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ABSTRACT

Molecular thermodynamics is well developed with models like UNIQUAC, UNIFAC and SAFT. These models include robust codes and extensive databases for
chemical and petroleum industries through ASPEN, DORTMUND, and others. However, important systems in the pharmaceutical and biotech industries now exist
where these codes and their databases are not always sufficient. Cell culture media used to grow mammalian cells are multicomponent aqueous solutions with 50,
100, or more compounds including amino acids, salts, acids or bases, as well as sugars, fatty acids, etc. These components can exhibit both complexation and
incomplete dissociation. The thermodynamics of these systems have proven challenging to model, as current solubility descriptions frequently assume complete
dissociation in solutions containing a single solute in water at relatively low concentrations. However, not all compounds that are generally considered to be strong
electrolytes are completely dissociated even at low concentrations. Further, mixtures of such components can show dramatic changes in dissociation and
complexation with concentration, pH, and temperature. In this paper, we present a semi-empirical model for individual ions in aqueous solutions. We use data from
317 compounds to isolate the ionic contribution to a compound’s activity coefficient in aqueous systems from confounding short-range effects. We compare eight
robust regression M—estimators with a least-squares estimate and provide a two-parameter equation relating ionic strength, valence, and the activity coefficient not
requiring arduous characterization of the solute of interest. We demonstrate that the Fair M—estimator generates an accurate model that can serve as an appropriate
reference state for use with a model based on perturbation theory up to 29 molal.

1. Introduction

Solutions featuring multiple components, potentially with incom-
plete dissociation and at high concentrations, are frequently encoun-
tered in biological systems. For example, blood is a precisely buffered
solution containing a rich mixture of organic molecules and inorganic
ions some of which can be at high concentrations. Electrolytic solutions
used in electrochemistry often require high salt concentrations for
conductivity. Other natural systems such as oceans are a concentrated
salt solution with many different ions, and their capacity to capture and
store carbon dioxide via the formation of a weak acid is a key element in
maintaining global CO; levels. One additional important current area is
in the development of intensified media formulations for mammalian-
cell biomanufacturing. Mammalian cell culture media often contains
50 to 100 different chemical compounds, including amino acids, sugars,
fatty acids, and salts, and their development relies heavily on experi-
mental optimization. Feeds, which are supplemented to the bioreactors
during extended fed-batch or perfusion processes, may contain even
higher concentrations of select media components. Because of the large
space of possible media formulations, it is nearly impossible to effi-
ciently find an optimal media formulation via experimentation alone.
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The ability to accurately predict a compound’s solubility in aqueous
solution without having to rely solely on experiments could vastly
accelerate media development. However, there is currently a dearth of
both experimental data and computational tools that can model these
complex environments, despite a compelling need for accurate pre-
dictions of their behavior.

Creating media formulations in which components remain in solu-
tion requires careful determination of the amounts of specific compo-
nents that can dissolve in the media. This is especially challenging in
intensified biomanufacturing processes with high-density cultures in
which high concentrations of nutrients must be dissolved in the culture
media. Part of this formulation process requires determining the solu-
bilities of specific amino acids in solution. To conventionally accomplish
this, laborious, time-consuming experiments have been needed to
determine the activity coefficients and solubilities even for simple sys-
tems like a single amino acid in aqueous solution. Taking data for two or
three amino acids in solution can be an even more daunting task.

An alternative strategy would be to computationally predict the
solubilities of these systems using thermodynamic approaches. Being
able to make in silico predictions of such behavior will aid in the
development of new cell culture media formulations and will help
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advance the development of biomanufacturing, especially for intensified
(i.e., high cell concentration) processes.

