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A B S T R A C T   

Over the past two decades, Interferometric synthetic aperture radar (InSAR) has been invaluable for studying 
earth surface deformation and related effects. Deformation maps generated through multi-temporal InSAR 
processing methods are however difficult to interpret accurately by general individual users, decision-makers, 
and non-domain experts owing to the volume, variety, and velocity they are produced. This paper proposes a 
semi-supervised machine learning based information mining approach to simplify these deformation maps and 
detect hotspots by extracting prominent signals from time series deformation. The approach initially combines 
two machine learning based clustering methods named time series k-means (TSKM) and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algorithms to derive clusters with unique spatiotemporal 
deformation behavior, using time series deformation output generated from Wavelet-based InSAR (WabInSAR) 
method. Clustering results generated from this unsupervised machine learning approach are later used as 
training labels to develop two deep learning models, one using long short term memory (LSTM) networks alone 
and another using a combination of LSTM and single-layer perceptron for supervised training. The developed 
LSTM and LSTM + Perceptron models efficiently learn from the cluster labels, reaching an accuracy of 97.3 %. 
Further, the deep learning models significantly reduce the computational time from orders of days (~5) to hours 
(~2) while training and from hours to minutes during prediction. We evaluate the developed approach over Los 
Angeles, a highly challenging area affected by umpteen deformation events that are challenging to categorize. 
The outcome of the proposed approach produces hotspots of deforming areas in Los Angeles, providing a 
generalized and more precise picture of events, much appreciable to non-domain experts. The approach can 
augment any of the multi-temporal InSAR processing chains and is applicable to different deformation prone 
sites, aiding in derivation of deformation hotspots from time series deformation maps.   

1. Introduction 

Over the past two decades, the multi-temporal Interferometric syn
thetic aperture radar (MT-InSAR) technique and its variants have been 
effectively used for monitoring earth’s surface deformation associated 
with faulting processes (Bürgmann et al., 2000; Shirzaei and Bürgmann, 
2013; Shirzaei et al., 2013a; Whipple et al., 2016; Xu et al., 2021), 
landslides (Nikolaeva et al., 2014; Rosi et al., 2018; Sun et al., 2015) and 
land subsidence (Miller et al., 2017; Ojha et al., 2020; Osmanoğlu et al., 
2011), volcanic activity (Hooper et al., 2004; Pritchard and Simons, 
2004; Shirzaei et al., 2013b) and infrastructure resilience and stability 
(Eppler and Rabus, 2012; Gao et al., 2022; Milillo et al., 2016; Wang 
et al., 2016). Further, we now sit on SAR data mountains thanks to the 

unprecedented temporal revisit (6–12 days) and global spatial coverage 
(~250 km each scene) provided by the Sentinel-1 mission, and also with 
data from RADARSAT, ALOS PALSAR, TerraSAR-X, and the upcoming 
NISAR mission, yielding InSAR products with high spatiotemporal res
olution greatly benefitting the scientific community. With the plentiful 
availability of SAR images, the requirements of devising time-efficient 
methods of processing huge interferometric data stacks and improving 
data storage and archival algorithms are also being addressed and 
considered (Ansari et al., 2017, 2018; De Luca et al., 2018; Lee and 
Shirzaei, 2023; Ma et al., 2022). However, a remaining issue is the un
derstanding, appreciation, and comprehension of the information within 
InSAR-derived deformation maps by the general (non-domain) users. 
These users often require a first-order picture of events occurring in an 
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area of interest to draw useful conclusions, resulting in critical socio- 
economic decisions and policies. The problem is exacerbated when the 
InSAR derived deformation pattern for different events appears similar, 
confusing decision-makers. Furthermore, different TS-InSAR analysis 
methods may generate dissimilar deformation maps and time series, 
making it difficult to draw conclusions required for critical decision- 
making (Chang and Hanssen, 2015). Even to a domain expert, inter
preting InSAR deformation maps produced at a staggering rate, volume, 
and diversity is often challenging. These maps generally contain time 
series information corresponding to millions of geolocated InSAR pixels, 
and visual investigation of even a handful of these pixels consumes a 
significant amount of time and resources, making it infeasible to analyze 
even the major features rigorously. 

Information mining methods can simplify extracting useful contex
tual information from InSAR-derived deformation maps. The definition 
of ’useful contextual information’ may vary depending on the in
vestigation’s purpose. Initial attempts to assess InSAR-derived time se
ries deformation were presented by (Chang and Hanssen, 2015), where a 
probabilistic hypothesis testing-based approach is proposed to model 
the InSAR time series. While yielding satisfactory results, such an 
approach requires considerable domain knowledge and may be 
computationally expensive for the present-day InSAR data volumes. We 
see information mining methods used to alleviate time series noise 
through combined spatiotemporal filtering (Wnuk, 2021) and to detect 
outlying deformation signals using DBSCAN clustering and principal 
component analysis (Bakon et al., 2017). Methods such as PCA and in
dependent component analysis (ICA) are also explored to resolve and 
relate particular geodetic signals, such as settlement due to groundwater 
extraction (Karimzadeh et al., 2018), slow slip event modeling (Maubant 
et al., 2020), tunneling induced land settlement (Wnuk, 2021) and 
coastal land subsidence (Wang et al., 2022b). The statistical mining 
methods can segregate different deformation signals, given that the 
analyzed dataset does not contain significantly distinct information. 
These methods can help generalize the deformation behavior in space 
and time, making them comprehensible to general users while saving 
domain experts’ time and effort. 

