 25
o 50 100 150 200 250
Time steps of INSAR observations

Fig. 6. Unsupervised clustering results from machine learning approach. a) Results obtained from time series k-means (TSKM) algorithm, b) Output of DBSCAN
algorithm run over clusters detected with TSKM. White rectangles with numbers marked indicate deformation types classified as single clusters by TSKM and as
different clusters by DBSCAN. c) and d) show the clusters identified to be same by TSKM and different by DBSCAN algorithm. ¢) Mean time series displacements for
DBSCAN clusters 1,2 and 7 detected by TSKM as cluster 1. d) Mean time series displacements for DBSCAN clusters 24 and 25 detected by TSKM as cluster 5.
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Table 2
Parameters for splitting individual clusters using DBSCAN algorithm.

Cluster No. Distance threshold (decimal degrees) Minimum no. of points
1 0.02 500

2 0.01 800

3 0.05 500

4 0.02 1000

5 0.03 300

6 0.03 300

7 0.05 500

displacements for DBSCAN clusters 24 and 25 detected as cluster 5 by
TSKM. We again observe significant rise and fall in the two clusters (24
and 25) at time steps near 50 while the rest of the time series is similar.
Separating these clusters using TSKM would require smaller thresholds
on time series displacements resulting in more no. of clusters and may
also result in unnecessary additional clusters. DBSCAN, however, solves
the dual purpose of spatial clustering and splitting these cluster as-
signments. Once these clusters are obtained, we estimate the irrelevant
information from the resultant clustered map.

The cluster map obtained above from the spatiotemporal clustering
is used as input to LSTM and LSTM + Perceptron networks. Fig. 8 shows
the predicted cluster maps obtained using LSTM and LSTM -+ Perceptron
network predictions. Both LSTM and LSTM + Perceptron were trained
with the output cluster map generated from the unsupervised learning
approach. We divided the complete dataset into training and test data-
sets with a ratio of 50 % each. The training and test samples were
randomly selected in space from the InSAR time series. We obtained
97.3 % and 93.5 % accuracy for the test dataset using the LSTM and
LSTM + Perceptron networks, respectively. Fig. 8a and 8b show that the
results are very close to those obtained from unsupervised clustering.
White rectangles marked in Fig. 8a and 8b show areas with a mismatch
between the detected clusters. Fig. 8c and 8d show close up view of the
area found to be mismatching.

We visualize the confusion matrix for the predicted clusters gener-
ated from LSTM + Perceptron and LSTM models in Fig. 9, highlighting
the clusters for which the prediction is incorrect. We observe larger off-
diagonal entries in the map corresponding with the LSTM + Perceptron
model. We observe that the LSTM network attained better accuracy than
the LSTM + Perceptron network. This goes against the general ideology
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that deeper architecture with additional features is supposed to learn
better. However, relating this to bias variance trade off (Briscoe and
Feldman, 2011) and through recent studies (Uzair and Jamil, 2020), we
also observe that adding more features can introduce overfitting, and
adding more hidden layers to a model can also make the learning curve
more complex, resulting in overfitting and vanishing gradients, making
the model performance worse. In this study, where we deal with surface
deformation, the model performed better with only time series
displacement as input, compared to a deeper model with more input
features. We observe that making a model deeper does not help improve
the model performance for this study. It is also worth mentioning that
the latter used both static and temporal data for learning, while LSTM
generated clusters using the deformation time series only.

To eventually derive prominent deformation events occurring in LA,
we tried to find and expel most of the unimportant signals from the
cluster map, giving a much clearer picture of which areas in LA are
affected by significant deformation and their differences in spatiotem-
poral behavior. Standard distances computed for the clusters predicted
by LSTM perceptron and LSTM methods are shown in Fig. 10a and 10b
respectively. The standard deviation ellipses for the predicted clusters
derived from the corresponding S4x and Sgy are shown in Fig. 10c and
10d for the LSTM + Perceptron and LSTM methods, respectively,
guiding us to examine individual clusters’ spatial variability visually.
We use the distance threshold of 5 km obtained from the co-variogram
on S; to decide whether a cluster should be retained or removed. We
also confirm this from the ellipses shown in Fig. 10c and 10d, where we
see a large spread for clusters crossing the 5 km threshold values.