However, since many media components, including amino acids and
buffers, can either ionize partially or fully in solution, determining
which compounds remain soluble and which precipitate is especially
challenging. A number of predictive models already exist, but each has
their limitations. Debye-Hiickel [1] requires low ionic strengths, com-
plete dissociation, and point charges, all of which are unsuitable for the
systems discussed here. Guggenheim’s work [2] as well as that of
Glueckauf [3] present an alternative approach for modeling multicom-
ponent electrolyte systems, but only capture interactions caused by ions
of opposite charges. Similarly, the original Pitzer-Debye-Hiickel formula
[4] was developed for use only in binary systems. Its subsequent use to
model the long-range portion of the activity coefficient in some elec-
trolyte models, such as the multicomponent electrolyte non-random
two-liquid model [5], overcame this limitation, but still required salt-
specific fits that limit its use to specific sets of compounds. Indeed,
this shortcoming was noted and recently addressed in an ion-based
electrolyte non-random two liquid model [6]; however, the model has
mixed results when predicting salt solubilities in multi-electrolyte sys-
tems. Other models using the Pitzer-Debye-Hiickel equation can model
weak electrolytes by incorporating hydration and equilibrium constants,
but only model single electrolyte systems without complexation [7]. A
fourth model, developed by Kusik, Meissner, and Field [8,9], is capable
of predicting solubilities in multi-ion systems; nevertheless, it only is
applicable to systems containing exclusively strong electrolytes, as it
does not model the activity of individual ions for solving equilibrium
equations. Finally, updated electrolyte versions of LIQUAC and LIFAC
are only for strong electrolytes [10].

Predicting the solubilities of these compounds in aqueous solution
requires a detailed knowledge of three main factors: ionization,
complexation, and dissociation. Accurately describing the effect of each
of these factors would provide improved solubility predictions for in-
dividual compounds. However, due to the complexity of the interactions
in these systems, experimental validation still will be required. In other
words, rigorous theoretical characterization is often tangential to the
ultimate aim of developing concentrated media. Hence, a more general,
coarse-grained estimate is a reasonable approach that often can supply
sufficient information for initial media component concentrations that
can subsequently be refined and tested through media development
experiments.

Ionization is relatively straightforward to calculate if the chemical
structure of a component is known: one must simply determine the
valence of the atom or molecule in question. For example, the ionization
of the CO3 is simply 2. This feature can be used to determine the
component’s complexation with other components in solution, often by
cross-referencing against a database of known compounds and their
constituent ions. The extent to which ions (such as Na* and CO%’) will
form a complex (NayCOs) in solution depends largely on the complex’s
dissociation constant. In contrast to ionization and complexation, which
are discrete variables, the dissociation constant is continuous and can
range from completely dissociated and ionized (only Na* and CO%™ in
solution) to completely associated and complexed (only NayCOs in
solution).

The dissociation constants of some media components, such as amino
acids, have been characterized [11]. Nevertheless, solubility predictions
using dissociation constants that rely on concentrations alone have low
accuracy because they assume ideal mixtures; incorporating an activity
model into dissociation calculations can address this shortcoming by
accounting for non-ideality. For simple systems involving only a single
solute, such as the strong electrolyte hydrochloric acid in water, the
solute’s activity can be modeled without differentiating between con-
jugate forms (HCl/Cl" and H30™ /H,0, as per Brgnsted-Lowery acid-base
theory). In contrast, multicomponent systems involving solute-solute
interactions, such as a mixture of weak electrolytes like amino acids in
water, necessitate a means to separately model the activity of conjugate
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species, many of which are ionized.

Multiple factors affect a component’s activity, including its charge,
shape, and size. Modern activity models increasingly differentiate be-
tween these interaction effects by using complementary mathematical
descriptions. For dissociating ionized species, such as amino acids, this
can result in superior predictive capabilities. Contemporary media
development relies heavily on experimental studies to develop highly
concentrated, multicomponent products for their processes. Current
computational approaches frequently do not take an individual ion
approach to modeling, which is necessary for systems in which cross-
species complexations and partial dissociation can occur. To this end,
we have developed a new approach to modeling long-range electrostatic
interactions that demonstrates improved performance over existing al-
ternatives at high ionic strengths and does not require ion-specific pa-
rameters. By developing an activity model that uses individual ions as
the modeling unit instead of complexes, our model serves as a spring-
board for solubility predictions in a broader array of systems that
include multiple components and partially dissociated species.