Artificial intelligence (AI), machine learning (ML), and deep learning 
(DL) have recently evolved to solve many unsolvable and time- 
challenging problems in earth observation studies (Chen et al., 2023; 
Hasan et al., 2023; Irrgang et al., 2021; Kubo et al., 2020; Mateo-Garcia 
et al., 2021; Reichstein et al., 2019; Rolf et al., 2021). InSAR has also 
benefitted from deep learning architectures, and there have been studies 
attempting detection of volcano-like structures (Anantrasirichai et al., 
2019b), urban area deformation (Anantrasirichai et al., 2019a), land
slide zones, and hill slope velocities (Devara et al., 2021; Yuan and Chen, 
2022), land subsidence (Radman et al., 2021), selection of elite pixels in 
time series InSAR processing (Lattari et al., 2022; Tiwari et al., 2020; 
Wang et al., 2022a), phase unwrapping (Sica et al., 2020; Zhou et al., 
2022), and deformation prediction (Rouet-Leduc et al., 2021). For 
analysing InSAR derived deformation, we see the approach proposed by 
(Festa et al., 2023), combining PCA (for dimensionality reduction) and 
k-means clustering to identify natural or anthropogenic deformation 
signals. 

Being cognizant of the significance of detecting useful deformation 
signals and a few salient observations from the work done till date, we 
observe that there have been studies using machine learning and 
dimensionality reduction techniques mostly focused on segregating a 
single or few deformation events at regional scales. Also, we see that 
deep learning has not been investigated for clustering InSAR time series 
displacement. With the rise in the scale of InSAR data both spatially and 
temporally, it is worth investigating deep learning methods that auto
mate feature engineering and can mine information from gigantic InSAR 
data volumes with better computational efficiency (Chen and Lin, 2014; 
Dargan et al., 2020). In this study, for the first time, we investigate a 
combination of traditional machine learning and deep learning models 
to address the complexity and tediousness associated with interpreting 

spatiotemporal deformation patterns derived from InSAR. We demon
strate the approach over a large study area in Los Angeles, USA, home to 
umpteen deformation events (Bawden et al., 2001; Brooks et al., 2007; 
Riel et al., 2018), making it challenging to understand and simplify. The 
major objectives of this study are (i) to develop an automated semi- 
supervised ML-DL approach to explore InSAR deformation time series 
and (ii) to detect hotspot signals characterizing the deformation 
behavior of the study site. 

Section 2 describes the dataset generation process for the study, and 
Section 3 describes the methodology. Section 4 presents the results and 
analysis, followed by the conclusion. 

2. Study area, datasets and exploratory analysis 

For this study, we use a publicly available line-of-sight (LOS) 
deformation dataset from Los Angeles, CA, published by (Lee and Shir
zaei, 2023) using the Wavelet-based InSAR algorithm (Lee and Shirzaei, 
2023; Shirzaei, 2012; Shirzaei and Bürgmann, 2012; Shirzaei et al., 
2019) (see Data Availability). Several deformation hotspots characterize 
the InSAR velocity map. In the following, a few major ones are briefly 
described. A subsidence rate of −1.5 cm/yr affects the Santa Ana area 
(Longitude: ~-117.84, Latitude: ~33.73) and an uplift rate of ~ 0.5 cm/ 
yr adjacent to it due to extraction of groundwater and aquifer recharge 
operations, respectively. The areas near Seal Beach (Longitude: 
~-118.14, Latitude: ~33.76) and Long Beach (Longitude: ~-118.21, 
Latitude: ~33.77) are characterized by several subsidence and uplift 
hotspots with absolute rates up to 1 cm/yr, associated with activities on 
Newport-Inglewood Fault and oil and gas production from the Wil
mington oil field. The Los Angeles central area (Longitude: ~-118.21, 
Latitude: ~33.95) subsides at a rate of −0.4 cm/yr. Subsidence and 
uplift hotspots are also located near the Hollywood Fault (Longitude: 
~-118.39, Latitude: ~34.08) and are associated with the Los Angeles D- 
line extension transit project. The slow deformation of Santa Ana 
Mountain (Longitude: ~-117.60, Latitude: ~33.76) is due to slow 
landslides in the form of creep affecting the hillslopes. 

The LOS deformation time series and velocity of 3,039,151 mea
surement pixels at ~ 25 m x  ~ 25 m spatial resolution are obtained from 
interferometric processing of 247 SAR images acquired in descending 
orbit of Sentinel-1A/B satellites during 2016–2022. Fig. 1 a-d shows 
each pixel’s LOS velocity, mean interferometric coherence, velocity 
standard deviation, and local incidence angle. Also, Fig. 1e shows the 
outline of deformation hotspots (marked in red) retrieved from a dis
cussion with authors (Lee and Shirzaei, 2023). Prior information about 
the deformation events in a study site (as shown in Fig. 1e) is not 
required to implement the method used herein and the sole purpose is to 
validate the performance of the proposed method. 