The cluster maps after the removal of unwanted clusters are shown in
Fig. 11, where non-domain experts readily interpret the map and hot-
spot areas to stand out. We observe that LSTM retains more clusters than
the LSTM + Perceptron, indicating that the clusters generated using the
latter had higher spatial dispersion. With the confusion matrix showing
higher prediction accuracy and the spatial dispersion plots showing
lower variability for clusters detected using LSTM compared to LSTM +
Perceptron, we find that the LSTM model performed better. The method
can generate cluster maps from InSAR time series displacement obtained
by any processing software, provided the user has the time series dis-
placements, mean LOS velocity, incidence angle, coherence, and pixel
locations. If only the time series are available, the approach can still
work with a combination of TSKM + DBSCAN followed by the LSTM
model. We intend to release the programs and models related to this
work, which can be used to perform unsupervised and subsequent su-
pervised learning over different sites across the globe. The imple-
mentation mainly uses Python, with a few postprocessing scripts written
in Matlab. We used the skit-learn library for machine learning, while
Keras and Tensorflow libraries are used for developing deep learning
models (Abadi et al., 2016; Gulli and Pal, 2017; Kramer and Kramer,
2016). A detailed description of the proposed methodology follows next.

The efficiency of unsupervised learning can also be improved by
working with the statistical analysis of clusters obtained from TSKM +
DBSCAN outputs, as implemented for the deep learning models. Based
on spatial correlation lengths and standard distances, the clusters rep-
resenting distinct statistical behavior for INSAR-derived deformation can
be retained while others can be removed. However, TSKM is computa-
tionally intensive, and we just use it to generate the initial cluster labels
for supervised learning with the LSTM and LSTM + Perceptron models,
which deal with the order of data we process with InSAR in significantly
less computational time. Another limitation of the machine learning-
based unsupervised learning proposed here is the subjectivity involved
with the DBSCAN algorithm. The parametric algorithm still requires the
user to decide on the distance threshold to separate clusters separated
significantly far in space. However, this algorithm may not be required
for studies requiring the detection of particular deformation events also
occurring at distant locations. For example, if the areas to be studied are
affected by only a few types of deformation, such as landslides, land
subsidence, volcanic activity, and glacial uplift, it will be useful to
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Fig. 9. Confusion matrices generated for the LSTM + Perceptron (a) and LSTM (b) model predictions. The frequency of pixels has been normalized for an easier
understanding of differences in prediction. X and Y axes refer to predicted label and true label respectively.

classify landslides as one cluster irrespective of their location in the
study area. This would simplify the algorithm, with only TSKM for
clustering and LSTM and LSTM + SLP for supervised learning.

As evident in Fig. 11b, the LSTM method successfully identifies and
isolates deformation hotspots in the Los Angeles dataset. Concerning the
underlying process, clusters 0 and 7 pertain to groundwater pumping
and aquifer recharge operations at the Santa Ana system (Riel et al.,
2018). Clusters 2, 6, 11, 12, 15, and 16 show deformation associated
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with activities on the Newport-Inglewood Fault and oil and gas pro-
duction from the Wilmington oil field near Seal Beach and Long Beach
(Brooks et al., 2007). Clusters 3 and 14 indicate deformation hotspots at
the city center, whose cause is not known. Clusters 3 and 10 likely show
the post-seismic deformation associated with the 2014 La Habra
Earthquake (Donnellan et al., 2015). Clusters 5 and 17 represent
deformation caused by the Los Angeles D-line extension transit project.
Cluster 8 highlights the deformation due to landslides at Santa Ana
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Fig. 11. Final cluster maps from a) LSTM + Perceptron and b) LSTM methods, respectively. These maps are derived after discarding clusters that do not carry useful
information based on the threshold values of standard distances and co-variogram analysis. Rectangles with black boundaries and cluster ids on top mark the

deformation hotspots detected by the respective methods.

Mountain (Morton et al., 2006). Clusters 1 and 9 seem to show defor-
mation along the Whittier Fault (Donnellan et al., 2015).

5. Conclusion

We present a novel semi-supervised learning approach combining
time series and spatial clustering, LSTM, and perceptron-based deep
learning to extract useful information from time series deformation
derived from InSAR. The unsupervised approach works by initially
clustering the elite pixels detected in InSAR processing based on their
temporal behavior and subsequently applying spatial clustering to
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separate signals left unseparated in space by the time series clustering.
The cluster labels generated using the spatiotemporal clustering act as
training labels for the LSTM and LSTM + Perceptron based deep learning
architectures, which minimize the time requirements for the overall
clustering task. These methods are trained to establish a mathematical
relation between the deformation time series and the associated
spatiotemporal clusters.

The results from spatiotemporal clustering are convincing, efficiently
distinguishing the deformation events in LA. Further to these results, the
LSTM and LSTM + Perceptron methods also learn well from the training
labels generated from spatiotemporal clustering, achieving 96 % and 93
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% accuracy, respectively, and significantly reducing the computational
time. Observing the results obtained from (i) LSTM using only time se-
ries and (ii) LSTM + Perceptron using both temporal and static data, we
see slightly better results for LSTM, trained only with time series. This
signifies that we can derive significant deformation hotspots using only
time series deformation data. The proposed information extraction
approach can be integrated with any multi-temporal InSAR processing
chains and shows a novel way of presenting InSAR deformation maps,
more interpretable to non-domain experts, general users, and decision-
makers.
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