2. Materials and methods
2.1. Curve fitting

Curve fitting was done using the “fitnlm” function in MATLAB
R2021b. Ten thousand linearly spaced points were generated between
zero and the maximum molality of the 1:1 ions (29 molal). These points
were converted into ionic strengths, and data for all compounds was
generated such that they would have estimates at the same ionic
strengths. Thus, a compound with a maximum concentration of 1 molal
would have half as many points as a compound with a maximum con-
centration of 2 molal. Specifically, despite different maximum concen-
trations, each compound would have calculated data points at the same
ionic strengths for the regions they overlap (e.g., at 0, 0.0029, 0.0058,
..., 0.29, ..., 1 molal). To facilitate fitting, the data was scaled and
centered by using the natural logarithm of the activity coefficient,

In(y, ).
3. Theory/calculation
3.1. Multicomponent systems

The behavior of strong electrolytes in solution is among the most
widely studied systems in thermodynamics due to its well-defined
physical attributes. In complex media, however, the components are
less well-behaved, exhibiting only partial dissociation and complexation
with other media components. Here, the necessity of individual ion
activity models becomes apparent. The dissociation constant K for a
compound is defined as:

K=Tla’ =T[2 @
J J

where q; is the activity of a component j in solution, v; is the stoichio-
metric number of the component, m; is the component’s molality, m® is
the standard state molality, and y; is the component’s activity coefficient

[12]. For a dissociation reaction with complexation, such as that which
occurs when sodium chloride and an amino acid both are present in
solution, the system can be described by:

NaCl < Na* +Cl”
HA<H"+A™
NaA < Na' +A~

HCl<H" +ClI”
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Each of these dissociation reactions can be modeled using their corre-
sponding dissociation constants and activities. Despite the necessity to
model these systems for complex solutions, the activities of individual
ions in solution are not well-described in the literature.

3.2. Prior work

Some previous efforts have been successful in predicting complexa-
tion with reasonable accuracy for multicomponent systems using indi-
vidual ion activities. Of note are MINTEQA2 [13] (which forms the basis
of Visual MINTEQ [14]) and WATEQ [15]. Both of these approaches,
however, have limitations.

MINTEQAZ2 uses either a modified Debye-Hiickel equation [1] or the
Davies equation [16] to estimate the activity coefficient. The developers
do not recommend use in solutions with an ionic strength above 0.5
molal. This limits the usefulness of MINTEQAZ2 to dilute systems, pre-
cluding its application to broader systems like seawater and complex
culture media.

WATEQ relies on the MacInnes hypotheses [17]. In short, the hy-
potheses state: (1) that a given ion’s activity is independent of the ions
associated with it and is therefore dependent only on the ionic strength
and temperature of the solution and (2) that the K™ cation and Cl anion
have the same activity coefficients. While these assumptions have
allowed the development of useful software for solubility predictions of
complex solutions, there are specific issues undermining their
functionality.

The first hypothesis tacitly requires that the ions are completely
dissociated, which is doubtful even for many systems that are considered
strong electrolytes [5,18] and false for many ionic species that are not
strong electrolytes. Indeed, models have been able to explain the non-
ideality of strong electrolytes as a function of incomplete dissociation
and solvation [18,19]. Moreover, experimental studies have suggested
that strong electrolytes do form ion pairs [20], with an estimated 60 % of
KCl ions pairing near saturation [21]; similarly, surface force measure-
ments of concentrated electrolyte solutions have shown the formation of
ion layers [22]. Comparisons with molecular dynamics simulations have
yielded similar results [23-29]. For other ionizable species, such as
carbonic acid, dissociation is incomplete, invalidating the use of the
Maclnnes assumptions for accurate estimates of the activities for such
species.