We used temporal-spatial clustering to mine information from the 
dataset shown above. For temporal clustering, we used the LOS defor
mation time series derived from the WabInSAR algorithm. This is treated 
as a sequential predictor variable, incorporating temporal nature. In 
addition, we also used static predictor variables (i.e., no temporal 
variation) for training the models. The static predictors include the LOS 
velocities, their standard deviation, local incidence angles, and mean 
coherence. Since we deal with an unsupervised problem, the target 
variable is a cluster label representing statistical spatiotemporal simi
larities within a cluster and dissimilarities among different cluster la
bels. LOS velocity information helps understand which areas have 
higher, lower, or negligible surface movement given the associated 
standard deviations. Local incidence angles distinguish different surface 
topologies and account for the topographic changes. Mean coherence 
characterizes pixels affected by noise within the time series. One can 
introduce other features into the learning approach, such as elevation 
data and related parameters (e.g., slope, aspect). Note that there is a 
trade-off between the dimension of the input parameter space used to 
optimize learning and the overall complexity of the approach, yielding 
acceptable or similar performance (Belkin et al., 2019; Briscoe and 
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Fig. 1. Study area and dataset used for the proposed approach. a) LOS velocity map of Los Angeles generated using Sentinel-1 SAR images from WabInSAR method, 
b) Mean coherence for the interferograms, c) Standard deviation corresponding to mean velocities, and d) incidence angle for each selected measurement point, and 
e) Study area with red polygons denoting areas affected by deformation events. Inset plots in panels a) to d) show histograms of each static variable. Units on 
horizontal axes are the same as those for the big plots and vertical axes denote the frequency (no. of measurement pixels). Latitude and longitude values are in 
Decimal degrees. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Feldman, 2011; Geman et al., 1992). Since the problem dealt with is 
unsupervised, the target variable is a cluster label representing statisti
cal spatio-temporal similarities within a cluster and dissimilarities 
among different cluster labels. 

3. Methodology 

The proposed semi-supervised learning approach can be divided into 
three primary steps. Step 1 involves temporal-spatial unsupervised 
learning for generating accurate cluster labels. Step 2 uses the labels 
generated in Step 1 as training inputs for supervised deep learning. Step- 
3 uses the clusters predicted from Step-2 and a stochastic approach to 
finally derive hotspots of deformation. The approach begins from un
supervised learning using a combination of temporal and spatial ma
chine learning based clustering methods, and later switches to the 
development of automated deep learning based time series clustering 
models. Finally, statistical post-analysis of the predicted clusters yield 
the planned outcome. The overall approach is illustrated in Fig. 2. InSAR 
displacement time series obtained from the WabInSAR algorithm enters 
time-series k-means clustering. We initially label InSAR time series 
displacements of similar temporal behavior to identify areas undergoing 

similar or different deformation phenomena. Subsequently, we test 
whether the clusters follow spatial separability, and to perform spatial 
clustering, the individual temporal clusters undergo spatial clustering 
using the DBSCAN algorithm. The resulting spatiotemporal clusters are 
used as training labels to develop two deep-learning models for super
vised learning. The clusters generated as output from supervised 
learning are analyzed stochastically to identify the insignificant clusters, 
and the important clusters are retained. 

3.1. Machine learning based spatiotemporal clustering 

This method uses statistical criteria to group the time series defor
mation into different clusters (labels). The static k-means algorithm 
initializes m clusters at random locations, with m chosen based on the 
Elbow method or Silhouette score, two widely used metrics for evalu
ating the number of statistically independent clusters in the data 
(Pedregosa et al., 2011; Rousseeuw, 1987). For each new data point, the 
method computes the distance between the point and every cluster. The 
cluster to which the data point has the minimum distance is assigned to 
the point. This operation is repeated for all the points, and after each 
data point is clustered into one of the clusters, the cluster centers move 

Fig. 2. Workflow for the proposed approach. Input includes displacement time series obtained from WabInSAR algorithm, passed through time series k-means for 
temporal and DBSCAN algorithm for spatial clustering (unsupervised learning). Output of DBSCAN is passed to deep learning models for supervised learning. Blue 
shapes correspond to unsupervised learning methods, while black ones denote deep learning methods. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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and the process ends when it reaches a convergence threshold on the 
amount of cluster center shifts. The major limitation of using k-means is 
that it does not account for the temporal nature of the datasets and treats 
the input time series as a group of t features, where t is the number of 
time steps in the data. We, therefore, deploy the time series k-means 
(TSKM) algorithm using dynamic time warping (DTW) following earlier 
works (Berndt and Clifford, 1994; Huang et al., 2016; Niennattrakul and 
Ratanamahatana, 2007) as the distance metric for computing time series 
distances between the InSAR pixels. A unique benefit of using DTW is 
that it is invariant to signal shifts, scales, or Doppler effects in the time 
domain (Cai et al., 2021). It measures the similarity between two tem
poral sequences which do not align precisely in time. The DTW distance 
computation is shown in Equation (1), where x and y denote two sample 
time series, d is the Euclidean distance, and π = [π0, π1, …, πk] denote 
index pairs. 

DTW(x, y) = min⏟⏞⏞⏟
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i,j∈π
d

(
xi, yj

)2
√

1  

Again, having DTW as a minimization function for computing the dis
tance has the limitation of not being differentiable everywhere. Another 
variant of the DTW metric is the softdtw metric proposed in (Cuturi and 
Blondel, 2017), which replaces the min function in Equation (1) with the 
softmin function given in Equation (2). 

softdtw(x, y) = softmin
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

π

γ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i,j∈π
d

(
xi, yj

)2
√

, π = [π0, π1,...πn  

softmin(α1, α2, α3, ...αn) = − γlog
∑

i
e−ai/γ 2  

The softdtw function uses a log sum exponential formulation to guar
antee differentiability everywhere (Cuturi and Blondel, 2017). In 
Equation (2), γ is a smoothing hyperparameter, e is the exponential 
operator, and α1, α2, α3, ...αn denote computed distances. More details on 
DTW can be found in (Portilla et al., 2019) and on softdtw in (Cuturi and 
Blondel, 2017; Petitjean et al., 2011; Sakoe and Chiba, 1978; Zhang 
et al., 2017). Here, we used the softdtw method to do the time-series 
clustering. 

Surface displacement detected by TS-InSAR is spatially and tempo
rally variable, and above we attempt to cluster the measurement pixels 
primarily using displacement time series. We further note that a similar 
underlying physical process (such as groundwater pumping) may drive a 
surface deformation of similar temporal behavior at different locations. 
However, clusters generated from the TSKM algorithm consider only the 
temporal nature of the measurement pixels. Thus, two pixels with 
similar temporal behavior at a significant distance and associated with 
two different driving mechanisms may still end up in the same cluster. 
This pertains to the characteristic of the clustering algorithm that is 
inherently translation invariant. However, to achieve the desired clus
tering outcomes, we need to split a cluster into multiple smaller clusters 
if it includes pixels separated at far spatial distances. To estimate the 
spatial correlation length of the displacement among the measurement 
points, we generate a co-variogram for the displacement time series. The 
co-variogram is computed using Equation (3) proposed in (Chiles and 
Delfiner, 2012), where hc is the distance bin, d is the vector of 
displacement time series and N is the number of data point pairs. The 
terms ri and si denote randomly generated measurement pixel location 
pairs such that 0 < r<np, 0 < s<np, where np is the number of InSAR 
measurement pixels used in the analysis. We use displacements at r and s 
locations for computing displacement co-variogram, where (.) repre
sents element-wise multiplication. 

C(hc) =
1

2N
∑N

i=1
d(ri).d(si) 3  

We pass the output of the TSKM algorithm to the Density-based spatial 

clustering of applications with noise (DBSCAN) algorithm to overturn 
the clustering done by TSKM in cases of ignoring the spatial separation. 
DBSCAN algorithm works on clustering points assuming that densely 
located points in space belong to the same cluster. The algorithm is 
subjective and includes two input parameters: distance threshold ε and a 
minimum number of points min (generally > D + 1, where D is data 
dimensionality). We use ε as a distance threshold to split clusters ob
tained by the TSKM algorithm into smaller ones with the same label. To 
arrive at suitable values of ε for each cluster, we use information 
retrieved from the co-variogram and visual analysis of the individual 
clusters. 

The output from the machine learning approach above is suitable for 
general users. However, computing the DTW distance requires O(n2) 
computational time, where O stands for the big-O notation, showing the 
worst case complexity of the algorithm run and n stands for the number 
of data points. The computation is cumbersome for millions of points in 
the case of SAR interferograms. Further, the prediction time using TSKM 
is significantly large (order of days). However, one definite advantage 
here is that we obtain reliable cluster labels which can be used to 
formulate and perform the DL based supervised training explained in 
section 3.2, finally yielding mined information from InSAR spatio- 
temporal displacement estimates. 

3.2. Supervised learning with deep learning models 

With a rationale to reduce the computation time, we propose two 
clustering methods that use deep learning models that are quick at 
training and prediction and suited for analyzing time series input. The 
first model is based on LSTM, taking the InSAR time series displacement 
as input and the cluster map generated above through unsupervised 
learning as training labels. Fig. 3 shows the general structure of an LSTM 
cell. Equations 4.1–4.4 present the operation of the LSTM cell. Here, xt ,

yt,xt−1, and yt−1 denote inputs and outputs for time steps t and t-1. The 
terms w and b represent weights and biases (randomly initialized) 
tweaked during the model learning. Both the forget and the input gates 
use the input at the present step (xt) and the output of the previous time 
step (yt−1) in a sigmoid activation function σsm (Equations (4.1) and 
(4.2). The forget gate has the job of discarding non-useful signals in the 
time series, while the input gate retains useful information from the time 
series. The outputs of the forget and input gates are used to compute the 
cell state (Equation (4.3). The cell state is updated by using the predicted 
cell state S̃t, again using xt and yt−1 in a hyperbolic tangent activation, 
and the cell state at time step t-1 (equation (4.2). The output gate also 
uses xt and yt−1 in a sigmoid activation function and is used to compute 
the output of the present time step yt (Equation (4.4). This output and 
cell state go to the next LSTM cell, and in this way, the LSTM cell keeps 
the information about the time series data and learns from it based on 
the output label. The symbols ’+’ and ’ × ’ denote pointwise vector 
addition and multiplication, respectively. 