The second hypothesis was made based on the fact that the ions K*
and Cl" have similar weights and molar conductivities. However, this
hypothesis is also questionable. While these two ions may have some
similar characteristics, they differ in many more, such as ionic radius
[30], hydration number [31], and energies of formation [10]. Addi-
tionally, it is impossible to rely on this assumption above the maximum
solubility of KCI (approximately 5 molal [32]) despite many salts having
significantly higher solubilities, limiting its explanatory power.

In summary, it is clear that a more complete model is needed to
capture the behavior of ionic species in multicomponent systems con-
taining incompletely dissociating compounds at moderate to high con-
centrations. Existing approaches either are only descriptive models of
salts with existing data, do not account for multiple components that
form new molecular compounds in solution, or are unsuitable at high
ionic strengths. Here we develop a model that requires only the charge
of the ion and the solution’s ionic strength, thereby eliminating the need
for time-consuming parameterization necessitated by other models. This
will facilitate future modeling efforts by allowing for the evaluation of
equilibrium equations using activity coefficients for each ion and
molecule involved in the reaction across several interaction reactions in
solution (see Section 4.1). Though this model is general and not
completely explanatory for the behavior of any specific ion in solution, it
captures typical behavior for ions with a valence up to 5 and, more
importantly, gives reasonable predictions up to approximately 30 molal.
This latter point is particularly relevant because all other current
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species-agnostic activity coefficient models, such as the Davies equation,
give dramatically unrealistic activities at high ionic strengths.

3.3. Individual ion activity model

Activity coefficients capture a range of non-ideal behaviors spanning
ionic, solute-solute, and solute-solvent interactions. Distinct models
describing these interactions are increasingly being developed and
combined through models characterizing factors such as hydration [33],
partial dissociation [18], group interactions [34], screening length [35],
and the dielectric constant [36]. These factors operate across different
length scales. Thus, to model these separate effects, the overall activity
often is written as:

Y+ = YVIRVSR (2)

where y; considers long-range ionic contributions to the activity coef-
ficient and ygz accounts for short-range contributions to the activity
coefficient. This is similar to the approach taken by LIQUAC [37], LIFAC
[38], and updated versions thereof [10]. LIQUAC and LIFAC have
demonstrated prowess in property predictions involving electrolytes in
mixed solvent solutions [10]; still, they are not built to account for
species where partial dissociation and complexation are major factors
influencing solution properties, necessitating an alternative approach
incorporating equilibrium constants as described by Equation (1).

In contrast to LIQUAC and LIFAC models, we omit a separate mid-
range contribution term and assume that interactions at this length
scale are sufficiently captured by the long-range and short-range activity
coefficient terms. This reduces the overhead necessary to describe a
given system, as the mid-range term requires interaction parameters for
every species pair in solution; future work could explore the benefits of
including a mid-range term.

In our approach, we use a long-range activity coefficient model that
is species-agnostic, as interactions happen at length scales significantly
larger than the size of the species in solution. In contrast, short-range
models are species-specific, and interactions happen at length scales at
or below the size of the species in solution. Still, short-range models
often can estimate interaction effects for novel components by predict-
ing them from existing group interactions, minimizing the necessity for
experimental measurements. A number of different approaches can be
used to model the short-range contributions, such as UNIFAC [34] or PC-
SAFT [39]. The focus of the model developed in this paper, however, is
on estimating the long-range, electrostatic contributions for charged
components, and we will restrict our discussion accordingly. This is
similar to the semi-empirical approach taken in Samson, Lemaire,
Marchand, and Beaudoin [40], which has been successfully used in
modeling complex cement and concrete systems [41-43].

We should also note that the approach of factoring the partition
function or activity coefficient used here (and in nearly all modern ac-
tivity models) traces back to the concept of perturbation theory. It has
been shown by Nezbeda [44,45] and Aranovich, Donohue, and Donohue
[46] that the appropriate choice of reference state is necessary for any
factoring of the partition function or activity coefficient for any
perturbation theory to work. In this case, because of the strength of
electrostatic forces present in solutions containing ionized compounds,
long-range interactions are the only appropriate reference state.