fgt = σsm
(
wfg[yt−1, xt] + bfg

) }
Forget gate 4.1  

int = σsm(win[yt−1, xt] + bin )

S̃t = tanh(wS[yt−1, xt] + bS )

}

Input gate 4.2  

St = fgt × St−1 + int × S̃t

}
Cell state 4.3  

outt = σsm(wout[yt−1, xt] + bout )

yt = outt × tanh(St)

}

Output gate 4.4  

Fig. 4 shows the architecture of the proposed LSTM model. The model 
has an input layer, two hidden LSTM layers, and a fully connected layer 
as the output layer. This model uses the MT-InSAR displacement as input 
for training and prediction. The input layer dimension equals the 
number of pixels times the number of time steps times the number of 
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features. We use two LSTM layers which use the temporal input to derive 
useful information while discarding irrelevant components of the time 
series. To this end, the first LSTM layer has 128 units and 246 cells. The 
number of cells corresponds to the number of time steps in the time 
series data. Each LSTM cell acts as a neural network, having three 
different gates: forget gate, input gate, and output gate, and a separate 
cell state. The output of the LSTM layer goes to a dropout layer, where 
units are switched off randomly to avoid overfitting or chance agree
ment. This output goes to the next LSTM layer. This LSTM layer has 64 
units for learning and is connected to a fully connected layer with the 
number of units equal to the number of clusters detected from the 

DBSCAN output (training labels). The output layer gives the class 
probabilities based on its learning over multiple epochs, and from these 
probabilities, the class with the maximum probability and above a 
threshold (generally 0.5) is chosen as the final cluster label. 

LSTMs work well with time series inputs by storing and propagating 
important contextual information by means of its cell states. However, 
we also have access to static inputs, which could assist with the clus
tering. The static inputs include the mean LOS velocity, mean coherence, 
incidence angle, and velocity standard deviation for each pixel. Further, 
we initially used a forward LSTM layer for learning, which could learn 
the forward progression of displacement time series by keeping a record 

Fig. 3. Structure of an LSTM cell adapted from (Olah, 2015). Operations of input, forget, output gates, and cell state are shown in blue, green, orange and red color 
respectively. Cells to the left and right also contain the elements shown in the central LSTM cell. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. Architecture of the proposed LSTM model for clustering MT-InSAR time series.  
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of important sequence information seen earlier in the series. However, it 
may be significant to see both forward and reverse flow of the input time 
series to derive useful contextual information. Therefore, we propose 
another deep learning model to incorporate static inputs in the learning. 
We call the new model LSTM + Perceptron, which combines Bidirec
tional LSTM and perceptron layers for training. The Bidirectional LSTM 
adds another LSTM layer to the general LSTM layer with reversed input 
temporal information and combines the general and additional LSTM 
layers to give a time series output learnt from both forward and back
ward progressions (Siami-Namini et al., 2019). The perceptron layer is 
fully connected, with each layer’s neuron connected to every other 
neuron of the subsequent layer. This layer uses the static inputs (mean 
LOS velocity, mean coherence, incidence angle, and standard deviation) 
for learning. The complete model hence performs a combination of 
temporal and static feature learning. As seen in Fig. 5, the model consists 
of four LSTM layers and two Perceptron layers. The time series 
displacement is passed to the LSTM layer as input, while the static input, 
i.e., mean velocity, the standard deviation of velocity, coherence, and 
incidence angle, is passed as input to the Fully Connected Perceptron 
(FCP) layer. The output of two layers of LSTM and one layer of the 
perceptron is combined at a new layer which is LSTM + FCP. This layer 
concatenates both the recurrent and static inputs, and outputs go into 
another combined FCP-connected layer. The output of the two sequen
tial LSTM + FCP layers goes to the output layer, which is again a fully 
connected layer with the number of units equal to the number of clusters 
generated by the DBSCAN algorithm. We use the categorical cross en
tropy as the loss function to evaluate the model error during training for 
both LSTM and LSTM + Perceptron, as shown in Equation (5), where yi 

and ŷi are the true and predicted cluster, respectively. It is generally 
used in classifying multi-label (more than two) data. Other training 
hyperparameters for the model are shown in Table 1. Total number of 
trainable parameters for the LSTM and LSTM + Perceptron models are 
335,265 and 272,673, respectively. 

CCE = −
∑N

i=1
yilog(ŷi) 5 

A confusion (or error) matrix to evaluate the classification quality is 
not trivial to present for this study due to the possibility of obtaining a 
large number of clusters. Thus, we try to simplify the visualization of the 
confusion matrix, highlighting the clusters for which the prediction is 
incorrect. The confusion matrix is a square matrix of size m × m, with m 
as the number of clusters. Each row entry represents an actual cluster 
label, and each column entry represents a predicted cluster label. Di
agonal entries (actual label = predicted label) show correct classifica
tions, while off-diagonal entries show incorrect predictions (actual label 
∕= predicted label). Overall accuracy for clustering is computed based on 
Equation (6), where TP, TN, FP and FN stand for true positives (label k 
predicted as label k), true negatives (label not k and also predicted not be 
k), false positives (label not k but predicted as k) and false negatives 
(label k but predicted as not k), respectively. More details on multi-class 
confusion matrix evaluation can be found in (Grandini et al., 2020). To 
highlight incorrect predictions in a matrix computed for millions of 
pixels, we normalize the confusion matrix CM(i, j) by converting each 
entry (i, j) between 0 and 1 via dividing by the total number of pixels in a 
row. With this arrangement, the sum of each row becomes 1. The terms i 

Fig. 5. Architecture of the LSTM + Perceptron model used to cluster InSAR time series.  

Table 1 
Architecture of LSTM and LSTM + Perceptron models for supervised learning. N 
stands for the number of pixels used for training.  

LSTM þ Perceptron model LSTM model 

Layer Dimension Layer Dimension 

Input n × 246 × 1 Input n × 246 × 1 
Bidirectional LSTM + Dropout 

(0.2) 
n × 246 ×
256 

LSTM +
Dropout (0.2) 

n × 246 ×
128 

Bidirectional LSTM + Dropout 
(0.2) 

n × 128 LSTM +
Dropout (0.2) 

n × 256 

Static Input n × 4 
(features) 

Output n × 33 

Perceptron n × 128   
Concatenated Timeseries and 

Static (Fully connected) 
n × 256   

Fully connected n × 128   
Output n × 33    
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and j denote the rows and columns. Results and discussions will follow in 
the next section. 

Accuracy =
TP + TN

TP + TN + FP + FN
6  

Once we obtain the clustering results from the semi-supervised learning, 
we try to find important signals and expel the unimportant ones from the 
generated cluster map. We observe individual cluster behaviors over 
space by computing standard distance, a measure of spatial dispersion 
used in Geostatistics. The coordinates of points occurring in a cluster are 
used to compute the standard distance Sd shown in Equation (7), where 
(Xi, Yi) denote point pairs within a cluster and (Xc, Yc) represent the 
cluster mean center. From SdX and SdY , the standard distances in X and Y 
directions, we compute and draw two-dimensional standard deviation 
ellipses for each cluster, guiding us to examine individual clusters’ 
spatial variability visually. We use the distance threshold of 5 km ob
tained from the co-variogram on Sd to decide whether a cluster should be 
retained or removed. The retained clusters will be notified as hotspots of 
deformation, showing distinct deformation activity in the study area 
while the removed clusters (high variability) represent unimportant 
signals treated as noise. 

Sd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(Xi − Xc)
2

+ Σ(Yi − Yc)
2

n

√

Xc = Σ
Xi

n
, Yc = Σ

Yi

n
7  

4. Results and discussion 

The time series clustering results using TSKM and subsequent 
DBSCAN execution are shown in Fig. 6. A total of 7 clusters were formed 
based on the Silhouette score, which gave the maximum score (0.52) for 
7 clusters. As seen in Fig. 6a, the TSKM approach efficiently extracted 

the deformation features from the InSAR time series deformation. 
However, this method cannot separate two similar but spatially apart 
time series signals from each other. For example, the areas shown with 
white rectangles in Fig. 6a have the same cluster because of similar time 
series behavior. However, they are spatially separated and thus are 
affected by different underlying processes. We subsequently estimated 
the spatial correlation lengths by randomly generated 107 pairs from the 
dataset for computing the sample co-variogram. The co-variogram is 
provided in Fig. 7, showing covariance values with increased spatial 
distance. We find a sharp drop in the covariance value at about 5 km, 
and it remains low afterward, indicating the spatial correlation between 
two time series is likely to be insignificant for pixels apart at a distance 
larger than 5 km. 

The DBSCAN output generated using TSKM generated clusters as 
input is shown in Fig. 6b. DBSCAN overcomes the issue of spatial sep
aration but creates 33 clusters out of the initial 7 generated by TSKM, 
some of which carry no useful information or background signals. We 
observe from the co-variogram that a distance threshold of 5 km holds 
for spatial correlation in the whole dataset. Further, by visually 
observing the cluster assignments done by TSKM, we chose ε values 
between a range of 1 to 5 km for individual clusters. We assume that a 
common deformation activity should not affect areas separated by dis
tance ≥ ε. The min values were chosen by carefully observing the density 
of InSAR pixels in individual clusters. Table 2 gives the values of the 
input parameters chosen for each cluster in the DBSCAN algorithm. 
Fig. 6c shows mean time series displacements for cluster detected as 1,2 
and 7 by DBSCAN algorithm and cluster 1 (single cluster) by TSKM. We 
observe that the mean time series curves for these clusters are not 
identical but labeled as single clusters by TSKM. This probably is due to 
the displacement variances values falling within the threshold, keeping 
pixels in the same cluster. Similarly, Fig. 6d shows mean time series 

Fig. 6. Unsupervised clustering results from machine learning approach. a) Results obtained from time series k-means (TSKM) algorithm, b) Output of DBSCAN 
algorithm run over clusters detected with TSKM. White rectangles with numbers marked indicate deformation types classified as single clusters by TSKM and as 
different clusters by DBSCAN. c) and d) show the clusters identified to be same by TSKM and different by DBSCAN algorithm. c) Mean time series displacements for 
DBSCAN clusters 1,2 and 7 detected by TSKM as cluster 1. d) Mean time series displacements for DBSCAN clusters 24 and 25 detected by TSKM as cluster 5. 
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displacements for DBSCAN clusters 24 and 25 detected as cluster 5 by 
TSKM. We again observe significant rise and fall in the two clusters (24 
and 25) at time steps near 50 while the rest of the time series is similar. 
Separating these clusters using TSKM would require smaller thresholds 
on time series displacements resulting in more no. of clusters and may 
also result in unnecessary additional clusters. DBSCAN, however, solves 
the dual purpose of spatial clustering and splitting these cluster as
signments. Once these clusters are obtained, we estimate the irrelevant 
information from the resultant clustered map. 