While this model can provide a suitable reference state at high ionic
strengths, any model only accounting for long-range interactions should
be used with caution as ionic strengths increase. At high ionic strengths,
short-range interactions become increasingly important to a com-
pound’s activity; a long-range model alone may be insufficient in this
scenario. Incorporating a short-range model can help capture the vari-
ation in behavior between different salts, given a reasonably accurate
estimate of the activity coefficient. The work presented here provides
such an estimate, which will increase the predictive capability of future
models built to capture compound-specific activity coefficients.
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Fig. 1. Relationship between individual ion ionic activity coefficient values (dashed lines) and experimentally measured ionic activity coefficient values (solid line)
for the bi-univalent compound CaCl2. The individual ions’ activity coefficient cannot easily be experimentally determined, and what is often measured and reported
instead is the mean activity coefficient for a given compound. Experimental data sources for the individual ions and mean activity coefficient of CaCl2 are listed

in Table S3.

In the special case of components that completely or almost
completely dissociate, we assume ygz ~ 1, such that the mean activity
coefficient for a compound M,N, is only a function of y;; and can be
defined in terms of its constitutive ions as

1
re = (Ari)pre 3

where y is the activity coefficient of the cation and y_ is the activity
coefficient of the anion [47]. It is important to note that y, is the
measurable value of the activity coefficient for an ionic compound,
representing the geometric mean of the individual activity coefficients
of all ions in solution; it is not the individual activity coefficient of the
ions themselves. Much discussion has surrounded whether it is possible
to measure individual ion activity coefficients and if they meaningfully
exist at all [48,49]. Here we surmise that, regardless of their existence,
the use of an activity coefficient model for individual ions is nevertheless
useful for the prediction of complex systems.

Assuming that the long-range interactions are a function solely of the
ionic strength I of the solution, the valence 2z of the ions j and k, and
temperature T, for a salt with two univalent ions we can write

T+ E}/t(IvzjvzkaT) (4)
whereby
Ve =V =Y-=hN (5)

Because the ionic strength, valence, and temperature are identical for
the univalent cation and univalent anion, there is no parameter to
distinguish between them and the activity coefficient y; can be used to
more generally represent the activity of an ion with a valence of one. The
variation observed in experiments among ions of the same charge is
attributed to short-range interactions.

Given y, for a compound containing a univalent anion and y,, it
becomes trivial to determine the activity coefficient for other valences

via simple rearrangement of Equation (3):

1
rry
v, = (6)
i ( 7
or, in the case where the cation has a valence of one,
Y
q
+
7, =5~ 7)
= (%)

where z represents the counterion’s valence in a compound containing a
univalent ion. This process can be replicated for other valences and ions,
given that sufficient data for them exists. An empirical equation then can
be fit to measured y, data using these relationships to develop a simple
function that only depends on ionic strength, charge, and temperature.
Assuming that at least one of the ions present in the compound is uni-
valent, we can use z to simplify Equation (3) into the form

tn(r) = (15 ) tntr) +2inir) ®

This equation allows for simultaneous fitting of any number of com-
pounds, so long as at least one constituent ion is univalent. An idealized
visual representation of the relationship between y, and long-range
ionic effects is presented in Fig. 1 for calcium chloride, a bi-univalent
salt, assuming no short-range interactions.

The semi-empirical activity model developed here takes a similar
approach to other models [16,50-52] by adding empirical fitting terms
to the Debye-Hiickel activity model and consists of three main compo-
nents, which can be decomposed into independent functions describing
the impact of ionic strength f(I), the impact of valence g(z), and the
impact of temperature h(T). The model used here is
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constant of water at 25 °C, and ¢; and cy are empirically determined
fitting constants. Note that, as the Debye-Hiickel constant used here is
for water, this model applies only to aqueous systems. With a different
constant, it could likely be used for additional solvents; with additional
modeling and testing, it could potentially be used for mixed solvent
systems, but that is beyond the scope of the work presented here. In this
paper, we deal exclusively with aqueous solutions containing multiple
solutes. Additionally, as is conventional for electrolyte solutions, this
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model uses asymmetric activity coefficients, such that llif{)% =1.

After the individual ion activity coefficients are determined using
Equation (9), Equation (3) can be used to determine the mean activity
coefficient. Given a sufficiently large dataset, this relationship can be
used to estimate the long-range component of individual ion activities.

It is worth noting that choosing an adequate empirical model is
subjective. In general, f(I) resembles the Debye-Hiickel equation [1]
without the linear term c,I included here. The Davies equation does
have such a linear term included but is missing the fitting constant c¢; in
the denominator. We find that two fitting constants provide a better
description of the behavior at low and high ionic strengths by mini-
mizing the root mean square error (RMSE) of the data. For completeness,
the authors have examined several forms of f(I) and provided statistical
metrics (Table S2), but a fitting constant in the denominator combined
with a single linear term seems to best balance functionality with
simplicity. The functions g(z) and h(T) are expected to remain as-is: a
more complex g(z) or h(T) necessitates more fitting constants, impacting
the Debye-Hiickel constant and resulting in problematic behavior at low
ionic strengths. Additionally, h(T) comes from the temperature
component of the Debye-Hiickel constant, as it is often desirable to
model these systems at a variety of temperatures. For biological media,
the system of focus for this work, these temperatures typically range
from 4 °C to 37 °C.

4. Results and discussion

In order to generate an aggregate description of the activity coeffi-
cient for ions with a valence of unity, we must fit a curve to empirical
data. Fortunately, a large collection of data for compounds containing a
univalent ion has already been compiled and fit by various sources
[50-62]. In total, we have compiled activity data for 317 compounds
containing a univalent ion and used this to develop an accurate model to
estimate effects stemming from long-range interactions (Fig. 2). Much
reported data is not raw values but fitted trends. Thus, we opted to use

1:1 ions

1072

I (mol/kg)

Fig. 3. Comparison of best fit M—estimator results to the dataset mean and median. Thin lines represent expected activity values for each of 140 different 1:1 salts in
aqueous solution, while the wider lines represent either the results of fitting a given M—estimator, the dataset mean, or the dataset median.
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Fig. 4. Comparison of Davies equation predictions with the proposed model. Thin lines represent the mean activity coefficient, y+, of a single electrolyte in water.

these fits for all compounds and accepted them at face value. Addi-
tionally, the compiled data exclusively represents the mean activity
coefficient, y,, for compounds that have at least one univalent ion.
Because of this, we can substitute the semi-empirical Equation (9) into
Equation (8) to generate an equation that will fit this dataset. Because
the equation is being fit to a large body of electrolyte activity coefficient
data rather than that of a specific salt, the resulting fitting constants will
represent a typical trend for any given salt, which ultimately reflects the
underlying long-range contributions to each salt’s activity coefficient. If
this approach were to be used for an individual electrolyte, it would be

impossible to disentangle long-range and short-range interactions.

A few features are noteworthy. First, for an aqueous component in
solution with no charge, the long-range electrostatic component for the
activity coefficient is unity, as expected. Thus, any variation in solubility
between two solubilized molecules with a valence of zero would be
accounted for solely by a short-range activity coefficient model. Second,
there is significant variation in the activity coefficient of different
counterions as concentrations begin to exceed 0.5 M (Figure S1); we
attribute this variation to short-range interactions which could be
accounted for better through the inclusion of a short-range activity



K.M. Rapp et al.
1:1 lons
10
T
2]
K
‘a
j=2}
o
1l
&
pr
<
\fl
N
jo2}
o
5 . . . . . )
0 5 10 15 20 25 30
lonic Strength (mol/kg)
3:1lons
6
4l
o 2f
2]
)
‘&
g o
1}
&
S
g 2f
_H
&
N
{2
S 4t
6
8 . . . . . )
0 5 10 15 20 25 30
lonic Strength (mol/kg)
5:1 lons
T
K%
Z
‘&
o
o
1
&
pur
Xy
?_j\
“&
[
o