The cluster map obtained above from the spatiotemporal clustering 
is used as input to LSTM and LSTM + Perceptron networks. Fig. 8 shows 
the predicted cluster maps obtained using LSTM and LSTM + Perceptron 
network predictions. Both LSTM and LSTM + Perceptron were trained 
with the output cluster map generated from the unsupervised learning 
approach. We divided the complete dataset into training and test data
sets with a ratio of 50 % each. The training and test samples were 
randomly selected in space from the InSAR time series. We obtained 
97.3 % and 93.5 % accuracy for the test dataset using the LSTM and 
LSTM + Perceptron networks, respectively. Fig. 8a and 8b show that the 
results are very close to those obtained from unsupervised clustering. 
White rectangles marked in Fig. 8a and 8b show areas with a mismatch 
between the detected clusters. Fig. 8c and 8d show close up view of the 
area found to be mismatching. 

We visualize the confusion matrix for the predicted clusters gener
ated from LSTM + Perceptron and LSTM models in Fig. 9, highlighting 
the clusters for which the prediction is incorrect. We observe larger off- 
diagonal entries in the map corresponding with the LSTM + Perceptron 
model. We observe that the LSTM network attained better accuracy than 
the LSTM + Perceptron network. This goes against the general ideology 

that deeper architecture with additional features is supposed to learn 
better. However, relating this to bias variance trade off (Briscoe and 
Feldman, 2011) and through recent studies (Uzair and Jamil, 2020), we 
also observe that adding more features can introduce overfitting, and 
adding more hidden layers to a model can also make the learning curve 
more complex, resulting in overfitting and vanishing gradients, making 
the model performance worse. In this study, where we deal with surface 
deformation, the model performed better with only time series 
displacement as input, compared to a deeper model with more input 
features. We observe that making a model deeper does not help improve 
the model performance for this study. It is also worth mentioning that 
the latter used both static and temporal data for learning, while LSTM 
generated clusters using the deformation time series only. 

To eventually derive prominent deformation events occurring in LA, 
we tried to find and expel most of the unimportant signals from the 
cluster map, giving a much clearer picture of which areas in LA are 
affected by significant deformation and their differences in spatiotem
poral behavior. Standard distances computed for the clusters predicted 
by LSTM perceptron and LSTM methods are shown in Fig. 10a and 10b 
respectively. The standard deviation ellipses for the predicted clusters 
derived from the corresponding SdX and SdY are shown in Fig. 10c and 
10d for the LSTM + Perceptron and LSTM methods, respectively, 
guiding us to examine individual clusters’ spatial variability visually. 
We use the distance threshold of 5 km obtained from the co-variogram 
on Sd to decide whether a cluster should be retained or removed. We 
also confirm this from the ellipses shown in Fig. 10c and 10d, where we 
see a large spread for clusters crossing the 5 km threshold values. 

The cluster maps after the removal of unwanted clusters are shown in 
Fig. 11, where non-domain experts readily interpret the map and hot
spot areas to stand out. We observe that LSTM retains more clusters than 
the LSTM + Perceptron, indicating that the clusters generated using the 
latter had higher spatial dispersion. With the confusion matrix showing 
higher prediction accuracy and the spatial dispersion plots showing 
lower variability for clusters detected using LSTM compared to LSTM +
Perceptron, we find that the LSTM model performed better. The method 
can generate cluster maps from InSAR time series displacement obtained 
by any processing software, provided the user has the time series dis
placements, mean LOS velocity, incidence angle, coherence, and pixel 
locations. If only the time series are available, the approach can still 
work with a combination of TSKM + DBSCAN followed by the LSTM 
model. We intend to release the programs and models related to this 
work, which can be used to perform unsupervised and subsequent su
pervised learning over different sites across the globe. The imple
mentation mainly uses Python, with a few postprocessing scripts written 
in Matlab. We used the skit-learn library for machine learning, while 
Keras and Tensorflow libraries are used for developing deep learning 
models (Abadi et al., 2016; Gulli and Pal, 2017; Kramer and Kramer, 
2016). A detailed description of the proposed methodology follows next. 