3 . . . . . .
0 1 2 3 4 5 6 7

lonic Strength (mol/kg)

Journal of Molecular Liquids 407 (2024) 125144

2:1 lons

0 5 10 15 20 25 30
lonic Strength (mol/kg)

4:1 lons

= log,(vgg)

log, (7, /v g)

6 . . . . . .
0 2 4 6 8 10 12 14

lonic Strength (mol/kg)

Fig. 5. Plots of the expected Ysg values that could be fit using a variety of different models. Each line represents the mean activity coefficient of asingle electrolyte

in water.

coefficient model (Equation (2). Finally, as the ionic strength ap-
proaches infinite dilution, the activity coefficient approaches unity,
which is the expected result from Debye-Hiickel theory.

The data used comes from several different sources for a number of
salts, and it seems unlikely that all the data is of comparable quality.
Additionally, because short-range effects are increasingly prominent at
higher ionic strengths due to the closer proximity of ions to each other,
the unexplained variance of the datasets is expected to increase at higher
ionic strengths. Altogether, this poses two challenges to accurately

estimating the contribution of long-range, ionic effects to the activity
coefficient: the potential presence of outliers and spurious fits plus
heteroskedasticity.

To mitigate these effects, we used robust regression approaches and
compared several different M—estimators, which have frequently been
employed to achieve more accurate estimates in the face of outliers and
violations of normality assumptions [63]. Fit statistics for these various
methods are in Table S1. Of these, we have opted to use the Fair
M—Estimator due to it resulting in the highest adjusted R2, lowest RMSE,
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Fig. 6. Comparison of surface model with experimental individual ion activity coefficient data of valences one, two, and three (y1,y2, and y3 respectively). The
model tends to track the center of the aggregated datasets, representing the long-range portion of the activity coefficient for individual ions. Sources for the

experimental data plotted here are provided in Table S3.

and lowest sum of squared errors (SSE) of the M—estimators tested.
Moreover, close inspection of the fitting parameters shows that there are
only minimal differences between many of the M—estimators examined;
generally speaking, monotonous M—estimators produce similar results,
but redescending M—estimators produce somewhat different fits (Fig. 3,
Figure S2).

Because the data used to produce the model was generated from
previous curve-fitting procedures, it is possible to directly compute an
expected center for any ionic strength, facilitating our ability to deter-
mine the best overall model. Hence, we computed the expected mean
and median for the dataset and visually examined them with the results
of fitting various M—estimators (Fig. 3). The Least Squares, Fair, Huber,
Logistic, and Cauchy models all produce very similar fits; in contrast, the
Welsch, Andrews, Bisquare, and Talwar models begin to differ more
significantly. The use of the Fair M—estimator is again reinforced here,
as it most closely tracks the dataset center throughout.

The Davies equation—perhaps the most commonly used activity
model in software due to its simplicity—is plotted for reference and
tends to overestimate the experimental activity coefficient curves,
especially at ionic strengths exceeding 0.5 molal (Fig. 4). As the ionic
strength increases, the fitted surface becomes exponentially different
from the predictions resulting from the use of the Davies equation;
further, as the valence of the counterion increases, the rate of this
change increases as well (Figure S3). This is not surprising. The Davies
equation is generally not recommended for use at ionic strengths
exceeding 0.5 molal, but it is nevertheless used in multicomponent

system modeling software (such as WATEQ [15] and MINTEQA2 [13])
because few alternatives exist. The work presented in this paper pro-
vides a reference state for the long-range activity coefficient that can be
built upon. Indeed, compared to the Davies equation, the model
described by Equation (9) provides a reasonable (i.e., within the range of
existing experimental data) estimate, particularly at high ionic strengths
and valences, extending as high as 29 molal. Additionally, the residuals
resulting from this fit have a physical meaning: they represent the short-
range interactions between the ions. Rearrangement of Equation (2)
allows for the straightforward generation of the short-range interaction
data (Fig. 5) that is conducive to fitting with UNIFAC [34] or another
short-range activity coefficient model.

By using individual ions instead of compounds as the modeling unit,
one can quantify the long-range component of the activity coefficient for
individual ions. Indeed, previous work has experimentally determined
the activity coefficient for a variety of electrolytes, and recent reviews
have compiled these sources [64]. Upon comparing the results of this
work with aggregated experimental individual ion activity coefficient
data (see Table S3 for ions used and relevant sources), the predicted
values follow the approximate center of the dataset (Fig. 6), with a
RMSE of 11.7. Just as the variance of mean activity coefficient data
increases with ionic strength, so too does the variance of individual ion
activity coefficient data increase with ionic strength. At high ionic
strengths, long-range interactions are still quite strong, but short-range
interactions become increasingly prevalent. This model successfully
provides a satisfactory baseline activity coefficient for ions in solution.
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The model presented here can accurately model long-range contri-
butions to the activity coefficients of ionic species in solution. By
incorporating hundreds of datasets for ionizing compounds, it is possible
to generate an improved activity coefficient model that does not rely on
a priori assumptions and is functional over a wide range of ionic
strengths. Furthermore, this activity model benefits significantly from its
simplicity and can therefore be used for systems involving large numbers
of interactions without having to laboriously characterize each indi-
vidual species and their interactions with other components in solution.

Still, this approach does not fully capture the complex interactions of
aqueous species. For systems where a high degree of accuracy is desired,
models that include additional terms describing interactions at shorter
length scales could prove beneficial. Indeed, the model developed in this
paper can be used to quantitatively describe short-range activity coef-
ficient contributions for well-characterized systems (Fig. 5), which can
subsequently be described by a model such as UNIFAC, as has been done
elsewhere [10]. Finally, we reiterate the limitations of this model alone
in high ionic strengths, especially given the impact of short-range in-
teractions on the activity coefficient in these conditions. For example, in
a solution with an ionic strength of 1 mol/kg, the semi-empirical
equation developed in this work estimates the mean activity coeffi-
cient of a 1:1 compound to be approximately 0.64, but the activity co-
efficient can span the range from approximately 0.22 to 1.9, depending
on the salt (Fig. 4). Other semi-empirical models are already used in this
regime [40] due to their simplicity; however, the model presented here
provides a more mathematically rigorous approach than other models
by incorporating a large body of experimental data. Nevertheless, we
caution use of this model alone to accurately predict a specific com-
pound’s activity at ionic strengths exceeding 1 mol/kg. Instead, we
recommend using this model to provide an improved reference state for
more comprehensive models incorporating short-range activity coeffi-
cient behavior based on perturbation theory [44,45].

A systematic comparison and assessment of various M—estimators
also has been conducted. The data used does not appear to suffer greatly
from gross outliers—a case where redescending M—estimators tend to
excel—and so the choice of M—estimator depends more heavily on its
ability to handle heteroskedasticity. As has been described previously,
the Fair M—estimator performs exceptionally well in this case [65].
Given that activity coefficient data is highly heteroskedastic, the high
performance of the Fair M—estimator compared to other M—estimators
is expected.

5. Conclusion

Real-world solutions often contain three main obstacles that make
modeling challenging: incomplete dissociation, multiple components
with cross-species complexation, and high ionic strengths. Current
prediction software often assumes that compounds are completely
associated or dissociated, are simple solute-solvent systems, or low
(<0.5 molal) ionic strengths. An accurate estimate of the electrostatic
contribution to the activity coefficient can facilitate the study of com-
plex systems without the need for detailed parameterization by incor-
porating well-known and easily determined equilibrium constant data.
Here, we provide a model to estimate individual ion activities that can
serve as an improved reference state over existing long-range models for
perturbation theory. Most importantly, this model will enable solubility
predictions for solutions containing mixtures of weak electrolytes at
high concentrations. This paves the way for future efforts modeling
complex systems in myriad areas including media and feed formulation
for intensified bioprocessing and perhaps extending to mathematical
descriptions of blood, marine, and concentrated electrolysis solutions.
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