The efficiency of unsupervised learning can also be improved by 
working with the statistical analysis of clusters obtained from TSKM +
DBSCAN outputs, as implemented for the deep learning models. Based 
on spatial correlation lengths and standard distances, the clusters rep
resenting distinct statistical behavior for InSAR-derived deformation can 
be retained while others can be removed. However, TSKM is computa
tionally intensive, and we just use it to generate the initial cluster labels 
for supervised learning with the LSTM and LSTM + Perceptron models, 
which deal with the order of data we process with InSAR in significantly 
less computational time. Another limitation of the machine learning- 
based unsupervised learning proposed here is the subjectivity involved 
with the DBSCAN algorithm. The parametric algorithm still requires the 
user to decide on the distance threshold to separate clusters separated 
significantly far in space. However, this algorithm may not be required 
for studies requiring the detection of particular deformation events also 
occurring at distant locations. For example, if the areas to be studied are 
affected by only a few types of deformation, such as landslides, land 
subsidence, volcanic activity, and glacial uplift, it will be useful to 

Fig. 7. Co-variogram computed from time series displacement of elite pixels in 
WabInSAR processing. Red rectangle indicates region where covariance values 
for corresponding distances show a significant drop and remain low beyond this 
distance. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 2 
Parameters for splitting individual clusters using DBSCAN algorithm.  

Cluster No. Distance threshold (decimal degrees) Minimum no. of points 

1  0.02 500 
2  0.01 800 
3  0.05 500 
4  0.02 1000 
5  0.03 300 
6  0.03 300 
7  0.05 500  
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classify landslides as one cluster irrespective of their location in the 
study area. This would simplify the algorithm, with only TSKM for 
clustering and LSTM and LSTM + SLP for supervised learning. 

As evident in Fig. 11b, the LSTM method successfully identifies and 
isolates deformation hotspots in the Los Angeles dataset. Concerning the 
underlying process, clusters 0 and 7 pertain to groundwater pumping 
and aquifer recharge operations at the Santa Ana system (Riel et al., 
2018). Clusters 2, 6, 11, 12, 15, and 16 show deformation associated 

with activities on the Newport-Inglewood Fault and oil and gas pro
duction from the Wilmington oil field near Seal Beach and Long Beach 
(Brooks et al., 2007). Clusters 3 and 14 indicate deformation hotspots at 
the city center, whose cause is not known. Clusters 3 and 10 likely show 
the post-seismic deformation associated with the 2014 La Habra 
Earthquake (Donnellan et al., 2015). Clusters 5 and 17 represent 
deformation caused by the Los Angeles D-line extension transit project. 
Cluster 8 highlights the deformation due to landslides at Santa Ana 

Fig. 8. Results from LSTM + Perceptron (a) and LSTM (b) predictions for the test points. White rectangles in (a) and (b) mark the areas where the predictions differ 
significantly. (c) and (d) show a close-up view of the area with different predictions made by LSTM + Perceptron and LSTM models, respectively. Units for X and Y 
axes are decimal degrees for each panel. 

Fig. 9. Confusion matrices generated for the LSTM + Perceptron (a) and LSTM (b) model predictions. The frequency of pixels has been normalized for an easier 
understanding of differences in prediction. X and Y axes refer to predicted label and true label respectively. 
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Mountain (Morton et al., 2006). Clusters 1 and 9 seem to show defor
mation along the Whittier Fault (Donnellan et al., 2015). 

5. Conclusion 

We present a novel semi-supervised learning approach combining 
time series and spatial clustering, LSTM, and perceptron-based deep 
learning to extract useful information from time series deformation 
derived from InSAR. The unsupervised approach works by initially 
clustering the elite pixels detected in InSAR processing based on their 
temporal behavior and subsequently applying spatial clustering to 

separate signals left unseparated in space by the time series clustering. 
The cluster labels generated using the spatiotemporal clustering act as 
training labels for the LSTM and LSTM + Perceptron based deep learning 
architectures, which minimize the time requirements for the overall 
clustering task. These methods are trained to establish a mathematical 
relation between the deformation time series and the associated 
spatiotemporal clusters. 

The results from spatiotemporal clustering are convincing, efficiently 
distinguishing the deformation events in LA. Further to these results, the 
LSTM and LSTM + Perceptron methods also learn well from the training 
labels generated from spatiotemporal clustering, achieving 96 % and 93 

Fig. 10. Spatial statistics computed over individual clusters detected by LSTM + Perceptron and LSTM methods. a) and b) show Bar charts of standard distances for 
LSTM + Perceptron and LSTM clusters, respectively. c) and d) show ellipses depicting the two-dimensional standard deviation of individual clusters for the LSTM +
Perceptron and LSTM methods, respectively. 

Fig. 11. Final cluster maps from a) LSTM + Perceptron and b) LSTM methods, respectively. These maps are derived after discarding clusters that do not carry useful 
information based on the threshold values of standard distances and co-variogram analysis. Rectangles with black boundaries and cluster ids on top mark the 
deformation hotspots detected by the respective methods. 
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% accuracy, respectively, and significantly reducing the computational 
time. Observing the results obtained from (i) LSTM using only time se
ries and (ii) LSTM + Perceptron using both temporal and static data, we 
see slightly better results for LSTM, trained only with time series. This 
signifies that we can derive significant deformation hotspots using only 
time series deformation data. The proposed information extraction 
approach can be integrated with any multi-temporal InSAR processing 
chains and shows a novel way of presenting InSAR deformation maps, 
more interpretable to non-domain experts, general users, and decision- 
makers. 
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